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Abstract

This thesis presents a CubeSat system that can capture ocean color by hyperspectral remote sensing,
and how this can be exploited as a surveying technology that can aid in ocean observation and other
related objectives. The system uses a hyperspectral camera, i.e., a camera that can capture an image
across the full spectrum from visible to near-infrared light. The thesis focuses on the concept of
the system, how the different data products could be processed to observe the ocean efficiently,
and how the system and payload can be designed to accommodate changing requirements. These

objectives raised the following research questions.

* RQ-1. How can a CubeSat platform be developed for hyperspectral ocean color applications
and provide end-users with valuable information?

* RQ-2. What kind of algorithms or models for better hyperspectral data acquisition and
reduced data latency can be deployed on-board a CubeSat tailored for ocean color observa-
tions?

* RQ-3. How can a CubeSat be used to support the development, validation, and upgrade-
ability of new in-orbit data processing algorithms?

For RQ-1 a CubeSat concept is presented. This thesis only provides details on the potential
on-board processing schemes and references the CubeSat concept’s other aspects. The appendix
provides further details of the CubeSat specifications.

For RQ-2 some different processing strategies are presented. This thesis attempts to answer the
research question in a general manner only concerning hyperspectral image processing and some
considerations regarding simplistic models explicitly developed for ocean color applications and

parameter retrieval.

For RQ-3 the latter part of the thesis presents how the related challenges were reduced to create a
CubeSat with the desired capabilities at an acceptable risk.

This thesis is not an extensive exploration of all there is to know about these complex topics.
Instead, it is an overview of the considerations taken when developing HYPSO-1 and how this

CubeSat concept can be used with other sensor platforms.

All in all, this work documents the creation of a CubeSat that could and should give new insights
into how to do operational ocean color observations in the future.






Sammendrag

Denne oppgaven presenterer et CubeSat-system som kan fange havfarger ved hyperspektral fjern-
maling, og hvordan dette kan utnyttes som en kartleggingsteknologi som kan hjelpe til med
havobservasjon og andre relaterte mal. Systemet bruker et hyperspektralt kamera, det vil si et
kamera som kan ta et bilde over hele spekteret av synlig og n@r-infrargdt lys. Oppgaven fokuserer
pa konseptet til systemet, hvordan de ulike dataproduktene kan behandles for a observere havet
effektivt, samt hvordan systemet og nyttelasten kan designes for a mgte endrede krav. Disse malene

reiste fglgende forskningsspgrsmal.

* RQ-1. Hvordan kan en CubeSat-plattform utvikles for hyperspektrale havfargeapplikasjoner
og gi sluttbrukere verdifull informasjon?

* RQ-2. Hva slags algoritmer eller modeller for bedre hyperspektral datainnsamling og redusert

dataforsinkelse kan brukes i en CubeSat skreddersydd for havfargeobservasjoner?

¢ RQ-3. Hvordan kan en CubeSat brukes til a stgtte utvikling, validering og oppgraderingsevne
til nye databehandlingsalgoritmer i bane?

For RQ-1 presenteres et CubeSat-konsept. Denne oppgaven gir kun detaljer om potensielle
prosesserings strategier som kan brukes i bane og kun refererer til de andre aspektene ved CubeSat-
konseptet. Vedlegget gir ytterligere detaljer om CubeSat-spesifikasjonene.

For RQ-2 presenteres noen forskjellige prosesserings strategier. Denne oppgaven forsgker a besvare
forskningsspgrsmalet pa en generell mate som kun tar for seg hyperspektral bildebehandling
og gir i tillegg noen betraktninger angaende forenklede modeller som er eksplisitt utviklet for

havfargeapplikasjoner og parameterinnhenting.

For RQ-3 presenterer siste del av oppgaven hvordan noen av utfordringene ble mitigert for a lage
en CubeSat med de gnskede egenskapene pa en mate som innehar et akseptabelt niva av risiko.

Denne oppgaven er ikke en omfattende utforskning av alt det er & vite om disse komplekse temaene.
I stedet er det en oversikt over hensynene som er blitt tatt ved utvikling av HYPSO-1 og hvordan

dette CubeSat-konseptet kan brukes med andre sensorplattformer.

Alt i alt dokumenterer dette arbeidet skapelsen av en CubeSat som kan og bgr gi ny innsikt i

hvordan man kan gjgre operasjonelle havfargeobservasjoner i fremtiden.






Preface

An underlying desire to understand and learn more about the world we live in has given me the
drive to pursue this Ph.D. When I first applied for the opportunity as a 22-year old fourth-year
student in the integrated master program for engineering cybernetics, I did not know what I was

getting into. Since then, I have learned a lot about our world and myself.

Undergoing a Ph.D. can be challenging for many reasons, and the emergence of a global pandemic
did not help. The impacts of this pandemic unquestionably halted some of the planned research

activities.

The original title of the Ph.D. project that I applied for was “Coordinated oceanographic observation
system with autonomous aerial/surface robots and hyper-spectral imaging in SmallSat”. The project
was ambitious and concerned a complex system of systems. Most of the platforms considered in
that title were not at a technical readiness level where they could be coordinated as a system of

systems when I started. For example, the satellite was still in the concept phase.

These limitations meant that I had to learn a lot about a lot that was not covered as part of my
educational background at the point of starting. Making a satellite, even just parts of the payload
software envisioned, required many resources. My efforts have been focused on realizing the actual
satellite and how it could be used. It remains as future work to perform more simulations and
experiments of the system of systems. I am very grateful that I was allowed to pursue this Ph.D.
focusing on the hyperspectral payload and its software.

vii






Acknowledgments

This thesis is a product of nearly three and a half years of hard work, and many people deserve to
be mentioned because of their involvement. I want to use this opportunity to thank my supervisors,

friends, colleagues, and family for their support during this time in my life.

Thank you, Tor Arne Johansen, for motivating me, guiding me when needed, and providing insight
and ideas for different research areas. Similarly, Geir Johnsen, thank you for always sharing your
enthusiasm and engagement within the field of ocean biology, bio-optics, and remote sensing. I am
grateful for having you two as supervisors, and I have learned a lot from you both professionally
and personally. Thank you, Harald Martens, for being my mentor during the Ph.D., it has been
amusing and a good learning experience to discuss different topics related to hyperspectral imaging
with you. And I could not end this paragraph without mentioning Milica Orlandic, my unofficial
supervisor, since I did my master’s. I will be forever grateful for your ability to see both people and

the academic work being done.

I am happy to have been a part of the NTNU SmallSat Lab during its startup. This lab has been an
excellent place for me to do more than just research; it has provided me with an arena to establish
new friendships, learn a lot about satellites, play around with 3D printing and learn so much from

so many different and unique people.

I am grateful for all the discussions we have had together, the things I learned, being part of a
team, and all the fun moments that accompanied this time in my life. Thank you Evelyn Honoré-
Livermore, Joseph L. Garrett, Elizabeth F. Prentice, Roger Birkeland, Dennis D. Langer, Marie Bge
Henriksen, Gara Q. Diaz, Mariusz E. Grgtte, Bjgrn A. Kristiansen and Amund Gjersvik. Special
thanks to Evelyn Honoré-Livermore for being an incredible project leader and guiding me through
my responsibilities regarding the software development of the payload for our initial satellite.
Similarly, I would like to thank Joseph L. Garrett, Roger Birkeland, and Dennis D. Langer for their
crucial contributions to the software development and good discussions concerning making the
satellite more operational. Lastly, I must mention Elizabeth F. Prentice; thank you for all the small

talks we had in the lab while you were getting the actual payload ready.

Thank you to all the students who have been a part of our satellite team. Without you, we would
not even be close to having a satellite! Special thanks to Live Jacobsen for making the Front-page
illustration.

To my friend and mentor Ajit Subramaniam, thank you for all the helpful discussions we have had
about the research cruise you let me join and all the ideas you have shared with me on how we
might use the satellite we have made.



To Kristin Johansen, I will never be able to say how truly appreciative I am that you have taken
the time to read this thesis and helped me present it in a way that is more accessible. Without your

thorough eye, this piece of work would have been lesser.

I would also like to acknowledge all the support I have received from the department. To Tove
Kristin Blomset Johnsen, thank you for all the help you provided when I struggled the most with
my Ph.D. To all my colleagues and lunch-friends at the department, Sverre Velten Rothmund,
Pal Holthe Mathisen, Marianna Wrzos-Kaminska, Jostein Lgwer, Stefano Brevik Bertelli, Johann

Alexander Dirdal, Kristoffer Gryte, Martin Lysvand Sollie Eirik Lothe Foseid, and everyone else.

Thank you to my friends outside academia for providing me with a free space to escape to think
about other things. I would like to direct a special thanks to Videokomiteen at Samfundet for the
social group that this volunteer work has given me through my years at Norwegian University of
Science and Technology (NTNU). Furthermore, I would like to thank my friends from Hgnefoss
who live in Trondheim, Erlend Ravlo, Eirik Sande, Torkel Forbord, and Baldur Kjelsvik, as well as
Nils Barlaug (even though you are from Oslo) for our social gatherings and all the fun times we
have had. I would also like to direct a special thanks to Adrian Austevoll; I am so grateful that you
are always just a phone call away even though England, after you moved there during the pandemic,
seems quite far. I will always treasure our conversations, and how you help me tone down my

perception of my own problems by sharing some of yours.

To my dear family, my mother and father, Anne and Arve, thank you for always supporting me in
the ambitious challenges that I seek. It has not always been easy, and none of us has understood
or been familiar with what I have embarked upon. However, it seems like I am coming out on the
other end of this adventure, and that would not have been remotely possible without your love and

care. Thank you so much.

Finally, dear Aurora, thank you for being the supportive and generous person you are. You always
guide me to be better, and you are always there when I need you. You are my muse and my
inspiration. Thank you.



Funding Information

The work that constitutes this thesis was carried out at the Department of Engineering Cybernetics,
Norwegian University of Science and Technology (NTNU) in Trondheim, Norway, from August
2018 to February 2022. These studies have been performed under the supervision of Professor
Tor Arne Johansen (NTNU), and co-supervisor Professor Geir Johnsen (NTNU). The Norwegian
Research Council supported this work through the Centre of Autonomous Marine Operations and
Systems (NTNU AMOS) (grant no. 223254), the MASSIVE project (grant no. 270959), and
the European Space Agency (PRODEX - 4000132515). NO Grants 2014 — 2021, under Project
ELO-Hyp, contract no. 24/2020.

Supervision:

During the doctoral study, I have been co-supervisor or strongly involved in the supervision of
9 master students; Monica Lapadatu, Dordije Boskovi¢, Magnus Danielsen, Ole Martin Borge,
Esmée Oudijk, Tuva Moxnes, Torbjern Bratvold, Simen Netteland, Linn Marie Sgnstetrud, Thomas
Halvard Bolle and Kristine Dgsvik. Furthermore, I have had the privilege of supervising and
leading the software development of the HYPSO-1 Hyperspectral Payload, where more than 20
more students have been involved during this period.

I have also participated in the EN640 research cruise. During this research cruise I did investigative
work under the supervision of Professor Ajit Subramaniam. The results are still a work in progress,

and are presented in chapter 4.

xi



xii

Acronyms

[Chl a] Chlorophyll-a concentration (mg/m™%).

AC Atmospheric Correction.
AMOS Centre for Autonomous Marine Operations and Systems.
API Application Programing Interface.

AUV Autonomous Underwater Vehicle.
BOUSSOLE buoy for the acquisition of a long-term optical time series.

CAN Controller Area Network.

CDOM Colored Dissolved Organic Matter.

Cl Continuous Integration.

CLI Command Line Interface.

COTS Commercial-Off-The-Shelf.

CPS Cyber-Physical Systems.

CPU Central Processing Unit.

CSP Cubesat Space Protocol.

CTD Conductivity for salinity, Temperature, and Depth for pressure of seawater.

CZCS Coastal Zone Color Scanner.
DE Digital Engineering.

ECSS European Cooperation for Space Standardization.



EM Engineering Model.
EPS Electrical Power Unit.

ESA European Space Agency.

FC Flight Computer.

FM Flight Model.

FOV Field-Of-View.

FPGA Field Programmable Gate Array.

FT File Transfer.

GIOP Generalized Inherent Optical Properties.
GPU Graphics Processing Unit.
GS Ground Station.

GSE Ground Support Equipment.

HAB Harmful Algal Blooms.

HICO Hyperspectral Imager for the Coastal Ocean.
HIL Hardware-In-the-Loop.

HIPP Hyperspectral Image Processing Pipeline.
HPLC High-Performance Liquid Chromatography.
HSI Hyper Spectral (Imager/Image).

HYPSO HYPer-spectral SmallSat for Ocean observation.

ICD Interface Control Document.
INCOSE International Council On Systems Engineering.

IOP Inherent Optical Properties.

LBA Light Beam Attenuation.

Least Absolute Shrinkage and Selection Operator LASSO.

MASSIVE Program for Mission-oriented Autonomous Systems with Small Satellites for Maritime

Sensing, Surveillance and Communication.

Acronyms Xiii



Xiv

MBSE Model-Based Systems Engineering.

MCE Model-Centric Engineering.

MCS Mission Control System.

MDR Mission Design Review.

MERIS MEdium Resolution Imaging Spectrometer.
MIL Model In the Loop.

ML Machine Learning.

MOBY Marine Optical BuoY.

MVP Minimum Viable Product.

NASA National Aeronautics and Space Administration.
NIFRO Norwegian Industrial Forum for Space Activities.
NN Neural Network.

NNG Nanomsg Next Generation.

NTNU Norwegian University of Science and Technology.

OBIP On-board Image Processing.
OPU On-board Processing Unit.

OS Operating System.

PC Payload Controller.

PCA Principal Component Analysis.
PLS Partial Least Squares.

PLSR Partial Least Squares Regression.
PM Project Management.

PR Pull Request.

PSU Power Supply Unit.

QAA Quasi-Analytical Algorithm.

QM Qualification Model.

Acronyms



RF Radio Frequency.
RGB Red-Green-Blue Color Channels.

RT Radiative Transfer.

SAA Semi-Analytical Algorithm.
SBA Skylight-Blocked Approach.
SDR Software Defined Radio.

SE Systems Engineering.

SEE Single Event Effect.

SERC Space Engineering Research Center.
SIL Software In the Loop.

SNR Signal-to-Noise Ratio.

SOA Service-Oriented Architecture.
SoC System-on-Chip.

S0S System of Systems.

SP SpectroPhotometer.

ToA top of atmosphere.

TSM Total Suspended Matter.

UAV Unmanned Aerial Vehicle.

Ul User Intrerface.

USART Universal Synchronous and Asynchronous Receiver-Transmitter.

USV Unmanned Surface Vehicle.

XP Extreme Programming.

XV



XVi

Contents

Dedication

Abstract
Sammendrag
Preface
Acknowledgements
Funding Information
Acronyms

1 Introduction

1.1 Hyperspectral Remote Sensing . . . . . . . ... ... ... ...

1.2 Monitoringof Ocean Color . . . . . . . . . . ... ... .. ..
1.2.1 Former Ocean Monitoring Schemes in Norway . . . ... ... ... ..
1.2.2  Remote Sensing of Ocean Color . . . . . . ... ... ... .......

1.3 HYPSO and Research Objectives . . . . . . ... .. .. ... ... .......
1.3.1 The Knowledge Gap and Objectives . . . . . . . . . ... ... ... ...

1.4 Thesis Outline and List of Publications . . . . . . .. ... ............

2 The HYPSO-1 CubeSat Concept

2.1 MissionDesign . . . . . ... e
2.1.1 Objectives . . . . . . o e e
2.1.2  Image Acquisition Basics . . . . . . . .. ... L
2.1.3 Conceptof Operations . . . . . . . .. ... ...
2.1.4 System Capabilities . . . . . . . .. ... o oL

2.2 On-Board Image Processing Architecture . . . . . .. ... .. ... ......
2.2.1 Minimal On-Board Image Processing . . . . ... ... ... ......
2.2.2  On-Board Image Processing for Tailored Data . . . . . . ... ... ...

Contents

ii

vii

ix

xi

xii

N R W

10

12
12
15
18



2.2.3 Discussion on Advanced Algorithms . . . . . . .. ... ... ... ..

2.2.4 Dynamic Reconfiguration . . . .. ... ... .. ... ... ...
225 Ground Support . . . ... e e
2.2.6 Data Latency in Typical Hypso-1 Operations . . . . . . ... ... ...
2.3 Conclusions . . . . . ..

Oceanographic Observation with Multiple Platforms

3.1 Purpose of Each Pipeline . . . . ... ... ... ... ... . . ........
3.2 Designand Development . . . . . .. ... ... ... ...
32,1 Satellite . . . . . ...
3.2.2 Unmanned Aerial Vehicle . ... ... ... ... ... .........
33 Conclusions . . . . . ... ..

Hyperspectral Remote Sensing and Analysis of the Amazon River Plume

4.1 Introduction . . . . . . . . ... e
42 Background . . . ... e
4.2.1 Field Measurements . . . . . . . . ...
43 Methods . . . . . ..
43.1 DataProcessing . . . . . . .. ...
4.3.2 The Quasi-Analytical Algorithm (QAA) . . . . . . . .. ... ... ...
44 ResultsandDiscussion . . . . . . ... ... Lo
4.4.1 DataPresentation . . . . . . . . ... L
442 QAADerivedResults . . ... ... ... ...
443 Limitation . . . . . . ..o e e e
444 DISCUSSION . . . v v i e e e e e e e e e
45 ConClusions . . . . . . v v v i e e

Dimensionality Reduction and Target Detection

5.1 Motivation . . . . . . oo e e
ST Notation . . . .o o v u ot e
5.2 Background . . . . ...
5.2.1 Dimensionality Reduction . . . ... ... ... ... ... ..
5.2.2 TargetDetection . . ... ... ... ... ...
5.3 DataSetDescription . . . . . ... ..
54 Methods . . . . . . e
5.4.1 Performance Metrics . . . . . . . . ...
5.5 Results. . . . .o
5.5.1 Results From Real-WorldData . . . . ... ... .. ... ........
5.5.2 Results From Simulated Data . . . . .. ... ... ... ..., ..
5.6 Discussion and Conclusions . . . . . . . . ... ..o
5.6.1 FutureWork . ... ... ... o

Contents Xvii

53



xviii

6 Compression with Residual Analysis for Hyperspectral Remote Sensing

6.1 Introduction . . . . . . . . . . . . ... e
6.2 Background . . . . .. ...

6.2.1 Spectral Decorrelation by Dimensionality Modeling and Reduction
6.2.2  Spatial Compression by Wavelet Transform . . . . . . ... ... ... ..
6.3 Methods . . . . . . . .
6.3.1 DataSets . . ... ... e
6.3.2 Computation and Analysis of Residuals . . . . . . ... ... ... ...
633 Metrics . . . ...
6.3.4 Noise Characterizationof DataSets . . . . ... ... .. ........
6.4 Resultsand Discussion . . . . . ... ... ... o L
6.4.1 StageOne . . . . . . . . e
642 StageTWO . . . . . . . .
6.4.3 Performance of the Compression and Comparison. . . . . . .. ... ..
6.4.4 AnalysisofResiduals . . . . . ... ... ... . ... .
6.4.5 Datatype Conversion . . . . . . . . .. ..
646 OntheUseof2DWavelets . . . . . ... ... ... ... .........
6.4.7 Computational Time and Considerations for Real-time compression . . .

6.5 Conclusions . . . . . . . . .. e

6.5.1

Futuire Work . . . . . . . . ... ...

7 Atmospheric Correction Over Coastal Waters

7.1 Problem Formulation . . . . ... .. .. ... ... ... ... ... . .....
7.2 AccuRTModel . ... ... . . . . e

7.2.1
7.2.2
723

Atmosphere and Aerosol . . . . . . ... oL
Water IOPs . . . . . . . . .. e
Data Generation with AccuRT . . . . . ... .. ... ... .......

7.3 Data Preparation & Machine Learning . . . . . . ... ... ... ........

7.3.1 DataPre-processing . . . . . ... ...
7.3.2  Sequential Neural Networks for Regression . . . . . ... ... ... ...
7.3.3 Partial Least-Squares Regression . . . . . .. ... ... ... .......
74 Results. . . . . . e
7.4.1 Atmospheric CorrectionResults . . . . . . ... ... ... .......
742 IOPPredictionResults . . . .. ... ... ... .o
7.5 Discussion and Conclusions . . . . . . .. ... oo
8 An Approach for Hyperspectral Chlorophyll-a Concentration Estimation
8.1 HICOdataand SeaDAS . . . . . . ... .. .. ... ... ...
82 Methods . . . . . . . . e
8.2.1 Global OC4 Algorithm by NASAOBPG . . ... ... .........

Contents

87
87
89
90
91
93
94
96
97
99
99
99
102
109
110
110
111

111

112
113

115
117
118
118
119
119
120
120
121
121
121
122
123
124



8.2.2 Partial Least Squares Regression . . . . . . ... .. ... ........ 129

8.2.3 Least Absolute Shrinkage and Selection Operator Regression . . . . . . . 129

8.3 Results & Discussion . . . . .. ... ... 129
83.1 OC4Algorithm . . . ... ... ... . . 130

832 RegressionModels . . . . .. ... ... 130

8.3.3 CompariSon . . . . . ... e 131

84 Conclusions . . . . . . . ... 132
9 Digital Engineering Development for HYPSO-1 133
9.1 Background . . . . . . ... 135
9.1.1 Agile Methodology and Development Practices . . . . . . ... ... .. 135

9.1.2 Digital Engineering . . . . . . . .. ... o o 137

9.2 The HYPSO Case Study . . .. ... ... . ... ... ... 137
9.2.1 The HYPSO CubeSat Project . . . . ... ... ... .......... 137

9.2.2  Software System Architecture . . . . ... ... ... 139

9.2.3 Tailoring of the Agile Methodology . . . . ... ... ... ....... 140

9.2.4  Verification and Validation Using Hardware-In-The-Loop Setups . . . . . 142

9.3 Experience Using Digital Engineering in an Academic Project . . . . . ... .. 144
9.3.1 Choice of Digital Engineering Strategy . . . . . . ... ... ...... 144

9.3.2  Effectiveness of Using Agile Digital Engineering for Software and Hardware 147

9.3.3 Educational Aspects . . . . . .. ... 151

94 Conclusions . . . . . .. .. .. 152
10 Software Development and Integration for the HYPSO-1 Payload 155
10.1 HYPSO-1 Project Organization . . . . . . . . . .. ... ... .. 156
10.1.1 Scientific Software Development . . . . . . ... ... ... ....... 156
10.1.2 CubeSat Software Architectures . . . . . . .. ... ... ... ..... 157
10.1.3 Contribution . . . . . .. ... L 157

10.2 Software Development Process for Hypso-1 . . . . . . ... ... ... ..... 158
10.2.1 Software Lifecycle . . . . . . ... ... ... ... . 159
10.2.2 Payload Software Architecture . . . . . . . . ... ... ... ... ... 160

10.3 Software Issue Analysis . . . . . . . . . . .. 162
10.4 Refactoring and Future Missions . . . . . . . . . ... ... ... 164
10.5 Discussionand Conclusion . . . . . . . . . ... ... 164
11 Testing of the HYPSO-1 Payload 167
11.1 Background and Related Work . . . . . . ... ... ... ... ... 168
11.2 Embedded Software Testing . . . . . . . . . ... ... .. ... ... 171
11.2.1 Testing Infrastructure . . . . . . . . . . . . .. ... 172
11.2.2 Testing Strategies . . . . . . . . . o v v v v it 176

11.3 Testing Results . . . . . . . . .. . . . . 177

Contents Xix



XX

11.4 Discussion . .
11.5 Conclusions .

12 Discussion and Conclusions

12.1 Addressing the Research Questions . . . . . . ... ... ... ... ... .....
12.1.1 A CubeSat platform for Ocean Color Observations . . . . . ... .. ..
12.1.2 Algorithms and Models for efficient Ocean Observations . . . . . . . . .
12.1.3 Adaptable Software for a CubeSat Payload . . ... ... ... ... ..
12.1.4 Research Limitations . . . . . ... .. ... ... ... .........

12.2 Future Perspectives . . . . . . . . . .

12.2.1 Future Satellite Development . . . . . . . .. .. ... ... .......

12.2.2 On-Board Processing of Hyperspectral Ocean ColorData . . . . . . . ..

12.3 Observational Pyramid . . . . . . ... .. ... ... ... oo .

A HYPSO-1 System

A.1 Satellite Bus .

A.2 Other Components and Subsystems . . . . . . . . ... ... ... ... ...

A.3 Power Budget

Bibliography

Contents

181
181
182
183
185
186
186
187
188
188

190
190
190
192

194



Chapter 1

Introduction

We need to respect the oceans and take care of them as if our lives
depended on them. Because they do.

Sylvia Earle

Our world is changing, and the relevance of resources and services related to aquaculture and
global aquatic environments is increasing due to population growth and climate change [1,2]. New
technologies for surveying the ocean and other water bodies can provide science-based information
to support management and policy strategies. The use of new, improved, and augmenting surveying
strategies is a step in reaching the sustainability goals related to water set out by the United
Nations [3]:

* 6: Ensure availability and sustainable management of water and sanitation for all.

¢ 14: Conserve and sustainably use the oceans, seas, and marine resources for sustainable

development.

This thesis presents a CubeSat system that can capture ocean color by remote sensing and how this
can be exploited as a surveying technology that can aid in reaching the sustainability goals and
other objectives. The system uses a hyperspectral camera, i.e., a camera that can capture an image
across the entire spectrum from visible to near-infrared light.

This introductory chapter presents the topics of this thesis such that their common theme becomes
clearer. The topics range from hyperspectral image processing, how these can be tailored towards
ocean monitoring and sampling, and to accommodate these through the use and development of said
CubeSat system. This chapter emphasizes ocean monitoring in Norway, the Norwegian coast, and
the Norwegian industry and its potential impacts, while the following chapters are more general.

The Program for Mission-oriented Autonomous Systems with Small Satellites for Maritime Sensing,

Surveillance and Communication (MASSIVE) project combined with the HYPer-spectral SmallSat



for Ocean observation (HYPSO) project is vital components in a novel disruptive approach for more
effective marine ecosystem research and monitoring. By combining data from existing platforms
focusing on low-altitude and in-situ observations from buoys, ships, and other autonomous vehicles
with hyperspectral imaging from small satellites, the goal is to achieve new insights at unprecedented
temporal and spatial scales.

This project is made possible by NTNU’s long-term commitment to research and existing infras-
tructure within its Center of Excellence on Centre for Autonomous Marine Operations and Systems
(AMOS). This research infrastructure provides significant synergies that bring together leading
scientists in remote sensing, autonomous systems, hyperspectral images and imagers, small satellite

systems, ocean modeling, bio-optics, biogeochemistry, and ecology.

1.1 Hyperspectral Remote Sensing

A normal Red-Green-Blue Color Channels (RGB)-camera collects three wavelength bands in the
visible range of the electromagnetic spectrum (400-700 nm), i.e., a three-channel image. The term
hyper in hyperspectral refers to the spectral resolution of the instrument or sensor in use. There is
no strict definition of when a sensor becomes hyperspectral, but it is often characterized by a high
spectral resolution, such as < 10 nanometer [4]. A hyperspectral camera can sample signals from
the electromagnetic spectrum at many distinct wavelengths. This is usually in the visible and the
near-infrared range (400-2500 nm), as opposed to RGB or multispectral, which sample fewer bands

and often with a broader bandwidth, i.e., more parts of the spectrum is associated with a pixel.

Figure 1.1 gives an illustration of the working principle of the Hyper Spectral (Imager/Image)
(HSI) acquisition technique known as push-broom scanning. The technique works by dispersing
the Collimated light that passes through a thin slit across an imaging sensor through various
optical components. More details on the HSI payload found in HYPSO-1 is given in [5]. Through
moving the sensor platform, the imager can scan a given area and collect both spatial and spectral
information. This results in an image cube that can be used for further analysis.

Remote sensing refers to measuring the properties of an object or material without being in contact
with it [4]. These properties can range from biological, geophysical, or chemical. Through analysis
of the radiative measurements, e.g., measurements of light, it is possible to infer Inherent Optical
Propertiess (I0Ps), the properties that are unique to that object or material in its current state [7].
Remote sensing is often verified with in-situ measurements when the instrumentation needs to be
in contact with the object or material of interest to collect measurements. Thus, remote sensing
is particularly suited for data collection over large areas at a high temporal resolution. When the
object or material of interest is out of reach, it is hard to get close to, or the process itself would be
affected by physical contact.

Generally speaking, for hyperspectral images, the number of spectral bands will be much higher
than the number of parameters that can be retrieved. This property is due to the high correlation

between the measurement next to each other in the electromagnetic spectrum [1,4]. However, with
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Figure 1.1.: Illustration of the working principles of an HSI using the push-broom technique. For details
see [5]. Original illustration by Dr. Zsolt Volent, SINTEF Ocean, adapted from [6] with
permission.

more hyperspectral data across a wide variety of conditions, specifically for inland and coastal
water applications, we may get new information in parts of the spectrum that have previously been
given less attention. Furthermore, hyperspectral data is expected to limit the uncertainty in the

retrieved parameters when compared to using fewer spectral bands [1, 8].

This thesis investigates only a subset of the approaches that can be used to gain more information
throughput from hyperspectral data. A more detailed overview of the potential avenues to explore
and exploit hyperspectral data for aquatic remote sensing is given in [1]. Using the algorithm
naming scheme found in [1], the chapters 5 and 6 attempts to best utilize coordinate transformations
of the spectra, while chapters 7 and 8 investigates how spectra can be used as predictors through the
use of neural networks and parametric regression [9]. In chapter 5 the results from the coordinate
transform are also explored by using target detection as a potential use case after the coordinate
transform. In chapter 6 the limitations of coordinate transforms for compression is compensated for

by analyzing the residuals.

1.2 Monitoring of Ocean Color

The ocean plays a crucial role in our world’s climate and ecosystems, yet it is one of the least
explored environments on Earth. It is a complex and rapidly changing subject to investigate but can
be a hazardous environment. Despite these challenges, there is a growing need to understand how
these systems interact. The data collected from ocean monitoring should be used to understand our
impact on the world’s oceans, and our future [2]. In [10] it is shown how extensive data records of
various types of data regarding water bodies can be used to uncover limitations of our knowledge
on the ocean systems that surround us. This again shows the importance of creating, ordering, and

keeping such records.
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For centuries, understanding the ocean has been a topic for oceanographers, and different novel
techniques to say something about its state have been developed. It can, however, be challenging
to sample systematically and across large areas in the ocean as it is very dynamic. In the past
decades, the instruments used to understand the ocean have become more sophisticated. Integrating
measurements from many different sources has helped elevate our understanding of the complex
systems at play and improve our ocean knowledge. These ocean systems are, among other things,
responsible for most of the oxygen production on Earth and the carbon dioxide uptake. It is vital not
to impede this process further. The challenge of systematically sampling large areas can be resolved
by combining measurements from ocean color satellites capturing the visual to near-infrared range
of the electromagnetic spectrum, with measurements from other observation platforms and coastal
observatory networks [7,11].

Norway is an ocean nation, where fisheries, aquaculture, oil and gas, and other activities along the
coast have a significant role in our economy, society, and politics. Along the coast of Norway lies
the Norwegian continental shelf. The area is depicted in Figure 1.2. Norway has sovereign rights of
this continental shelf, which is an area four times that of the Norwegian mainland. The area is rich
in natural resources such as petroleum and gas, important for primary and secondary production
in Estuarine resource, e.g., fish, shellfish, mollusks, crabs, seagrass beds, oyster reefs, and many
other organisms, and is thus essential for aquaculture. The aquaculture industry is expected to have
increased importance in the years to come. There is much activity along the Norwegian coast, and
thus the Norwegian continental shelf is of great economic interest to Norway.

1.2.1 Former Ocean Monitoring Schemes in Norway

Before satellite systems for ocean color monitoring became operational, phytoplankton blooms
and other critical environmental variables were monitored by other means. One of the methods
used is water samples taken in areas of interest, for example, by research cruises going out to sea or
samples at strategic areas along a coast [11]. The benefit of these direct in-situ samples is that it
can be less uncertainty surrounding the quality of the measurements, as there are fewer potential

sources of disturbance.

Collecting and processing water samples using, e.g., High-Performance Liquid Chromatography
(HPLC) is not suitable for sampling over large areas nor at high frequencies, as this can be both time-
consuming and expensive. However, it is still deemed a vital activity for validation of operational
remote sensing algorithms [11]. This is why HPLC is still the standard method used to provide
ground truth for important biomarkers, such as Chlorophyll-a concentration (mg/ m~3) ([Chl a])
when developing algorithms for remote sensing. Quality ground truth data is essential to be able to
develop better.

A combination of ground and aerial-based sampling strategies is used today to get the desired
insight about the ocean state. However, combining these measurements to gain valuable information

requires significant planning and resources.
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Figure 1.2.: The Norwegian continental shelf, image courtesy of Oljedirektoratet [12]
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The SeaWatch buoys and Observer Network

The former advanced buoy system along the Norwegian coast is an example of a system that made
many measurements and understood them in a unified context. This system was developed by
OCEANOR and was known as SeaWatch. The SeaWatch system was operational from 1988 to
1993 [11,13].

This Seawatch system was made up of multiple buoys placed in areas of particular interest along
the Norwegian coast. The system provided in-situ monitoring and forecasting of physical, chemical,
and biological variables in near real-time while it was operational. The provided data consisted of
time series of Light Beam Attenuation (LBA) measurements for phytoplankton and zooplankton
biomass, oxygen saturation, temperature, salinity, as well as the speed and direction of winds and
currents, along the Norwegian coast.

In addition, the system was used as part of an observer network, consisting of the local fish farms
and the Food Hygiene Control Authorities. This extended observer network provided data on
parameters such as turbidity and watercolor in terms of Secchi-disc depth, sea surface temperature,
general weather conditions. This observer network reported on fish behavior and feeding, as well
as any unusual biological events. Water samples were routinely sent to the relevant authorities for
analysis to identify and enumerate phytoplankton from these nodes in the observer network. This
activity had a special focus on Harmful Algal Blooms (HAB) species.

This system did unquestionably provide information on the state of the ocean at areas of great
interest. However, it may be challenging to justify the operational costs of such a system, given
that it was discontinued. It was discontinued due to few HABs in Norway in the previous decade
(2010-2020).

Ships of Opportunity and the Ferrybox

In [11] a case example of how coastal environmental monitoring and operative phytoplankton
monitoring can be achieved with existing instrument platforms is given. According to [11],
integration of data from different platforms that are complementary in terms of spatial and temporal
coverage is necessary to establish an operative environmental monitoring system that can be used in
coastal areas. That is, measurements from ocean color satellites will need to be combined with other
manual, sensor carrying buoys, or ship-based measurements to cover the larger spatial areas with a
sufficient revisit time and the desired precision and accuracy of the measurements. In [11] three

methods of collecting data are identified to make the proposed monitoring system operational.

Firstly, there is still a need to collect coastal water samples manually and regularly, send them
to a central facility for manual identification of algal groups and species, and use this expertise
to determine if they are benign or potentially harmful. This first method will also validate other
algorithms used on the data collected by other means.
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The Ferrybox is a continuous flow-through system or concept to identify and quantify objects of
interests in water, that is designed to be installed on ships in coastal traffic and can collect turbidity
and [Chl a] measurements. This Ferrybox system can be installed on any ship that is in regular
traffic across an area of interest. However, the travel route of such ships-of-opportunity will not
choose its path based on the data it is collecting.

The last set of measurements integrated with the Ferrybox and manual water samples, [11] comes
from the ocean color satellite images from MEdium Resolution Imaging Spectrometer (MERIS).
The MERIS data was then rendered as RGB images and the turbidity and [Chl a] products were

seen in combination with the other measurements sampled during the described project.

Suppose any new or alarming environmental conditions are observed through manual water samples,
the Ferrybox system, or ocean color satellite images. In that case, the collected data should be
processed with algorithms tailored to local conditions [7, 11]. By using ocean color satellite
images from MERIS, a multispectral instrument on-board European Space Agency (ESA)’s Envisat
platform, [11] demonstrates how to identify the spatial extent of a bloom, as well as the bloom
patchiness, and the transport of a bloom. Furthermore, [11] emphasizes that these ocean color
satellite images are valuable when doing large-scale observations.

A potential future ocean monitoring schemes to be used in Norway is briefly presented in section 1.3,
and the HYPSO-1 satellite, representing the apex of the observational pyramid given in Figure 1.4,
is detailed in chapter 2.

1.2.2 Remote Sensing of Ocean Color

Many oceanographic parameters can be inferred from radiance measured by satellite-based sensors
and ocean color specifically. The sunlight measured at the top of the atmosphere by the satellite
sensors has passed through the atmosphere, been reflected, absorbed, and scattered by different
constituents found in the ocean, and then transmitted back through the atmosphere. In other words,
there are a lot of various factors affecting the signal and noise characteristics, and some of these are
briefly discussed in chapter 7

Compensation of the effects on optical signals from the atmosphere, adjacency effects from
neighboring landmasses, and influences from the ocean surface is an active area of research [4,7,14,
15]. However, after appropriate compensation of known effects, the resulting water-leaving radiance
can, in most cases, be used to determine the spectral scattering and absorption properties of the
remotely sensed dissolved and suspended materials and Colored Dissolved Organic Matter (CDOM).
Some current limitations of one popular model for IOPs retrieval [7], used after appropriate
compensation of known effects, is briefly discussed in chapter 4.

The captured spectral information is dependent on the alterations of the radiance made by the oceanic
constituents [7]. These alterations have traditionally been used to determine such parameters as [Chl

a] directly through empirical relationships that relate to the desired parameter [7, 16]. Furthermore,
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as ocean color is determined by 1OPs, the captured spectral information can also be used to derive
these IOPs, and that, in turn, can be used to estimate chlorophyll concentration, as well as a myriad

of other oceanic parameters of interest [7].
Ocean Color Satellites

Ocean color remote sensing by spacecraft has been carried out since the launch of the Coastal
Zone Color Scanner (CZCS) in 1978, and the many satellites following it [17]. These initial
satellites showcased that the ocean color observed from space was suited to infer [Chl a] at a much
larger, even global scale than previously available with sufficient accuracy and precision [2]. Some
prominent satellites and their properties are given in Figure 1.3, with HYPSO-1 included using the

original flight badge.
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Figure 1.3.: A plot of several missions depicting the trade-off between the number of spectral bands, revisit
frequency along the axis, and the approximated spatial footprint as the size of the circle. Here
multispectral missions are presented in gray, while hyperspectral missions are presented with
colors. This illustration is adapted, with permission, from [1]. The HYPSO-1 mission is
marked by the HYPSO logo.

The data provided by ocean color satellites have advanced certain scientific fields such as biological
oceanography, biogeochemistry focusing on ocean composition, physical oceanography, and ocean-
system modeling. Additionally, the ocean color data has helped manage fisheries and coastal
management.

Data from ocean color satellites is often used to improve models for dynamic ocean modeling and

models of different ecosystems [2, 11], combined with other land-based measurements. As ocean
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color is being used operationally by different agencies to report ocean conditions, there is a growing
need to receive this type of data reliably and rapidly. These ever-increasing needs advocate for
continuity in the deliverance of data products. Thus, not relying on a single complex satellite with a
significant development time becomes attractive. The alternative of using a simplified satellite with
lowered development time as a result of using Commercial-Off-The-Shelf (COTS) components (see
chapter 2 or [5]), or better yet a constellation, become a viable option. Another necessary factor for
operational use is the processing speed and reducing the delivery time from data acquisition to the
processed product become available [2].

From a global perspective, ocean color technology has made significant contributions to our
understanding of our environment for what should be considered a relatively modest investment.
That is a relatively modest investment for larger nation or multi-nation organizations such as
National Aeronautics and Space Administration (NASA) and ESA [2].

The large ocean area that makes up the Norwegian continental shelf can be difficult to monitor.
While Norway is in a unique position concerning space technology and polar-orbiting satellites,
Norway has not had the resources to launch many traditional satellites. The expenses and expertise
needed to conduct traditional space missions are, after all, significant.

CubeSats for Ocean Color

A modern approach to space is through the use of CubeSats. The definition that formed the current
Cube Satellite or CubeSat standard came around the year 2000. Smaller organizations, such as
universities, can with this standard be able to develop applied novel space technology instruments
and use-cases. The CubeSat standard states that the space crafts are built as a set of units (U)
or cubes of 10cm X 10cm x 10cm. These CubeSats come in many shapes and formations
from 0.25U to 24U, where the most frequently used form factor is the 3U CubeSat [18]. As the
technology has matured, larger form factors like 6U and 12U have gained popularity. With the
standard and increased maturity, the newer CubeSats are deployed with more advanced components
such as more advanced payloads and deployable solar panels, which again leads to more advanced

and ambitious missions [19].

This standardization helped create an emerging industry that provides a supply chain of CubeSat
buses and subsystems. With this supply chain, the main focus of new and novel space applications
is reduced to payload development, as the rest of the spacecraft bus can be procured from a CubeSat
vendor. Thus, relying on the CubeSat stand can help ambitious space applications be realized at a
reduced cost and development time in this new space paradigm. Advanced CubeSat missions have
in recent years demonstrated that such platforms could implement low-cost science missions, with
a considerable potential for a high return of investment in terms of scientific data and commercial
value [20].
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In recent years, CubeSats or other small satellite systems have provided an alternative for smaller
groups to explore space-related topics. Earth observation is one space topic that has attained a lot of

attention [20,21], and the CubeSat platform is a popular choice for educational projects [21,22]

1.3 HYPSO and Research Objectives

The MASSIVE project is an initiative at NTNU that seeks to research how to develop solutions to
ocean monitoring in a manner that is effective both in terms of cost and time. The oceans make up
most of the Earth and have a large impact on our climate, but as mentioned earlier, it is a challenge

to monitor large and remote locations that are inaccessible for humans [2].

Sensor systems intended to provide ocean color remote sensing data collected by satellites and other
airborne platforms that are enabling hyperspectral, rather than multispectral, data acquisition have
been developed and tested at NTNU in recent years [5,23,24] The increased spectral and spatial
resolution from these platforms is expected to enable optical detection of the pigment signature
and its distribution [11]. Furthermore, the increased spectral resolution would enable the use of
more advanced algorithms for the retrieval of parameters of interest, such as algorithms focusing

on analytical known physical relationships, rather than empirical algorithms [7].

With other airborne sensors, like Unmanned Aerial Vehicles (UAVs) there will be the added ability
to operate beneath a cloud cover, which can be a common occurrence along the Norwegian coast.
Moreover, by augmenting the Ferrybox or similar Unmanned Surface Vehicles (USVs) with an
imaging flow cytometer, it becomes possible to image single phytoplankton cells [11]. These
images can then be transmitted directly to a forecasting center for algal bloom warnings and
reduce the need for regular water-sample collection from observation sites of interest. Furthermore,
Autonomous Underwater Vehicles (AUVs) and USVs can be equipped with optical sensors, and
collect the data needed to verify and validate remotely sensed ocean color data from satellites used

to derive parameters of interest [11,24].

These new platforms and techniques that are being developed can enable a semi-autonomous
network of observation platforms or agents. This can, in turn, provide real-time or near real-time
data collection along the coast on potentially harmful species and pollution conditions before they
reach hazardous concentrations. When new or even dangerous conditions are detected, the different
autonomous or semi-autonomous agents can be directed to investigate further the areas of interest,
guided by the overview provided by HYPSO-1 [23,24].

The MASSIVE project intends to launch two small satellites designed to process hyperspectral data
with novel on-board processing algorithms and efficiently distribute the processed information to
other assets. The first of these satellites is the aforementioned HYPSO-1 satellite. The project also
supports financing Ph.D. candidates and includes coordinating operations between satellites and
other observation platforms such as autonomous AUVs and USVs. With the processed hyperspectral

images from HYPSO-1, integrated with measurements obtained by other assets or satellites, this
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Figure 1.4.: The observational pyramid of the MASSIVE project. Figure from Mariusz E. Grgtte.

assimilated data is intended to, with appropriate processing, become useful information at different
temporal and sptatial scales.

With the different capabilities of the various assets, the observation system becomes more flexible
concerning changing weather conditions. It is important to recall that optical satellites, as the ones
depicted in Figure 1.3, are not able to provide valuable data when there is high cloud coverage
or dim light conditions [7]. Still, other assets, such as UAVs, could collect data despite the high
cloud coverage, albeit with a reduced returning radiance signal due to reduced incoming light. With
insight from weather forecasts, other ocean models, and other observation platforms, it is possible
to better plan how to deploy the available assets. As discussed in [23, 24] this proposed system
should be capable of providing target information from specific areas of interest in near real-time

and near-continuous fashion.

This system of systems will target smaller areas. Thus, it is appropriate to support the calibration
and validation activities using the other autonomous assets. With a fully integrated system of
systems, the collected data can be used in a feedback loop. This data loop can be used to monitor
the HSI performance and help make better and more accurate models for a given area over time.

1.3.1 The Knowledge Gap and Objectives

The research presented in this thesis focuses on how to develop a small satellite system with a
flexible hyperspectral imaging payload and accompanying on-board processing for ocean color,
with some of the challenges that a setting like a university environment can pose.

The overarching subject that the MASSIVE initiative addresses from the HYPSO perspective is to
study how small satellite platforms that acquire hyperspectral image data can contribute valuable

information to the ocean science community. Furthermore, we want to study how to maximize

1.3 HYPSO and Research Objectives
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information throughput by different processing strategies from this platform. This will augment
ways to better assimilate and utilize information by integrating hyperspectral ocean color data with
oceanographic models from other sensing systems in an observational pyramid. The observational
pyramid envisioned is depicted in Figure 1.4. The Ph.D. research presented here aims to investigate
potential venues for on-board processing, how to test and enable the payload in our small satellite
system to be adaptable to changes in processing requirements in orbit, and how to facilitate the

software development of such a payload in the given environment.

1.3.2 Research Questions

These objectives have formed the following three research questions.

RQ-1. How can a CubeSat platform be developed for hyperspectral ocean color applications and

provide end-users with valuable information?

Hyperspectral image data from space is challenged by the available communication links regarding
sending the vast data volumes that are acquired. This thesis presents a hyperspectral imaging
CubeSat and accompanying processing strategies to reduce the data latency and deliver ocean

color data products using advanced on-board processing.

RQ-2. What kind of algorithms or models for better hyperspectral data acquisition and reduced
data latency can be deployed onboard a CubeSat tailored for ocean color observations?

As the ocean is a highly dynamic environment in the time and space domain, the data latency
will affect the utility of the collected data. Different use cases for the data will further affect what
kind of losses are acceptable. This thesis provides some strategies and perspectives on reducing

information latency in various ways.

RQ-3. How can a CubeSat be used to support the development, validation, and upgrade-ability of

new in-orbit data processing algorithms?

As the use of hyperspectral sensors from space for ocean color is a less explored scientific topic, it
is helpful to adjust the algorithms used on-board during its operational phase. It is traditionally
advisable not to attempt to do software upgrades in-orbit, but enabling it would extend the payload’s
capabilities beyond its initial launch configuration. This thesis presents a strategy for the software
architecture design and testing of the payload that enables this functionality at an acceptable level
of risk.

1.4 Thesis Outline and List of Publications

This thesis documents an introduction to some challenges of hyperspectral remote sensing for ocean
color observations, CubeSat development, and Software development. This is not an extensive
exploration of all there is to know about these complex topics but is intended to give an overview

of the considerations taken into account when developing HYPSO-1.
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The initial chapters 2 and 3 provides relevant details of the observation system under development.
Chapter 4 concerns the use of a radiometer with the Skylight-Blocked Approach (SBA) to infer
IOP from reflectance measurements and comparing them with data from HPLC and SpectroPho-
tometer (SP). This chapter demonstrates how established algorithms works in complex waters.
Chapters 5, 6, 7, and 8 concerns different processing strategies that utilize the visual to near-infrared
spectral range that can be acquired with the HYPSO-1 payload. More specific considerations with
regards to the development of the payload is provided in chapters 9, 10, and 11, and concerns the
development of a CubeSat in a University setting. These chapters provide the different lessons
learned and documents the HYPSO teams attempt at accommodating the recommendations from
space standards provided by organizations such as NASA and ESA, while tailoring the methodolo-
gies to our specific needs. Figure 1.5 provides an illustration of the overarching themes given in

this thesis.

1.4 Thesis Outline and List of Publications
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Figure 1.5.: An illustration of how the different chapters in this thesis is connected.
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1.4.1 Included Contributions

The chapters within this thesis are adapted from publications I co-authored. Additional information
stems from reflection and other related works. The publications are listed below in chronological

order.

» S. Bakken, M. Orlandic, T. A. Johansen, The effect of dimensionality reduction on
signature-based target detection for hyperspectral remote sensing, SPIE Optical Engi-
neering + Applications Conference, CubeSats and SmallSats for Remote Sensing III, San
Diego, 2019

Adapted results found in Chapter 5. All authors conceptualized the paper. S.B. wrote,
prepared the initial outline, and finalized the submission. S.B made the data acquisition,
created the figures, and implemented the software. T.A.J and M.O. reviewed the draft and

contributed to the final submission.

This paper presents the effect of different methods for dimensionality reduction and noise
removal on multiple classical methods for signature matched target detection often used in
hyperspectral imaging, and suggests that dimensionality reduction can be combined with
target detection for effective processing.

O. M. Borge, S. Bakken, T. A. Johansen, Atmospheric correction of hyperspectral data
over coastal waters based on machine learning models, 11th Workshop on Hyperspectral
Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2021

Adapted results found in Chapter 7. O.M.B conceptualized the paper and prepared the
initial outline and finalized the submission. O.M.B and S.B contributed to the discussion. All
authors reviewed the draft and contributed to the final submission. The master thesis that
formed the basis for this publication was awarded the Norwegian Industrial Forum for Space
Activities (NIFRO) award for best master thesis in 2020.

This paper presents different machine learning models for atmospheric correction of ocean
color data, trained and evaluated using simulated hyperspectral ocean color data of top-of-
the-atmosphere radiance from coastal waters to predict water-leaving radiance and other
ocean color variables.

.

S. Bakken, G. Johnsen, T. A. Johansen, Analysis and model development of direct hy-
perspectral Chlorophyll-a estimation for remote sensing satellites, 11th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),
2021

Adapted results found in Chapter 8. S.B conceptualized the paper, prepared the initial
outline, pared the figures, implemented the software, and finalized submission. TA.J and G.J.

reviewed the draft and contributed to the final submission.

1.4 Thesis Outline and List of Publications
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This paper presents an analysis of a set of methods for estimation of [Chl a] from top of
the atmosphere pseudo-reflectance using Partial Least Squares (PLS) and LASSO (Least
Absolute Shrinkage and Selection Operator)-regression and compares the results from this
with the internal consistency of the OC4 algorithm by NASA Ocean Biology Processing
Group using data processed via SeaDAS 7.2 from the Hyperspectral Imager for the Coastal
Ocean (HICO) mission.

J. Garrett, S. Bakken, E. Prentice, D. Langer, F. Leira, E. Honoré-Livermore, R. Birkeland,
M. Grgtte, T. A. Johansen, M. Orlandi¢, Hyperspectral Image Processing Pipelines on
Multiple Platforms for Coordinated Oceanographic Observation, 11th Workshop on
Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),
2021

Adapted results found in Chapter 3. All authors conceptualized the paper. J.G. wrote and
prepared the original draft.

This paper presents how the Norwegian University of Science and Technology is planning
to build an ocean observation system, including HYPSO, to monitor ocean color in coastal

waters with an ensemble of robotic agents.

M. E. Grgtte, R. Birkeland, E. Honoré-Livermore, S. Bakken, J. L. Garrett, E. F. Prentice, F.
Sigernes, M. Orlandic, J. T. Gravdahl, T. A. Johansen, Ocean Color Hyperspectral Remote
Sensing with High Resolution and Low Latency - the HYPSO-1 CubeSat Mission, IEEE
Trans. Geoscience and Remote Sensing, 2021

Adapted results found in Chapter 2. All authors conceptualized the paper. J.L.G. and S.B.
wrote and prepared the initial outline and finalized the section on on-board image processing

architecture, TA.J and M.O. reviewed the draft and contributed to final submission.

This paper present the mission design for HYPSO, as well as different concepts with regards
to the FPGA-based on-board image processing architecture that aim to reduce the data

volume without sacrefising important spatial-spectral information.

E. Honoré-Livermore, R. Birkeland, S. Bakken, J. L. Garrett, C. Haskins, Digital Engineer-
ing Management in an Academic CubeSat Project, Accepted for publication in Special
Issue on Systems Engineering Challenges in Journal of Aerospace Information Systems
(2021)

Adapted results found in Chapter 9. All authors conceptualized the paper. E.H-L. wrote and
prepared the initial outline and finalized the submission. S.B., R.B. and J.L.G. all contributed
to the background, results, and discussion sections. C.H. reviewed the draft and contributed

to the final submission.

This paper presents how digital engineering can be used in an academic CubeSat project, such

as HYPSO, in which a variety of techniques for workflow, on-boarding, and communication
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are tested, and the tailoring that has been applied to fit the academic environment is described
with promising results.

S. Bakken, E. Honoré-Livermore, R. Birkeland, M. Orlandié, E. Prentice, J. Garrett, D.
Langer, C. Haskins, T. A. Johansen, Software Development and Integration of a Hyper-
spectral Imaging Payload for HYPSO-1, 2022 IEEE/SICE International Symposium on
System Integration (SII), 2022, Accepted.

Adapted results found in Chapter 10. S.B conceptualized the paper and prepared the initial
outline and finalized the submission. S.B, E.H.L and R.B analyzed the results. All authors
reviewed the draft and contributed to the final submission.

This paper presents the software architecture, development, and integration of a COTS based
hyperspectral imaging payload on-board the HYPSO-1 CubeSat.

S. Bakken, J. Garrett, R. Birkeland, M. Orlandié, E. Honoré-Livermore, P. A. R. Marton D.
Langer, C. Haskins, T. A. Johansen, Testing of Software-Intensive Hyperspectral Imaging
Payload for the HYPSO-1 CubeSat, 2022 IEEE/SICE International Symposium on System
Integration (SII), 2022, Accepted.

Adapted results found in Chapter 11. R.B and S.B conceptualized the paper. S.B prepared
the initial outline and finalized the submission. S.B, J.G, PA.R.M and R.B contributed to the

discussion. All authors reviewed the draft and contributed to the final submission.

The importance of embedded software for CubeSats flying COTS based payload systems has
increased to provide more functionality and flexibility, but these payload systems warrant
extensive software and hardware testing. This paper presents the ongoing work on how the
payload software testing is done for HYPSO-1.

S. Bakken, P. Rossvoll, T. Pedersen, M. Orlandic,T. A. Johansen, and H. Martens, Com-
pression by PCA and JPEG2000 with Residual Analysis for Hyperspectral Remote
Sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
Submitted

Adapted results can be found in Chapter 6, H.M. conceived the idea; S.B and M.O. de-
veloped the methodology; S.B performed the implementations, validation, formal analysis,
data processing and prepared the original draft; S.B and M.O performed the analysis and
visualization;, PR, T.P, M.O., TA.J., and H.M. contributed to the investigation, interpretation

of the results, writing-review and editing; T.A.J. supervised the work

This paper shows how residuals from transformation-based lossy compression by pre-
computed Principal Component Analysis (PCA) can be used to improve the pre-computed
transformation matrix, provide insight into the limitations of the transformation, and provide
greater confidence in data that is retrieved using transformation-based encoding as a lossy

encoding scheme.

1.4 Thesis Outline and List of Publications
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 Sivert Bakken, Geir Johnsen, Tor Arne Johansen, Jianwei Wei, Zhongping Lee, Joseph
Montoya, and Ajit Subramaniam, Hyperspectral Remote Sensing and Analysis of the
Amazon River Plume, TBD, Submitted

Adapted results found in Chapter 4. S.B and A.S. developed the methodology mentioned
as a contribution; J.W, Z.L loaned the SBA HyperPro instrument and provided guidance
on deployment and initial analysis of the data acquired; JPM helped with station locations
and deployments; S.B performed the implementations, validation, formal analysis, data
processing, and analysis, visualization, and prepared the original draft; A.S, G.J, TA.J., and
A.S. contributed to the investigation, interpretation of the results, writing-review, and editing;

A.S. supervised the work;

This paper shows our initial results from capturing hyperspectral data using the SBA-based
approach with a radiometer in the Amazon River plume. The results are compared with data
from HPLC-analysis and SP.

1.4.2 Other Contributions

The publications I co-authored but did not include, are listed below in chronological order.

* M. Lapadatu, S. Bakken, M. E. Grgtte, M. Alver, T. A. Johansen, Simulation tool for hyper-
spectral imaging from a satellite, 10th Workshop on Hyperspectral Image and Signal
Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, 2019.

e D. Boskovié, M. Orlandié, S. Bakken and T. A. Johansen, HW/SW Implementation of
Hyperspectral Target Detection Algorithm, 8th Mediterranean Conference on Embedded
Computing — MECO, Montenegro, 2019.

The master thesis that formed the basis for this publication was awarded the NIFRO award
for best master thesis in 2019. The submitted paper was awarded a prize for the 2nd best
student paper at the MECO conference.

 S. Bakken, J. Wei, Z. Lee, G. Johnsen, T. A. Johansen, J. Montoya, A. Subramaniam, Hyper-

spectral Remote Sensing of the Amazon River Plume, Ocean Sciences Meeting, 2020

* Honoré-Livermore, Evelyn; Bakken, Sivert; Prentice, Elizabeth Frances, Factors Influencing
the Development Time from TRL4 to TRLS for CubeSat Subsystems at a University, 9th
International Systems & Concurrent Engineering for Space Applications Conference (2020)

(virtual)

e A. Oudijk, F. Sigernes, H. Mulders, S. Bakken, T. A. Johansen, Quality assessment of
standard video compression techniques applied to hyperspectral data cubes, 11th Workshop

on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS),
2021
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Chapter 2

The HYPSO-1 CubeSat Concept

Far and away, the greatest threat to the ocean,
and thus to ourselves, is ignorance.

But we can do something about that.

Sylvia Earle

Sporadic ocean color events with characteristic spectra, in particular algal blooms, call for quick
delivery of high-resolution remote sensing data for further analysis. This chapter present the mission
design of HYPSO-1, a 6U CubeSat at 500 km orbit altitude hosting a custom-built pushbroom
hyperspectral imager with wavelengths between 387 — 801 nm at bandpass of 3.33 nm and swath
width of 70 km. The expected Signal-to-Noise Ratio is characterized for typical open ocean water-
leaving radiance and can be flexibly increased by pixel binning. The HYPSO-1 CubeSat was
successfully launched on the 13th of January 2022 and is being commissioned and operating as
expected. Since generated high-dimensional hyperspectral data products need to be transmitted over
limited space-ground communications, we have designed a modular FPGA-based on-board image
processing architecture to reduce the data size without losing important spatial-spectral information.
We justify the concept with a simulated scenario where HYPSO-1 first collects hyperspectral images
of a 40 km by 40 km coastal area in Norway, and aims to immediately transfer these to nearby
ground stations. With CCSDS123v1 lossless compression, it takes about one orbit revolution to
obtain the complete data product when considering the overhead in satellite bus communications,
and less than 10 min without the overhead. It is discussed how better latency can be achieved with

advanced on-board processing algorithms.

Hyperspectral and multispectral remote sensing are typically used in the context of monitoring
colorful processes with large Spatio-temporal extents. A commonly observed phenomenon of
these is chlorophyll, a primary light-absorbing substance involved in phytoplankton photosynthesis
which may have clear signatures at the water surface [25]. Blooms of phytoplankton have variable
coloration and are often categorized as “red tides”, “green tides” or “brown tides” with wavelengths
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between 400 — 700 nm [13,25-29]. They sporadically appear worldwide with varying biomass
concentrations, may last from a few minutes to several days and cover regions from tens to hundreds
of square kilometers [30]. Sometimes malignant blooms, often identified as Harmful Algal Blooms
(HABs), may cause sudden damage to the marine environment, ecosystems, and sustainable
food sources [31]. According to [32], numerous plankton and algae types can be distinguished
or inferred by their photosynthetic pigments and fluorescence, and hyperspectral data with the
capability of high spectral resolution may reveal the subtle spectral inflections imparted by specific
pigment complements. However, determining the harmfulness of algae is not done from optical
remote sensing alone and is attributed to in-situ measurements in the upper water-column [26, 33].
Further challenges include atmospheric absorption, and scattering of light [34], and the fact that the
majority of biomatter typically reside at 10 — 15 m below the water surface [26], such that these
heterogeneous and potentially dark targets often demand a combination of larger space-based optics
with a high Signal-to-Noise ratio (SNR), rigorous atmospheric correction schemes and accompanied

real-time in-situ measurements [35, 36].

Traditional Earth Observation (EO) satellites with large optical systems, several operated by
National Aeronautics and Astronautics Administration (NASA) and European Space Agency
(ESA), are designed to cover the Earth on a global scale and provide excellent ocean color data
with medium to high spatial resolution [37,38]. However, they usually offer low spectral resolution
and revisit times of several days [39]. For example, using data products from Sentinel-3’s Ocean
Color and Land Instrument (OLCI) for detecting cyanobacterial blooms based on pigments such as
phycocyanin and chlorophyll-a can be inaccurate using traditional ground-based analysis algorithms
unless employing newer algorithms that utilize band ratios from an alternate set of selected spectral
bands [40]. Providing greater flexibility in namely choosing more than a hundred spectral bands
instead of dozens [41], hyperspectral remote sensing missions show great promise in ocean color
remote sensing, e.g. [8,42-50]. Nevertheless, many of these stand-alone systems still lack the
operational flexibility and revisit times to monitor dynamic areas on-demand [51] efficiently.
Moreover, accurate but time-consuming and rigorous data processing methods are usually performed

on the ground together with synergistic analysis of in-situ measurements.

Instead of mapping on the global scale, single-purpose hyperspectral imaging small-satellites may
focus on observing smaller dedicated areas more frequently to characterize temporal variation in
both the spatial and spectral domains, also allowing a miniaturized camera system with relatively
narrow Field-Of-View (FOV). Choosing target areas on the sub-mesoscale or mesoscale, has
the potential to enable small satellites to support a network of in-situ assets that may observe
or sample with more detail in the spatial and spectral domains, e.g., Unmanned Aerial Vehicles
(UAVs), Unmanned Surface Vehicles (USVs), Autonomous Underwater Vehicles (AUVs), and
buoys [31]. To make such a multi-agent network function efficiently in real-time and reduce the
operational costs, the remote sensing data must be quickly downloaded to keep validity in the
highly time-varying information, as discussed in chapter 3.
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It is well-known that hyperspectral imagers generate large amounts of data that consequently take a
long time to transfer to the ground due to limitations in bandwidth, coverage to ground stations and
on-board computational resources [51,52]. Reduction in data size on-board is crucial for satisfying
real-time requirements but can also be difficult due to the limited power available per orbit for a
small satellite. Nevertheless, on-board processing has advanced significantly for remote sensing
applications [53], in particular, Field-Programmable Gate Arrays (FPGAs) that are reconfigurable
and have high computational speed and low power consumption [54, 55]. Enabling algorithm
parallelism, a modular FPGA-based image processing architecture, allows for custom algorithms
or image processing pipelines. Beyond standard losslessly compressed data, tailored end data
products may contain only extracted spatial-spectral information generated from dimensionality
reduction, target detection, or classification [56,57]. The significantly reduced data can therefore
grant a shorter waiting time between image acquisition to complete data download and be used
for immediate utilization in real-time applications, e.g., for in-situ measurements or supporting an

algal bloom warning systems [11,29,58,59].

This chapter presents the mission design for the upcoming HYPer-spectral Smallsat for ocean
Observation (HYPSO-1) developed at the Norwegian University of Science and Technology
(NTNU). This Smallsat is designed to support environmental monitoring and the ocean color
community by providing customized hyperspectral data products with low latency. This chapter is
adapted from [23]. Section 2.1 describes the ocean color remote sensing needs that motivate the
choice of an imager, key remote sensing capabilities, and the HYPSO-1 Concept of Operations
(CONOPS).

Section 2.2 describes the envisioned FPGA-based on-board image processing pipelines that shall
deliver custom data products, provide a survey of potential on-board implementations of more
advanced algorithms, and justify the HYPSO-1 mission feasibility with corresponding data latency
for chosen imaging modes and the user-attuned data products. Finally, some conclusions for this

concept is provided in Section 2.3.

The design and performance of the custom pushbroom hyperspectral imaging payload is covered
in [5,23], and the proposed remote sensing strategy, supported by results from simulations, using a
slew maneuver to enhance the spatial resolution in the image is discussed in [23]. The HYPSO-1

system is described in Appendix A.

2.1 Mission Design

This is section presents the mission requirements of the HYPSO-1 system. The following sections
attempt to relate these requirements and their reasoning regarding what the software shall enable
the system to do. chapter 10 provides further details on how the software architecture was designed

to support the mission design.

2.1 Mission Design
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2.1.1 Objectives

The mission objectives of the HYPSO-1 are to monitor the spatio-temporal extent of ocean color
events in the visual and near-infrared (VIS-NIR) wavelengths between 400 — 800 nm; and attempt

to infer phytoplankton functional groups. Key user needs for ocean color remote sensing are:
1. Images should have spatial resolution better than 30 — 100 m per pixel [39,60];

2. Raw hyperspectral data should have spectral resolution of about 5 nm for VIS-NIR wave-
lengths [39,60];

3. The imager’s SNR at Top of Atmosphere (ToA) should be greater than 400 in visual wave-
lengths for open ocean water [61], and atmospherically corrected SNR of water-leaving
signals should be between 40 — 100 [62];

4. Data latency should be less than 1 hr [63];
5. Revisit times to dedicated areas of interest should be 3 — 72 hrs [63, 64].

Since HYPSO-1 is a single small-satellite, but the first in a prospective constellation, we focus on

working towards the recommendations 1), 2), 3) and 4).
2.1.2 Image Acquisition Basics

Whereas several types of spectrometers can be integrated on aerial or space platforms [65], the
passive pushbroom imager design is an attractive choice with good SNR [4,66,67]. The use of COTS
components has also made this type of design more affordable, accessible, and flexible [68, 69].

With the scan direction oriented towards the velocity direction, a pushbroom imager sequentially
scans several lines, N, each having instantaneous pixels, IV, and Ny, forming a hyperspectral
datacube shown in Figure 2.1. NN, is the number of spatial pixels perpendicular to the scan
direction, and N is the number of pixels along the spectral dimension. The horizontal and vertical
components of the FOV are ¢, and ¢, respectively. The time elapsed between two consecutive
lines, or frames, is expressed by the integration time At = 1/FPS = 7 + §t where FPS is the

frames per second or frame rate, 7 is the camera exposure time, and §t is the read-out time.

A high spectral resolution is required to discriminate fine spectral features in the water-leaving
signals, and high spatial resolution is desired to reduce the effects of spectral mixing or blur in
the image pixels. Mounted on a satellite moving at high orbital speed, the drawback is, strictly
speaking, a low spatial resolution along the scan direction. A workaround is to overlap more frames
by tilting the imager backward as it translates forward, similar to the method described in [70].
This results in an increased number of partially overlapping pixels which can be utilized to enhance
SNR or spatial resolution as trade-offs using image restoration techniques such as deconvolution
or super-resolution [71]. For clarity, the Euclidean distance on ground between center pixels of

two consecutive frames is taken to be the Sequential Ground Sampling Distance (SGSD) not to be
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confused with the commonly defined Ground Sampling Distance (GSD) between adjacent pixels in
an instantaneous frame.

Figure 2.1.: Tllustration of a pushbroom hyperspectral imager collecting N,, frames with N and N, pixels.
Provided by Mariusz E. Grgtte.

2.1 Mission Design
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Figure 2.2.: CONOPS where 1) HYPSO-1 receives uplinked configurations from a nearby ground station;
2) acquires hyperspectral images for a short duration under a slew maneuver; 3) processes the
images onboard immediately; 4) downlinks the data to nearby ground stations; and 5) in-situ

assets in the vicinity may be deployed for closer investigation at the observed scene. Provided
by Mariusz E. Grgtte.
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2.1.3 Concept of Operations

The
offs

overall mission utility and performance in HYPSO-1 is mainly engineered based on trade-

in spatial resolution, spectral resolution, SNR, data size and latency, coverage to ground

stations and likely locations for observations. HYPSO-1 will be launched to a 500 km altitude
Sun-Synchronous Orbit (SSO) with Local Time of Descending Node (LTDN) at 10:00 AM, which

grants early-day access to observe the Norwegian coastline during Spring and Summer seasons

while avoiding detrimental sun-glint effects [72]. The HYPSO-1 mission concept of operations
(CONOPS), illustrated in Figure 2.2, enables five main capabilities:

1.

After receiving telecommands and updates (e.g., camera settings) that are uploaded from
a nearby ground station, HYPSO-1 is scheduled to orient its hyperspectral imager to start
scanning a pre-defined area size;

2. HYPSO-1 executes a single-axis slew maneuver so that the imager’s footprint slowly rotates

backwards with respect to the scan direction. At a high camera frame rate, the goal is to
enable a SGSD better than 100 m/pixel.

3. After imaging, the hyperspectral images are processed onboard immediately to reduce their

data size and to speed up the download to the ground;

4. For quick downlink after observing coastal regions in Norway, the selected ground station

network includes S-band ground stations at NTNU Trondheim, KSAT Svalbard, Norway,
and KSAT Puertollano, Spain;

5. In addition, the Mission Control Center at NTNU operates several supporting robotic assets,

such as UAVs, ASVs and AUVs, that may collect in-situ data if within range of the observed

area.

2.1.4 System Capabilities

Imaging Modes

The

hyperspectral imager has three main imaging configurations:

» High-resolution mode: enables high image resolution with narrow-FOV and high frame rate

settings;
* Wide FOV mode: enables a wider swath but at coarser spatial resolution;

» Diagnostics mode: gives raw data with full sensor resolution mainly for in-orbit calibration
and characterization.

2.1 Mission Design
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Attitude Determination & Control System

To obtain a spatial resolution better than 100 m requires a precise attitude determination and control
system (ADCS) [73]. Throughout image acquisition for a satellite that is pointing or maneuvering,
the attitude sensor noise and actuator inaccuracies (e.g. reaction wheel jittering) will contribute to a
non-uniform distribution of images across the observed scene. The attitude errors are categorized
as attitude control and knowledge accuracies, bearing in mind that the latter’s performance affects
the former. For consistent image registration, or simply knowing the location of each pixel to
the accuracy of 100 m on the ground, e.g. geo-referencing, then good performance is needed
for attitude knowledge accuracy, orbit position accuracy, and time synchronization between the

captured images and attitude data.
On-board Image Processing

The image processing architecture should be modular by design to ease satellite operations and
provide tailored data to end-users at a low data latency. To make such data products useful, the

high-level goals are to:

* Reduce hyperspectral data size onboard to improve data latency, by lossless compression at a

minimum;

Extract the spatial and spectral information in water-leaving signals, by e.g. dimensionality

reduction, target detection or classification;

» Register images and utilize the obtained SGSD to achieve better than 100 m/pixel image

resolution using image restoration methods, e.g. deconvolution or super-resolution;

Transform pixel indices to geodetic latitude and longitude by geo-referencing such that these
coordinates can be used to guide in-situ agents towards interesting locations;

The hyperspectral data products shall be analyzed in synergy with other available remote sensing
data and in-situ measurements in the commissioning phase. Modeling and simulation tools shall
also provide supporting information on atmospheric correction and the radiometric, spectral and

spatial properties of a simulated ocean color event [74,75].

2.2 On-Board Image Processing Architecture

The FPGA-based image processing algorithms on the OPU are essential to enable faster download
and distribution of data while at the same time relieving HYPSO-1’s power budget. The idea
behind the image processing architecture is to allow for modular arrangement of algorithms, or
pipelines, as illustrated in Figure 2.3. The minimal, dimensionality reduction, target detection, and
classification on-board image processing pipelines (respectively named MOBIP, DROBIP, TOBIP
and COBIP) are designed to generate customized data products depending on the particular need
of the user or operator. All pipelines include image acquisition, time-stamping and binning prior

to image processing. It is also critical that satellite and payload telemetry and any other relevant
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metadata are downlinked together with the processed images, including ADCS and orbit position
data collected during image acquisition. Table 2.1 shows the size reduction and processing speeds
for the suggested algorithms to be employed in the architecture. "Bands/Components" are referred
to as spectral bands for raw data and MOBIP, extracted components for DROBIP, a probability map
of detected target spectral signatures for TOBIP, and a layer containing classes of spectra for COBIP.
A raw hyperspectral datacube of 956 x 684 spatial pixels and 1080 spectral pixels binned by a factor
of By = 9 times is considered the starting point for further processing. The data size reduction and
processing speed estimates are based on performance reported on state-of-the-art image processing
algorithms that have been used on hyperspectral data of similar sizes. Details related to occupation,
execution time, operating frequency, and latency of the following FPGA-based algorithms can be
found in the respective literature on their implementation.

/On-Board Pre-Procsessing\

Primary

- Smile and keystone correction
- Radiometric correction

- Spectral Correction

- Atmospheric Correction

On-Board Analysis 6n Ground Processinh

- Paramter Retrival (e.g. Chl a)
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- Classification

- Algorithm Validation
) - Image Registration
- Geo-refrencing

- Super Resolution

- Data Assimilation

Compression for Downlink >

Secondary - CCSDS123 v1 - Data Fusion

- Dimensionality Reduction - Image Formats End User
- Image registration - No Compression
- Geo-refrencing - Dimensionality Reduction

S -/ ZEN J

Figure 2.3.: Block diagram of the proposed imaging processing pipelines. The hyperspectral images are
captured, binned, processed at chosen level, stored on SD-card and downlinked together with
collected telemetry and metadata. Depending on the downlinked data product, additional
ground-based processing and fine-tuning can be applied before distribution to the end-user.
In-situ validation and data fusion with other remote sensing data are critical aspects of the
HYPSO-1 data validation. Black arrows indicate the minimal on-board processing pipeline
while gray arrows are the alternative routes for tailored data products.

Table 2.1.: Hyperspectral Data Products for N, x IV, = 956 x 684 spatial pixels

Level Bands Bit Depth Total (MB) Reduction (%) Speed (Mbps)
Raw Binned (at By = 9) 120 16 156.94 - -
CCSDS123 (MOBIP) 120 16 69.75 55.6 6260
PCA (DROBIP) 20 16 11.89 92.4 268.6°
OTFP (DROBIP) 20 16 11.89 92.4 7¢
EMSC (DROBIP) 20 16 11.89 92.4 54.5¢
Target detection (TOBIP) 1 16 1.308 99.2 903.1¢
Classification - 16 classes (COBIP) 1 4 0.331 99.8 53.2¢
Classification - 256 classes (COBIP) 1 8 0.711 99.6 53.2¢

a : measured on Zyng-7030 Xilinx FPGA flight hardware on OPU.

b : estimated from Xilinx Virtex-7 XC7VX690T FPGA-based

software/hardware co-design tests on similar hyperspectral data size.

¢ : estimated from software implementation test on similar hyperspectral data size.

d : estimated from Zynq-7000 FPGA-based software/hardware co-design tests on similar hyperspectral data size.

2.2 On-Board Image Processing Architecture
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2.2.1 Minimal On-Board Image Processing

MOBIP consists of the CCSDS123v1 lossless compression algorithm [76], applied after image
acquisition, time-stamping and binning. CCSDS123v1 proposed in [77, 78] offers a measured
FPGA core speed of up to 9984 Mbps on HYPSO-1’s Zynq-7030 Xilinx PicoZed. With the raw
binned image as a starting point, data compression of at least 55.6% is measured as shown in
Table 2.1, i.e. a reduction factor of 2.25 times. Without spatial or spectral information loss, any
user can independently process and analyze this data product on the ground. Furthermore, the
CubeDMA, a Direct Memory Access (DMA) solution, is built in the FPGA to ensure an efficient
stream of hyperspectral images by excluding the Central Processing Unit (CPU) from its critical
path of transfer and establishing direct communication between the memory and the dedicated
CCSDS123v1 processing core [79].

2.2.2 On-Board Image Processing for Tailored Data

Given the in-orbit reconfigurability of the FPGA, several suitable algorithms that can be used in
DROBIP, TOBIP, COBIP are described here. Some are demonstrated as FPGA-implementations or
software/hardware co-design in relevant hardware, and a few algorithms run in software that needs

further development for optimized implementations to run on-board.

The results from chapters 7 and 8 are not included here, but would have a similar data volume as
the TOBIP in table 2.1, with an additional band if one were to add an confidence estimate or similar.

The results from 6 are not directly represented in the table either.
Dimensionality reduction

Dimensionality reduction methods extract the main spectral patterns and remove redundancies from
the high-dimensional hyperspectral data. Applying dimensionality reduction as a pre-processing
step before any succeeding algorithms increases overall computational efficiency [80], and the
practical spatial-spectral features of interest can be used, e.g., studying the water-leaving radiance
and atmospheric effects in an observed heterogeneous scene. As shown in Table 2.1, with 20 com-
ponents chosen, a size reduction rate is estimated to be 92.4% when combined with CCSDS123v1.
An optional step before dimensionality reduction can be to apply smile and keystone corrections to
prevent intertwining systematic artifacts irrevocably in the data by adjusting the images to account

for systematic optical and measurement noise inherent to the hyperspectral imager [81].

A common dimensionality reduction technique is Principal Component Analysis (PCA) which
obtains a reduced and de-noised subspace representation of the raw hyperspectral data, assuming
a linear model with Gaussian noise [82]. The extracted spatial-spectral information in a scene
are contained in only a few principal components instead of a hundred spectral bands. An FPGA
implementation of PCA in Xilinx Virtex-7 XC7VX690T proposed in [83] is reported to obtain
computational speed of 4.17 s when used to extract 24 principal components from an Airborne
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visible/infrared imaging spectrometer (AVIRIS) image of Jasper Ridge Biological Preserve, Cal-
ifornia, with 614 x 512 spatial pixels and 224 spectral channels, and is fast enough to process a
stream of hyperspectral images in real-time. According to [84], an adaptive bilinear PCA-based
On-the-Fly Processing (OTFP) algorithm may sequentially process streaming blocks of data instead
of analyzing the whole dataset at the end of image acquisition. Although in Matlab, its reported
computational speed is 300.2 s for obtaining three principal components from a 16-bit hyperspectral
image of 1000 x 245 spatial pixels and 450 spectral channels, however higher speed is expected
for an FPGA implementation. An alternative method to PCA, the Extended Multiplicative Signal
Correction (EMSC), estimates a de-noised subset of relevant spectra using a linear statistical model
of observations with approximated light absorbance and scattering [85]. A software/hardware
co-design of EMSC on a Zedboard development platform with ARM Cortex-A9 processor mea-
sures a computational time of 3.81 seconds when applied on a 16-bit hyperspectral datacube with

500 x 500 spatial pixels and 50 spectral channels.
Target Detection

Hyperspectral images of heterogeneous scenes are amenable to spectral-based target detection
because of their numerous spectral bands [86, 87]. Effective use of target detection in hyperspectral
imagery requires a set of a-priori known target spectra, and high spatial resolution is desired to
reduce the effects of spectral mixing in the spatial pixels. Target detection generates a probability
map of target spectral signatures across the image in the spatial domain, resulting in a two-
dimensional data product per chosen number of signatures as indicated in Table 2.1. As an
example, only one target signature is chosen such that the size of the two-dimensional map is
1 X 956 x 684 x 16 bits = 1.308 MB, i.e. a size reduction of approximately 99.2% of the original
data. Due to the small data size, the reduction for target detection in Table 2.1 is assumed to not

include lossless compression with CCSDS123v1.

Proposed in [88], the target detection module supports Constrained Energy Minimization (CEM),
Adjusted Spectral Matched Filter (ASMF) and modified Adaptive Cosine Estimator (ACE) de-
tectors to determine the likelihood of specific spectral signatures in a spatial pixel. For real-time
computation on a stream of hyperspectral images, dimensionality reduction should be applied as a
pre-processing step. For software/hardware co-design of modified ACE algorithm on a Zedboard
development platform with ARM Cortex-A9 processor, the computational time is reported to
be 3.29 s for an input of HyMap 16-bit hyperspectral datacube of 224000 spatial pixels and 16
principal components given PCA pre-processing [89]. A computational time of 0.5 s is reported
for FPGA-implementation of modified ACE algorithm on a Zyng-7035 SoC (Kintex-7) applied on
the complete HyMap datacube with 126 spectral bands without PCA pre-processing [88], which is

used as benchmark estimate in Table 2.1.

2.2 On-Board Image Processing Architecture

29



30

Classification

Using a spatial-spectral classification framework, the spatial pixels in a hyperspectral image can be
separated into different classes based on spectral signatures [90]. One of many such classification
techniques that are suitable for FPGA-implementation is the Fast Spectral Clustering (FSC), a
graph-based unsupervised method that does not require training data [91,92]. Indicated in Table
2.1, it is possible to represent each pixel or layer with a 4 bit integer for fewer than 16 classes,
whereas 256 classes can be represented with 8 bits. The size of 16 class signatures with 120
spectral bands per signature is 16 x 120 x 16 bits = 0.0038 MB and for 256 class signatures
the size is 256 x 120 x 16 bits = 0.06144 MB. These auxiliary data products are added to
the classification map with size of 1 x 956 x 684 x 4 bits = 0.327 MB for 16 classes and
1 % 956 x 684 x 8 bits = 0.654 MB for 256 classes. The estimated data size reduction is 99.8%
and 99.6%, respectively. Due to the small data sizes, the reductions for classification in Table 2.1

are assumed to not include lossless compression with CCSDS123v1.

The computational speed for a Nystrgm Extension Clustering version of FSC, described in [91], is
estimated to be about 245.8 Mbps based on a Matlab implementation that resulted in 1.62 s used for
providing 16 classes from a 16-bit AVIRIS image of Salinas Valley, California, with 512 x 217 pixels
and 224 spectral bands. Even higher speed is expected for a software/hardware co-design of FSC
on FPGA. An alternative to FSC is the potentially more accurate Clustering using Binary Partition
Trees (CLUS-BPT) framework, which integrates embedded hyperspectral data segmentation, region
modeling, feature extraction by PCA and clustering [93]. Its reported computation time in Matlab
is 7.48 s for the same AVIRIS image. However, FSC generally outperforms the CLUS-BPT in
computational time for an input image with large spatial dimensions. As a worst-case in Table
2.1, the estimated processing speed is therefore assumed to be 53.2 Mbps based on CLUS-BPT.
Naturally, as with any other on-board processing algorithms, cropping the images in the spatial

domain to focus on specific regions will improve the processing latency in classification.

2.2.3 Discussion on Advanced Algorithms

Given the FPGA reconfigurability, other relevant algorithms beyond those discussed may be
uploaded to the OPU in-orbit if potential maturity is reached. Generally, the algorithms should
first be rigorously tested on the ground with careful validation of processing characteristics such
as speed, reliability, and acceptable accuracy resulting in the data. Relevant algorithms include
image registration, geo-referencing, atmospheric correction, and super-resolution, which may
improve target detection and classification accuracy. However, these algorithms are generally too
computationally intensive and complex for on-board implementation and real-time use. Further

studies, development, and testing are required.
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Image Registration

Image registration determines relative separation between individual pixels, sometimes named
orthorectification. Such algorithms are in general, too computationally expensive for on-board
applications [94]. A more straightforward ray-tracing method can be adapted for on-board imple-
mentation, which has been prototyped for joint registration and geo-referencing, similar to the one
described in [95].

Geo-referencing

The benefit of on-board geo-referencing lies in directly downlinking the latitude and longitude
coordinates of pixels with target detection or classification results. This requires direct inputs of
time-synchronized ADCS and navigation data. For ground use, instead of downlinking the whole
data product from, e.g., target detection or classification, it is possible to transfer only the relevant
spatial pixel indices to be geo-referenced. This results in much smaller data size and latency, and
in-situ agents nearby HYPSO-1’s observed area can, therefore, quickly be commanded to travel to

these coordinates for closer inspection.
Super-Resolution

Super-resolution algorithms can be adapted to enhance the spatial resolution in images as de-
scribed in [96], and thereby improve the radiometric and geometric accuracy. Super-resolution
prototypes require a measurement process, e.g. determining the point-spread function, to infer
higher spatial resolution in the image [97, 98], which are based on methods from multi-frame super-
resolution [99, 100]. Although these types of algorithms can improve the spatial image resolution,
they are susceptible to noise, quantization, compression, and inaccuracies in the estimate of the
point spread function [101, 102]. Prior-based super-resolution techniques, such as sparse image
representations [103] and convolutional neural nets [104, 105], namely overcome the limitations in
measurement-based techniques by supplementing input pixels with expectations of hyperspectral
image statistics. Other methods involve using multispectral-hyperspectral image fusion [106, 107]

and super-resolution based on dimensionality reduction [108].

An FPGA-implementation of a Richardson-Lucy (RL) deconvolution algorithm on Xilinx Zyng-
7020 Zedboard with two ARM Cortex-A9 cores proposed in [109], has been successfully applied on
hyperspectral data, where a computational time of 1.06 ms is reported per iteration when processing
a band with a size of 150 x 640 pixels by using kernel size of 9 x 9 pixels. Corresponding

software/hardware co-design of the deconvolution algorithm is proposed in [110].
Atmospheric Correction

Removing atmospheric effects before dimensionality reduction, target detection or classification,
can improve the accuracy and efficiency in extracting or detecting relevant water-leaving signals.
The purpose of atmospheric correction is to identify the terms in the top-of-the-atmosphere radiance
that contribute to the total radiance and predict the actual water-leaving radiance component,

2.2 On-Board Image Processing Architecture
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which may further contain the optical properties of important ocean color parameters such as
chlorophyll.

Many ground-based atmospheric correction schemes work well for open ocean waters for multi-
spectral data [9, 111-113], and good performance has also been shown for hyperspectral images
of coastal waters [114]. Traditional atmospheric correction methods are generally built on the
radiative transfer model [4], but they are not designed for on-board real-time applications due to
the complexity and computational expense. Without contemporary empirical or ground truth data,
they can also be prone to over-or under-correction of the radiance terms, resulting in significant
radiometric inaccuracies for highly variable coastal waters and an unpredictable atmosphere. On
the other hand, effective non-deterministic atmospheric correction methods using machine learn-
ing, e.g., neural networks, have regularly been employed and are considered to be robust given a
proper set of training data [2]. If hyperspectral images and ground truth data are unavailable for
training, simulation tools such as Accurate Radiative Transfer (AccuRT) [115], based on a coupled
atmosphere-ocean radiative transfer model, could simulate heterogeneous scenes of complex water
and atmospheric conditions. This simulations study is presented in chapter 7. A suitable on-board
FPGA implementation of atmospheric correction methods still needs further investigation.

2.2.4 Dynamic Reconfiguration

Using FPGAs can overcome the limited hardware resources on-board a small satellite and the
increasing performance requirements for on-board processing in terms of processing complexity
and spatial-spectral resolution in hyperspectral data. Using Dynamic Reconfiguration (DR) on
FPGAs, reconfigurable solutions obtain the needed flexibility and allow changes and adaptation
of the on-board processing. In HYPSO-1, the DR can increase resource utilization by switching
between different processing pipelines and for functional updates and upgrades in each pipeline
that are uplinked from the ground. An advanced ability of modern FPGAs is Dynamic Partial
Reconfiguration (DPR) that reprograms portions of the FPGA, while the rest of the system continues
to operate. The DPR allows time-multiplexing of mutually time-exclusive algorithms/steps on a
finer scale of the available resources and is characterized by shorter reconfiguration times since
FPGA configuration time is directly proportional to the configuration bitstream size. The DPR
can also be used for applications such as mitigation and recovery from single-event upsets (SEU)
and for real-time dynamic scenario-based adaptive image processing. Furthermore, the OPU also
has a “golden image” that enables booting a previous version of a steady on-board processing
configuration. The OPU will automatically revert to the “golden image” in case of corruption or
unwanted updates or upgrades that have been uploaded from the ground. This is further discussed
in chapter 10.
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Table 2.2.: Performance f r selected hyperspectral imager modes

Type Mode A Mode B Mode C Mode D Mode E
ADCS Mode Slew Slew Slew Nadir Nadir
Aol (pixels) 1080 x 684 1080 x 684 1080 x 1194 1080 x 1194 1936 x 1216
Binning, B} (pixels) 9 18 9 9 1
Spectral range (nm) 387 —801 387 —801 387 — 801 387 — 801 220 — 967
Spectral bands 120 60 120 120 215
Bandpass AX (nm) 3.33 6.67 3.33 3.33 3.33
Frame rate FPS 18 12 12 12 10
Exposure time, 7 (ms) 51 79 79 79 96
Scan duration (s) 53.08 53.08 57.00 9.19 1.00
Number of frames 956 637 685 111 10
Scan distance, along-track (km) 40.08 40.08 69.97 69.97 7.60
Swath width (km)® 40.08 40.08 69.97 69.97 69.97
Spatial resolution, along-track (m)®? 553 582 618 1101 1231
Spatial resolution, cross-track (m)®b 58.60 58.60 58.60 58.60 58.60
SGSD, along-track (m) 57.6 86.3 124.1 634.4 761.3
SNRyater,[By,1] @470 nm* 158.1 196.3 197.4 197.4 217.9
Data size, raw (MB) 156.94 52.28 196.29 31.81 4.71
Data size, MOBIP (MB) 69.75 23.24 87.24 14.14 2.09
Onboard processing time (s)° 5.8 1.9 7.2 1.2 0.2
OPU-PC transfer time (s)© 1924.1 641 390 2406.7 57.7
Downlink time (s)? 558.0 185.9 697.9 113.1 16.7
Data size, DROBIP (MB)*¢ 11.62 7.75 14.54 2.36 0.22
Onboard processing time (s)¢ 5.6 22 7.0 1.1 0.2
OPU-PC transfer time (s)° 320.7 213.7 401.1 65.0 6.0
Downlink time (s)? 93.0 62.0 116.3 18.8 1.7
Data size, TOBIP (MB)° 1.31 0.87 1.64 0.27 0.02
Onboard processing time (s)® 8.9 3.0 11.1 1.8 0.29
OPU-PC transfer time (s)© 36.1 24.0 45.1 7.3 0.7
Downlink time (s)¢ 10.5 7.0 13.1 2.1 0.2
Data size, COBIP (MB)* 0.33 0.22 0.41 0.07 0.01
Onboard processing time (s)° 23.6 79 29.6 4.8 0.8
OPU-PC transfer time (s)© 9.1 6.1 11.4 1.9 0.4
Downlink time (s)¢ 2.6 1.8 33 0.6 0.1

a: viewing at nadir.

b: the spatial resolution in one frame, not the final image resolution using e.g. image registration and super-resolution.
c: includes time used for running on memory in the OS and writing data to SD-card at 100 Mbps.

d: total time required for 1 Mbps downlink data rate with S-band radio.

e: estimated based on Table 2.1.

Table 2.3.: Mode A Data Latency for HYPSO-1 on example date 28 May 2022

MOBIP (69.75 MB) | DROBIP (11.62 MB) | TOBIP (1.31 MB) | COBIP (0.33 MB)
Sequence Start time  Duration (s) | Start time  Duration (s) | Start time  Duration (s) | Starttime  Duration (s)
Orbit 1
Image acquisition 10:29:40.0 53.1 | 10:29:40.0 53.1 | 10:29:40.0 53.1 | 10:29:40.0 53.1
Onboard processing 10:30:33.1 5.8 | 10:30:33.1 5.6 | 10:30:33.1 1.5 | 10:30:33.1 23.6
OPU to PC transfer 10:30:38.9 1924.1 | 10:30:38.7 320.7 | 10:30:34.6 36.1 | 10:30:56.7 9.1
Downlink NTNU - - - - | 10:31:10.7 10.5 | 10:31:05.8 2.6
Downlink KSAT Spain - - | 10:35:59.4 93.0 - - -
Cruise 11:02:43.0 4347 | - - -
Eclipse 11:09:56.7 21450 | - - -
Orbit 2
Cruise 11:45:42.0 630.0 | - -
Downlink KSAT Svalbard | 11:56:12.0 276.0 | - -
Downlink NTNU 12:00:48.0 282.0 | - - - -
Total latency (min) 95.85 7.87 1.69 1.47
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Table 2.4.: Mode A Data Latency for HYPSO-1 without CAN overhead on example date 28 May 2022

MOBIP (69.75 MB) | DROBIP (11.62 MB) | TOBIP (1.31 MB) | COBIP (0.33 MB)
Sequence Start time  Duration (s) | Start time  Duration (s) | Starttime  Duration (s) | Start time  Duration (s)
Image acquisition 10:29:40.0 53.1 | 10:29:40.0 53.1 | 10:29:40.0 53.1 | 10:29:40.0 53.1
Onboard processing 10:30:33.1 5.8 | 10:30:33.1 5.6 | 10:30:33.1 1.5 | 10:30:33.1 23.6
Downlink NTNU 10:30:38.9 316.0 | 10:30:38.7 93.0 | 10:30:34.6 10.5 | 10:30:56.7 2.6
Downlink KSAT Spain | 10:35:54.9 242.0 - - - - -
Total latency (min) 8.62 2.53 1.09 1.32

2.2.5 Ground Support

Indicated at the bottom right in Figure 2.3, some of the algorithms should operate on the ground
at all times to (a) adjust, fine-tune and prepare data for end-users; (b) assist in in-orbit calibration
of the hyperspectral imager, and (c) rigorously test accuracy and reliability in algorithm updates
before uploading them to the satellite for on-board image processing. Advanced modules such as
image registration, geo-referencing, atmospheric correction, and super-resolution are dedicated for
use on the ground because they require access to prompt reference libraries and are computationally
expensive. In-orbit upgrades, or at least future missions, may include versions of the algorithms as
mentioned earlier only if maturity is demonstrated on the ground. Apart from suitable implementa-
tions before launch, alternative prototype algorithms for dimensionality reduction, target detection
and classification are also tested on the ground first.

2.2.6 Data Latency in Typical Hypso-1 Operations

Table 2.2 shows HYPSO’s remote sensing performance for selected hyperspectral imager modes
and corresponding size and latency for data products obtained from MOBIP, PCA-based DROBIP,
TOBIP with one two-dimensional map, and COBIP with 16 classes. For each pipeline, the
assumptions are based on the chosen spectral channels, the pixel size in bits, reduction factors,
and processing speeds stated in Table 2.1, but with extended results for other datacube sizes. The
ADCS modes with slew maneuvers assume no attitude control and knowledge errors. The SNR is

calculated using the ToA water-leaving radiance based on data from MOBY as described in [23].

Modes A and B provide higher spatial resolution but narrower FOV for a chosen observed area size
of approximately 40 km by 40 km, while Modes C and D provide coarser spatial resolution and
wider FOV for a chosen target area size of approximately 70 km by 70 km. Modes A, B, C and D
use 1080 out of 1936 spectral pixels to cover the relevant spectral range of 400 — 800 nm. Mode
E is dedicated for diagnostics and in-orbit calibration during commissioning phase. “Onboard
processing time”, “OPU-PC transfer time” and “Downlink time” are the durations needed for image
processing for selected pipeline, completing the data transfer between OPU to PC at speeds of up
to 290 kbps and completing the data downlink to ground through S-band radio at a bandwidth of
1 Mbps, respectively. It is also assumed that the onboard data is written to the SD-card at 100 Mbps
which is included in the onboard processing time.
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The results from Table 2.2 are put into the context of a typical mission scenario where HYPSO-
1 uses Mode A to observe a 40 km x 40 km near Lofoten, Norway, then immediately aims to
downlink a selected data product to ground stations at NTNU, KSAT Svalbard and KSAT Spain
with respective elevation angles assumed to be 5°, 2° and 8°. Using simulated orbit propagator in
Analytical Graphics, Inc., (AGI) Systems Toolkit (STK) with epoch date set to 28 May 2022, results
are shown in Tables 2.3 with OPU-PC overhead and 2.4 without the overhead. A dash indicates that
the operation is not available or necessary. “Cruise” means that HYPSO-1 is only harvesting solar
energy and “Eclipse” means that it is in the Earth’s shadow. With overhead in OPU-PC transfer, all
except for MOBIP data product can be downloaded in less than one orbit, or specifically less than
10 min. All data products are available in less than 10 min without the overhead.

Regarding the OPU-PC transfer overhead, the current hardware and software architecture in
HYPSO-1 is limited by the communication interface between the OPU and the PC due to data
transfer over a CAN network with a data rate of about 300 kbps, which negatively impacts the
overall latency for higher data volumes as indicated in Table 2.3. In future missions, the physical
interface could be replaced with a data bus capable of higher data rates, for example, Ethernet or
RS-422, which would involve spending much less time by downlinking directly from the OPU, and

better latency can be potentially achieved as shown in Table 2.4.

2.3 Conclusions

Following the advancements in miniaturization, image processing algorithms and sensor technol-
ogy, the mission and system design of HYPSO-1 shows that pushbroom hyperspectral imaging
combined with FPGA-based on-board image processing on a nano-satellite, can enable ocean
color data products with high spatial and spectral resolution and low data latency to meet the user
needs for operational coastal environment monitoring. The imager design, HYPSO-1’s remote
sensing approach, and on-board software grant flexible trade-offs to be made between spatial
image resolution, spectral resolution, and SNR. The chosen FPGA-based CCSDS123v1 lossless
compression, dimensionality reduction, target detection, and classification algorithms may reduce
the data size significantly without losing crucial information. Contrary to using rigorous data
processing and analysis on the ground, the smaller data products can be made available shortly after
observation. This enables quick download of tailored data products that may satisty the immediate
needs of end-users. As such, it could allow better mitigation for potential damage from Harmful
Algal Blooms when early detection and warning are needed. Based on lessons learned from the
HYPSO-1 operations, the goal is to iterate and enhance the design of the hyperspectral imager,
attitude determination and control system, satellite communications architecture, and the on-board
image processing algorithms for future missions. After launch, the HYPSO-1 mission aims to
determine the efficacy in quickly providing high-resolution hyperspectral data from small satellites
for ocean color applications.

The figures of merit presented in this paper such as optics size, spatial resolution, spectral resolution,
swath width, SNR, Sequential Ground Sampling Distance, data latency as well as spacecraft angular

2.3 Conclusions
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velocity and attitude accuracy, can be used for system trade-off studies in the design of a remote

sensing mission.
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Chapter 3

Oceanographic Observation with
Multiple Platforms

Collaboration is being open to each other’s ideas and benefiting from
each other’s perspectives in an open way.

Alan Menken

The extensive data volumes associated with hyperspectral images and the computational demands
required to interpret them make acquiring, distributing, and utilizing them more complicated.
The NTNU is building an ocean observation system, where the HYPSO-1 hyperspectral imaging
satellite is at the apex of the observational pyramid introduced in chapter 1, to monitor ocean color
in coastal waters. The images collected by HYPSO-1 are intended to inform an ensemble of robotic
agents that locally monitor ocean conditions. Several of the agents will be UAV's that also carry
hyperspectral imagers, but at a lowered altitude below the clouds. The hyperspectral images will
be processed on-board the different agents and central locations. This chapter provides a draft
of the architecture, development, current status, and future opportunities of hyperspectral image

processing pipelines on these platforms.

This chapter describes the Hyperspectral Image Processing Pipelines (HIPPs) developed for the
HYPSO-1 satellite and UAVs carrying hyperspectral imagers. Furthermore, additional capabilities
developed on the ground to facilitate their operation are also described. Each platform has its
purpose and constraints that guide the design and development plan of each HIPP, and they come
together as part of the MASSIVE project.

The project is intended to consist of multiple small satellites, the first of which is HYPSO-1
described in chapter 2 [116], combined with an ensemble of robotic agents, such as UAVs and USVs.
These robotic agents will be used as observation platforms to validate ocean color observations and

relate ocean color to local conditions [24,117] (Figure 3.1). The acquired data will be processed
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Mission
Control

Figure 3.1.: The hyperspectral observations of the HYPSO-1 satellite will inform an ensemble of in situ
autonomous agents. Illustration by Joseph L. Garrett

on the ground at the mission control center, before being dispersed to end-users. This chapter is
intended to provide further details on how hyperspectral imaging is planned to be integrated into a
multi-agent system and will describe the image processing tools built to facilitate its use. Particular
attention will be placed on the interfaces between the different HIPPs and how those interactions

motivated design choices.

3.1 Purpose of Each Pipeline

The HYPSO-1 satellite will as a small satellite in low Earth orbit have a revisit time of approximately
90 minutes. This frequency should enable the satellite to point towards algal bloom events and

image their dynamic evolution up to three times a day.

A primary goal of image processing on-board the satellite is to reduce the size of the data, while
retaining as much helpful information as possible, as briefly discussed in Chap 2, and will be the
topic of the subsequent chapters. The expected size of the raw data is a few hundred MB, and this
will take several passes to be downlinked in its raw form with the communication links available.

However, the mission concept aims to reduce its size by on-board processing.
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Table 3.1.: Modules considered for the pipelines

Module Purpose

Acquisition To collect spectrograms
Compression To reduce size

Sensor cor. To eliminate systematic errors
Image registration | To place pixels on a grid
Georeferencing To position the data on Earth

Super-resolution To emphasize spatial information
Atmospheric cor. | To mitigate atmospheric effects

Dim. reduction To extract crucial information
Target detection To locate target spectra
Classification To partition image using spectra

Furthermore, once the data is downlinked, there are three potential ways of utilizing the data

1. The downlinked data can be processed further on the ground and transmitted to the au-

tonomous agents
2. the downlinked data can be processed on the ground for storage in some data repository
3. the downlinked data can be transmitted to the autonomous agents without further processing.

The UAVs are planned to both supplements the satellite observations and image ocean phenomena
independently. As an example, during conditions with high cloud coverage, when HYPSO-1
is unable to observe, the UAVs will be used to acquire images beneath the clouds. As these
hyperspectral imagers are passive sensors and dependent on the sun or reflections from the sun as a
light source, this can pose a challenge in and of itself. In better weather conditions, the UAV based
platform should be able to acquire images at better spatial resolution and better signal-to-noise ratio
(SNR) than what is possible with HYPSO-1, albeit be able to cover less area. This data from the
UAVs is intended to be used to calibrate the satellite’s hyperspectral camera with simultaneous nadir
overpass [32], and to sample regions at higher temporal resolution for further data assimilation and
integration. The primary goal of the HIPPs on UAVs is to reduce the size of information so that it
can be stored on-board with an acceptable information loss. The data loss as a result of compression
can be minimal as the UAV, and the collected data can be physically transferred to the operator or
have better bandwidth on the communication links, unlike data on the satellite. The navigational
system of the UAVs could also use the hyperspectral images collected by the drone to perform
adaptive sampling such as circling the perimeter of ocean events, such as an algae bloom [24,118].
Although the UAVs may be carrying different models of cameras than the satellite, many of the

image processing modules are intended to be and will be reused.

The purpose of the analysis capabilities developed for use on the ground is to aid the UAVs and
satellites in their mission. For example, for the data to be interpretable, it is necessary to know
what wavelength each column in a spectrogram corresponds to. Before a flight, the radiometric,

spectral, and spatial properties of the response of the camera are calibrated and parameters are

3.1 Purpose of Each Pipeline
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determined to convert data into the desired format [81]. Applying this calibration, to the data
on-board the agents as it is collected can standardize it and eliminate undesired systematic effects
before further on-board processing. The ground pipeline is used to parametrize the hyperspectral
camera characteristics. This information can, in turn, be applied on-board the remote platforms.
In addition, the ground HIPPs will also be used to coordinate the satellites and other agents. For

example, the satellite data can be used to determine where the in-sifu agents should go.

Constraints These pipelines are being developed to support hyperspectral imagers similar to the
one described in [5,69]. Different variants of the camera are being produced for use on either the

satellite or UAV, but their core design and operation remain similar.

The computational hardware differs between the platforms. As mentioned in chapter 2, the satellite
uses a system-on-a-chip with a customized carrier board, which can utilize an on-chip Field
Programmable Gate Array (FPGA) for low-power accelerated computations. A diagram showing
the relevant components are given in Figure 3.2. On the other hand, the two UAV imaging payloads
lack FPGA acceleration, but do include Graphics Processing Units (GPUs) for more effective
computing. One version of the UAV payload is oriented towards tagging the acquired spectrograms
with time and pose, whereas the other is designed to enable users to operate the system. The ground
analysis software is designed to be run on a laptop, so that it can be used while operating UAVs, or

a desktop, to be run at the Mission Control Center.

Because of differing choices for the computational hardware, the algorithms utilizing either FPGA or
GPU acceleration cannot be run on both the satellite segment and the UAV segment. Unfortunately,
this imposes a high cost for developing in parallel for these systems. Therefore, algorithms will
be tested as part of a pipeline on the ground, where more computational resources are available,
before being developed for the other systems. For both the satellite and the UAVs, there is also a
time constraint on the computation. Either the data must be processed as they are collected, or the

agent must alternate between imaging and processing.

3.2 Design and Development

The following two sections describe how the spacecraft and UAV are designed. It focuses on what
kind of electronics hardware is used on the different platforms. The chosen electronics hardware
is intended to be low in power usage while also effectively processing the acquired hyperspectral

imagery.
3.2.1 Satellite

The HYPSO-1 satellite will image a region of the ocean for about one minute and process the
acquired data for at most three minutes more as discussed in Chap 2 [116]. From its conception, the
HYPSO-1 satellite on-board processing pipeline was planned to incorporate the image processing
modules listed in Table 3.1. Several image processing pipelines, each containing a subset of the

modules, are in development, with each designed to produce a particular data product.
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Figure 3.2.: The camera payload on the satellite included the hyperspectral imager, an on-board processing
unit, and an RGB camera. The blue highlighted regions show the spacecraft subsystems that
the payload interacts with. Power is supplied over the solid lines, while data is transmitted over
the dashed lines. Note that only data acquisition, processing, and downlinking subsystems are
pictured. Illustration by Joseph L. Garrett

The HSI camera, an RGB camera, and the On-board Processing Unit (OPU) together form the
payload of the satellite. The OPU consists of a Zynq 7030 System-on-Chip (Xilinx) together with a
custom carrier board, as illustrated in Figure 3.2. The HIPP runs on an embedded Linux Operating
System (OS), and the modules are partitioned between Central Processing Unit (CPU) and FPGA,
and therefore written in either C or VHDL, respectivly The interfaces between the FPGA and the
OS are implemented using Linux kernel modules. A Linux-based OS is used (not a real-time OS
or a bare-metal solution), due to proprietary software needed to interface with the COTS camera
module used in the hyperspectral imager. The cubeDMA interface is used to facilitate flexible

communication of the hyperspectral data structures between memory and FPGA [77].

The compression and dimensionality reduction modules are prioritized because they directly reduce
the size of the data and can be utilized in more configurations of the HIPP [80]. The simplest of
the configurations for the satellite, which is considered the Minimum Viable Product (MVP) or
minimal pipeline, consists of image acquisition, compression, and downlinking, and is depicted in
Figure 3.3. The compression module follows the CCSDS-123 standard and is implemented in on
FPGA [78,119]. An alternate version of the compression code which runs on the CPU can also be
run as backup, in case some aspect of the FPGA fails to operate as expected in space. However,
the CPU version takes much longer to process, dependent on the acquired cube dimensions,
so the FPGA implementation is preferred for operational reasons. Sensor corrections, such as
compensation for smile and keystone, are prioritized next. The following configuration builds on the

first, but also adds a smile and keystone sensor corrections [81] and dimensionality reduction [84]

3.2 Design and Development
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to the pipeline. The smile and keystone corrections are included because dimensionality reduction
removes information that is necessary to correct for smile and keystone, which preclude applying
the corrections after the dimensionality reduction data are downlinked. Or conversely, with the
smile and keystone effects the dimensionality reduction algorithm will not be able to generalize
well across the perceived spectral bands of the acquired cube. It is possible to change the number
of components that are selected from dimensionality reduction to meet the memory requirements
of a specific downlink rate. Nominal operations include downlinking the 20 bands resulting
from dimensionality reduction, most relevant for reconstructing the original image cube. This
dimensionality reduction will reduce the size of the data package to 20%. The pipeline that adds
both the smile-and-keystone correction and the dimensionality reduction is known as the baseline,
given in Figure 3.3. Other modules that have been prototyped on the ground for incorporation into
the satellite HIPP include super-resolution and target detection [120-122].

Uplink parameters
Data acquisition

BaSe//ne » Sensor Corrections

Minimal

Dimensionality Reduction
V a
Compression

Downlink

Figure 3.3.: The minimal on-board image processing pipeline provides the basic structure that all more
sophisticated pipelines will build on. The baseline on-board image processing pipeline adds
dimensionality reduction to increase the speed at which the data can be downlinked. Illustration
by Joseph L. Garrett

3.2.2 Unmanned Aerial Vehicle

Several different payloads have been developed to acquire and process images. This development
has provided a simple way to mount the hyperspectral imager on various drones. The original
payload, called the Lunde, was developed for mounting the camera on UAVs and acquiring images,
and is described in [123]. Because different camera users had different demands, two new versions
of the payload have been designed.

The first payload consists of a processor (Odroid XU-4, Hardkernel) together with a voltage
converter, a 1 TB solid-state drive (PNY), and an ethernet connection to the drone (Figs. 3.4
and 3.5). This payload is designed to complement the accessibility of the do-it-yourself camera [69]

because it is composed of relatively cheap commercially available components. The Odroid controls
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the camera through the DUNE Unified Navigational Environment [124], which in turn controls the
uEye (IDS) camera, driver. Imaging automatically begins when the Odroid is powered to make the
payload easy to use. The acquired data can then be accessed directly through the hard drive so that
there is no need for the operator to modify the payload. However, for more flexibility, the camera

can also be controlled remotely through the DUNE software.

The second payload is designed for more precise scientific measurements. It is based on the
Jetson TX2 processor (Nvidia) and follows the same basic configuration of the first payload, but
adds an IMU (Analog Devices Inc. ADIS 16490 BMLZ) and a GNSS system (module: u-blox
Neo-M8T, antenna: Harxon HX-CH3602A). A reconfigurable timing board (SenTiBoard) is used
to synchronize and align the timing information of the camera with the pose [125]. Knowing the
pose of the UAV is critical for determining the georeferencing the hyperspectral data.

m
3 = 3
= 3 3
@ o] =
Voltage 5V Odroid
Converter Gimbal
DUNE
USB
Storage uEye USB
Daemon Camera

Figure 3.4.: The hyperspectral camera UAVpayload is based on an Odroid which runs DUNE which in
turn controls the uEye daemon to operate the camera. Illustration by Joseph L. Garrett

To reduce size and weight, some camera operators have wanted to fly the camera without an
additional computing payload. To facilitate this, a python script based on the pypyueye library
is used to control the camera [126]. While this lacks the precise timing information and remote
control through DUNE, it requires less additional software to be installed. A secondary benefit
that we have encountered is that this implementation is straightforward to integrate with modules
developed from other organizations into the pipeline, due to the widespread adoption of Python.
For example, the smile and keystone correction developed and tested for the ground pipeline can be

run directly without alteration in this version of the pipeline.

Ground HIPPs are used to develop and test modules to be run on the UAV. For example, in the
classification task, the spectra of relevant classes are determined on the ground are evaluated on

example data sets before being run in the field. Off-line analysis of the Hyperspectral Imager of

3.2 Design and Development
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the Coastal Ocean [127] suggests that the classification technique described in [84] is sufficient
to distinguish between different constituents such as chlorophyll and pollution. Experiments are

currently being prepared to test the performance of classification while the drone is flying.

Figure 3.5.: The UAVhyperspectral payload mounted on a multiroter. Note that the the components are
colored in order to correspond to Figure 3.4. Photo by Joseph L. Garrett

3.3 Conclusions

This chapter presented the purposes, constraints, design choices, and current development progress
of several hyperspectral imaging systems and processing pipelines under development at NTNU.
The systems that are described are intended to be united in the MASSIVE ocean observation
project, briefly detailed in chapter 1. However, the initial flight version of the HIPP that will be
on the HYPSO-1 when it launches has been finalized. Changes to that pipeline must either rely
on the in-flight update capacity of the satellite or wait to be implemented on the next satellite in
the constellation. The software architecture intended to allow in-flight updates is described in
chapter 10. Because it is simpler to collect data from UAVs than from satellites, the development of
their HIPPs has been somewhat slower, and more attention has been focused on ease of use and
tailoring the payloads to different use-cases. For example, the UAV payloads can be augmented

with an RGB camera to investigate joint hyperspectral-multispectral imaging strategies, both for
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their utility and to study how they might be incorporated on the satellite [128]. Still, as the UAVs
become more autonomous and fly longer missions, the computational capacity of their HIPPs is

expected to become more relevant during operations.

3.3 Conclusions
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Chapter 4

yperspe tra Remote Sensing and
Anal sis of the Amazon River Plume

Tell me and I forget.
Teach me and I remember.

Involve me and I learn.

Benjamin Franklin

This chapter shows the ongoing processing of hyperspectral radiometer data from two cruises
following the Amazon River plume. Ocean color provides information for many applications such
as biomass estimation, water quality monitoring, characterization of biogeochemical cycles. The
direct relevance to Norwegian waters may not be obvious, but the Amazon River Plume provides an
excellent source to observe complex waters where phytoplankton, various sediments, and CDOM
are combined. Albeit with other types of species, this type of complexity in the water column is
expected to be found near the Norwegian Coast and fjords. Phytoplankton cells can be characterized
by how they absorb, scatter, and fluoresce light; it is attractive to retrieve information by their
bio-optical properties. A specific spectral resolution and appropriate wavelengths must be used
from bio-optical measurements to infer the sought-after information. There is a need to account
for other optically active substances such as CDOM and suspended non-algal particles. Here,
the bio-optical properties of the amazon river plume are investigated using hyperspectral remote
sensing measurements of downwelling irradiance and water-leaving radiance and compared with
results from HPLC and SP.

41 Introduction

The Amazon River is the largest in the world and discharges more than 200,000 m3s ™! into the
Western Tropical North Atlantic Ocean. At its peak, the low salinity plume extends more than 2000

km from the mouth and covers more than 1 million square kilometers.
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The Amazon and the Amazon River represent a crucial area in the global scope for biodiversity and
an abundance of natural resources [129]; It contributes to vital parts of human life, such as water for
agriculture, transportation, and food. Furthermore, the Amazon River provides a vital ecosystem
for countless species. It has been reported that the water cycle balance in the Amazon rain forest
and its rivers are threatened by climate change. The effects of climate change are reported as a
risk factor that can cause significant loss in this unique area for future generations. This role as a
vital ecosystem and the vulnerability of the Amazon River is why it is essential to understand and

monitor it. With more information, it is possible to improve decision-making for the area.

High CDOM in the plume can make it challenging to accurately estimate phytoplankton biomass,
total suspended matter, and other parameters of interest via multispectral remote sensing of [Chl
a] [1,7,130,131]. In the campaigns presented here, hyperspectral remote sensing measurements of
both downwelling irradiance and water-leaving radiance using the SBA [132] were made. These
optical measurements were taken as near the sea surface as possible. HPLC and SP data were
also collected during the campaign. This data was collected at the same stations where the SBA
radiometer was deployed. The collected measurements were then used to investigate the details
in ocean color spectra presented by a higher spectral resolution than previously obtained for the

waters in question.

While the SBA radiometer approach is not able to provide the exact spatial and temporal resolution
of air- and space-borne sensors it does mitigate some of the challenges of atmospheric compensa-
tion [9, 132] by direct measurements of the downwelling irradiance. The SBA radiometer, while
an attractive approach for monitoring in waters of particular interest, can also provide valuable
vicarious calibration data for other remote sensing systems [32], similar to the Marine Optical
BuoY (MOBY) and buoy for the acquisition of a long-term optical time series (BOUSSOLE)

The radiance measurements used here are of the plume from the Amazon river and surrounding
oceanic waters during a field survey in the summer of 2019 and 2021. Furthermore, the SBA
measurements were quality controlled using a tilt filter to remove the data points that logged a tilt
angle that exceeded 5 degrees from the nadir of the sensor. This paper also proposes an outlier
filter that removes artifacts and other measurements. The proposed filter removes the entire SBA
measurement when either the downwelling irradiance or water-leaving radiance is considered an
outlier in terms of quantile thresholds set by the user. In general, the SBA system acquired over
4000 measurements at each station. The proposed rigorous quality control accepted about 1% of
these measurements for use in subsequent analysis. This data formed the basis for exploring if the
high spectral resolution from hyperspectral remote sensing can improve our understanding of this
type’s plume constituents and water bodies.

An implementation of the shade-correction reported in [133] forms the basis for the SBA processing.
only the signals that passed the criteria as mentioned earlier were shadow corrected. The shadow
correction code is made available here [134]. It is necessary to compensate for the shading effects

experienced by the SBA radiometer. This correction is needed as the shading effect is expected to

Chapter 4



cause significant errors for waters with many constituents that are by other means characterized by
high absorption [133].

The Quasi-Analytical Algorithm (QAA) [7,135] (with version number), and the OC4 band-ratio
algorithm for SeaWiFS [16] derived bio-optical parameters using the resulting spectra after quality
control and shadow correction. Atmospheric correction to compensate for the optical signal
propagation is not used as the SBA radiometer measures the water-leaving radiance and the
solar irradiance at the sea surface. The sought-after signal does not travel through any medium

with effects that are compensated for using atmospheric correction before it reaches the sensor.

Comparison with results derived from the SBA spectra and in-situ measurements encourage the
use of hyperspectral measurements in optically complex waters that are characterized by high
concentrations of CDOM, such as the Amazon River plume [136]. The results presented here
further advocate advancing ocean color satellites’ instrumentation to support a higher spectral

resolution.

4.2 Background

Satellites collect remote sensing data of terrestrial, ocean, coastal, and lake ecosystems. With
recent advances in sensor technology, it is possible to equip the future satellites and satellites under

development with more advanced remote sensing instruments for ocean color [5, 60, 116].

One type of remote sensing instrument gaining popularity for this payload miniaturization is
hyperspectral imagers. With hyperspectral payloads on board ocean color, remote sensing satellites,
the data collected will be able to infer more accurately the IOPs of more complex ocean ecosystems.
That is, we will be more capable of understanding the extensive dynamic range of optically
significant constituents in more complex waters, waters that are typically important for human life,

and policymaking [2].

In this chapter, we collect pristine hyperspectral data samples using an SBA radiometer and compare
the results from this instrument with other methods for deriving IOP’s. This investigation is an
essential preliminary step to retrieve valuable information from hyperspectral data of complex

waters from remote sensing ocean color satellites.
4.2.1 Field Measurements

The radiometer deploying the Skylight-Blocked Approach (SBA) approach presented in [132]
collected measurements as part of the EN640 cruise onboard the RV ENDEAVOR between June
and July in 2019. There were 21 stations in 2019 and 31 stations in 2021 where water samples for
SP and SBA measurements were acquired simultaneously. In 2019 this took place over 20 days
and constituted 15 of the stations, while in 2021, this took place over TBC days and constituted of
TBC stations. The locations of the different stations are given in Figure 4.1 and Figure 4.2. The
cruise followed the Amazon river plume based on measurements of salinity. The observed values

and gradients ranged from 15.8 to 34.7 g/kg during the cruise. At each station, water samples

4.2 Background
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were collected Conductivity for salinity, Temperature, and Depth for pressure of seawater (CTD)
measurements. This was done by using Niskin bottles on a CTD rosette. Between 1050 and 3200
mL of water at each station was filtered onto a 25mm GF/F filter for particulate absorption and
phytoplankton pigment concentrations measurements using HPLC. In addition, approximately 50
mL taken from the water samples was passed through a 0.2-micrometer filter. The filtrate was used
to measure absorption due to dissolved material using a SP.

CHL1 mean
20

62°W 50°W 58°W 56°W 54°W 52°W 50°W 62°wW 60°W. 58° 56°W 54°W 52°W 50°W

(mg/ms)o' :

Figure 4.1.: Satellite image of measurement station locations marked with black crosses for the 2019
Cruise.

Chapter 4



o
q
o
£

[
-
=
L
™}

Figure 4.2.: Satellite image of measurement station locations marked with black crosses for the 2021
Cruise.

Hyperspectral Remote Sensing Measurements

The measurements of downwelling irradiance E; and water-leaving radiance L,, were carried out
using a Sky Blocked Approach SBA [132]. This particular realization of the SBA system uses
a HyperPro II profiling system from Satlantic, Inc. The resulting system is then able to acquire
hyperspectral remote sensing measurements of s and L, in the range of 350 nm to 800 nm with a
spectral resolution of 1.5 nm [132]. Figure 4.3 shows a picture of the radiometer deployed in the
Amazon River plume.

The SBA radiometer in Figure 4.3 receives light emerging from the water and sky in a nadir
direction. During ideal deployment of the SBA, the base of the cone is beneath the water surface,
while the fore optics of the radiometer is in the air. The goal of the quality-control filter was to
remove measurements that did not fit this description; beyond that which the tilt threshold was able
to remove. As the cone blocks reflected sea surface light, only the radiance emerging beneath the
water surface is measured. The radiometer position for downwelling irradiance accompanied the
radiance sensor on a balanced float, such that recordings of L,, and Fs were taken at the exact
location and time. As the measurements are practically in the same spot, mainly measuring the
solar radiance flux, there is a reduced need to compensate for different contaminating effects.

4.2 Background
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Figure 4.3.: The SBA radiometer with labels for where the downwelling irradiance E; and water-leaving
radiance L, is measured.

Other Measurements

The campaign also collected in-situ measurements of particulate absorption colored dissolved
organic matter and diagnostics phytoplankton pigments. The collected measurements and inferred
parameters of interest are compared with those derived from (pristine) hyperspectral measure-

ments.

Absorption properties found in the collected water samples were measured directly using the
Shimadzu UV-2401PC SP. This instrument is depicted on the right side of Figure 4.4. This single
monochromator system boasts having a low stray light and wide dynamic range and captures the
finer details of the samples tested [137]. More specifically, the stray light effect is reported to be
less than 0.015% at 220nm and 340nm, and the SP can record results at 0.1nm resolution with
a spectral accuracy of £0.3nm. In the configuration used during the in-situ recording, a spectral
resolution of 0.5nm is used. It works best when there is a solid signal to measure.

Additionally, the collected samples from the 2019 cruise were analyzed using HPLC [29, 136],
which is a chromatographic method to more accurately infer the properties that reside in the
collected water samples. This method separates, identifies, and quantifies each filtrated water
sample’s particulate absorption and phytoplankton pigment concentrations. The HPLC results for
the 2021 cruise are still pending.

The method utilizes pressurized liquid, a solvent containing the sample mixture, through a column
filled with a solid adsorbent material. Each component or pigment elutes, that is, is removed as an
adsorbed material from an adsorbent using a solvent, at a different time due to the differences in
polarity of the different pigments [136]. This difference in elution will result in different flow rates
for each of the various pigments. The recorded flow rate associated with each pigment is a latent

variable to separate them as they flow out of the column.
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Figure 4.4.: Tools and methods used during sampling. The image on the left depicts a rosette station
with Niskin bottles for CTD measurements, while the center image shows the collection of
water from the rosette station. the rightmost image shows the spectrometer which was used to
analyze the absorption properties of the collected water samples in-situ. Center photo shows
me collecting data during the 2019 Cruise.

4.3 Methods

4.3.1 Data Processing

Ocean color measurements from satellites are today mostly multispectral. The ocean color measure-
ments are converted to IOPs by Semi-Analytical Algorithms (SAAs), and the operational satellites
do currently provide estimates of IOPs across the entire world daily [2, 138]. In addition, the
collected ocean color data also derive other parameters of interest, such as estimates of chlorophyll

concentrations.

Most SAAs are constructed similarly. However, few, if any, are appropriate for all water masses,
nor all seasons [1,7,131,138].

As all SAA models are approximations, some are more applicable than others. There have
been attempts at making a unified model, namely the Generalized Inherent Optical Properties
(GIOP) [138]. The IOP model is a combination of different SAAs that an operator at runtime can
modify, whilst the QAA is one of the more generally accepted aforementioned SAAs [135,138,139],
and is a significant contribution to the GIOP model. How the data processing and pre-processing
of spectral data is conducted will affect the interpretation of every intermediate step and the final
results. For multivariate data processing, e.g., processing of hyperspectral data, this should be
considered carefully as the interpretation of the final results may have a considerable impact on the
analysis and beyond [2, 15, 140].

Data Pre-Procsessing

This section provides details on how the collected data from the SBA radiometer is pre-processed
before furthere analysis. The analyzed spectra need to be satisfying to ensure that the QAA provide

the best possible output. Suppose the analyzed spectra do not represent the type of spectra. In that

4.3 Methods
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case, the QAA expects the output will not be able to infer the IOPs and following parameters of
interest well [7]. The pre-processing procedures proposed here for the data collected by the SBA

radiometer consist of the following four steps.

1. Removal of missing values and bad sensor readouts.
2. Removal of spectra associated with an absolute viewing angle exceeding 5.0° from nadir.
3. Removal of spectra with outlier characteristics determined by qunatiles.

4. Removal of shading effects from instrument [133]

In the initial step, the faulty sensor readouts are easily defined by non-physical values for £ and
L,,. An angle sensor aids the secondary pre-processing procedure to determine the nadir angle
of the sensor during data acquisition. The fidelity of the angle sensor is deemed sufficient, and
the registered angle is used as a threshold directly and without any modification before further

processing.

In the pre-processing scheme, the outliers are determined by manually setting desirable quantiles,
and here the threshold was arbitrarily set at 10 and 90 percent. This pre-processing step resulted in
spectra that appeared to be sensible and did not seem to include any contaminated by the expected

effects, such as ocean whitecaps.

The quantiles are being computed using an exact sorting-based algorithm [141]. An illustration
of the third step, the outlier removal, is given in Figure 4.5. The median for each wavelength is
computed for the spectra that pass through the quantile filtering, and the resulting median spectra

are shadow corrected. Further analysis is performed on the resulting spectra.
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Figure 4.5.: How the removal of spectra with outlier characteristics using quantiles affects the data.
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As demonstrated in [133], one of the challenges when using the SBA radiometer is to account for
the shading effects. Determining the solar zenith angle in combination with the geo-location of
the acquired measurements can aid in compensating for the shading effects. Here, the shadow

correction is performed as found in [133].

4.3.2 The Quasi-Analytical Algorithm (QAA)

Originally the QAA was developed for open ocean and coastal waters, as a multispectral approach
to retrieve total absorption a;.¢, absorption due to phytoplankton pigments a, and absorption due
to CDOM, such as, detritus and gelbstoff absorption a4y, as well as backscattering by, [7,135]. With
the QAA approach, these sought after IOPs are analytically derived from values of remote-sensing
reflectance-based radiative transfer models. The absorption due to phytoplankton pigments and
detritus and gelbstoff is derived by spectrally decomposing the total derived absorption. Thus, the
QAA approach can, and has, been used on hyperspectral data [7,132,133,135]. As there are limited
empirical relationships used and only used for less critical steps, the QAA can be applied for all

types of oceanic observations [7].

Details of the implementation of QAA can be found in [7, 135], but for completeness relevant parts
are restated here. The QAA approach consists of 11 steps, given in Table 4.1 taken from [135],
updated to version 5 [142] dubbed QAAVS. In the implementation used here, 555 nm is used as the
reference wavelength \g. In Table 4.1 mathematical notation of the proprties column is explained
in [7]. Here, r,s()) is the remote sensing reflectance just below the surface. u(\) is a polynomial
approximation of the ratio of backscattering over total absorption and backscattering. azo () is
the total absorption. by, () is the backscattering coefficient of particles. Y is the exponent for
particle backscattering coefficient. a,h Absorption coefficient of phytoplankton pigments. a4y Sum
of absorption coefficients of non-algal particles plus yellow substances. ( is the spectral ratio of
apn(411) /apy(443). £ is the spectral ratio of agy(411)/aq,(443).

4.4 Results and Discussion

4.4.1 Data Presentation

In this section, the collected data is presented. The collected data from the HPLC with match-ups
with the SBA radiometer is given in table 4.2. This table shows the concentration of the different
extracted pigments and sun-day, position in terms of latitude and longitude, and the two first

statistical moments of the collected data, mean p and variance o2.

Furthermore, the R, s(\) spectra used as input for the QAA, the data after pre-processing, is
presented in Figure. 4.6, for all the different stations with HPLC match-up. The resulting total
absorption as () is given in the same Figure.

4.4 Results and Discussion
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Table 4.1.: Steps of the QAAVS5 to Derive Absorption and Backscattering properties from Above-surface
Remote-Sensing Reflectance R,

Step Property Mathematical Expression
Rrs(N)
0 rrs(A) 052+ LTR ()
1 u(N) ootV g X e ) g (089, gy = 0.125
g1 ’ .
—1.146—1.366—0.469x 2 _ T (443) 4715 (490)
2 atot(Ao) aw(Ao) + 10 X = log (T'V's(/\O)+5 rra (667 ”5(667))
3 bylh) s — by (Yo)
Trs (443

4 Y 2.0(1 — 1.2exp(—03ﬁ))

5 byp(N) bp(R0) ()

6 ator(N) (1*u(k))(bm(u/\()/\)erbp(A))

_apn(411) 0.2
7 (= ai;fiﬁ”ﬁ 0.74 + G55 /ms o)
_a _ 0.002

8 ¢=tu0 exp(S(440 — 410)), S = 0.015 + oG
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Figure 4.6.: The top plot shows the different recorded R,.s(\) median spectra for each station. These are
the spectra used as input for the QAAVS. In the bottom plot the resulting ao¢ () is given.

4.4.2 QAA Derived Results

This section gives the different results from comparing the QAA with the data collected by the SP
and the data analyzed using HPLC.
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Table 4.2.: HPLC Data with match-ups with the SBA radiometer. Showing the concentration of the total
[Chl a] content along other variables attempted to retrieved by latent variable modeling. In
addition the sun day is denoted sdy, and the latitude and longitude are given as well.

sdy lat lon Chl-a Chl-b Chl-c Hex-fuco Fuco Perid Zea

169 5.7305 -50.983 1.212e+00 3.900e-02 1.770e-01 4.000e-02 6.110e-01 1.800e-02  4.900e-02
170 6.2209 -51.193 1.346e+00 1.400e-02 1.560e-01 1.800e-02 5.820e-01 1.000e-02 2.700e-02
171 79809 -53.647 2.390e-01 2.400e-02 2.400e-02 2.600e-02 1.600e-02 3.000e-03 1.470e-01
172 79766 -54.984 2.260e-01 9.000e-03 2.800e-02 3.400e-02 1.700e-02 3.000e-03 1.440e-01
172 7.9959 -54.978 2.070e-01 1.000e-02 2.900e-02 3.500e-02 1.900e-02 2.000e-03 1.270e-01
173 8.0000 -54.989 2.130e-01 7.000e-03 2.800e-02 3.400e-02 1.900e-02 4.000e-03 1.210e-01
174 10.823 -56.515 2.160e-01 8.000e-03 2.600e-02 3.000e-02 1.800e-02 8.000e-03 1.140e-01
178 14.269 -56.559 5.490e-01 1.180e-01 1.100e-01 1.540e-01 2.600e-02 1.400e-02 7.600e-02
179 14.607 -56.561 1.970e-01 1.600e-02 2.500e-02 3.000e-02 1.800e-02 4.000e-03 1.000e-01
182 14.012 -57.487 2.680e-01 2.100e-02 3.500e-02 3.800e-02 2.400e-02 7.000e-03 1.180e-01
183 12.015 -58.953 1.240e-01 8.000e-03 1.700e-02 1.900e-02 1.200e-02 4.000e-03  9.800e-02
184 1199 -5897 1.320e-01 1.000e-02 1.700e-02 2.100e-02 1.100e-02 3.000e-03 1.030e-01
186 15.184 -58.472 2.030e-01 1.200e-02 3.600e-02 3.100e-02 3.100e-02 5.000e-03  9.900e-02
187 13.832 -59.785 1.320e-01 1.000e-02 1.500e-02 1.800e-02 1.000e-02 3.000e-03 1.030e-01
188 13.185 -60.002 1.300e-01 1.100e-02 1.600e-02 1.800e-02 1.100e-02 2.000e-03 1.040e-01
Iz - - 3.596e-01  2.113e-02  4.926e-02 3.640e-02 9.500e-02 6.000e-03 1.020e-01
o? - - 1.503e-01  7.884e-04 2.801e-03 1.117e-03 4.152e-02 2.214e-05 1.022e-03

Spectral Slope of QAA

In Figure 4.7 the S value derived from the SP are plotted alongside the QAAVS derived results, and
the QAAv4 and GIOP constants. In the figure it is possible to observe a mismatch between the
derived value for S and the SP measured value for this S variable. This variable is an important

factor when deriving a,p, () and agq(A).

4.4 Results and Discussion



Spectral Slope for CDOM Absorption for 2019 Cruise
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Figure 4.7.: Plot of the different slopes with measured salinity values associated with the a given station
along the x-axis and slope value on the y-axis for both cruises. The given slope value is used
to determine the effects from CDOM.
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Comparison with HPLC

The HPLC data is only available for the 2019 cruise at the time of writing. Figure 4.8 shows the
correlation and scatter plots for different wavelengths, namely 443, 481, 618 and 665nm, with
Chl-a concentrations measured by HPLC. These are selected as they are strongly correlated with
high absorption due to high Chl-a concentrations. The wavelengths for the high absorption peaks

are taken from [136].

The QAA produce a meaningful spectral shape for the a;.¢()), i.e. there is a strong correlation
between the measured absorption peaks in the spectra and the absorption peaks associated with high
absorption with higher concentrations of Chl-a. However, the derived absorption characteristics
for ayy, (M) does not correlate well with Chl-a, as seen in Figure 4.8. This indicates that the spectra
derived from aso(A) to app(X) in QAA does not correlate well with the values found through
HPLC, which is considered to be accurate [136].

Determining a,p (A) from a0 (X) using the QAA is effected by the choice of reference wavelength,
as well as how the spectral slope .S for CDOM absorption is computed. In the original version of
QAA [135,138] a constant is used for S. QAAVS attempts to compute the S value [142].

However, it should be noted that according to [135], step 8 of Table 4.1 is of secondary importance.
As different SAAs vary how they compute S, and it is stated to be of lesser importance, its impact
on the derivation of app, () could be less significant. The loss in terms of correlation with chl-a
concentrations from HPLC, shown in Figure 4.8, indicates that there may be some undesired effects

of the derivation not accounted for when using the QAA approach.

4.4 Results and Discussion
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Figure 4.8.: This figures shows in different columns, left to right, reflectance, total absorption and estimated
phytoplankton absorption and how these different spectra correlate with wavelengths closest
to significant absorption peaks. The absorption peaks are selected using [136] for R, s, atot,
and a,j,. The wavelengths are, from top to bottom, 443, 490, 550 and 675. These are selected
as they are strongly correlated with high absorption due to high Chl-a concentrations.

Comparison With Spectrophotometer

The plots for comparing the QAA derived results from the SBA radiometer with the results from
the SP is shown in 4.9 and 4.10, for the 2019 and 2021 cruise, respectively. As can be seen from
these plots, there are some relatively solid correlations for the selected wavelengths, especially in
the 400 to 550-nanometer region. The relationship is not as substantial for the absorption spectra
for phytoplankton pigments. The absorption due to CDOM seems to be derived well for the shorter
wavelengths for both data sets. The total absorption might suffer from the same discrepancies as to

the absorption due to phytoplankton pigments.

Even though it is not shown here, it should be noted that the SP data related to the 2021 cruise is of
better quality than that collected for the 2019 cruise.
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Absoprtion of SBAv. SP, N = 351, 2019 Cruise
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Figure 4.9.: Results for 2019 Cruise. The figure shows a comparison between results from the SP and

results from the radiometer of different absorption spectra at different wavelengths. SBA is
the abbreviation for the radiometer, while SP is the abbreviation for the spectrophotometer. N
is the number of correlated samples for each subplot.
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Absoprtion of SBAv. SP, N = 351, 2021 Cruise
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Figure 4.10.: Results for 2021 Cruise. The figure shows a comparison between results from the SP and
results from the radiometer of different absorption spectra at different wavelengths. SBA is
the abbreviation for the radiometer, while SP is the abbreviation for the spectrophotometer.
N is the number of correlated samples for each subplot.
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4.4.3 Limitation

The data set used in the analysis presented here is limited. As with most similar studies, the results

given here would be strengthened with more data.

The fidelity of the measured spectra from the SBA radiometer and the QAA derived results are to
some extent attempted mitigated by the data preparation discussed in section 4.3.1. Conversely, the
fidelity of the data collected from the HPLC and SP has not been under the same level of scrutiny.
These data sources are prone to have errors as well.

4.4.4 Discussion

In the observed waters, CDOM dominates in some of the parts of the VIS-NIR spectra that are
commonly used for estimation of [Chl a] concentration [16, 139], especially at wavelengths such as

443 nm, which is a cornerstone for many band-ratio algorithms [16].

The 65 band-ratio algorithms rigorously investigated by [16], with a suitable validation scheme,
achieved at best an R? score of 0.8601, which was obtained for the multi-spectral OCTS sensor
with a total of 12 bands. The result was obtained using the reflectance data from 443, 490, 516,
and 565 nm. These four wavelengths, while being good predictors for the Chl-a in the open ocean,
may suffer from the interference contributed by the presence of other optically active substances,
e.g., CDOM [139]. The validation scheme for the band-ratio algorithms, described as algorithm
tuning in the original paper, optimized the regression coefficients to achieve a maximum R? while
maintaining a slope of 1 and an intercept of 0.

There is more information to be retrieved in a finer spectral resolution [16, 130,136, 139], and the
argument that multispectral band-ratio algorithms does not fully utilize this information is made
in [130] and [16, 130].

While many of the sensors with higher spectral resolution exhibit higher noise levels per band, this
is not the same as saying that the data is contaminated by more noise. Any information can be good
information, as long as the uncertainties in the measurements are correctly understood [143]. Thus,
data points strongly correlated, either spatially, spectrally, or both, can give better inference than a
single coarse measurement with good noise characteristics. With an adequate characterization of
the noise in a given hyperspectral sensor, these artifacts can compensate for potentially yielding an
overall better performance.

The QAAVS derived total absorption as¢ () spectra correlates well with the HPLC measured Chl-a
concentration. univariate correlations for wavelengths that are active [136], shown in Figure 4.8,
for Chl-a shows potential for inferring the Chl-a concentration with a similar or better performance
as to what is found in [16]. As the spectral resolution increases, it becomes possible to discriminate
between IOPs and the different signal contributions. Given the results presented here, these

properties seem to hold even for optically complex waters like the Amazon river plume.

4.4 Results and Discussion
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4.5 Conclusions

The QAA, while being a compelling approach in determining IOPs, can benefit further by adjusting
the last steps of the algorithm. The QAA does not use any spectral models of pigment and
CDOM absorption. Thus, the algorithm does not have many empirical assumptions that need to be
determined by an operator or similar. The QAA instead derive these properties from the a;,, and
not the other way around. The spectral slope S is an important factor in determining the a4, ad
app, from aso. Thus, discrepancies between the S measured by the SP and the S computed by the

QAAVS, as shown in Figure 4.7, warrants further investigation.

Furthermore, some of the intermediate derived properties contain non-physically valid values.
Whether this could best be resolved by revisiting the input data, reviewing the current steps of the
QAAVS or shadow corrected QAA, or adding regularization terms to the QAA is unclear. As the
QAA was originally developed for multispectral sensors, but the results found could be extended to
the hyperspectral domain, it could be interesting to perform the same type of model development
using a higher and more detailed spectral resolution and possibly more wavelengths as part of the

model.

With a finer spectral resolution, the accuracy of Chl-a inference from properties derived from
hyperspectral remote sensing can be improved. Even without the latter stages of the QAA producing
the expected relationships, some strong correlation between the remotely sensed hyperspectral
data collected by the radiometer and the Chl-a measured by HPLC. For wavelengths known to be
useful indicators of Chl-a concentration, a high correlation coefficient R? for the a;,; was found,
without any specific pre-processing for the given region. While as.: seems to correspond well
with other measurements, the QAA does not seem to contribute the absorption effects correctly to
the other derived adsorption spectra, here presented by ag4, for CDOM and ay,, for phytoplankton

absorption.

The QAA can in some cases be used successfully on hyperpsectral data rertirved from a SBA
radiometer used in the Amazon River plume, as can be seen from the absorption plots given in
Figure 4.9 and 4.10. This suggests that the QAA can derive certain parts of the absorption spectra
in these complex water types investigated here, i.e., the Amazon River Plume. The QAA seem
to be specifically well suited to derive the absorption properties due to CDOM absorption for the
shorter wavelengths, e.g., 400 to 550 nanometer.

In summary, these preliminary results show that the QAA approach is suited to derive some IOPs
for optically complex waters such as the Amazon River plume. However, there are significant dis-
crepancies, especially concerning the derived absorption spectra related to phytoplankton pigment
absorption. This warrants further investigation, where how the computation of the spectral slope
S is conducted, given Figure 4.7 could be one potential path. With improved performance in the
longer wavelengths and the latter derived absorption spectra, the QAA or other GIOP variants could
provide great value and insight to more complex water types in the future.
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Chapter S

Dimensionality Reduction and Target
Detection

Strive not to be a success, but rather to be of value.

Albert Einstein

Target detection is a popular application of hyperspectral remote sensing images. It is also an
approach that is intended to be used in the HYPSO-1 satellite to allow for higher throughput of
relevant information from oceanographic observations. By only sending down information detailing
what kind of targets were detected during a capture, the data volume can be significantly reduced
as discussed in Section 2.2. To enhance the detection rate, it is common to do preprocessing to
reduce the effects of noise and other undesired interference with the observed spectral signatures.
In current Earth observing systems, in particular, small satellite systems such as HYPSO-1, data
rate limitations can make the utilization of sensors with high spectral dimensionality undesirable

and even unobtainable due to the high data volume.

This chapter shows the effect of different, frequently used dimensionality reduction and noise
removal methods on multiple classical methods for signature matched target detection often used
in hyperspectral imaging. The dimensionality reduction methods used here differ from spectral
resampling or band selection in the sense that the original spectral resolution can be restored, with

some loss, via a linear transformation.

This chapter provides an investigation on the effects of combining dimensionality reduction and
target detection. We demonstrate that the resulting data cube has reduced dimensionality and
suppressed undesired effects. The ability to correctly detect spectral phenomena has improved for
the data sets used here while also achieving a reduced data volume. Combining dimensionality
reduction and target detection can also reduce the number of computational operations needed in

the latter stages of processing when operating on the sub-space, as discussed in chapter 2 and 3.
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The observed effects are demonstrated by using simulated and real-world hyperspectral scenes.
The real-world scenes are from well-calibrated sensors of classified agricultural and urban areas,
e.g., AVIRIS, ROSIS, and Hyperion. These scenes are frequently used when investigating target
detection performance. The simulated scenes is generated using the ASTER library.

5.1 Motivation

The effect of dimensionality reduction as a method for compression, and in turn, on target detection
is investigated. The effectiveness of lossy compression algorithms has been evaluated by comparing
the restored scene with the original scene [144]. This approach is limited because the original scene
cannot be void of noise or other unwanted artifacts from the sensor, which does not give a definitive
answer to whether the lossy compression algorithms reduce noise or degrade the information
in the signal. This chapter discusses the effect of dimensionality reduction on signature-based
target detection for hyperspectral remote sensing to answer parts of this question. This approach
does not quantify the ability to restore the original data, but rather quantify the effect of the
lossy compression on signature-based target detection, both through the F7-score [145] for target
detection performance and visibility as a metric for target detection robustness [146].

The results show that a high compression ratio can be achieved by exploiting structures found in the
first- and second-order statistical moments. Given the application of target detection, the projected
subspace of the data provides, for most cases, improved performance for both the F3-Score and
the visibility. As the data can be analyzed in its compressed state, this can in turn significantly
reduce the number of operations required to perform further or more advanced onboard processing
in a smallsat system, while at the same time having reduced the total data volume that needs to be

stored and transmitted, as discussed in Section 2.2 as well.
5.1.1 Notation

All hyperspectral images are inherently three-dimensional cubes with two spatial dimensions
and one spectral dimension. However, in all the subsequent sections a two dimensional matrix
representation of the hyperspectral data is used, and the relationship is given in equation (5.1)
and (5.2), where each x; ;, and subsequently x;, is a vector of the spectra with a sub-script
re-indexation from equation (5.2) to equation (5.3). Here the original data set, prior to any

dimensionality reduction, is given as X,, from

X11 X12 0 X1
X2,1 X22 - X2j
XCube = . . . . (51)
Xj1 X2 o Xy
XMam':c:[X1,1 s X1 X201 o Xago oo Xj1ooo Xj,i] (5.2)
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on[xl, X9, X3, -, Xiy -, XN] (5.3)

5.2 Background

This section briefly describes the methods and algorithms used in the analysis. An in-depth

description of the theory applied can be found in the references [4].

5.2.1 Dimensionality Reduction

High dimensional data such as a hyperspectral image can be used in classification or target detection
applications. The high-dimensional data contains more observed variables than potential classes
to classify or targets to detect in the image; This high number of variables is a source of variation
and redundancy in hyperspectral images [1,4]. Some of the information in the image is thus

redundant for analysis due to a strong correlation between certain bands, e.g., neighboring bands.

Dimensionality reduction is a common approach to handle the high dimensionality in hyperspectral
imaging. In the analysis that follows, four classic methods for dimensionality reduction are explored
and analyzed in the context of target detection.

Principal Component Analysis (PCA) is a method to reduce the dimensionality by utilizing the
correlation of different variables in a set. [147] Within PCA the principal components are ordered
according to variance, such that the first components carry more information concerning the full
data space than the later components. PCA is an optimal method for noise filtering if the variables
or spectral signal under observation carry additive independent white noise.

The eigenvalues 0% corresponding to the principal components are computed as follows
1N
m= — Z X,
NS
1 5.4
Yo = —XOXZ — mm?” Sl

N
det(2, — 02T) = 0.

In the above equation, ¥, is the covariance matrix computed from X,, I is an identity matrix
with dimensions equal to the number of spectral channels, and o2 is an eigenvalue. Then, the
corresponding unit eigenvectors Vpc 4 are ordered according to the magnitude of the eigenvalues,
such that

YoVpca =VpcaD (5.5

5.2 Background
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with D is a diagonal matrix consisting of the eigenvalues, ordered according to the magnitude
with the highest eigenvalues as the first element, and V pc 4 is a unitary matrix consisting of the
eigenvectors to fulfill ¥,v; = U?Vj. From this, the transformed subspace can be represented
with the columns of Z pc 4 as basis vectors, where the dimensionality reduction is performed by

selecting a subset of the eigenvectors related to the largest eigenvalues, as

Zpoa = VheaXo, (5.6)

with X, defined in equation (5.3), a vector of a hyperspectral signal or a matrix of the observed

data with pixels in each column and spectral information in the rows.

Maximum Noise Factoring (MNF) is a dimensionality reduction method that attempts to account
for the source of the noise. Whereas PCA is only dependent on the variance in the data, MNF
sorts the principal components based on the estimated signal-to-noise properties. The underlying
assumption made in the MNF transform is that the noise is additive, but not normally distributed
white noise, expressed as

Yo =25+, 5.7

with X as the covariance of the signal and ¥,, is the covariance of the noise. As the MNF seeks to
maximize the eigenvalues for Signal-to-Noise Ratio (SNR) ratio and decorrelate the covariance
matrix, it can be performed as a two-step PCA. In the analysis given here, two different approaches
for noise estimation were used. In equation (5.8), the noise vector set X, is computed by taking
the difference between neighboring pixels in a spatial area of uniform spectral content [148], later
denoted as GMNF. The GMNF attempts to say something about the noise characteristics of spectra
using the underlying assumption that pixels of the same material will have very similar spectra, and
the difference is mainly due to the noise properties of the sensor [4]. In equation (5.9) the noise
vector set X,, is computed by taking the difference between neighboring data points in the spectral
dimension projected into the space of the spectral band in used [4, 147]. This method is denoted as
BMNEF. The underlying idea behind this method is to exploit the spectral correlation of the different
parts of the spectra. This can be expressed as

Xy = [x1—%2, Xp—xs, -, xXyoi-xy| =B, By oo, Aya]  (58)
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Y(fk) = [Y17 y2, s Yk-1, Yk+1, YL]
) ., . , 5.9)
=y — Y (YnYern) Y pye
XZ: = [ﬁ17 ﬁ27 R} ﬁL}

with L as the number of spectral channels, X, is in turn used to compute the noise covariance
matrix Y, from equation (5.10). The singular value decomposition is used for numerical stability
and reduced computational time for data sets with more samples than variables. [149] The singular
value decomposition is given in this chapter with matrices X = USV7, with S being a diagonal
matrix with entries sorted according to the magnitude of the eigenvalue, V being an orthogonal
square matrix with dimensions equal to the number of spectral channels, and U being an orthogonal
square matrix with dimensions equal to the number of pixels. With X, as the original data set and
X as the noise-whitened data set, where the the noise-whitening transformation with a whitening
matrix expressed in equation (5.10) as U, S,, 1 2, yields the whitened random vector X,, with unit

diagonal covariance and zero mean, further expressed as follows

2, =U,S, VI X, =X,U,S,;?=U,S, VL. (5.10)

From this, the transformation matrix V psn r can be expressed as

Vunr = U,S, %V, (5.11)

Hence, the transformed subspace can be represented as Z sy r, where the dimensionality reduction
is performed by selecting a subset of the singular vector corresponding to the most significant

singular value, in the following way. With

Zunr = ViveXo, (5.12)

where X is a vector or matrix to be projected into the subspace.

Independent Component Analysis (ICA) attempts to decompose a multivariate signal into inde-
pendent non-Gaussian signals, i.e. a decomposition that provides statistical independence between
the estimated components. Blind source separation, or ICA, of a mixed-signal, can separate the
different signal sources well when the statistical independence assumption is correct. While PCA
and MNF are computed based on first and second-order statistical moments when estimating the
subspace, ICA utilizes higher-order statistical moments. The underlying assumption can conversely

be stated as

5.2 Background
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Zica = Vit Xo, (5.13)

where V;é 4 1s the separating matrix with the pre-selected number of components or assumed
some unique spectral signatures, and Zjc 4 is the transformed data set with values per pixel
corresponding to the computed abundance of a derived spectral signature. In Vj_é 4 EVery Tow can
be regarded as an independent signal, e.g., the spectral signature of a material. The separating
matrix V;é 4 is computed iteratively over the entire data set. In this chapter, Joint Approximation
Diagonalization of Eigen-matrices (JADE) is used to compute the components or independent
signals, due to its convergence properties when compared with other approaches [150]. It should
be noted that for computation of the components, as opposed to using a pre-computed projection
matrix from a relevant dataset, the JADE ICA approach can be more computationally demanding
than other approaches such as FastICA [150, 151]. JADE ICA separates observed mixed signals
into latent source signals, i.e. underlying structures not directly observed, by exploiting kurtosis,
the fourth-order statistical moment, computed as shown in equation (5.14). Kurtosis is a measure
of how Gaussian the observed data distribution is, and is used for defining independence between
the source signals. Thus, JADE ICA seeks an orthogonal rotation of the observed mixed vectors to

estimate source vectors which possess high values of excess kurtosis. Kurtosis is defined as

Kurt[X] = E[(%)Q} (5.14)

5.2.2 Target Detection

Furthermore, in this chapter, four classical signature-based target detection algorithms are used
in the analysis [4, 152]. This subset of target detection algorithms exploits a priori information
about the desired target. There is an assumption that the target signature is available and has been
normalized to fit the scene. These target detection algorithms can also be considered as linear
processes that utilize the information provided by first and second-order statistics [4, 153].

More advanced nonlinear target detection methods can exploit the statistical moments of a higher
order than traditional methods. This may, in some cases, yield better performance, but it demands
a higher level of a priori knowledge of a specific application and more training data to be able to
map the solution space, and can be prone to such pitfalls as overfitting. This makes it difficult to
claim whether a given target detection algorithm is superior to other alternatives [154]. Thus, the
use of classical target detection algorithms may be sufficient for a given application, both in terms
of robustness and target detection performance.

Spectral Angle Mapper (SAM) is a detection algorithm based on the following hypotheses

Hy:x=b Hi:x=as+b, (5.15)

Chapter 5



where x is a vector in the data set, b is the background and clutter noise, « is a parameter accounting
for uncertainty in the desired signal strength, and s is the desired signal. The SAM operator can be

expressed as in equation (5.16) and a derivation of the operator can be found in [4].

(STX)Q
) == 7 5.16
TSAAI (X) (STS) (XTX) ( )
Adaptive Cosine Estimator (ACE) is a detection algorithm based on the following hypotheses

Hy:x=b H; :x=as+ (b, (5.17)

where x is a vector in the data set, b is the background and clutter noise, s is the desired target
signal, and « and § is parameters accounting for uncertainty in the signal strengths. The ACE

operator can be expressed as

("%, '%)?
sTY1e)(xTys %)
(

race(x) = (5.18)
Constrained Energy Minimization (CEM) is a detection algorithm based on minimization of the
projected background energy, where the energy can be expressed as in equation (5.19) leading to
the expression found in equation (5.20), with the solution found in equation (5.21). A derivation of

the operator can be found in the references [4].

1 Y 1
E=< > h'xx"h=h"Rsh R, = NXOXZ (5.19)
=1
mhin h"R,h st hTs=1 (5.20)
(STR71X)2

Orthogonal Subspace Projection (OSP) is a detection algorithm based on the hypotheses given
as
Hy:x=Bf+n Hi:x=as+Bf+n, (5.22)

where x is a vector in the data set, B represent the background subspace, (3 is the background basis
coefficient vector, n is independent normally distributed noise with zero mean, « is a parameter
accounting for uncertainty in the desired signal strength, and s is the desired target signal. The OSP
operator can be expressed as in equation (5.23) and a derivation of the operator can be found in the
references [4]. In this chapter, the N-FINDR endmember extraction algorithm as described in [155]

5.2 Background
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is used to estimate the background subspace B, to separate it from the desired signal. The desired
signal is identified as the spectral signature closest to the sought-after signature based on SAM and

removed to make up the background subspace B.

rosp(x) =sT(I-B(BTB) !B )x = sTPgx (5.23)

5.3 Data Set Description

An overview of the real-world and simulated data sets used in the analysis is given. All real-world
scenes are publicly available [156]. A short description of how the simulated data sets are generated
is also provided. True color images for all the real-world data sets are given in Figure 5.1, with the
image showing the distribution of endmembers.

Gray space represents unclassified pixels but is still used in model creation. In addition, all
performance metrics are computed on the entire scene. For each scene used in the analysis,
Table 5.1 gives the sensor, the spatial extent of the pixels, the number of classes in each set,
the spectral range, and the resolution of each sensor. Furthermore, a short description of the
characteristics of each data set is given, and the different compression ratios for dimensionality
reduction are given in Table 5.2. As training samples for all the dimensionality reduction methods
and target detection methods, 30% of the pixels in a given data set were randomly selected as
training samples. No manually selected portion of the scene was used to compute X,,, for either
of the MNF transforms. The poorer noise estimation in the Pavia data set is probably due to the

in-homogeneity of the scene, compared to the more homogeneous scenes e.g. Salinas.

None of the pixels in the data sets presented here are explicitly mutually exclusive, i.e. there can be

more than one material in a given pixel.

’

Figure 5.1.: True color images for all the real world data sets The accompanying image shows the distribu-
tion of endmembers. Grey areas is unclassified pixels, which is still used in model creation
and performance testing.
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The Indian Pines scene was gathered by the Airborne Visible / Infrared Imaging Spectrometer
(AVIRIS) sensor with 224 spectral reflectance bands. The test site is in North-western Indiana
and consists of 145 by 145 pixels. The scene is a subset of a larger one and contains two-thirds
agriculture and one-third natural perennial vegetation e.g. forest [156,157].

The Salinas scene was collected by the AVIRIS sensor over Salinas Valley, California. The scene
has a spatial resolution of 3.7-meter pixels, which can be considered a high spatial resolution. The
area consists of 512 by 217 pixels and includes vegetables, bare soils, and vineyard fields [156,
158].

The Pavia Centre Scene is acquired by Reflective Optics System Imaging Spectrometer (ROSIS)
during a flight campaign over Pavia in northern Italy. The scene has a spatial resolution of 1.3-meter
pixels, and 102 of the 115 spectral reflectance bands in the wavelength range of 430nm to 860nm
are made available in the data set. The other bands were removed due to high absorption in the
atmosphere. [156, 159]

The Kennedy Space Centre Scene (KSC) is a site in Florida. The scene has a spatial resolution of
18-meter pixels. The publicly available data set has removed some bands to mitigate the effects of
bad detectors, calibration errors, and other anomalies. The subset consists of 176 of the 224 bands,

and the classified pixels provided represent various land cover types that occur. [156, 158]

The Botswana scene is acquired using Hyperion, a payload on the NASA EO-1 satellite. The
acquired scene is from the Okavango Delta. The Hyperion sensor on EO-1 had a spatial resolution
of 30-meter pixels and 224 spectral reflectance bands. The publicly available data set has removed
bands to mitigate the effects of bad detectors, calibration errors, and other anomalies, and the
remaining subset consists of 145 of the 224 bands available. [156, 160]

Simulated Synthetic Hyperspectral Scenes

The ASTER spectral library [161] was used as a basis for the spectral signatures in the simulated
scene. Ten spectral signatures were selected from the spectral library to make up the different
synthetically generated images. The spatial scene was created using Hyperspectral Imagery
Synthesis toolbox [162], using the Matern covariance function with §; = 0.5 and 6 = 0.5, and
the spectral signatures to generate noise-free images with a reasonable spatial distribution of the

Table 5.1.: The data sets used in the analysis and important parameters.

Data set Sensor Image format Endmembers Range (nm) Resolution (nm) Reference
Indian Pines AVIRIS 145x145 16 [400,2500] 10 [157,158]
Salinas AVIRIS  512x217 16 [400,2500] 10 [158]
Pavia ROSIS-3  610x340 9 [430,860] 4 [159]
KSC AVIRIS  512x614 13 [400,2500] 10 [158]
Botswana Hyperion 1476x256 14 [400, 2500] 10 [160]
Simulated Scenes ASTER 100x100 10 [400,925] 4 [161]

5.3 Data Set Description
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materials. 10 different synthetic scenes were generated and used to get the average performance
statistics.

Noise is added to the synthetic scenes to simulate undesired effects and artifacts according to the

following relationship [147]

yi = X; +1n;, (5.24)
where x; is the spectral signature taken from the ASTER spectral library and n; is subject to

E[x!x;
SNR = 10logy, % (5.25)

where the SNR is set to 50 and the variance of the noise signal n;, as a function of spectral channel
i, s given as
_G=L/2)°
p €
_(=L/2)?
Siae 27

Where L is the number of spectral channels, which gives a 02 ~ 9.73 x 10797 and a ¢; as shown in

(5.26)

2 _
o =0

figure 5.9, with = 18. Thus the generated noise signal have different characteristics for different

wavelengths, making it colored noise rather than white noise.

5.4 Methods

The analysis performed in this chapter differs from earlier comparisons of dimensionality reduction
and target detection performance [144, 146, 152, 163]. Rather than using the receiver operating
characteristic (ROC) curve [145] to determine the performance, a combination of the F-score [145]
and visibility [146] is used.

The original data sets [156] have not been processed prior to dimensionality reduction or target
detection. Earlier publications [57, 158] have stated that it is not necessary to calibrate scenes

captured with AVIRIS to reflectance before applying hyperspectral processing methods due to the

Table 5.2.: Compression ratios for different number of components after dimensionality reduction. The
compression ratio is only dependent on number of components. Computed as CR = spectral
channels / components

Data set \Components 50 45 40 35 30 25 20 15 10 5

Indian Pines 448 498 560 640 750 896 1120 1493 2240 44.80
Salinas 448 498 560 640 750 896 11.20 1493 2240 44.80
Pavia 206 229 258 294 343 412 515 6.87 1030 20.60
KSC 352 391 440 5.03 587 7.04 880 11.73 17.60 35.20
Botswana 290 322 3.63 414 483 580 725 9.67 14,50 29.00
Simulated Scenes 240 267 3.00 343 4.00 4.80 6.00 8.00 12.00 24.00
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high SNR of the sensor and a relatively flat quantum efficiency function i.e. a similar sensitivity
over the captured electromagnetic spectrum. Following this approach, the combination of DR and
TD presented in this chapter is trained on radiance spectra and operates directly on each pixel’s
measured radiance in a given scene or data set. The same approach is used for the scenes acquired
from Hyperion and ROSIS and the simulated scene. The scope of this chapter does not include the
effects of atmospheric compensation, as this is not a part of the discussed level of data processing.

In the analysis of the real-world scenes, the dominating endmember of a pixel is set as ground
truth. Thus it is not accounted for pixels that were not mutually exclusive i.e., consisting of more
than a single endmember. This ground truth is used as a true positive for the signature sought after,
whereas other pixels are marked as a true negative. The mixture relationship information of each
pixel was not available from the real-world data sets [156] used in the analysis. As a result, only

one endmember is associated with a single pixel.

5.4.1 Performance Metrics

This chapter investigates the effects of dimensionality reduction on signature-based target detection
for hyperspectral imaging. Traditionally, SNR and ROC have been used as performance metrics
in dimensionality reduction and target detection, respectively. This is a suitable approach when
investigating a specific case.

The ROC is suitable to determine the optimal threshold for a specific application. However, the
different ROC curves for different endmembers are not suitable when looking at the average
performance for several endmembers in a given scene due to the curve not necessarily following
the same trajectory for comparing cases. ROC is ill-suited when the number of cases grows large,
and the analysis is given here investigates more than 2000 such cases.

SNR measures the level of restoration to the original data, which will be contaminated by noise.
A lower SNR score can be due to loss of information-carrying data or removal of sensor artifacts
and other undesired effects, but the exact source of the lower SNR score is often unclear. Some
earlier work [144] adds noise to the scene to control that variable, but this does not solve the issue
of determining the effect on the original noise.

To circumvent the limitations of SNR and ROC, it is proposed here to consider the complete chain,
i.e., lossy compressing the data and performing exploitative analysis on the compressed image,
to determine the performance. The analysis shows how well the combination of dimensionality
reduction and target detection performs and how robust the performance is on the average case for
different scenes and cases using the F-score and Visibility.

The analysis will determine the robustness and performance on the average case for different

scenes using the Fj-score and Visibility. The target detection problem can be regarded as a binary

5.4 Methods
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classification problem, so the F-score [145] is used as a measure of the performance of a given

algorithm. The F}-score is calculated as

precision X recall o PPV x TPR
precision + recall PPV + TPR’

I =2x (5.27)

where precision or positive predictive value (PPV) is the number of true positives divided by the
sum of all positives, and recall or true positive rate (TPR) is the number of true positives divided
by the sum of the true positives and the false negatives. This relationship is typical in binary
classification, but not as common to use in the hyperspectral remote sensing domain. The optimal
F-score is chosen in the analysis, i.e., the highest resulting F-score for all possible threshold

values.

Visibility [146], a measure of robustness for target detection algorithms, is also computed. A
higher separability between target and background gives an easier to define detection threshold
and improved suppression of undesirable false alarms, i.e., a higher level of robustness. The
evaluation-metric visibility used as a measure of separability is given as

Ty — Ty
maz(T) — min(T)’

(5.28)

VLS =

where T is the average response value, or probability of target for target pixels, T}, is the average
response value or probability of target for non-target pixels, max(7") and min(T') are the maximum
and minimum probability of target in the scene, normalizing the visibility value. The maximum
visibility score is 1, and the lowest score is 0. By including visibility results, the scenarios where
the F1-score is high for a very narrow set of possible thresholds are avoided.

5.5 Results

Results from the real-world data are given in section 5.5.1, focusing on the performance metrics as
mentioned earlier. The simulated data is given in section 5.5.2 showcases the restoration properties
in terms of SNR and the degradation of computing the DR transformation matrices from a subset
of data.

5.5.1 Results From Real-World Data

The subsequent plots give the averages for the F-score and visibility, across all available endmem-
bers. Averages for each DR method per scene is given in Figure 5.4, 5.5, 5.6 and 5.7. Averages
across all scenes are given in Figure 5.2. For all the figures the results for ACE is given in blue,
CEM in red, OSP in yellow, and SAM in purple. Figure 5.3 is a more visual example of how the
dimensionality reduction can affect the performance in terms of F-score and visibility.
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Figure 5.2.: Averages across all endmembers for all scenes for all DR transforms.

5.5 Results

77



50

100

150

200

300

350

500

Ground Truth

100 150

0.9

0.8

0.7

50

100

150

200

250

300

350

400

450

500

Salinas with BMNF
Increase in _J Value: 0.28

Increase in visibility: 0.40

Full Image

50 100 150 200

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Subspace Image

50

100

150

200

250

300

350

400

450

500

50 100 150 200

0.9

0.8

0.7

Figure 5.3.: Example of the probability intensities computed by target detection. From left to right, the probability image of the ground truth, ACE target detection

on the full spectral range, and ACE target detection on the BMNF subspace using 15 components.
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5.5 Results

15

79



GMNF - INDIAN PINES - F, GMNF - INDIAN PINES - Vis

ACE ACE
CEM
ospP
05¢ 05f SAM
0 . - - - - I 0 LY — — — vl |
Full 50 45 40 35 30 25 20 15 10 5 Ful 50 45 40 35 30 25 20 15 10 5
Number of Components Number of Components
. GMINF - SALINAS - F, . GMNF - SALINAS - Vis
ACE
— e— CEM
B — / osP
F L SAM
0.5 ACE 0.5
CEM -
ospP = =
0 L L L SAM L L L L L L 0 L L L L L L L L L L L
Full 50 45 40 35 30 25 20 15 10 5 Ful 50 45 40 35 30 25 20 15 10 5
Number of Components Number of Components
. GMNF - PAVIA - F, - GMNF - PAVIA - Vis
ACE ACE
CEM CEM
osP osP
) I 7 4;//—%4
0 L L L L L L L L L L L 0 s s e e — ——
Full 50 45 40 35 30 25 20 15 10 5 Ful 50 45 40 35 30 25 20 15 10 5
Number of Components Number of Components
. GMNF - KSC - F, . GMNF - KSC - Vis
ACE
CEM
ACE osP
L CEM L SAM
0.5 osp 0.5
A 1 s gy e
0 — 0 L L | T 17~
Full 50 45 40 35 30 25 20 15 10 5 Ful 50 45 40 35 30 25 20 15 10 5
Number of Components Number of Components
. GMINF - BOTSWANA - F, . GMNF - BOTSWANA - Vis
ACE
CEM
ACE osP
L CEM L SAM
0.5 osP 0.5
SAM
e e e e e e e e
Full 50 45 40 35 30 25 20 15 10 5 Ful 50 45 40 35 30 25 20 15 10 5
Number of Components Number of Components

Figure 5.5.: Average performance per scene using the MNF transform with noise estimation given in
equation (5.8).
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Figure 5.6.: Average performance per scene using the MNF transform with noise estimation given in

equation (5.9).
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Figure 5.7.: Average performance for all endmembers per scene using the ICA transform.
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5.5.2 Results From Simulated Data

Figure 5.8 gives the restoration performance in terms of the actual SNR of the data before noise
is applied. That is, the SNR of the data compared to the spectral signatures of the synthetically
generated image before adding noise and the data re-projected back to the original space via the

transformation matrix, with the number of components used in the transformation matrix given

along the x-axis. In addition, a comparison of the restoration performance on the full data set using

components computed using all the available data and 30% randomly sampled pixels is given in

Figure 5.8.

Figure 5.9 gives the noise characteristics of the noise applied in the simulated data, both in terms of

standard deviation as a function of wavelength and a randomly selected noise vector.
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5.6 Discussion and Conclusions

The target detection F-score on average tends to be lower when going from the total space to 50
components, as seen in figure 5.2. On average, the number of classes in the real-world data sets is
13, and when accounting for unclassified areas, the virtual dimensionality [147] i.e., the number of
unique materials in the real-world data sets should exceed 10 or 15. In section 5.5.1 the effect of
this can be seen in the decreased F'-score when using fewer components than the assumed virtual
dimensionality. Reducing the number of components further from 50 does not seem to affect the

F-score significantly up until the assumed virtual dimensionality is reached.

As seen in figure 5.2 the data can be analyzed in the subspace without significant loss in terms
of target detection visibility on average, and in some cases, the visibility tends to increase with
the reduced number of components. The overall visibility performance found for the ACE detec-
tor corresponds well with the favorable results found in other publications comparing detection
algorithms. [146, 152,154,163, 164]

Both GMNF and BMNF perform well on the Salinas scene, where the assumption of homogeneous
areas are well met, as seen in figure 5.5 and 5.6. Compared to their respective results for the
heterogeneous KSC scene, the performance decreases. An example of a good case for the BMNF
transform is given in figure 5.3. This indicates that a more suitable noise model can improve the
detection rate and visibility of a given target or application. An inaccurate noise model for the
data can degrade the performance. However, a non-ideal noise estimation does not significantly
degrade the overall performance. From the average statistics per scene, it is evident that when the
assumptions made to create the DR model are erroneous, a more simplistic approach e.g., PCA,
seen in figure 5.4, is just as suitable if not more suitable than the more complex dimensionality
reduction methods in terms of target detection in the subspace. The more complex JADE ICA
method, seen in figure 5.7, did not yield a good performance when compared to the aforementioned
PCA, or MNF. However, as seen in figure 5.9 the ICA and BMNF transform can restore the original
signal in the synthetically simulated data better than PCA. On average ICA and BMNF is able
to remove noise when the number of components used are more than or equal to 10, the virtual
dimensionality that the number of classes used in the synthetization would suggest.

The simplicity of implementation should also be taken into consideration. For the dimensionality
reduction methods surveyed, the JADE ICA transform is by far the most complex and computation-
ally demanding, while the PCA is the simplest. The MNF could be regarded as a double PCA, a
whitening step, and derivation of components. The most computationally demanding and complex
of the surveyed target detection algorithms is the OSP detector, which gives relatively poor results.
The ACE and CEM detector are of similar complexity and give similar results, but the ACE detector
tends to be more robust in terms of visibility. Lastly, the SAM detector is the simplest and gives

encouraging results when combined with the GMNF transform.

Chapter 5



The reduced performance seen in figure 5.9, shows that there will be a minor change in restoration
performance when computing the DR transformation matrix using only 30 percent of the available
data as opposed to all the available data in terms of SNR. Thus, a transformation matrix computed
with only 30 percent of the data should still yield a good analysis of the scene, both in terms of
restoration to an original noise-reduced scene and target detection performance in the subspace. As
computing the DR transformation matrix can be very computationally expensive, this is a promising
result showing data is not necessarily much to gain from using all the available data. This result
has two potential pathways for remote sensing smallsats; if the transformation matrix is computed
on-board, it is not needed to account for all the available data, and the performance decrease from
using a pre-computed transformation matrix can in some cases be negligible i.e., if the a priori
assumptions is a good representation of the scene.

All the discussed spectral dimensionality reduction methods give a compression ratio that can be
easily computed, as shown in Table 5.2. The spectral dimensionality reduction can be conducted as
a preliminary compression step prior to lossless compression methods e.g., JPEG2000, CCSDS123
[79]. The information lost in the dimensionality reduction will consist of noise in the statistical
sense, as seen in figure 5.8. Moreover, later lossless compression stages can ensure a lower total

data volume for the resulting data cube.

If the DR transformation matrix is computed based on the expected endmembers of a scene rather
than the whole scene, this could save both time and power for a given remote sensing smallsat
system. The change in performance seen in this analysis when using only 30 percent of the scene
to compute the DR transformation matrix is negligible. How well the DR transformation would
project a given scene will depend on the specific application, but the results given here indicate
that the change in performance on average could, in many applications, be acceptable, and in some

cases, beneficial.

5.6.1 Future Work

An adaptive approach to statistically estimate an optimal number of components used for dimen-
sionality reduction [4, 147] could be beneficial to investigate. With such an approach, the number
of components selected does not need to be dependent on a satellite operators’ input but rather the
statistical relationships in the data. It is currently not investigated if the state-of-the-art methods
used to estimate an optimal number of components i.e., virtual dimensionality for dimensionality

reduction, are optimal for the performance metrics given here.

Here, the noise model for the MNF DR methods is computed on a per-pixel basis, thus having
the underlying assumption that all pixels will exhibit comparable noise characteristics. For many
electro-optical systems, this can be an erroneous assumption, such as for the pushbroom HSI
used in HYPSO. A better noise model, based on a sensor model and accounting for the different

sensitivities of the focal plane array, as opposed to a per scene model or per pixel model, could

5.6 Discussion and Conclusions

85



86

make the MNF DR transformation matrix further suppress undesired noise or other artifacts from
the data.

It is possible to conduct analysis or data exploration in the subspace; how an application-specific
analysis is affected by being performed in the subspace should be investigated. Performing an
analysis in the subspace could save the number of operations needed, and thus reducing the
computational strain, potentially increasing the throughput as an edge computing agent, such as
smallsats for Remote Sensing.
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Chapter 6

Compression with Residual Analysis for
Hyperspectral Remote Sensing

1 find the lure of the unknown irresistible.

Sylvia Earle

The demand for high-resolution hyperspectral images from remote sensing is often in conflict
with the available transmission bandwidth or storage capabilities. Here, we propose a combina-
tion of well-established methods for spectral and spatial image encoding using JPEG2000 and
demonstrate their synergistic effects. The proposed pipeline consists of dimensionality reduction,
wavelet transformation, residual analysis, and source coding. The dimensionality reduction is based
on a particular version of Principal Component Analysis developed for Big Data. It splits the
high-dimensional data stream into systematic variation patterns and noise variations in the spectral
domain. These variation types are compressed separately, allowing flexible compression, ranging
from highly informative reconstruction quality at very low bit-rate, to near lossless reconstruction
quality at a much higher bit-rate, when non-systematic and systematic errors are also compressed.
The compression performance is evaluated using publicly available hyperspectral data from AVIRIS
andHICOwith Signal Noise Ratio and Spectral Angle Map as quality metrics. A comparison based
on the results of PCA-based transformation is given. The proposed pipeline expands upon trans-
formation based compression with regards to the discovery of new, unexpected variation patterns.
An increase of Signal to Noise Ratio of up to 2 dB at 77% of the computational time is achieved
with respect to the compared method. This shows potential for lossy compression performance for
hyperspectral images, with controllable loss handling and near-lossless reconstruction.

6.1 Introduction

Hyperspectral imaging (HSI) makes it possible to sample parts of the light spectrum with a higher
density and in other wavelength regions than with traditional imaging systems, such as RGB
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cameras. This is important for many applications, e.g., satellite monitoring of environmental
challenges. This high spectral resolution creates very high data volumes. In some applications,
a high spectral resolution can be helpful but is characterized by high redundancy. Therefore,
mitigation actions to reduce the data volume can be taken when the cost of data transfer or timeliness
of the information is important. Typically, lossless compression methods require a bit rate that is
higher than lossy compression methods in terms of bits per pixel per band (bpppb) [165-167], but
retains the capability to restore the data fully. For some HSI applications, the timeliness of the
information requires even higher compression rates to be relevant for transmission. An approach
that allows control of the bit rate so that the most relevant and reliable image information is given
higher priority than what statically can be considered random noise is proposed. This proposed
method decreases the data transmission volume at the cost of higher computational complexity. A

residual analysis to inspect the data lost in the compression is presented to help control the loss.

HSI cubes have both spectral and spatial extent that are highly inter-correlated. Compression
algorithms designed for HSIs take advantage of these redundancies to reduce the data volume. The
compression generally consists of using a transform-based or prediction-based decorrelator for the
spectral and spatial dimensions, followed by a quantization stage and an entropy coder [167-169].
With the high data rate of current HSI sensors, it is attractive to use near-lossless, and lossy
compression techniques [168, 169]. Furthermore, transform-based approaches have been shown to
perform well for lossy compression [168], when compared to prediction-based methods. Transform-
based lossy compression approaches, in particular the Principal Component Analysis (PCA)
coupled with the JPEG2000, for decorrelating the spectral and spatial information respectively, have
yielded favorable results in terms of rate-distortion and information preservation [168, 170-174].
Dimensionality reduction by PCA has proven useful for hyperspectral data representations [4, 168,
173, 175] for further analysis as well. While PCA gives optimal decorrelation features, it is also
characterized by a high computational cost and intensive memory requirements [168,173,176—178].
Moreover, it requires a choice of how many PCA components to use in the data-driven image
modelling. This can make PCA approaches less suitable for applications with latency, power, or

memory concerns, unless mitigation strategies are used [172-174].

The JPEG2000 standard Part-1 and Part-2 is a 2D image coder, whilst Part-10 is designed for
three-dimensional coding [179]. However, JPEG2000 Part-10 is created for isotropic data sets that
have a spatial interpretation in all dimensions and is thus not well-suited for data-types with both
spatial and spectral content [179]. For a PCA and JPEG2000 based HSI compression the JPEG2000

encoding can be computationally demanding [176].

The results from the spectral transform by PCA, also known as dimensionality reduction, are here
referred to as scores. This is a linear combination of spectral variables related to the original data by
a transformation matrix, referred to as loadings [4, 84,143, 180]. The spectral loadings are costly to
compute, but needed for transforming the original data to scores [143,168,172,173,176,180]. By

using a pre-computed set of spectral loadings, the fidelity of the scores is often retained throughout
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the transformation of new but similar scenes [84, 143, 181]. This is not necessarily true if new or
unexpected phenomena are captured during the acquisition. The PCA reduced data representation
has shown to retain sufficient information for HSIs for further exploration in its compressed
form [4, 80, 84,143,175, 182], and can still be interpreted spatially.

Several studies have combined PCA and JPEG2000 to achieve high compression performance
for lossless [165,174,178,179] as well as lossy [166-168,170-172,176,179, 183] compression
of HSIs. These two decorrelation steps are throughout referred to as stage one of the proposed
compression method and are used as the baseline for comparison. However, to the best of the
authors’ knowledge, previous work has not addressed the model discrepancies that occur when
using transformation-based encoding as proposed here [167]. Lossy compression approaches
typically have low average distortion, but are not able to make any assurances about the fidelity
of any given set of samples [169]. Without any analysis of residuals, new or poorly modeled

phenomena are still not accounted for.

We define residuals as the difference between the original data and the lossy PCA transformed
data. Analyzing the residuals is here referred to as stage two of the compression. These residuals
are analyzed to find systematic errors indicative of unmodeled or poorly modeled phenomena.
When using transformation-based encoding, the significant residuals can indicate systematic errors
in the transformation. Analysis of residuals is proposed to determine which are significant, and
these large residuals are given priority. This online analysis of lossy compression can provide
information about the potential new trends that can later be incorporated into updated pre-computed
loadings [84,184], e.g. online PCA. This is not shown here.

The second part of the proposed processing pipeline expands on transformation-based compression
approaches using PCA by computing residuals to provide information on data loss during the
compression and an option to retrieve that information wholly or in parts. Using residuals can result
in lossless reconstruction [165, 178]. However, it is intended as a reassurance measure to know
that no significant unmodeled phenomena were lost due to lossy compression. To have control of
the bit rate, the residuals are compressed separately, demonstrating how the proposed approach
can provide greater confidence in the lossy compressed data at a predetermined bit rate. Low bit
rate cubes from stage one combined with high bit rate analyzed residuals achieve a reduced total
computational time at similar or higher quality, in terms of SNR, compared to the results achieved

by high bit rate cubes from stage one.

The chapter is organized as follows; Section 6.2 details the theory used, Section 6.3 describes
the simulation and its implementation with results and discussion presented in Section 6.4. The
conclusions are found in Section 6.5.

6.2 Background

HSI cubes have two spatial dimensions and one spectral dimension [4]. Here, a pixel or feature

refers to a point in the spatial dimensions that contains the entire spectrum, forming a vector. The

6.2 Background
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data matrix for a given data set is given in eq. (5.3). The two spatial dimensions are reshaped into
one dimension by concatenating rows in the original spatial 2D coordinate system, yielding /N

column vectors for the N pixels. Column vector z; is the spectrum of pixel 4.

6.2.1 Spectral Decorrelation by Dimensionality Modeling and Reduction

HSIs typically have high spectral dimensionality, and the captured electromagnetic spectrum
that is sampled at a high resolution can carry redundant information [143, 147, 174, 175, 182].
Dimensionality reduction, in a sense a special case of band selection, attempts to reduce the noise
in the data set by eliminating redundant information and reducing computational costs while
preserving the significant spectral information [185]. There are many strategies for reducing the
dimensionality [4, 147,173, 174], but here only the PCA is considered. Analyzing this redundancy
makes it possible to find an appropriate subspace to represent the original data within. Spectral
decorrelation is used here for reducing the dimension of a spectrum [4, 84, 147,173, 175] both for

compression and to limit computational cost of further processing.

The PCA algorithm gives optimal decorrelation features when assuming Gaussian noise [4, 168],
and is thus used for decorrelation. However, in this chapter, the combination of PCA and JPEG2000
score compression is expected to reduce the detrimental effect of too many principal components.
The reason is that since the sequence of PCA loading vectors are scaled to be orthonormal,
the corresponding row of score images are expected to have about the same noise level and
hence progressively lower SNR. Consequently, the variation that survives the JPEG2000 score
compression will be progressively smaller. In the literature referenced in the introduction, the ones
that use the JPEG2000 image compression standard mainly use the multi-component transform
without allowing any loss in the image encoding performed by JPEG2000.

Dimensionality reduction enables the usage of algorithms unfit for high dimensional data, as it
retains related information even in its compressed form [80, 84, 143,175, 180]. The subspace also
has spatial interpretability in its dimensionally reduced state by this property. Selecting an optimal
number of dimensions for the subspace can be complicated. By selecting fewer dimensions, there
is a risk of losing potentially important information, whereas by selecting many dimensions, the
model starts representing what can be considered as noise [4, 143,147,175, 180]. Thus, selecting

dimensions to use will ultimately depend on the application.

In this chapter, combinations of components have been tested with various JPEG2000 encoding
parameters for a set of desired bit rates. Analysis of the residuals can also aid in determining the
appropriate number of components [84], as well as finding if the model does not account for any

new trends or anomalous phenomena.
Noise Characterization

HSI sensors are susceptible to noise [4]. By comparing the artifacts from the compression algorithm

with the noise characteristics found in the original data set [166], it is possible to gain a better
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understanding of the distortion from lossy compression. An intermediate step of the subspace
identification algorithm presented in [147] and in chapter 5 is used to estimate the noise in the data
sets. This intermediate step is given below. The noise for a given pixel is estimated by inverse
matrix interpolation. Noise vectors X,,, with L as the number of spectral bands, are estimated
using eq. (5.9) [4]. Where the estimated signal matrix X = X, — X, is compared with X, to
estimate the noise characteristics.

Principal Component Analysis

Principal Component Analysis (PCA) is a common method that effectively decorrelate spectra
by utilizing spectral redundancy [4, 173,175, 180, 186]. Within PCA, the principal components
are ordered according to decreasing eigenvalue. The dimensionality can be reduced by only using

a selected number of principal components with the largest magnitudes for the transformation.

The eigenvalues o2 and principal components can be computed as in eq. (5.4). Where %, is the
sample covariance matrix computed from HSI data matrix X,, I is an identity matrix with L
dimensions, and m is the mean spectrum. The loadings matrix with unit eigenvectors V pc 4 is
ordered according to the magnitude of the eigenvalues, such that

¥oVpca =VpcaD, 6.1)

where D is a diagonal matrix consisting of decreasing eigenvalues, and V pc 4 is a matrix consisting
of the corresponding unit eigenvectors that fulfill 3,v; = crjz-vj. Dimensionality reduction is
performed by projecting onto a subset of the eigenvectors related to the largest eigenvalues in

V pca, in the following way

Zpca = VicaXo, (6.2)

where Z pc 4 are the resulting scores for the selected number of components. The first components
carry more information, as illustrated in figure 6.1, where the components are scaled by their
eigenvalue. Figure 6.2 shows the resulting scores from the spectral decorrelation. The spatial
interpretability in the subspace is illustrated in figure 6.2b.

6.2.2 Spatial Compression by Wavelet Transform

Natural images constitute only a tiny fraction of the possible values an image cube can take [180].

The redundant spatial information can be identified and removed with a suitable transform basis
after dimensionality reduction. Two-dimensional wavelet transform has been shown to give a
sparse representation of natural spatial information [171, 180, 187]. Wavelets are characterized by a

multi-resolution decomposition that accommodates differences in space and frequency. This is a

crucial feature when decomposing signals from multi-scale processes such as spatial images [180].

6.2 Background
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Figure 6.1.: The three first PCA components in theHICOChristchurch scene from PCA, multiplied by the
corresponding eigenvalue.

(@ (b)

Figure 6.2.: RGB Reconstruction of theHICOChristchurch scene 6.2a, accompanied with the three first
score plots 6.2b of the same spatial scene, in increasing order from left to right.

Wavelet transform handles transient signals, i.e., signals with sudden changes. From a signal
perspective, realistic spatial images consist of sudden changes with different characteristics at
different scales, and can be efficiently described in the wavelet domain. Signals that are smooth
and periodic are generally compressed more efficiently by other methods, such as the Fourier
Transform [180, 188]. More in-depth discussion of wavelets is presented in [180, 188, 189].

The discrete Wavelet Transform (DWT) transforms spatial images into the wavelet domain to
perform compression by removing low-energy components. For image transform by wavelets
in two dimensions, here denoted as = and y, four different functions are needed. Firstly a two-
dimensional scaling function ¢(z,y). Secondly, three two-dimensional wavelets for details in
different direction; ¢ (z, ) for horizontal details, ¢" (x, y) for vertical details, and ¢” (x, y) for
diagonal details. Down-sampling is used for the scaling function. How the different details will be

captured depends on the wavelet basis used.

Wavelet decompositions can be viewed as performing low-pass filtering by down-sampling and
high-pass filtering to get the details, in a way that satisfies a given set of constraints [188]. The

process is then repeated on the down-sampled data.
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The sparsity that the transform provides is presented in figure 6.3. The first downsampling can
be seen in the top left corner of figure 6.3b. The horizontal, vertical, and diagonal details are
given in their respective direction. Lastly, wavelets can be extended further to three dimensions or

beyond [165, 179], but an appropriate wavelet basis for both spectral and spatial data needs to be

determined.

(a) Original (b) Two decompositions (c) Three decompositions

Figure 6.3.: Photo of Christchurch, New Zealand with a decomposition level progression from original, to
two and then three decompositions.

JPEG2000 on Hyperspectral Image Cubes

The image compression standard and coding system JPEG2000, as made available by the reference
software found in [190], has been used in this chapter. JPEG2000 uses wavelets to compress images.
This coding standard is developed for natural 2D images, and isotropic 3D images [179], i.e. not
explicitly developed for hyperspectral image cubes. It does support multi-component transform,

i.e., a transformation of images with multiple components by means such as a PCA transform.

Spectral decorrelation is used to increase the compression performance of the JPEG2000 standard
when applied to HSIs [170, 171]. The resulting scores from spectral decorrelation are sorted to
have spatial interpretability, utilizing that scores retain information in its compressed state, see
Figure 6.2b.

The artifacts from JPEG2000 compression can appear as blur and rings near edges in the image
with aggressive compression [188]. These artifacts are also present when compressing HSIs
via the JPEG2000 encoder. JPEG2000 provides both lossless and lossy compression in a single
compression architecture, and here only the lossy compression is used, as opposed to most other
implementations using JPEG2000 on hyperspectral imagery.

6.3 Methods

The processing pipeline proposed in this chapter consists of two main stages, co-variation analysis,

and residual analysis, and is visualized in Fig 6.4. The code is made available at [191].

6.3 Methods
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The first stage is the baseline HSI compression scheme using JPEG2000, with the possible addition
of dimensionality reduction by projection from known loadings from PCA and 2D-conversion,
i.e. concatenation at each wavelength into a two-dimensional spatial image. This 2D conversion
reduces the assumptions made by the encoding for a three-dimensional HSI structure, by having
multiple natural 2D images side-by-side. Four different modes for compressing the hyperspectral
images are compared for the first stage. They are abbreviated as follows:

1. J2K3D - The image cube compressed using multi-component JPEG2000 encoding.

2. PCA3D - The PCA spectrally decorrelated score cube compressed using multi-component
JPEG2000 encoding.

3. J2K2D - The image cube, concatenated at each wavelength into a two-dimensional image,
compressed using two-dimensional JPEG2000.

4. PCA2D - The PCA spectrally decorrelated score cube, concatenated at each component into
a two-dimensional image, compressed using two-dimensional JPEG2000.

The second stage consists of performing the residual analysis and utilization of the results to infer
the data loss from the initial stage, i.e., using only dimensionality reduction by PCA. In this stage,
the residuals are processed without 2D-conversion due to potential spatial sparsity after residual
analysis. After residual analysis as described in Section 6.3.2, the residuals are decorrelated using
PCA. The bit rate is controlled by encoding the decorrelated residuals with the JPEG2000 encoding
scheme. An attempt at illustrating this is given in Fig 6.4.

PCA
Loadings StageOne _  y
1v Dimensionality . T N i
i Reduction And 20 : ... Compressed
| e Transform ) : JPEG2000 Image
Hyperspectral N e . : Conversion Bitstream
Image Cube N e N
_________________________________________________________ >\ TP J2K3D -

B ‘
H : ' Compressed
5 . Residual PCA )
] i > y JPEG2000 Residuals
iS4 | Analysis : Decorrelation Bitstream
StageTwo ~ Smmmmmmseeees ‘

Figure 6.4.: The proposed two stage processing pipeline.

6.3.1 Data Sets

The data sets from AVIRIS of Cuprite and Moffett scenes, andHICOof Christchurch scene rep-
resenting land, urban, and ocean scenes, respectively, are used for training and testing. This is,
unfortunately, a minimal data set for validating results. However, using different training validation
data sets is intended to improve the validity of the proposed method on new images and varying

scenes. By using varying scenes representing a broad set of topics for typical Earth observation
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applications, we hope to improve the validity of the results further when relying on these limited
data sets.

The data sets are divided into a set for training the PCA model, and a testing set. In Fig 6.5 and 6.6
the areas marked with a black square in the bottom right corners are used for testing, and the

remainder is used for training.

The AVIRIS data sets are used for comparison with [170,171,179]. Here, the flight log ID and
RGB reconstructions are included to compare results easily. From the datasets, a total of 36 bands
were discarded due to water absorption as well as lousy sensor characteristics [171]. The removed
bands are [1-2, 104-113, 148-167, 221-224]. The remaining frequencies are found in Figure 6.7.

TheHICOdata sets are included to explore if the approach works for spatially homogeneous natural
targets, as well as for ocean color applications. For the HSI cube of Christchurch, New Zealand,
a total of 41 bands are discarded due to lousy sensor characteristics [192]. The removed bands
are [1-9, 97-128], corresponding to 352 to 398 and 902 to 1080 nm. The data sets are cropped to
320 by 320 pixels spatially. This fixed size makes the results from the different scenarios easier to
compare and present invariably. Unfortunately, this makes it more difficult for other researchers to
compare their proposed methods with the given results. The training and testing sets are selected as
shown in Figure 6.5 and 6.6, and information about all the data sets can be found in Table 6.1. BQ

is a measure of naturalness, and details can be found in Section 6.3.3 [193].

These data sets represent calibrated hyperspectral remote sensing data. The calibration coefficients
used to correct the hyperspectral image will create artifacts that can be exploited as these corrections
will create repeatable patterns in the data, i.e., redundancy. In the past, these types of calibrated
data sets were exploitable in terms of compression performance [194]. This exploitability is not

used here, not in the baseline or proposed method.

Table 6.1.: Data Sets Used

Name Sensor  Flight Log ID Spatial Resolution Number of Spectral Bands ~ BQ Source

Cuprite AVIRIS  f080611t01p00r06 320x320 188 4429  [158,195]
Moffett AVIRIS  f080611t01p00r07 320x320 188 41.06 [158,195]
Christchurch  HICO  H2011167024711 320x320 87 36.13  [192,196]

Quantization of Spectrally Encoded Data and JPEG2000

Quantization maps values to predefined bins. This enables any data to be represented using fewer
bits at the cost of lost precision. Different quantization methods will trade either data fidelity
or computational time. In our implementation, after dimensionality reduction, the scores are
floating-point numbers [165], here represented as 64-bit doubles. As Openjpeg [190] only supports
16-bit representations, quantization is one viable option to reduce the bit depth. Here, data is
quantized by scaling from 64-bit doubles to a 16-bit unsigned integer representation without further
optimization. These quantization errors are included in the residuals to mitigate their associated

distortion. This quantization transform is uniform, and the rate-distortion weights are not used to
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7 G

(a) Cuprite with the cropped testing cube in the black (b) Moffett with the cropped testing cube in the black
square, representing a land target. square, representing an urban environment.

Figure 6.5.: RGB reconstructions of AVIRIS datasets with testing sets in the black squares.

Figure 6.6.: RGB reconstructions of HICOdataset with testing set in the black square, representing an ocean
color application of hyperspectral imagery.

scale coefficients to an optimal dynamic range. If this is performed, it is expected to improve the
performance at a higher computational complexity. A more optimal quantization strategy in this
part of the compression should also yield better performance at the cost of higher computational

complexity, but this is not further investigated here.

The Lossy JPEG2000 compression is irreversible as it also introduces quantization noise in the
rounding step. After the wavelet transform, the coefficients are scalar-quantized to reduce the
number of bits for representation, and a larger quantization step would yield a larger compression
ratio at the cost of data fidelity. This cost is quantified by the metrics given in Section 6.3.3. Here,
64 by 64 blocks of spatial pixels are transformed into the wavelet domain.

The transformed blocks are sent through Embedded Block Coding with Optimal Truncation
(EBCOT). This ensures the encoding of bits of quantized coefficients of a block. These encoded
bits are then put through the binary MQ-coder, a context-driven binary arithmetic coder [188].

6.3.2 Computation and Analysis of Residuals

The residuals, i.e., the discrepancy between the original and decompressed image cube, are further
processed in the second stage of the compression approach, illustrated in as a red arrow in Figure 6.4.
This second stage analyzes the residuals, identifies significant ones, and then decorrelates and

compresses them.
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The residuals are decorrelated using PCA. The resulting score matrix transforming the residuals
is then compressed using JPEG2000 to retain a predetermined bit rate and effective encoding.
This second decorrelation using PCA of the residuals is done so that it can be more effectively
encoded using JPEG2000. The resulting decorrelated residuals are encoded in their 2D matrix form
and interpreted as a regular image by the JPEG2000 encoding scheme. The residuals are defined
in two ways; non-zero residuals and large residuals, which exceed one standard deviation in a
Gaussian normal distribution. They are denoted with ALL for non-zero residuals and /STDV for the
residuals that exceed one standard deviation from the zero mean assuming a Gaussian distribution,

respectively.

The sample mean and standard deviation are computed at each spectral band for the residuals.
When any residual related to a spectral band exceeds the magnitude of the associated standard
deviation from the mean, it is considered a significant residual. If any of the residuals at a spectral

band for a pixel has a greater magnitude than the standard deviation, it is kept.

With the residuals as a separate compression outcome, it is possible to determine which pixels are
adversely affected by the compression, and transmit their residual. In [165], a similar processing
scheme was demonstrated to achieve lossless compression at a bit rate of 5.52 and 5.73 for a similar
Cuprite and Moffett scene, respectively, from the AVIRIS sensor. This processing scheme used 24
bits to encode the scores. Compared to the specific data sets used here, a lossless bit rate of 8.51
for the Cuprite scene and 9.65 for the Moffett scene was achieved by compressing with lossless
JPEG2000.

6.3.3 Metrics

Different metrics are used to measure the effects of compression. To enable better comparison with
similar works, the measure bits per pixel per band (bpppb) is used to indicate the compression
performance. The restoration to the original data cube is represented by the signal-to-noise ratio
(SNR). The SNR is given as the log ratio of signal variance to mean squared error [166,170,171,179].
Additionally, a measure of the average spectral angle mapper (SAM), the mean angle of the
corresponding spectra between the original and the reconstructed cube, is given. Lastly, the
BRISQUE (BQ) score is also given for image quality assessment without using a reference image.
The BQ-score is used to indicate how much like a natural image an HSI is per wavelength and
implies whether or not noise is removed. This metric is used in place of target detection or anomaly
detection as a performance metric, as these methods will be dependent on well-labeled data, and
the performance of the chosen algorithm used for benchmarking [80, 170, 172].

Signal-to-Noise Ratio (SNR)

The SNR is a common metric for indicating the total loss when decompressing a signal or an
image [188]. A high SNR is desirable. In [172], for multiclass classification and spectral unmixing,
the SNR metric was shown to be positively correlated with classification performance across many

6.3 Methods
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decorrelations strategies. The SNR is computed as decibel, the log ratio of signal variance to mean
squared error, as

S (Ho(K) — u(Ho))2>7 6.3)

Sk (Ho(k) — Hy(K))?

where H, and H, are the original and decompressed HSI cube with K elements, and p(-) is the

SNR = 10log;, (

mean function.
Spectral Angle Mapper (SAM)

This is a measure of the angle between two vectors containing spectra, and can be used for
signature-matched target detection [4]. The angle indicates the similarity between two spectra,
and thus a low angle is desirable. Here the spectra from the original HSI cube are compared with
the corresponding spectra from the decompressed cube, indicating what level of distortion each
spectrum has succumbed to by lossy compression. The angle discrepancy is given in degrees. With

t; and r; as the original and decompressed spectra vectors the SAM is computed as

T
ti r;

SAM = —cos ™! (——tt).
(t7t:)(r]r:)

(6.4)

BRISQUE (BQ)

The Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) metric is a blind image
quality assessment that evaluates how natural a scene looks in the spatial domain, here abbreviated
as the BQ-score or simply BQ. The BQ-score uses scene statistics of locally normalized coefficients
for luminance to quantify the possible losses of naturalness in the image due to distortions [193]. It
has been shown that BRISQUE is better in terms of correlation with human perception than the
full-reference peak signal-to-noise ratio and the structural similarity index in determining distortion.
It is also highly competitive to all present-day distortion-generic when no reference is given with

natural images [193].

The metric is given here as the average on a per band basis to determine the integrity of the restored
spectral bands, indicating if the information that was not kept can be regarded as noise. A lower
BQ score indicates a more natural image. The BRISQUE model used is the default model provided
by MATLAB 2020a. To the best of the authors’ knowledge, the BRISQUE model has not been

used previously on hyperspectral imagery.
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6.3.4 Noise Characterization of Data Sets
The limited value of retaining noise during compression encourages the characterization of the
data sets under study. Thus, a noise estimate in terms of SNR is given in Figure 6.7, following the

approach presented in Section 6.2.1.

Signal-to-Noise Estimation of Data Sets
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Figure 6.7.: Characterization of the SNR in the data sets, with SNR given as the log ratio of X variance
over mean-square error when compared to X, see section 6.2.1. The mean SNR is 27.67,
37.54 dB and 26.28 for Cuprite, Moffett, andHICOrespectively.

The data sets used have some intrinsic properties that characterize their appearance. As the AVIRIS
dataset contains more elements, it is more complicated to estimate the targets’ albedo. For the
Christchurch data set from HICO, where the expected albedo would be about 5-10 percent, the
reported SNR does not exceed 25 dB [192], and the mean SNR from Figure 6.7 is 26.28 dB. Still,
according to [158], the dark current SNR does not exceed 35 dB. The mean SNR found here in
Figure 6.7 is 27.67 dB for Cuprite and 37.54 dB for Moffett.

Following the justification presented in [166] the compression retains the information when the
compression artifacts, here in terms of SNR, are less than the sensor noise. Beyond that, the
hyperspectral data’s end-user determines the acceptable compression artifacts. It should be noted
that when the pre-computed loadings are tailored towards a specific application, e.g. modeling

specific phenomena, a low SNR does not necessarily indicate a high loss of information.

6.4 Results and Discussion

6.4.1 Stage One
Stage One represents the baseline used for comparison with some variations of PCA in combination

with JPEG2000. In this section, the baseline is also compared with just using JPEG2000. Results
from the compression after stage one in terms of SNR, SAM, and BQ are given in Table 6.2. In this

6.4 Results and Discussion

99



100

table, the first column specifies the set bit rate, and performs in terms of SNR, SAM and BQ-score
for the four modes when applied to Cuprite, Moffett and Christchurch, respectively.

The number of components from the loadings in the modes using PCA for dimensionality reduction
corresponds to the best performance regarding the SNR metric for a given bit rate. The SNR
metric was chosen as the optimization constraint as it has been stated to be a good indicator of
classification performance [172], and is given the most attention in subsequent sections. Using the
results from SAM as an optimization constraint gave virtually identical results for higher bit rates,
but a difference could be observed at lower bit rates. These loadings are computed using testing

sets described in Section 6.3.1 and illustrated in Figure 6.5 and 6.6.

The SNR and SAM performance is highest and stable for the PCA modes using increased compo-
nents. However, using a higher number of components increases the processing time. This was
observed for all scenes, and is further elaborated in subsequent sections.

In scenes with a high level of spatial details, such as the Moffett and Cuprite scenes, dimension-
ality reduction by PCA improves the compression for all tested metrics. This is in agreement
with [165, 170, 171]. However, the studies mentioned above do not seem to include spatially homo-
geneous scenes, as the Christchurch scene given here is intended to represent. Similar scenes are
representative of ocean color scenes, an important application of remote sensing [1,196]. At higher
bit rates, plain JPEG2000, i.e., J2K2D and J2K3D, does not achieve a compression performance
close to PCA2D and PCA3D, which pre-processes the data with PCA before JPEG2000. However,
for the Christchurch scene, J2K2D and J2K3D outperform PCA2D in SNR and SAM for high bit
rates. This is not observed at lower bit rates. Thus, at higher bit rates, the cost of computing and
projecting the loadings could, in time-constrained applications, become a factor for such scenes.

This is not further explored within this body of work.

It is unclear whether a 3D or 2D encoding scheme for the JPEG2000 part is used in [170, 171]
when combined with spectral decorrelation. Here, a 3D vs. 2D encoding scheme is compared in
the JPEG2000 part of the first stage of the processing pipeline, both with and without spectral
decorrelation. To exploit the three-dimensional structure yields slight performance benefits at
higher bit rates when compressing HSIs with and without spectral decorrelation. This advantage
diminishes as the compression is constrained to use fewer bits, and becomes destructive at lower bit
rates, supporting findings from [179]. This is most likely due to incorrect assumptions regarding
the 3D structure of HSIs [179,197]. Furthermore, the BQ-score seems to favor both using a 2D-
conversion for the JPEG200 encoding, and the effects from spectral decorrelation. This suggests
that both 2D-conversion and dimensionality reduction by spectral decorrelation have denoising

effects compared to the other compression modes in terms of the BQ-score.

For the higher bit rates, the data distortion from compression is similar to or lower than the estimated
sensor noise from Section 6.3.4. As can be observed from Table 6.2, for the Moffett scene, the

degradation did not exceed the effect of the estimated sensor noise in terms of SNR for 0.5 bpppb
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or higher, 0.25 or higher for the Cuprite and Christchurch scene. To restore the data at this level

further advocates for using few components and a lower bit rate when loss can be accepted.

Table 6.2.: Compression results, using online computed loadings. The parameters for the number of
components in the dimensionality reduction and the JPEG2000 compression ratio have been

optimized for the SNR metric.

bpppb method | Cuprite Moffett Christchurch
SNR SAM BQ SNR SAM BQ SNR SAM BQ
4.0 J2K3D | 40.23 0.14 443 |36.63 0.56 44.08 | 51.98 0.06 35.69
PCA3D | 53.94 0.03 44.28 | 6249 0.03 41.12 | 54.65 0.05 36.27
J2K2D | 38.77 0.14 4438 | 36.59 0.56 46.1 | 5147 0.07 35.66
PCA2D | 52.25 0.04 4431 | 61.57 0.03 41.1 | 4837 0.1 36.39
2.0 J2K3D | 29.17 0.44 44.09 | 25.17 198 6192 | 39.31 024 4241
PCA3D | 43.29 0.1 4427 | 53.59 0.08 41.26 | 43.73 0.17 339
J2K2D | 2848 0.47 4432|2486 2.05 51.19 | 40.64 023 5552
PCA2D | 42.6 0.11 443 | 5253 0.09 41.08 | 43.96 0.16 31.97
1.0 J2K3D | 23.75 0.69 43.19 | 19.05 3.72 57.87 | 3359 044 386
PCA3D | 38.35 0.18 44.32 | 4439 0.23 41.24 | 3899 0.28 18.35
J2K2D | 23.12 0.72 43.05 | 187 3.9 45.63 | 356 039 52
PCA2D | 37.96 0.18 4432 | 47.38 0.16 40.97 | 39.39 0.27 15.54
0.5 J2K3D | 20.24 0.88 47.53 | 154 525 482 |31.72 053 397
PCA3D | 34.77 0.26 44.34 | 3835 046 41.68 | 36.19 0.39 2646
J2K2D | 20 0.89 48.6 | 15.14 541 47.03 | 30.8 0.57 56.13
PCA2D | 3448 0.27 4439 | 40.29 0.36 4153 | 37.53 033 155
0.25 J2K3D | 17.23 1.02 60.54 | 13.06 6.39 475 |27.08 0.73 5036
PCA3D | 32.03 0.36 44.23 | 3252 0.86 41.69 | 36.7 0.37 15.71
J2K2D | 17.78 1.07 4544 | 1294 644 4643 | 26.05 0.79 49.23
PCA2D | 31.88 0.37 44.09 | 33.21 0.79 41.64 | 3641 0.38 25.01

6.4 Results and Discussion
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Table 6.3.: Compression results, using online computed loadings. The parameters for the number of
components in the dimensionality reduction and the JPEG2000 compression ratio have been
optimized for the SAM metric.

bpppb method | Cuprite Moffett Christchurch
SNR SAM BQ SNR SAM BQ SNR SAM BQ
4.0 J2K3D | 40.23 0.14 443 |36.63 056 44.08 | 51.98 0.06 35.69
PCA3D | 53.94 0.03 44.28 | 6249 0.03 41.12 | 54.65 0.05 36.27
J2K2D | 3877 0.14 4438 | 36.59 056 46.1 | 5147 0.07 35.66
PCA2D | 5225 0.04 4431 | 6157 0.03 41.1 | 4837 0.1 36.39
1.0 J2K3D | 2375 0.69 43.19 | 19.05 3.72 57.87 | 3359 044 38.6
PCA3D | 3835 0.18 44.32 | 4439 023 41.24 | 3899 0.28 1835
J2K2D | 23.12 0.72 43.05 | 187 39 4563 | 356 039 52
PCA2D | 3796 0.18 4432 | 4738 0.16 4097 | 39.39 0.27 15.54
0.50 J2K3D | 20.24 088 47.53 | 154 525 482 |31.72 0.53 397
PCA3D | 3477 0.26 44.34 | 3835 046 41.68 | 36.19 0.39 26.46
J2K2D | 20 0.89 486 | 15.14 541 47.03 |30.8 057 56.13
PCA2D | 3448 0.27 4439 | 40.29 036 41.53 | 37.53 033 155
0.10 J2K3D | 13.18 1.19 65.01 | 11.04 7.23 4592 | 22.03 1.14 46.25
PCA3D | 29.1 0.5 43.03 | 25.22 1.89 3793 (359 04 17.28
J2K2D | 15.12 123 4591 | 1098 7.32 4579 | 205 124 47.26
PCA2D | 2823 0.56 41.24 | 26.33 1.64 37.28 | 3547 042 32.07
0.05 J2K3D | 13.13 131 56.96 | 9.9 7.74 4592 | 1891 1.57 46.81
PCA3D | 26.82 0.63 32.85|2037 3.14 37.88|23.78 1.64 35.19
J2K2D | 13.75 135 46.59 | 985 7.75 45.61 | 1834 1.57 47.61
PCA2D | 2694 0.63 30.57 | 22.12 2.53 33.04 | 3433 046 30.68

6.4.2 Stage Two

From Table 6.2 the PCA2D mode, which benefits from both the dimensionality reduction by PCA
and a purely spatial wavelet transform by JPEG2000, is the most desirable when varying both bit

rates and scenes. This mode is therefore selected for further analysis in stage two.

Furthermore, the total bit rate for stage two is fixed to 4.0 bpppb for the results given in Figure 6.8
and 6.9. The top row for all stage two heatmaps represents the case when no residuals are included,
i.e., only doing stage one, the baseline compression, with a 4.0 bit rate. This bit rate is intended to
represent a high yet sensible lossy compression ratio. The bit rate of residuals-axis refers to the bit
rate allocated to represent the residuals, e.g., when a bit rate of 3.6 is allocated for the residuals, a
bit rate of 0.4 is used for stage one in Figure 6.4, always resulting in a total bit rate of 4.0 bpppb.
Results from the compression after stage one and stage two in terms of SNR and computational
time are given in Fig 6.8 as six heatmaps for Moffett. Figure 6.8 illustrates how the performance
is affected by keeping all the residuals versus analyzing them before compression. The observed
performance patterns are also found for SAM, and the discussed relationships are found across all
data sets. For the Relative Time reported in Figure 6.9 the computational time from the instance

from stage one with the highest SNR is divided by the computational time from Stage Two. For
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completeness Fig 6.10 is given, representing the same as figure 6.9, but with a fixed bit rate of 1.0

bpppb.

For the results with residuals the loadings are computed using training sets as described in Sec-
tion 6.3.1 and illustrated in Figure 6.5 and 6.6. The loadings are derived using a similar data
set to what it is compressing. The loadings are computed using a training set to simulate the
use of pre-computed loadings. In real-world applications, it would be sensible to perform some
cross-validation of the pre-computed loadings to ensure that they are robust against the expected
variations in the data that they are supposed to transform [143]. These pre-computed loadings are

desirable to use to reduce the overall computational time [176].

In Figure 6.8, heatmaps related to stage one of the proposed pipeline are given for completeness and
comparison. There is a clear trend of an increased computational time with an increased number of
components used in stage one, as one could expect. This increased computational time is due to
more pixels being encoded by the JPEG2000 stage [171], and an increase in either the spectral or
spatial dimension would affect the computational time similarly. The computational time is not
significantly affected by the target bit rate. That is, the performance in terms of SNR is enhanced
by using more components, but it comes at a higher computational cost. Also, this enhanced SNR
for higher bit rates is more significant at a higher number of components and negligible at a lower
number of components. Thus, fewer components from spectral decorrelation support lower bit
rates, providing a higher throughput at a reduced bit rate with very similar quality in terms of SNR
and SAM for stage one of the compression. A higher bit rate should be allocated for the residuals
from stage two, with lower bit rates for stage one.

In Figure 6.8 two scenarios are presented. That is, using all the residuals, and only significant
residuals are determined by analyzing their distributions. The ALL label refers to the analysis using
all the residuals. Residual analysis /STDYV is defined as deeming the residuals that are outside
one standard deviation of a Gaussian normal distribution as significant. The results given in the
heatmaps advocate again for using lower bit rates when relying on fewer components for stage one,
i.e., a lower bit rate should be assigned to be used for the compressed image cube bitstream. Albeit
results for stage two using ALL residuals provide an improvement in terms of SNR, the magnitude
of the improvement is not large enough to be shown in the heatmap with the given number of
significant digits. Furthermore, encoding all the residuals is more computationally demanding
than determining and encoding only the significant residuals. This result does not encourage the
separation of systematic variation patterns and noise variations when all of the residuals are given
the same priority. This is to some extent also demonstrated in [178], and as such, can be seen as an
expected result.

Residual analysis /STDV increases the performance in terms of SNR when relying on pre-computed
loadings, i.e., the SNR metric can be consistently increased at lower bit rates and fewer compo-

nents.

6.4 Results and Discussion
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For certain combinations of bit rates and the number of components, the combination of the original
cube and the significant residuals can increase the performance in terms of SNR, when relying on
pre-computed loadings. This was observed consistently across all data sets. These pre-computed
loadings would perform for more drastically changing scenes or different viewing geometries is not
investigated here. The performance is expected to degrade when relying on pre-computed loadings
in these conditions. A more intriguing observation is that in some cases, the proposed method, in
terms of SNR, outperforms the results reported in Table 6.2, where the loadings were computed
online, even without including the loadings in the total bpppb. The online computed loadings are
expected to perform better as they are (over)fitted to the specific data they are supposed to represent
and compress. This is consistently observed across all data sets when relying on the PCA2D
mode. Regardless, this supports the notion that depending on PCA-based spectral decorrelation has
some limitations in retaining unexpected, unmodeled or poorly modeled phenomena, even when

computing the loadings online using all the available data.

The SNR improvement that can be observed on the bottom-left to top-right diagonals of figure 6.9,
is because most of the loss is coming from JPEG2000 when using more components and the
HSI is ill-represented using high bit rates and few components. As the residuals come from the
dimensionality reduction, they cannot account for the loss that occurs due to the wavelet transform in
the JPEG2000 encoding scheme. An attempt at encoding and decoding the JPEG2000 transformed
image was performed, but this put a too big computational strain on the processing pipeline to
be justified. Accounting for the loss in the spatial wavelet-transform better is a topic for future

research.

The performance patterns found with a fixed bitrate of 4.0 bpppb presented in Figure 6.9 does not
appear in Figure 6.10 where a fixed bitrate of 1.0 bpppb is used. That is, for a fixed bit rate of 1.0
bpppbd the proposed processing pipeline only functions as a reassurance measure to know that no
significant unmodeled phenomena were lost due to using lossy compression. However, if retaining
the data in terms of SNR is the main objective of the lossy compression, stage two should not
be included in this scenario. With a total bit rate of 1.0 bpppb, no clear performance patterns in
terms of SNR across all scenes are observed. Nonetheless, for the spatially homogeneous scene of
Christchurch, where the wavelet-based JPEG2000 is expected to distort less at lower bit rates, it
appears beneficial to include stage two of the proposed pipeline. Regrettably, for a bit rate of 1.0
bpppb, the distortion from the lossy quantization performed by JPEG2000 after the residuals does
not well compensate for the wavelet-transform for the spatially complex scenes, here represented by
the Moffett scene. This is expected as the residuals only compensate for the projection done by the
loadings. A metric of the spatial complexity could be used as a threshold for determining whether
stage two should be utilized, and the BQ-score is a candidate for such a measure. Again, this
indicates that it would be beneficial to compensate for the distorting effects from the lossy wavelet
transform for the best possible result. Some of the limitations briefly mentioned in Section 8.2
could help elevate the performance at this lower bit rate as well.

6.4 Results and Discussion
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A criterion or procedure to derive the optimal combination for stage two of the number of com-
ponents used and bit rate for residuals needs further investigation. An approximate procedure,
referred to as the ratio criterion, is given here. An observed trend from Figure 6.8 and 6.9 for an
approximate procedure is given as the percentage of components that are used should be the inverse
of the ratio of the bit rate allocated for the analyzed residuals. When 10% of the components are
used 90% of the bit rate should be used for the residuals, and if 90% of the components are used
10% of the bit rate should be used for the residuals. Results from using this criterion to select the
ratio are given in Figure 6.11. In this figure, online PCA is used for all the denoted components,
with the computational time and SNR for this approach. From this figure, it is clear that the ratio
criterion does not consistently provide the best relationship between the number of components
used and bit rate for residuals. Nevertheless, it does show that the computational time can be
reduced without much distortion in terms of SNR when relying on fewer components in stage one.
Thus making it possible to rely on few components for lower bit rates in stage one as an initial step
for data transmission or storage. In Figure 6.11 it is demonstrated once again that the proposed
approach is best suited for spatially homogeneous scenes such as the Christchurch scene.

6.4 Results and Discussion
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6.4.3 Performance of the Compression and Comparison

The resulting distortions from compression are non-destructive if the compression artifacts in terms
of SNR (or SAM) are less than the expected sensor noise. That is, an argument can be made stating
that the compression can be considered near-lossless if its artifacts are less than the effects of the

expected sensor noise found in the original data set [166].

In [166, 170], the compression is demonstrated to be near-lossless by comparing target detection
performance before and after compression. This can be misleading as transformation-based
compression often attempts to reduce noise and can improve the target detection performance [80,
168, 172]. Reducing the noise, i.e., the uninformative variability in the data, can enhance the
exploratory algorithms, and an improvement in target detection performance does not guarantee
that the data fidelity is retained for other types of HSI applications, such as anomaly detection [172].
Dimensionality reduction can reduce the noise in the original data set by means of prioritizing
data that contain systematic variation patterns, but will have more significant errors on anomalous
data that will appear as larger residuals. It is also observed that the BQ-score favors the use of a
low number of components in dimensionality reduction and low bit rates. The results presented
in Table 6.2 show that the distortion in terms of SNR and SAM for the first stage. These results
are in alignment with results reported in [166, 170,171, 179] for similar methods. The stage one
compression performance in terms of SNR and SAM, combined with the BQ-score, clearly indicates
denoising effects by reducing the number of components. Combining these metrics, with some
constraints of acceptable ranges for SNR and BQ-score, can be a practical regularizing objective

for optimizing lossy compression.

Limitations of online usage of PCA can are mitigated by estimating the loadings from similar
data as performed here. Furthermore, it is possible to compute the loadings by sub-sampling the
data set as in [80, 165, 172, 176]. Also, nonlinear pattern variations, i.e., variations that cannot
be represented well by a linear transform, in the data can be compensated for by pre-processing
using kernels before PCA [4, 180], but this comes at an additional computational cost. PCA can
preserve general trends in the data in terms of SNR, but can fail to account for anomalies [172].
These anomalies can be better preserved by including residuals, preferably significant ones. This
approach provides an overview of the nature of the residual data excluded from the compression.
This overview about what is lost during the compression allows low bit rates in stage one, the lossy
compression, with added confidence in the data fidelity. With the insight from residual analysis, the
significant residuals can be retrieved without loss [165] or in a lossy manner, as proposed here, to
retain control of the total bit rate.

As the proposed approach only compensates in stage 2 for the distortions from PCA projection,
scenes that are more effectively encoded by the latter JPEG2000 stage will benefit more from using
it. This is shown here in multiple ways for the Christchurch scene.

6.4 Results and Discussion
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6.4.4 Analysis of Residuals

From Figure 6.8, it is clear that if residuals are used to compensate for model inaccuracies, it
is beneficial to perform the analysis before the compression of residuals. There is an added
computational time for analyzing the residuals before compressing them. However, the results
from stage one can then be compressed using less time due to fewer components being used,
and fewer pixels are encoded at a similar level of distortion. As illustrated in Figure 6.9, for
certain combinations of few components and low bit rates for stage one with a higher bit rate
for analyzed residuals, a higher SNR can be achieved at a reduced relative computational time
that our implementation produced. Furthermore, the analysis of residuals is decoupled from
compressing HSI after PCA-based dimensionality reduction. Thus, after projection, the residuals
can be processed separately from stage one. Here, the residuals that exceed one standard deviation
of an estimated Gaussian normal distribution are considered significant. However, other approaches
to determine significant residuals can be considered dependent on constraints such as computational
time and data fidelity. Examples of alternative approaches are to only transmit residuals that
exceed a given threshold, or only transmit a fraction of the most significant residuals in terms of a
given norm. The proposed /STDV approach used here gave the most desirable results in terms of
computational time and data fidelity in general.

A simple addition to the residual analysis presented is to generate aggregated statistics, i.e.,
information about the distribution of residuals. This could, and perhaps should, be transmitted
before the residual bitstream. This meta-information can then aid in determining if the residuals are

significant and if they should be transmitted at all.
6.4.5 Datatype Conversion

There are some significant limitations in our implementation. The input HSI data used here is
stored as 16-bit unsigned integers. The dimensionality reduction and wavelet transformations
are performed using 64-bit doubles. The original data was extrapolated from its original bit

representation size to doubles.

When performing the processing steps, which use floating-point operations, the higher bit resolution
mitigates the loss of precision. This is at the cost of using more of the available computational
resources. The last processing steps of quantization and source coding are needed to reduce the data
volume below the original data size after this data type conversion. As discussed, the quantization
strategy used could and should be improved upon, but this is not straightforward in the given
implementation. This discussion point confirms the analysis in [165,171,173], but in this chapter,
the effect of a different bit representation for other components have not been evaluated. Future
research is subject to future research if the processing pipeline is implemented on resource-limited
hardware. Additionally. the proposed compression approach can be made sequentially, on parts of

a cube, to address limitations regarding limited computational resources.
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6.4.6 On the Use of 2D Wavelets

Wavelet transform performance depends on the given characteristics of a scene, i.e., the smooth-
ness, sharpness, and noise of an image cube affect how the wavelet transform contributes to the
compression performance [197]. As HSIs are inherently three-dimensional, the characteristics may
differ within a purely spatial or spatial-spectral frame of the cube and in the remaining dimension,
and this is not accounted for in the 3D-based compression provided by JPEG2000 Part-10 [179].

A 3D domain transform that leverages the entire structure of the image cube may not provide the
best performance as the correlation of spatial or spectral pixels within a particular dimension is
different from that between slices [197]. The resolution, either spatial or spectral, dictates the
expected correlation. Thus, choosing a wavelet filter optimal for the spectral dimension may not be

optimal in the spatial dimension, and vice versa [170,179, 197].

Even though JPEG2000 in its Part-10 is designed to provide true 3D coding, it is still oriented toward
data that is isotropic in all directions, i.e., has a spatial interpretation in all directions [179, 197].
This assumption does not fit well for hyperspectral remote sensing imagery where one dimension is
spectral. An HSI will not be as effectively coded with the same underlying assumptions. The use
of a 3D wavelet(s), potentially altering wavelets to accommodate for the spectral dimension, can
improve the performance and is a topic for future research. The multi-component transform can
also be used within the JPEG2000 framework to alleviate this.

If using video format encoding with dimensionality reduction by PCA, it is also essential to
embed that scores from low eigenvalues are less significant than the scores from high eigenvalues.
Furthermore, some blocking strategies used in video encoding will not retain the data fidelity in
HSIs, as it will prioritize human appeal over image restoration fidelity. To some extent, this is
handled by performing 2D-conversion at the cost of not exploiting repeated patterns in the spectral

dimensions of the score cube.

To better resemble regular spatial images, 2D-conversion is used to be able to utilize the well-
developed 2D image compression of JPEG2000 fully for natural images [180, 189,190].

6.4.7 Computational Time and Considerations for Real-time compression

The computational time presented in Figure 6.8 and 6.9 has some caveats. The presented results
originate from a MATLAB 2020b implementation on a desktop computer with an i7-8650U CPU
at 1.90GHz running an Ubuntu 20.04.2 LTS operating system. The results shown here are not
optimized for computational time concerns, and at their current state, are not suited for real-time
compression on any platform. This is a topic for future research. It is not straightforward to compare
with other proposed processing pipelines found in the literature [170, 171, 176], but the baseline ran
on the same system is intended to be a proxy for comparison. However, the processing protocols

from stage one are shown in [176] to perform real-time compression on a Virtex-7 FPGA when

6.4 Results and Discussion
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considering a sensor output of 491.52 Mb/s. This is even achieved when computing the loadings
online, albeit using a sub-sampling strategy. In addition, the implementation given in [171,176],

also uses vector quantization to further compress the scores, at an additional computational cost.

The number of floating-point operations needed to conduct PCA is expected to increase with larger
HSI cube sizes. According to [177] the number of floating-point operations will increase with the
power of three for the spectral dimension and with the power of two for the spatial dimension. If
pre-computed loadings are used, there is mainly a projection stage which will increase linearly [177].

This projection stage can be done independently of other parts of the data.

As the residual analysis is decoupled from stage one after projection, and consists of virtually
identical processing steps, it should be possible to achieve a similar performance given that sufficient
programmable logic is available. After the projection, the residual analysis can be done in parallel.
However, further research is needed to make the proposed pipeline operationally viable.

There are several techniques to reduce the run-time requirements, including the use of Window
PCA, OTFP, or similar techniques [84, 172, 174]. If the models are built offline, it is only required
to transmit the compressed results. By analyzing the residuals, and transmitting these by priority,
one can use parts of the available bandwidth to learn from the data that is not well represented
by the computed loadings. This ensures both a high level of compression, and the opportunity to

improve the transformation models over time [84, 184].

6.5 Conclusions

Different approaches for transform-based encoding and compression using bi-linear modeling by
PCA of known spectral variation patterns and wavelets greatly improved the overall compression
performance when compared to just using JPEG2000 alone, as expected [170, 172]. This property
became even more prevalent at lower bit rates. The metrics used to measure data integrity, from the
original to the restored, indicate that its data volume can be significantly reduced without significant
loss of information. These metrics suggest that the transform-based encoding has some denoising

effects, allowing compressing the HSIs using a lower bit rate.

For HSI remote sensing applications where it is not desirable to use resources to recreate and analyze
the noise in the acquired data sets, a near-lossless compression scheme should be considered. By
decoupling the informative data and the PCA model discrepancies, it is possible to transmit the most
significant trends in the original data at relatively low bit rates while retaining the unmodeled or
poorly modeled phenomena as residuals. Further, by analyzing the residuals, and only transmitting
those deemed significant, the performance can be improved in terms of both restoration ability and
computational time. The residual analysis provides greater confidence in lossy compressed data,
and illuminates where the transformation-based encoding can be limited. The proposed pipeline
increased SNR of up to 2 dB at 77% of the computational time for the Cuprite scene. An increase
in SNR was observed across all scenes, and the right combination of components and bit rates

yielded a reduced overall computational time and higher SNR. The ratio criterion is suggested as
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an aid in determining the bit rate allocated for the compressed image and residual bitstream, but
does not provide an optimal solution. The improvement from utilizing stage two is made possible
by needing fewer components to represent the data at the same or better quality than in stage one.
Residual analysis can significantly reduce the number of elements that need to be encoded in the
second stage. The proposed approach only compensates for distortions from PCA projection. Thus
scenes that are more effectively encoded by the latter JPEG2000 stage will benefit more from using
it.

With the addition of residuals filtered by residual analysis, higher performance in terms of SNR,
SAM, and computational time can be achieved at high bit rates, here exemplified with 4.0 bpppb,

for near-lossless hyperspectral image compression.
6.5.1 Future Work

No optimization scheme for the quantization is applied in work presented here, a potential im-
provement of compression ratio can be achieved by proposing an optimization scheme for the

quantization at the cost of higher complexity.

The fidelity of the transform-based compression can be difficult to determine, different methods
for regularizing the number of components, e.g., by BQ-score, and their limitations are topics for
future research.

The use of nonlinear autoencoders, for decorrelation, as presented in [166], could outperform PCA-
based spectral decorrelation and dimensionality reduction [170,171]. A comparison accounting for
the information and fidelity, as well as computational cost [166, 176] for decorrelating HSIs, offline
or online, is a topic for future research. Further experimental investigations are needed to determine
if other spectral decorrelation approaches, e.g., autoencoders, are better suited for decorrelating
the spectral dimension of HSIs than PCA, and how the second stage is affected by the method for

dimensionality reduction.

As JPEG2000 is an aging approach to image compression, some encoding advancement has come
since then. As demonstrated in this chapter, the 2D conversion enables the use of all image encoders
designed for natural 2D images, without putting many assumptions on the third dimension, both
with and without spectral decorrelation. Even with the spectral correlation, while the compression
is improved, it would be fair to assume that more modern encoding schemes can further compress
natural images. Some modern encoders are designed for image fidelity rather than naturalness. This
could fit the needs of hyperspectral remote sensing better. An investigation could result in a higher

lossy compression ratio or lower bit rate for similar hyperspectral images.

6.5 Conclusions
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Chapter 7

Atmospheric Correction Over Coastal
Waters

We think we receive all that we perceive,

but in fact, we actually give the sky its colour.

James Turrell

Common Atmospheric Correction (AC) algorithms for ocean color attempt to predict water-
leaving radiance and works well for the open-ocean using multispectral data. However, it can
be inaccurate or computationally demanding for coastal and optically-complex waters, i.e., case
II type waters [7, 60]. In this type of waters, the phytoplankton signal might be masked or
modified by the presence of other substances, especially CDOM, and Total Suspended Matter
(TSM). Coastal waters are of interest to the aquaculture industry, marine science, recreation, and
environmental monitoring. Most of the measured top of atmosphere (ToA) radiance over coastal
waters is comes from atmospheric contributions. Thus, retrieving valuable properties from the
water-leaving radiance can only be done well if the atmospheric correction algorithms are accurate.
From water-leaving radiance, it is possible to derive ocean color data products, such as maps of
[Chl a]. These maps are, in turn, used to study phytoplankton changes in the ocean ecosystems to
understand global climate change. Here, different Machine Learning models are presented, trained,
and evaluated using simulated hyperspectral ocean color data of ToA radiance from coastal waters
to predict water-leaving radiance and other ocean color variables directly, such as chlorophyll
concentration. When trained and evaluated on simulated data, the proposed methods are shown to

achieve an accuracy of up to 99%.

Atmospheric Correction (AC) has traditionally been treated as a preliminary step used to derive
parameters of interest [1, 136]. However, some ocean-atmosphere interactions are not necessarily

well understood, such as the effects of sea-spray on aerosols [198].
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An understanding of the biogeochemistry, ecology, and hazards of the oceans with a changing
climate is critical to sustaining Earth as a habitable planet [2]. Satellite remote sensing of the
ocean’s spectral albedo is an effective tool to characterize and monitor the ocean environment on a
large or even global scale. Ocean Color is used to monitor, among other things, [Chl a]. This [Chl a]
parameter is a common biomarker of photosynthetic phytoplankton which is used to infer about the
state of the marine ecosystems and provides the aquaculture industry and government agencies with
information regarding water quality, biogeochemical cycles, and as an aid in fisheries management.
These decision-making processes are better aided by knowledge of the biotic signatures of the
different ecosystems and the separation of those signals created by the atmosphere. Here, Radiative
Transfer (RT) models will be utilized to characterize and separate the atmospheric signals and
explore Machine Learning (ML) solutions to identify coastal ecosystems from their spectral
albedo using simulated data. The goal of these models is to discriminate against the atmospheric
transmission scenarios typically present for HSI data [2,4].

Originally, the analysis was performed using ML models for Neural Network (NN), Stochastic
Gradient Descent (SGD)-, PLS-, and Support Vector (SVR)-Regression. All models were used to
train AC models on HSI data, but only the results from NN and PLS regression are presented in
this chapter, as they were the most promising. These two cases represent both a non-linear and
linear approach. The complete analysis with all ML models and a more in-depth discussion of the
results can be found in [199]. To generalize well with ML one needs to obtain data representing an
abundant number of various environmental scenarios. The approach presented here uses synthetic
data sets due to the difficulty of finding large amounts of HSI data with corresponding metadata,
such as sun-target-sensor angles alongside in — situ measurements of light fields, spectral properties
and pigment information for validation. Similar approaches using simulated data of multispectral
radiance have been used to verify AC algorithms in [2,200,201]. The results from these publications

will form a basis for comparison.

In this chapter, the RT model AccuRT [202] is used to simulate different variations of the expected
HSI data in terms of radiance. Scenarios representative of a wide range of atmospheric and coastal
oceanic environments, both strong aerosol containment and case II waters were simulated. The ML
models were trained on the simulated data, to predict remote sensing reflectance (R, s(\)) from
different ToA radiances. Also, retrieval algorithms for IOPs of water based on ML were produced,
aimed to predict the commonly retrived IOPs from water [2,60]. The ML models will predict [Chl
a], mineral concentration (TSM) and the absorption coefficient at 443 nm for CDOM (agom (443))
from R,s(\), defined in Eq. (7.1). The trained ML models is then validated against each other
concerning the accuracy, computational complexity, and interpretation capability, to study which
could be suitable for on-board processing. Giving an indication as to how well the approach found
in [200] for multispectral data works for HSI data, specifically for optically complex waters.
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7.1 Problem Formulation

As most of the satellite measured ToA radiance over waters is due to atmospheric contributions,
retrieving useful properties from the water-leaving radiance could only be done well if the AC
algorithms are accurate. Only a relatively small portion of the incoming sunlight is backscattered
from below the ocean surface in comparison with the sunlight backscattered from the atmosphere

and specular reflection from the surface [9,203].

With L, (0T, \) as water leaving radiance just above the sea surface and F as the extraterrestrial

solar irradiance, the R,s(\) can be expressed as

R.s(\) = Lw(0+, A) / Focos (6p) to(A, 0o), (7.1)

with the total measured ToA radiance at a given wavelength A, L;(\), for ocean-atmosphere systems

can be expressed as the partitioned linear equation [111], see Figure 7.1.

Li(A) = Lr(A) + La(A) + (A Luc(A)+
(N Lty (A) + T(A) Lun(A) + t(A) Lu(N), (12)

where L,.(\) is the radiance due to Rayleigh scattering by air molecules, L,()) is the aerosol
scattering, Lq,.(A) is the radiance contribution from whitecap on the sea surface, Lgy;, () is the
specular reflection of direct sunlight off the sea surface, Ly, (1)) is the radiance contribution from
surface-reflected background atmospheric radiance and L,,(\) is water-leaving radiance due to
photons that penetrate the sea surface and are backscattered. Diffuse and direct transmittances are

given as t(\) and T'(\), respectively.

Other AC algorithms, e.g FLAASH, ATREM and POLDER [4,9,200], are based on a computation-
ally demanding RT model, like MODTRAN, or a set of pre-calculated spectral Rayleigh scattering
values, stored in Look Up Tables (LUT), to compute L, (\). According to [200], RT models can
give an uncertainty lower than 0.5 % when predicting L,.()), which is also the major contribution to
L¢()). The algorithms could retrieve values from the LUTs matching the geometry and parameters
from a scene and use interpolation for values in between. Many AC algorithms for ocean color are
based on the assumption that electromagnetic radiation in the NIR region back-propagated out of
the water can be assumed to be zero, i.e., the black ocean assumption. This assumption is then used

to estimate aerosol contributions.

While this approach works well for open oceans, it does not fit coastal areas where the black ocean
assumption tends to fail, and the aerosols can be more optically complex. One method to address
this problem was studied by [200], where the combined aerosol and Rayleigh-corrected TOA
radiances for multispectral data were used together as input to a NN, where R,.s(\) was predicted.

A similar approach is presented here for HSI data.

7.1 Problem Formulation
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Figure 7.1.: Tllustration of different contributions to the sensor-measured radiance. A, B, C, D, E, F refer
to Rayleigh (L), aerosol (L,), water-leaving (L., ), direct sun glint (L., ), whitecap (L)
and sky glint (L, ) radiance, respectively [9]. Illustration by Ole Martin Borge.

7.2 AccuRT Model

The coupled atmosphere-ocean RT Model AccuRT was used to simulate the interaction of solar
radiation with particles and molecules in the atmosphere and ocean. AccuRT is a well-tested,
user-friendly, and accurate radiative transfer model also capable of including effects from case
II waters, and was used to simulate different cases of spectral radiance data representative for
strong aerosol containment and case II waters [202]. AccuRT was used to generate synthetic data
consisting of HSI ToA radiance and corresponding R,.s() for a large variation of aerosol and ocean
body properties for 400-800 nm wavelengths with 5 nm spectral sampling. This is the spectral
range that HYPSO-1 is expected to operate in [5,23]

7.2.1 Atmosphere and Aerosol

AccuRT uses a stratified vertical structure defined by the intensive properties of an atmosphere in
hydrostatic balance. A 14-layer atmosphere covering the first 100 km was used with the predefined
U.S. Standard atmospheric profile [200,202]. The aerosols were added to the boundary level with
Aerosol Optical Depths (AOD) at 869 nm chosen between 0.0001 and 0.4 was used. In AccuRT, it
was not possible to specify AOD at any given wavelength directly, but the variation in AOD(869)
could be included by varying the values of volume fraction of aerosols (f,), the fraction of fine and
coarse aerosols ( f), and relative humidity (RH). Value ranges of these aerosol-specific parameters
could be chosen to get AOD(869) values between 0.0001 and 0.4, shown in Figure 7.2. With 6,
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0, A¢ as solar and sensor zenith, and relative sensor azimuth angle, respectively, the ranges of

simulated values are shown in Table 7.1.

Table 7.1.: Different input parameters used for the AccuRT simulations, their ranges and how the parameters
were selected.

Parameter Name Value range Unit Selection
O Solar Zenith 0-65 [°] Uniform

0 Sensor Zenith 0-70 [°] Uniform
A¢ Solar Azimuth 0-180 [°] Uniform
RH Relative Humidity 30-95 [%] Uniform

fs Fraction of Aerosols 0-1 unitless Uniform

fo Aerosol Coarseness le-12 - 1e-10 unitless Uniform
[Chl a] Chl-a Concentation 0.006 - 98 [mg/ m3] Distribution
TSM Temp 0.002 - 99 [g/m?] Distribution
Qedom (443)  Temp 0.0004 - 5 [m~1] Distribution

7.2.2 Water IOPs

To simulate a representative synthetic dataset for the ML algorithms, water [OPs were extracted from
in-situ field measurements. The water IOPs extracted, and needed for AccuRT data generation,
were concentration of agom (443), [Chl a] and TSM. Data were extracted from the NASA bio-
Optical Marine Algorithm Dataset (NOMAD) dataset and Coast Color Round Robin (CCRR)
datasets [204]. The distribution of [Chl a], TSM, and a,gom,, (443) are shown in Figure 7.2. The
goal was to extract water IOPs representative for Case 1 and case II type waters. When generating
data with AccuRT, the bio-optical model CCRR was used [202].

7.2.3 Data Generation with AccuRT

The main challenge for AC over coastal waters is that both the water and the aerosols are more
optically complex than for open ocean conditions. This study will address this problem as done
in [200] by looking at the simulated Rayleigh-corrected TOA radiance (Lyqc())), defined as:

Lrac(\) = La(A) + t(AN) Lu(\), (13)

where Lyq.()) is therefore the ToA radiance corrected for atmospheric gas absorption, Rayleigh,
glint and whitecaps. These effects were removed as they often are corrected for in satellite image
processing [200]. This means that some pre-processing would be needed before applying these
models to an operational on-board processing scenario. The trained AC models would then predict
R,5(X) from Lyq.(N),

7.2 AccuRT Model
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For training and tuning/regularization of the ML algorithms, 85% of the total simulated data was
randomly selected, using the regularization approach described in Section 7.3.2 and 7.3.3. The

remaining 15% was used to test the models, with the results shown in Section 7.4.

7.3 Data Preparation & Machine Learning

7.3.1 Data Pre-processing

The spectral radiance input was divided by the cosine of the solar zenith angle, which is a term that

can be found in Eq. (7.1), to get reflectance.

The Savitzky-Golay filter (Savgol) can be applied to a set of discrete data points to smooth the
spectral data without distorting the signal tendency [205]. Different types of derivatives can be
applied to the spectral Savgol filtered data. This filter has long been used for spectroscopy to
smooth and differentiate absorption spectra [206]. As the filter improved performance, it was used

as another pre-processing step.
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Figure 7.2.: Distribution of [Chl a], mineral concentration (TSM) and aqom (443) extracted from different
field datasets, together with the distribution of AOD(869) generated with AccuRT. Illustration
by Ole Martin Borge.
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Finally, the input data was normalized as given in Eq. (7.4), where X is the normalized data, X is

the original input data, X is the mean and oy is the standard deviation.

X-X

ox

X =

(7.4)

7.3.2 Sequential Neural Networks for Regression

It has been demonstrated that NNs with one or more hidden layers can predict non-linear re-
lationships that could be suitable for deriving remote sensing reflectance R,s(\) from various
ToA radiances [9,200]. The NN presented here is a simple feed-forward NN, also known as the
multilayer perceptron. The Python Deep Learning library Keras, with TensorFlow as a backend,
was used to build the NN models, which were simple sequential models [207]. Several variations
were tested, and the NN presented here used the "adam" optimizer with 2 hidden layers, 700
neurons in the first hidden layer, ReLU as activation function, and MSE as cross-validation metric
for tuning/regularization during training. Again, more details can be found in [199].

7.3.3 Partial Least-Squares Regression

PLSR reduces collinearity and noise within a given dataset by iteratively relating data matrices using
linear multivariate models. It is a two-step algorithm that first finds uncorrelated components in the
variables of a given data set and then performs the least squares regression on these components. A
more in-depth description of the algorithm can be found in [208]. Several variations were tested,

with 10-fold-cross-validation for tuning/regularization, and with variable selection [207].

For IOP prediction, 81 bands and 22 components gave the best results, as shown in Figure 7.3.

However, varying these hyperparameters did not yield very different results [199].

7.4 Results

The results of AC and IOP prediction using the different ML models were compared using the
Pearson correlation coefficient (R), the average percentage difference (APD), and the normalized
root mean squared difference (NRMSD), described in Eq. (7.5), (7.6) and (7.7), respectively.

7.4 Results
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Here N is the number of samples, Y; is the i-th predicted radiance value at a given wavelength, Y;
is the corresponding ground truth radiance value, oy and oy are the standard deviation of Y and
Y, Y and Y are the mean values of Y and SA/, and ?max and Ymm are the maximum and minimum

value of V, respectively.

The ML models would give 81 predicted outputs from the wavelength bands between 400 and
800 nm. Metric values for each predicted wavelength band were calculated and would therefore
yield 81 values for each metric (R%y, R3ys. - » R3o). The optimal results of each ML model were
also based on the mean of the 81 metric values, given as R2, APD and NRMSD.

7.4.1 Atmospheric Correction Results

In this study, the two ML models were used to predict L, () from Rayleigh scattering and
absorption corrected radiance (L,q:()\)), 6, 6y and A¢. Before finding the optimal results, a
hyperparameter optimization study was done by training the ML models on a range of different
Savgol filters and hyperparameters. The ML models giving the best results based on both the
Pearson coefficient and NRMSD are presented in Table 7.2. The models are compared further by

the metrics mentioned above and execution times.

Table 7.2.: Optimal results when predicting R,s(\) from L,..()), 6, 6y and A¢ using NN and Partial
Least Squares Regression (PLSR) with respect to time complexity. Computational time to fit
the model (Tf;), computational time to predict the output (T}eq) and the number of training data
(Nirain) are given.

Metrics R?  APD[%] NRMSE
NN 0999 442 0.045
PLSR 0974 341 0.197

Time  Tpc[s]  Tprea [S/N]  Nirain
NN 675 1.3e-3 91702
PLSR 166 1.0e-4 91702
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AC of multispectral L, with a multilayer NN done in [200] produced R2 > 0.993 for all 7 bands
in VIS (412, 443, 488, 531, 547, 667 and 678 nm) and APD = 3.1 %. The NN trained on HSI data
showed comparable results, see Table 7.2, with R2 > 0.992 for all 81 bands and APD = 4.4 %, and
RZ calculated from the NN was at 0.999, which was higher than 0.996 reported by [200]. These
results imply that both models are able to predict the spectral relationship between L, and R,

with similar accuracy.

7.4.2 10P Prediction Results

Several ocean color algorithms [9] can predict IOPs from R,s(\) based on empirical relationships
derived from in-situ measurements, like the non-linear OCx algorithm [16,209]. Here, NN and
PLS models were trained to predict [Chl a], acgom (443) and TSM from R,.s(\) from the simulated
HSI R,(\) data. Different Savgol filters were applied to the input data for each NN model. The
best results using NN to predict IOPs are shown in Table 7.3.

Table 7.3.: Predicted chlorophyll concentration ([Chl a]), acdom (443), mineral concentration (TSM) from
R,s(\) with NN and PLSR validated with R2, APD, and NRMSD.

[Chl a] Gedom(443)  TSM
Metrics NN PLSR NN PLSR NN PLSR
RZ 0.999 0987 0.996 0.961 0.998 0.994
APD 884 1271 168 845 424 650

[%]
NRMSE  0.03530.271  0.09330.275 0.108 0.178
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Figure 7.3.: Normalized absolute values of PLS coefficients as a function of wavelength bands for pre-
dicting [Chl a] together with scatterplots of the predicted and simulated [Chl a]. Number of
features (Nfeat) and number of components (Ncomp) are highlighted in the left plot. The grey
dashed curve represent one simulated R,.;()). Illustration by Ole Martin Borge.
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7.5 Discussion and Conclusions

AccuRT was used to simulate HSI data representative for challenging coastal waters, which could
be used to train ML models. When predicting R, from ToA radiance corrected for Rayleigh
and absorption (Lqc), all ML models resulted in R? > 0.968, indicating that they were able to
predict the spectral relationship between L,,. and R, s. The best results were obtained with the NN
algorithm (R?=0.999), especially compared to the linear PLS model (R?=0.974). However, the
PLS provided interpretable coefficients, as can be seen Figure 7.3, and shorter prediction time. A
specific application or set of constraints will determine the most applicable model.

Unlike many standard AC algorithms, these models seem to be capable of doing AC without
short-wave infrared (SWIR) bands, as they were trained on HSI data in the wavelength region
400-800 nm. The higher spectral resolution in the NIR bands can be a possible explanation as to
how the HSI based ML models can be able to estimate and compensate for different atmospheric
contributions to the measured signal. Finally, the NN approach could also be used for water IOP
prediction, and provided R2 > 0.999 when predicting [Chl a] from R,,. The results when using
synthetic data are comparable or outperform the results reported in [200] on simulated data. It
should be noted that the underlying simulated data was trained for multispectral data in [200], and
not HSI data as in this chapter.

The different AC algorithms based on ML after training are not computationally complex and, as
shown in Table 7.3, can be executed quickly, and therefore could suit operational use in satellites
as a part of the on-board data processing pipeline. However, these results do not account for the
aforementioned pre-processing. For future research, the ML models should be tested on in-situ
data and be validated against more conventional AC algorithms, such as FLAASH, ATREM or
POLDER [4,9].

Acknowledgements Patrick J. Espy, Professor at NTNU Department of Physics, provided supervi-

sion, comments and guidance.
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Chapter 8

An Approach for Hyperspectral
Chlorophyll-a Concentration
Estimation

We cannot cheat on DNA. We cannot get round photosynthesis. We
cannot say I am not going to give a damn about phytoplankton. All these
tiny mechanisms provide the preconditions of our planetary life. To say
we do not care is to say in the most literal sense that "we choose death."

Barbara Ward, Baroness Jackson of Lodsworth

Hyperspectral data processing for monitoring phytoplankton biomass dynamics in time and space
has become more viable with new types of instrumentation, such as the one to be deployed on the
HYPSO-1 satellite. Methods used operationally for retrieval of [Chl a], have traditionally been

developed for multispectral systems and optically deep waters.

Coastal waters are essential for the aquaculture industry, and a higher spectral resolution can
provide greater insight and better predictive power. However, data rate limitations make using
sensors with a high spectral resolution, such as hyperspectral imagers, more challenging. In this
chapter, estimation of [Chl a] from top of the atmosphere reflectance using “Partial Least Squares”-
and “Least Absolute Shrinkage and Selection Operator”-regression is compared with the internal
consistency of the global OC4 algorithm by NASA Ocean Biology Processing Group after AC.

The models perform better in terms of NRMSE and R? when validated with a subset of the total
data and with different scene geometry. This is demonstrated by using data from the Hyperspectral
Imager for the Coastal Ocean (HICO) mission, processed through SeaDAS 7.2. The standard
processing forHICOdata provided by SeaDAS 7.2 is used for AC.
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With traditional band-ratio algorithms for [Chl a] estimation, like OC4, it has been shown that
additional spectral information can improve the accuracy [16,210]. Successful application of
band-ratio algorithms in optically complex waters is often challenging due to overlapping of
spectral signals from phytoplankton in the form of [Chl a], CDOM, and TSM that confound the
model [211].

Nonlinear machine learning methods, e.g., NN or kernel-based regression models such as Gaussian
Process Regression (GPR) and Support Vector Machines (SVM), can give good [Chl a] estimations
but will also have a higher level of complexity [212]. The relative relevance of the input features
is less transparent, and it can be more challenging to foresee the model behavior. The models
themselves will be computationally more demanding to use for estimation when compared to
linear prediction models [143,211,212]. However, for any linear model, nonlinear patterns can be

compensated for by the appropriate pre-processing or kernel functions [213].

PLS regression has been shown to perform with greater accuracy than optimized band ratio algo-
rithms when predicting [Chl a] with field-retrieved hyperspectral water-leaving reflectance [211].
Hyperspectral water-leaving reflectance values are dependent on an accurate correction of at-
mospheric effects [9, 16]. Proper compensation for the atmospheric effects can be challeng-
ing to achieve in coastal regions, and hyperspectral AC for ocean color is an active area of
research [9, 14, 16].

This chapter shows two approaches to perform regression analysis and model development us-
ing top-of-the-atmosphere pseudo-reflectance values from the hyperspectral image data from
theHICOmission directly to estimate the [Chl a]. “ ... historically, the atmosphere has been treated
as a preliminary step to ocean techniques, but advanced methods for coupled ocean-atmosphere
retrievals are an area of growth in the future.” [1] The approach presented here thus compares this
area of growth with a more traditional method for [Chl a] estimation. The [Chl a] concentration data
used is derived from processingHICOdata using SeaDAS 7.2. Then the results from the regression
are compared to the OC4 band-ratio algorithm, which is a commonly used parameterization when

estimating [Chl a] from ocean color [16].

With the approaches, as they are presented in this chapter, the PLS models developed are intuitively
interpretive, less computationally demanding, and generate promising results when relying on the

two designs for validation.

8.1 HICO data and SeaDAS

The Hyperspectral Imager for the Coastal Ocean (HICO) mission was a hyperspectral instrument
onboard the International Space Station capable of capturing scenes with 128 different wavelengths
in a range from 350 to 1080 nm at a 5 nm resolution [127].

Here, hyperspectral scenes from theHICOmission, processed and quality controlled through NASA
OBPG software SeaDAS 7.2, are used as the ground truth values of [Chl a]. The reflectance
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data used here s derived from the standard atmospheric co ecti npro ed by SeaDAS 7.2 for
HICO.

A C DETFGH

Figure 8.1.: HICO Sample Image Gallery Scenes from different locations around the world used for
training and validation.

The scenes were selected due to the minimal adverse effects from atmospheric interference and
good overall imaging quality from theHICOSample Image Gallery [214]. The scenes can be seen
in Figure 8.1, and their locations are, from the left, southeast coast of New Zealand (A-C), US west
coast (D-F), New Caledonia, and Italy.

The [Chl a] concentrations in mg/m ™ for the training and the verification data sets are displayed
in Figure 8.2. TheHICO[Chl a] data used as ground truth are derived through SeaDAS, which, as
standard, used the OC4 algorithm with MERIS coefficients and wavelengths [209]. In SeaDAS,
the hyperspectral data is subsampled to the MERIS bandwidths when deriving [Chl a]. From each
scene, 700 sample spectra are taken for training, and 300 different spectra are taken for verification
in the initial validation procedure. In the secondary validation procedure, the fourth scene from
the left, scene D, in Figure 8.1 is kept out and only used as a validation data set. This scene was
selected as it has close to the full dynamic range of the [Chl a] considered here. See Section 8.3 for
details about the validation procedures. The [Chl a] concentration for each sample can be seen in

Figure 8.2 for the first validation procedure.
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Figure 8.2.: [Chl a] concentrations for the sampled data

8.1 HICO data and SeaDAS
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8.2 Methods

This section presents a conceptual description of the different algorithms and their advantages and
shortcomings. A complete derivation of the algorithms is beyond the scope of this chapter, but

references are provided.

The pre-processing of the input variables in this chapter incorporates known physical relation-
ships [143] to simplify the relationships that the different linear regression models are trying to
find. Only the radiance signals from 400 to 900 nm are used; only the 87 spectral bands that
are recommended to use are used. The wavelengths outside this range have been reported as
noisy [127]. No dimensionality reduction or other methods to reduce the number of variables as

part of pre-processing have been performed.

ToA reflectance p(\) is defined here in the following way; at a given wavelength ), to be related
to the radiance L(\), the extraterrestrial solar irradiance Fy(\), and the solar-zenith angle 6y, as
given in equation (8.1) [9].

p(N) = TL(N)/(Fo(N) cos(é)) 8.1)

First, with the assumption that the variations in F{(\) are minor compared to the sun angle effects,
the reflectance values p(\) are approximated by dividing the radiance data with the solar zenith

angle.

Secondly, the effect of attenuation of light is accounted for by computing the log values of the
approximated reflectances as p(A) = log;o(p(N)) [215].

Finally, the input variables have been centered and scaled to adhere to different absolute values and
variation for a given wavelength [143]. This is given in equation (8.2), where Z is the new variable,

p(A) is the old, p(X) is the mean, and o, is the standard deviation.

) =) 62
Op

8.2.1 Global OC4 Algorithm by NASA OBPG

The OC4 algorithm developed by NASA OBPG [16,209], presented in equation (8.3), returns the
near-surface concentration of [Chl a] in mg/m~>. The algorithm uses an empirical relationship
derived from in situ measurements of [Chl a] concentration and corresponding above-water remote
sensing reflectances R,s, with four spectral bands [16]. In this chapter, the implementation of
the OC4 algorithm uses the spectral bands closest to the ones used by the SeaWiFS multispectral
imager [16,216]. R;s(Agreen) is the band closest to 555 nm, and R,s(Apje) is the maximum of
the bands closest to 443, 490, or 510 nm. The a; coefficients used in the implementation of OC4
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presented here were determined using ordinary least squares on the training data presented in
Figure 8.2 [143]. The equation is given as

Rrso\blue) '
log1o(chl_a) a; | lo . 8.3
g10( E i ( 910 (R Orgreen) (8.3)

=0

8.2.2 Partial Least Squares Regression

PLS regression iteratively relates data matrices using linear multivariate models that reduce collinear-
ity and noise within a given dataset. It is a two-step algorithm that first finds uncorrelated compo-
nents in the variables of a given data set and then performs the least squares regression on these
components. A more in-depth description of the algorithm can be found in [217]. This approach
generates models with high levels of interpretability, but without appropriate pre-processing, they

cannot accommodate for strong nonlinear effects [143].

8.2.3 Least Absolute Shrinkage and Selection Operator Regression

Least Absolute Shrinkage and Selection Operator (LASSO) regression [218] was performed using
the approach found in equation (8.4), where y; is [Chl a] value, §3; is the regression coefficients, X
is a matrix with all the pre-processed data, and ¢ is a threshold that was iterated over with 10-fold
cross-validation of the training data. The threshold that gave the lowest mean square error was
selected.

This also generates models with high levels of interpretability, but in their simplest form, cannot
accommodate significant nonlinear effects. This method does not seek to find any covariation

between variables. In Eq. 8.4, a vector of all ones is represented as 1.

min {[[(vi = foly = XBl3} st Bl <t (8.4)

’

8.3 Results & Discussion

Presented in this section is a discussion comparing the results in terms of regression coefficients,
Normalized Root Mean Square (NRMSE), and R-squared (R?) values for OC4, PLS and LASSO

regression.

All models were tested with the verification data set shown in Figure 8.2, as well as separating out
the fourth scene from the left in Figure 8.1, scene D as the scene inhibits the full dynamic range in

terms of [Chl a] investigated here.

8.3 Results & Discussion
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8.3.1 0OC4 Algorithm

The a; coefficients used in equation (8.3) for the OC4 is computed by taking the least-squares fit of
the training data set. This should give OC4 the best possible starting point.

As can be seen in Figure 8.4 the OC4 algorithm performs similar to what has been previously
reported in the literature [16,209]. No clear trend in the residuals can be found with validation
using a subset of the total data, i.e., the verification data set. The algorithm struggles to determine

[Chl a] > 4mg/m3, with the coefficients found through ordinary least square fitting.

For the validation with a separated scene, scene D in Figure 8.1, the OC4 algorithm can determine
a relative [Chl a] concentration within a given scene from SeaDAS 7.2, but is not able to quantify it

accurately. This is as expected according to to [16].
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Figure 8.3.: Regression coefficients from PLSR and LASSO

8.3.2 Regression Models

LASSO and PLS regression are both linear regression models that provide interpretable coefficients,
as can be seen in Figure 8.3. The models developed deployed 10-fold cross-validation with the
training data set when determining the regression weights. For the PLS regression, the average
mean square error from the 10-fold CV was used to select the number of components, i.e., 20
components, to be used in the regression.

As can be seen in Figure 8.4, both the LASSO and PLS regression models perform similarly on the
given data set. From the results, PLS regression has a potentially negligible higher performance in
terms of NRMSE and R-squared when compared with LASSO. It should be noted that LASSO here
uses 67 of the original 87 variables, which can be valuable from an operational point of view in
terms of execution time. The regression models also struggle to determine higher [Chl a]. Possibly,
due to lack of data representing that part of the data or nonlinear effects.

For the validation with a separated scene, scene D in Figure 8.1, the regression models are also
able to determine a relative and more accurate quantification of the [Chl a]. The regression models
have a better performance than the OC4 algorithm with the validation scheme using data from all

scenes.
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Figure 8.4.: Results from scenes showing Normalized Root Mean Square and R squared.

8.3.3 Comparison

Please remember that this is a test of the internal consistency of OC4 within the SeaDAS 7.2
software, i.e., how different bands used as a basis for OC4 will perform. A more correct data set
with ground-truth samples measured by other means would be a better study than what is given in
this chapter. With the method used here for comparison, it is fair to assume that the performance of

the OC4 algorithm would be affected by how the data is prepared.

With the preprocessing described in section 8.2 the variables need only be atmospherically cor-
rected and moved into a 4. order polynomial kernel [213] away from having the same form as
equation (8.3). The data representation chosen for regression incorporates a well-characterized
nonlinear physical relationship, e.g., the transformation from radiance to reflectance and light
attenuation. This aims to ensure that the ML algorithms, i.e. different forms for regression, do not

put much emphasis on estimating these nonlinear relationships.

As can be seen in Figure 8.4, both the LASSO and PLS regression models perform better than the
OC4 algorithm in terms of NRMSE and R-squared for the validation schemes used here. The two
regression models have a similar performance in terms of the chosen metrics, but the execution time

of the LASSO regression was, on average, 1.8 times faster in the given MATLAB implementation.

It is expected that the LASSO model would execute faster on the target hardware of HYPSO-1 as

well.

8.3 Results & Discussion
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From the coefficient illustrated in Figure 8.3, it is clear that the LASSO and PLS regression
approach emphasizes similar parts of the electromagnetic spectrum. It is also clear that some of the
coefficients, > 555 nm and < 443 nm, have high expressive power in determining the total [Chl a]
concentration. The wavelengths 555 nm and 443nm indicate the maximum and minimum of the
OC4 algorithm. That additional spectral information improves chlorophyll determination, and this
corresponds well with other findings investigating band-ratio algorithms [16,210].

8.4 Conclusions

The presented ML models may provide absolute measurements of [Chl a] concentration from
only using the measured ToA radiance and the attitude and solar angle information related to the
hyperspectral sensor.

Multivariate methods such as PLS seem to be suitable for deriving some bio-geophysical variables
of interest, such as [Chl a]. At the same time, these linear methods can provide an interpretable
derivation of results in the form of coefficients. This explainability makes it easier to understand
why the models derive the values that they do, which can reassure the end-user.

The LASSO model, when compared to PLS, provided a reduction in the average computational
time per pixel, and this encourages its use in computationally constrained systems. These results
are implementation and hardware dependent, and considerations related to this is not accounted for

in work presented here.

When doing ML there is a considerable advantage of having large data sets with verified ground truth,
but this is not widely available for hyperspectral ocean color remote sensing data; thus,HICOdata
quality is assured through SeaDAS 7.2 was used. When more ground truth data become available
with future space missions and systems, better models could be developed using this approach.
Also, the data used in this chapter only represents a subset of the full range of naturally occurring
chlorophyll-a concentrations. Again, with more data, better models could be developed.

Preprocessing with targeted binning of spectral regions of interest for chlorophyll-a concentration,
found through analysis of the regression coefficients, could improve the signal to noise ratio of
the spectra and in return, improve the estimation performance, and could be a topic for further

investigation when HYPSO-1 can provide data.
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Chapter 9

Digital Engineering Development for
HYPSO-1

... plans are useless, but planning is indispensable.

Dwight D. Eisenhower

Digital engineering is increasingly introduced for managing and supporting the development of
systems for space. However, few academic teams have the competency needed to manage projects
using digital engineering and systems engineering. The subject of this chapter is the Academic
CubeSat project, HYPSO-1, where a variety of digital engineering techniques are used to manage

the project.

Here the tailoring that has been applied to fit the academic environment including students from dif-
ferent disciplines and levels of maturity is described. This chapter show how our customized Scrum
methodology for hardware and software integrated with a workflow in a digital tool environment

has given positive results for both the team and the system development.

This chapter also discusses how the HYPSO mission introduce new members to the team and
how to train them to work with digital engineering as a multi-disciplinary team. This chapter
present how the systems engineering and project management activities have been integrated into
the academic CubeSat project, evaluate how well this fusion worked, and estimate its potential to

be used as a guide for other digital engineering projects.

The digital transformation that is taking place in all elements of society calls for continuously
updated knowledge for leaders and engineers. The increasing project complexity introduced by
the advent of embedded systems and Cyber-Physical Systems (CPS), and the tools needed for
developing them, challenges managers to re-think the approach to leading projects and people to
ensure knowledge management and project success [219]. While this is challenging in industrial

settings with experienced engineers and support systems, developing complex systems in an
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academic environment adds factors such as high turnover, coursework, lack of multidisciplinary
teamwork experience, and fewer competent Systems Engineering (SE) and Project Management

(PM) resources.

Digital engineering and Model-Based Systems Engineering (MBSE) are proposed as tools to
manage the challenges of developing systems, delivering integrated multidisciplinary product devel-
opment from concept through the product life-cycle to retirement. We adopt the Digital Engineering
(DE) definition of the U.S. Department of Defense (DoD): “an integrated digital approach that
uses authoritative sources of system data and models and a continuum across disciplines to support
life-cycle activities from concept through disposal” [220, p. 340]. For MBSE, we use the definition
provided by International Council On Systems Engineering (INCOSE): “The formalized application
of modeling to support system requirements, design, analysis, verification, and validation activities
beginning in the conceptual design phase and continuing throughout development and later life
cycle phases” [221]. However, choosing the approach tools and methods to introduce and adopt DE
is equally challenging and requires both human and technical resources.

Concurrent with the advent of digital engineering, approaches such as Scrum and Extreme Pro-
gramming (XP) have increased in popularity both for hardware and software [222]. The Scrum
methodology allows for agile product development to respond to changing demands from stakehold-
ers and new technology developments while continuously delivering features. The digital Scrum
tools also provide a system that supports project management through feature and schedule man-
agement, product management through scope and verification management, and may be integrated
with the digital design artifacts. Extreme Programming takes iterative development to an “extreme”
level, with short iterations, continuous test development, pair programming, continuous integration,
and frequent releases [223]. In software projects where there is scientific code development, and
requirements are either unknown at the beginning or frequently change, XP or Scrum are suitable

over other traditional approaches [224].

Students in academic projects face the challenge of balancing coursework and project work. The
students follow the school year, so long-term academic projects must adapt their expectations to
this fluctuation, and there is a high natural turnover in the team composition when students graduate.
Academic projects may have fewer resources and fewer support systems that product development
often necessitates (e.g., a procurement department or quality assurance knowledge) [225,226]. The
university context requires attention to knowledge transfer and management, and digital engineering

is a tool that can be applied and must be managed to enable a good development environment.

This chapter is based on the longitudinal case study of an academic CubeSat where the students
typically join in September and leave in June the following year, although some students join
in January and leave in June the same year. They contribute to the development of the CubeSat
through work toward a thesis in either software, hardware, or theoretical studies. We explore the
development cycle of a CubeSat in an academic environment using digital engineering tools and
describe how they have been tailored. Furthermore, we discuss how MBSE has been applied and
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what barriers for use were experienced. We found that using agile practices powered with DE
tools and processes greatly improved information sharing and knowledge management and that the
introduction of remotely accessible Hardware-In-the-Loop (HIL) setups coupled with a defined

workflow has enabled improved verification, validation, and integration activities.

9.1 Background

9.1.1 Agile Methodology and Development Practices

Using agile methodologies in software and hardware development has gained popularity in the past
decades, focusing on continuous feedback from the customer and the ability to react to a changing
environment [227,228]. The word “agile” has its etymological source from the Latin word agilis,
which means “can be moved easily, light”, and from the French word agere, which means “to drive,
to be in motion” [229]. In software development, the agile methodology gained popularity in the
late 1990s, and “Manifesto for Agile Software Development” [230] with its 12 guiding principles
was published in 2001. The manifesto includes principles that focus on delivering the highest
value to the customer, to allow for changing requirements, frequent and iterative deliveries of
software, motivating individuals, face-to-face conversations, measuring progress through working
software products, simplicity, reflexive practices, and believing that the best designs come from
self-organizing teams [230].

At universities, software and hardware development serve both to assist scientists in gathering
data and teaching technology and product development to engineering students. In most cases, the
development is not done to deliver a mass-produced product or service, but to contribute to new
knowledge and research. A key challenge of scientific software development is that the scientists
often have formal education in a field other than computer science, for example, in biology, remote
sensing, electronics, or radio technology, but need custom software to address their discipline-
specific research questions [231,232]. Given the open-ended nature of research projects, the process
of requirements specification lacks maturity compared to industrial development projects, making
it challenging to plan the development and test the software. Furthermore, the scientific software
development does not “stop” when the first research project ends, but it may be reused in a different

research project with different goals, and new scientists desiring new functionality [233].

Best practices for scientific software development include: write programs so that the other
researchers understand and stick to a code style and formatting, make the frequently used commands
easily accessible, incremental development with continuous testing, use version control, “plan for
mistakes” and use unit testing, improve performance after the functionality is there, document the
design and interfaces, and choices made during development, and collaborate on code development
and do code reviews [231]. Typical challenges facing scientific software teams are “compromising
between feature demands and quality control; code ownership and management during evolution;
data organization and curation; and quality assurance of heterogeneous components, (...) and a

tendency for prototyping practices to be employed even when scientific software intended to be

9.1 Background
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used in production was being written [234, p. 47:6-7].” In Arvanitou et al., software practices
for scientific development were discussed based on an extensive literature study [232]. They
found that most scientific software engineering literature has studied process improvement, ease
of development, testing and verification, project management, coding, and quality assurance.
Furthermore, that performance, maintainability and development productivity were the highest

priorities for the scientists.

In a survey of agile methods in scientific programming in disciplines such as bioinformatics, climate
scientists, and aerospace, it was found that the agile method XP has been applied successfully in
projects where requirements and design cannot be known in the planning phase of a project [234].
Furthermore, agile practices such as iterative development, continuous integration, and version
control were prominent. In contrast to commercial and industrial software development, no
declared or identified customer reviews the software features. However, scientific publications can
be analogous to customers in which the scientists receive feedback on what they have developed
[234,235]. Sletholt et al. [233] conducted a literature review against 35 agile practices from Scrum

and XP, and found some support that agile practices are suited to testing-related activities.

Agile practices in teaching have gained popularity since the 2000s [236,237], where Scrum or
XP have been the most prominent methods, and typically found in either software or capstone
projects. The students benefit from learning hands-on project experience, learning to prioritize work
tasks, gaining communication skills, and providing and receiving assessment on work done openly.
However, there may be challenges in terms of balancing time commitments, for example, having
concurrent development sessions, or tailoring the Scrum processes to suit the different needs of
team members [237]. Lundqvist et al. [238] reported on teaching agile in cooperation with industry.
They highlighted the importance of ownership, customer engagement, also called the industrial
partner, and the allocation of academic resources to support the academic teams.

According to a study from Australia in 2015, employers want both technical skills and non-

99 ¢

technical professional skills such as “being able to communicate effectively,” “ability to organise
work and manage time effectively,” “being willing to face and learn from errors and listen openly
to feedback,” “being able to empathise with and work productively with people from a wide
range of backgrounds” [239, pp. 263-264]. A similar study conducted in Norway also highlighted
these points [240]. However, the traditional form of classroom teaching may not effectively
facilitate the development of these skills. Using CubeSats for training students in cross-disciplinary
projects has been studied and discussed [22,225,241-243]. Some principles for agile SE that have
been suggested include (1) focus on delivering customer value, (2) team ownership, (3) embrace
change, (4) continuous integration, (5) test-driven, and (6) taking a scientific approach to systems’
thinking [235,244]. Many of these principles are aligned with transferable skills students can be

expected to have when they graduate [239,240].
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9.1.2 Digital Engineering

Digital engineering goes beyond “just” using computer tools to aid engineering but includes the
engineering process and approach to development. Choosing a DE strategy should be done based
on the resources available and the needs of the organization. A framework that assesses the DE
competence was developed by the Space Engineering Research Center (SERC) which looked at the

following areas: adoption, velocity/agility, knowledge transfer, user interface, and quality [245].

While the framework did not specify how to measure competence in each area, it listed different
factors and examples of processes or outcome metrics that could be used. Some factors identified
can be categorized as objectives for why DE measures are incorporated, others as factors which may
influence the adoption, and other factors as outcomes and direct competencies the organization can
gain with DE practices. DE has a strong relationship with MBSE and Model-Centric Engineering

(MCE), and establishing a “single source of truth” for a project [220]. However, there is currently

no single solution for the whole system lifecycle to provide an authoritative source of truth.

Most work-forces and organizations need to transition their methods and methodologies to DE
and incorporate it into their engineering practices, and ensure possibilities for collaboration and
information sharing throughout the system lifecycle between developers and the stakeholders. Most
university CubeSat teams use some degree of DE, such as employing version-controlled software
repositories, using CAD tools, shared cloud documentation, and using cloud-based issue tracking

or project management tools to achieve integration in the management of knowledge [22].

Garzaniti et al. [246] also describe the use of Scrum using an online tool to manage the work in
an academic CubeSat team. The results presented were from the preliminary design phase of the
space hardware. Garzaniti et al. [246] found that the Scrum approach helped react to unforeseen

changes and delays, even when the changes impacted external manufacturers. Furthermore, that it

takes time for the team to become accustomed to Scrum and the scoring of issues, similar to [237].

Huang et al. [247] describe the development of a CubeSat using agile practices. They highlight
the importance of tailoring the approach to the project’s needs, using interactive design reviews to
produce as much feedback as possible, empowering smaller teams to enable faster decision-making

and ownership, and allowing for continuous testing and improvement.

9.2 The HYPSO Case Study
9.2.1 The HYPSO CubeSat Project

In this chapter, we report on the case study of the CubeSat project HYPSO. It is the first research
CubeSat mission for the NTNU, as a part of a strategy of monitoring coastal areas using autonomous
assets [23]. The project’s mission is to:

“To provide and support ocean color mapping through a Hyperspectral Imager (HSI)
payload, autonomously processed data, and on-demand autonomous communications

in a concert of robotic agents at the Norwegian coast.”

9.2 The HYPSO Case Study
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Figure 9.1.: Overview of the HYPSO CubeSat and its subsystems. Model made using CORE/GENESYS.
Iustration By Evelyn Honoré-Livermore.
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Figure 9.2.: Overview of the payload developed by the HYPSO team. Model made using
CORE/GENESYS. Illustration By Evelyn Honoré-Livermore.

The university CubeSat team develops the payload, which consists of an optical telescope, a COTS
camera unit, a COTS processing unit, an electronics interface board, an electrical harness, software
to control the payload and to perform the image processing, and mechanical support structure which
also acts as the mechanical interface to the satellite bus. Block diagrams of the spacecraft and
the payload are given in Figure 9.1 and Figure 9.2, respectively. Apart from the above-mentioned
COTS components, all have been developed in-house. In addition to the payload, there is also the
development of a local ground station and the mission operations center and associated procedures

and functionality, effectively resulting in a System of Systems (SoS).

The CubeSat project team includes 10-20 MSc and BSc students, one electronics engineer, a
procurement officer, 6—8 PhD/Post.Doc. researchers, and professors that are supervising the thesis
work or offer experience and support. The project manager is a Ph.D. candidate examining the value
of MBSE to deliver the CubeSat on time and within schedule. The researchers typically join the
project for 2—4 years, and the students for 4 (BSc) or 9 (MSc) months when they write their thesis.
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The backgrounds of the students vary, but typically they are enrolled in engineering cybernetics,
embedded systems, electronic systems, product development, or material science. Some of the
students have experience working in teams and sometimes multidisciplinary development through
previous coursework or volunteer organization. However, not many have experience with product

development, which typically has more unknowns than course-organized project work.

The project had its first major milestone in December 2017, the Mission Design Review (MDR).
Before this, there had been some software development, mainly focused on algorithm development
for processing, without target hardware or system in mind. The overall system maturity timeline is
shown in Figure 9.3, and a more detailed timeline of the progress in 2020 is shown in Figure 9.4.
Most of the integration and HIL testing occurred in 2020.
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Figure 9.3.: Overall timeline of in-house developed product maturity, including both hardware and soft-
ware.
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Figure 9.4.: Timeline of product maturity through 2020. A different rendition is given in Figure 11.1

9.2.2 Software System Architecture

The high-level system architecture is given in Figure 9.5, where the flow of signals and data is
bi-directional. Some of the items in the software architecture are developed in-house, while others
are delivered by suppliers, or interfaced as a service. The architecture was unclear at the beginning
of the project, and has been gradually defined throughout the system development lifecycle. The
components have also undergone continuous development and updates to the interfaces to a certain
degree. The reasons for continuous development and changes are

* New functionality requirements and new performance requirements.
¢ The inherent constraints of the chosen components.

¢ The learning and discovery process of developing a CubeSat system for the first time.
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Modular software components require that interfaces and software architecture are defined. While
the initial software architecture was developed in late 2018, not all interfaces between different
components were defined. This meant that much work was required to integrate the in-house
developed components with the developed software. Furthermore, the interface definition to
other spacecraft subsystems had not been considered before 2018, such that the components also
needed adaption to enable integration to the satellite bus. The software-based subsystems allow for
hardware to host the functionality of several subsystems. For the HYPSO spacecraft (Figure 9.1),
the subsystems “SYS1.3 ADCS Subsystem” and “SYS1.5 OBC Subsystem” are both hosted on
the same physical component, the Flight Computer (FC). On the payload, the physical OPU hosts
the image processing pipeline, the camera control, the payload operating system, and telemetry

services for the payload.

In Figure 9.5, each partition is composed of tightly integrated physical and software subsystems,
namely, a cyber-physical SoS. The space environment will affect each of the interfaces between
the subsystems and the spacecraft’s performance, and the software subsystems need to adjust (for
example, pointing the spacecraft towards the sun when the battery levels get low) to ensure function-
ality and performance. Additionally, to develop hardware components, one needs to consider the
software, and when developing software components, one needs to consider hardware limitations,
such as data transfer speed limitations or processing hardware physical layout. Furthermore, the
“Mission Control Software”, and “Mission Operations Center”” were not available until mid-2020,
which led to the discovery of new functionality and software adjustments to facilitate operations
of the payload. When the spacecraft is operational and commissioned, the operator will only
interact with the first box (the telemetry display and the hypso—c11i (user interface translating
commands to packets used for communicating) or nanoMCS interface) and the OPU-services
on the HYPSO spacecraft, under the expectation that the underlying system functions as expected.
Despite the many hardware and software systems between the operator and the spacecraft, they
must exchange information correctly and promptly.
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Figure 9.5.: The software system architecture. OPU = On-Board Processing Unit, FC = Flight Computer,
EPS = Electrical Power Subsystem, PC = Payload Controller, CAN = Controlled Area Network,
GS = Ground Station, RF = Radio Frequency, NNG = nanomsg Next Generation.

9.2.3 Tailoring of the Agile Methodology

The Scrum methodology has been tailored such that the team members deliver either a product

increment or a thesis, as shown in Figure 9.6. The sprints typically lasted two weeks, and there was
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Figure 9.6.: Tailored Scrum process with a product backlog consisting of both thesis tasks and project
work tasks. Illustration By Evelyn Honoré-Livermore.

a daily scrum meeting (a stand-up) in which issues were raised or discussed for clarification, in
addition to general keeping in touch with each other. The team uses GitHub for managing the code
repository and schematics, and providing version control and release management [22]. GitHub

is a service that provides users of several different backgrounds and development approaches to

work together and at the same time have a coherent overview of the current status of the codebase.

GitHub has a plugin for managing Scrum with a kanban board. Kanban boards, from the Japanese
word meaning billboard, are used to visualize and manage workload by providing an overview of
work-in-progress, backlogged items, blocked items, done items, and review-in-progress items. A
kanban board is based on pulling tasks instead of being pushed, which enables the students to take
control of their workload. At the same time, the Scrum master (called group leader in Figure 9.6)
can control which items are included on the board, so the work that gets done is pertinent to the

schedule and the product to be delivered.

Planning, workflow, and continuous integration Planning and developing a complex system
are not guaranteed to align well with research goals found in academia. Finding synergies and
acknowledging what needs to be prioritized can benefit the development of a CubeSat and provide
a better foundation to build and expand research activities. While Scrum traditionally has a goal of
delivering a pre-defined MVP at the end of a Sprint, this was not the case for HYPSO. In this case
study, participants contribute to components ranging from hardware to User Intrerface (UI). Until
the first agreed software release at the end of 2020, as shown in Figure 9.4, the sprint backlogs
included issues which the team members “wanted to focus on” and had time to work on. There was
an agreement between the team members when selecting issues, and there was a continuous focus

on working on issues labeled as “bugs” or mission-required functionality (defined by the group
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”

leader in conjunction with the project manager) instead of issues categorized as “enhancements
in GitHub. Furthermore, each participant developed modules without defined interfaces between
them. This made retaining the value added from different contributions, and especially integration,
unnecessarily complicated and time-consuming. A standard workflow was proposed to mitigate
these challenges, became a part of the on-boarding procedure, and provided the students with a

shared repository.

Some of the contributors only participate in the development for as little as one semester, and
there are limitations to how complicated the workflow and the development tools can be. To
achieve a convenient workflow, development needs to be coherent, and a multitude of development
considerations have to be made clear and followed up to ensure the desired quality of the project
and product. Continuous Integration (CI), or the practice of integrating contributions from multiple
developers into a software product, is beneficial for collaborative code development [248], and is
also promoted in XP practices. A workflow focusing on integration was then proposed, i.e., the
GitHub workflow [249]. This workflow states that the main branch shall always be working, and
any feature or fix to be included in the code base shall originate from a dedicated branch, i.e., there
are no development branches that branch out beyond the main branch. This workflow encourages
contributors to frequently merge their code contributions into a central repository for review and
testing, as is considered a good practice in software development [249], and often mentioned as an

important lesson learned from CubeSat development teams [22].

9.2.4 Verification and Validation Using Hardware-In-The-Loop Setups

Verification and validation are essential to ensure that the product functions as specified (verification)
and meets the needs of an end-user (validation). Collectively, these will be referred to as testing. In
the HYPSO project, several testing regiments were developed to expand the number of reviewers.
The software group leader emphasized that approval of a Pull Request (PR) should be done by
reviewers, not necessarily involved in the development of the code. In other words, the contributors
were required to describe their changes or additions in such a way that “any” software team member
could be able to review them. Even though not every team member can review every change, this
motivates the developer to make code modifications in such a way that they are understandable to
“any” person responsible for reviewing said changes. To become part of the master branch, at least
one other person has to approve the suggested changes. When the code changes are committed
to a separate feature branch of the central repository, a team member then builds and tests before
being accepted as a valid code base addition. If no adverse effects are detected during the review,
the pending PR is then merged into the master branch. This review is the manual testing process
and ensures that the newly added feature or fix is tested independently and sufficiently. This testing
strategy is also described in chapter 11.

In addition to the manual process, several automatic scripts have been developed to do routine

tests of nominal operations of the system. While simplifying testing any proposed changes on the
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target hardware, this also provides a platform for other types of testing. Several installations of
the system, laid out as closely as possible with the actual satellite, were set up to be interfaced
remotely by any team member, namely the HIL setups. HIL setups can be used for verification of
functional requirements [250], and if deployed on the target hardware, it can also verify performance
requirements. Because university CubeSat projects often have limited funding available, having
a full engineering model (a replica of the system) of the satellite bus and its subsystems is not
always feasible. Instead, using a FlatSat (a flat satellite) with subsystems provides many of the
same functions at a much lower cost. The satellite bus providers often sell FlatSat services at lower
fees because the subsystems that constitute the FlatSat can be shared between different customers,

or the subsystems can be development models used by the satellite bus providers themselves.

Two HIL setups were developed to facilitate verification and validation activities, and to improve
early integration efforts. The HIL setups are shown in Figure 9.7, and are called LidSat (because the
systems are mounted in an ESD-box lid), and pHIL (payload HIL). Both setups use target hardware
for the software subsystems, and have different purposes. The pHIL setup is mainly for testing the
payload and its communication interface with the command-line interface, while the LidSat is used
to test both the payload software and the integration of the payload to the spacecraft. The pHIL
is connected to a workstation that is running a continuous integration server. We have used both
Jenkins and GitHub actions for this purpose in the project. To test a branch of the software, the
branch is first compiled and initiated on the payload. Then Jenkins runs a set of tests on the target
hardware. The outcome of the tests (both whether they pass and their performance) is recorded in a
database. The central database allows the developers to see how various branches have performed
during the test. The test set includes sending several commands that operators commonly use
and ensuring that the correct results are obtained for different parameters. The LidSat has both
the Electrical Power Unit (EPS) and payload controller connected via a Controller Area Network
(CAN), with an additional connection to the rest of the spacecraft subsystems on a FlatSat in Vilnius
through the internet with a CAN-over-internet bridge. These are the primary interfaces for the
payload, and as such, the FlatSat replicates integration with the spacecraft.

Furthermore, integration testing has been automated by scripting commands sent from the operator
computer to the payload. Scripts have been developed to aid other hardware team members in
testing nominal operations when mechanical changes are made, and these scripts are also used in a
test-to-failure scheme where the procedures are repeated a set number of times or until failure. A
script testing the potential performance alterations was also used on the system and a test of the
subsystem communication and integration. These tests are run routinely to uncover unforeseen

adverse effects of any proposed code changes.
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Figure 9.7.: Hardware-in-the-loop test setups.

9.3 Experience Using Digital Engineering in an Academic
Project

The product development lifecycle with its DE tools and methods are shown in Figure 12.1. Note
that specific tools used for analysis are not shown, as they depend on the specific discipline and
task the team member is working on. This lifecycle is supported by the GitHub workflow and the
Scrum method for daily work management. Many improvements can be made, but the DE strategy
presented here is low-cost and makes use of well-established processes and tools that are readily
available. Furthermore, while some training is needed, and there should be an agreement to be

consistent, most HYPSO team members agree that the benefits greatly outweigh the cost.

In this section, we will discuss which factors influence the approach to DE, evaluate the effectiveness
of using agile practices, the educational aspect of the HYPSO project, and also provide some insights
gained during the COVID-19 outbreak and how this relates to DE [226].

9.3.1 Choice of Digital Engineering Strategy

The choice of DE processes for the HYPSO project team was continuously evaluated, with the
introduction of new methods and tools as needed. The overall strategy was to adopt and test different
DE approaches throughout the project. Typically, the solutions chosen were based on previous
knowledge or experience from the team members in other projects. This previous experience also
made the training of other team members more straightforward, which is a critical component in

adopting new methods and tools.
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From the list in McDermott et al. [245], the factors listed in Table 9.1 were chosen. The factors
were selected by reviewing the discussions in the project team that led to the DE approach. No

quantitative measures of DE competency before and after the introduction of tools were done.

However, results from action research have been used as a basis for this chapter.

Table 9.1.: List of factors influencing digital engineering strategy at HYPSO project. Right-hand side
shows the sociotechnical factors, while the left-hand side are more technical.

Digital Engineering Competencies

Category Factor Category Factor
Quality Traceability Knowledge transfer Better information sharing
System quality Better information accessibility
Reduce defects/errors Improved collaboration
Improved system design Better knowledge capture
Increased effectiveness Improved architecture
Strengthened testing Adoption General resources for implementation
Velocity/Agility Improved consistency Workforce knowledge
Reduce time DE processes
Increased capacity for reuse Training
Early V&V DE tools
Easy to make changes Demonstrating benefits
Higher level of support for integration People willing to use tools
User experience Improved system understanding

Reduce effort
Higher level support for automation
Better decision-making

Adoption The DE tools were based on what would have a high adoption rate, be open-source or
free/educational license, and that there would be little resistance from the students. For example, the
project team conducted polls to decide on which cloud file repository to use, which communication
platform to use, and which video conferencing tool to use. This means choosing tools with a
well designed user interface, or tools that have been used in other courses, closely linked to
Workforce knowledge, to reduce the need for Training as there are little General resources for
implementation. The implementation efforts mainly have to be performed by students or group
leaders (Ph.D. candidates). The DE processes were selected based on recommendations in literature
review [230,249,251] and recommendations from other CubeSat teams at informal discussions

at conferences such as the International Astronautical Conference or Small Satellite Conference.

Considerations were made to find processes that would not require too much General resources for
implementation and that would quickly Demonstrate benefits to the project team, to ensure that the
team members were Willing to use tools.

Knowledge transfer During the first year of the HYPSO project, challenges with Information
sharing frequently occurred, such as missed hardware changes that influenced both software and
hardware performance but were not communicated clearly. Furthermore, the complexity of the
system necessitates Better information accessibility and Better knowledge capture, which were two
of the main objectives to fulfill for the DE tools and processes chosen. The Agile methodology
used in both hardware and software teams Improved collaboration and Information sharing. This

improvement was achieved by having the issues documented in GitHub and through the daily joint
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stand-up meetings. In addition to the technical benefits of using the GitHub workflow, having a
standard workflow could also increase the feeling of team cohesiveness and shared understanding
of how the fragments can work and should work together through, for example, testing each other’s
code. The joint stand-up meetings enabled a better understanding of how hardware and testing
worked for the software developers and limitations in, for example, physical interfaces, from the
perspective of hardware developers. On the other hand, the hardware developers got a better
understanding of how the system would be used operationally, and could align their development

and prototyping schedule to accommodate for verification and validation activities.

User experience Because the DE strategy involved stand-up meetings, 3D-printed hardware
prototypes, and HIL test setups, team members acquired an Improved system understanding. While
it is difficult to prove an improvement, discussions during review meetings have been less about
clarification and more about design enhancements and future development. The first iteration
of the agile methodology used a physical kanban board, which was not adopted well by the
team. Introducing a GitHub kanban board Reduced the effort needed to separate software code
development from the process of managing the development. This separation is a clear advantage
of using DE tools and processes. Decision-making has been improved for hardware by employing
3D printing to prototype and test design alternatives, thus giving more data for making decisions.
Automatic unit tests are run on HIL setups before and after software updates are merged to the
master branch, providing higher level support for automation. However, all unit tests must be
developed manually, so there is an effort required there for the developers. The compilation of code
generates code documentation in Doxygen automatically. Doxygen can provide information about
how functions are related, which helps information accessibility and sharing. Future work could
be on enabling more automatic generation of unit tests in parallel with code development or focus
more on test-driven development where the passing functionality is developed after the tests.

Velocity and agility The HYPSO project is a part of a long-term strategy for establishing capabilities
for developing small satellites for scientific purposes at NTNU [23]. There is thus a need for the
development strategy to have a capacity for reuse so that the different subsystems can be used across
a variety of platforms with some changes, and reused in new satellites. Introducing the different HIL
setups has increased the capabilities for Early V&V, which has Reduced time required to discover
bugs. In addition, the increased employment of 3D-printing technology (also a digital technology)
in prototyping and the development of Ground Support Equipment (GSE) has reduced the time
for hardware development through increased Early V&V. Having 3D-printing technology in-house
in the lab has made it easier for the team to try out new designs or physical satellite architectures
and prototypes. Furthermore, there is a Higher level of support for integration when combining
3D-printed prototypes of hardware, mature HIL setups, and test software that can emulate physical
conditions such as lost packets on the radio communication link. The GitHub workflow process
introduced an Improved consistency, together with other standards. The shared repositories enabled
students to see how others write code and test, improving consistency across the whole codebase

and functioning as a resource for reuse in other platforms or future satellites.
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Quality The goal of introducing HIL setups and the GitHub workflow was to Strengthen testing and
thus Reduce defects and errors. However, prior to the introduction of the HIL setups, the Github
flow also helped with increased testing and integration into the master branch from mid-2019. There
were no measures of effectiveness prior to the introduction of DE measures, and the discussion
regarding effectiveness is given in Section 9.3.2. While the issue tracking that GitHub provides
was not considered explicitly when choosing GitHub for version control and code collaboration,
the issue tracking and discussion functionality that it supports has enabled better Traceability of
design choices. For example, if a bug or unwanted behavior of code during testing resurfaces, it is
possible to search for keywords in GitHub, find similar bugs, and investigate if similar solutions
can be used to mitigate the unwanted behavior. This Traceability and automatic documentation can
Reduce the time spent bug fixing for new developers who were not a part of the project at the time
of the original bug. An added benefit from incorporating the design into DE tools such as GitHub,
was that it required a conscious decision and discussions regarding architecture and system design
(related to both Knowledge transfer and quality), and there have been three instances of refactoring

of code systematically to improve the maintainability and modularity of the codebase.

9.3.2 Effectiveness of Using Agile Digital Engineering for Software and
Hardware

Tailoring of Scrum

The Scrum process was tailored to include issues related to thesis work as well as product devel-
opment tasks, as shown in Figure 9.6. The stand-ups have included both the hardware and the
software team, and people could join either physically or with their phone or computer. Most team
members have reported that stand-ups have increased their understanding of the system and sharing
of information. Some students have reported that the stand-ups increased in relevance as they
were working on integrating subsystems, but not so much when developing the prototype modules.
Another tailoring that was done was to agree on which issues would be performed and ensure that
each student had something to work on. This was needed to accommodate thesis work. Unlike
traditional Scrum processes, such as the one described by Garzaniti et al. [246], the team did not
agree on the functionality for each MVP to deliver at the end of each sprint. In hindsight, a better
defined MVP might have improved the results by having a shared goal for each sprint, which can
contribute to team cohesiveness and commitment. This is made difficult by students’ competing

objectives and capstone projects being individual undertakings.
Scrum Performance

Software The first sprint using GitHub kanban was held in early 2019, and apart from the first
sprint, all sprints were two weeks long. The sprints started long after the software development
began, and the team had a good enough overview of the functionality. The first couple of sprints
had a high number of attempted points, with a high “miss-factor” of points not done (February to

June). This can be attributed to the learning process and is not uncommon for new Scrum teams.
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Team members mentioned that it was challenging to figure out how to score their tasks. The Scrum
leader can support this process by guiding the students, for example, by referring to previous work
they have done and how long it took them to complete. An ongoing challenge has been to have
enough reviewers to reduce the number of points in the “Review-in-progress” column. Since the
workflow requires that someone else reviews the code, there needs to be at least one other person
with similar knowledge and capabilities to review the code. This may not always be available when

the students’ priorities are changing to consider coursework.

In April 2019, it was decided that the software team leader would be the Scrum leader moving
forward and lead the sprint meeting. Furthermore, sprint reviews should include code demonstration
or more accurate documentation of how an issue was closed. The team has also discussed how to
agree on a “definition-of-done”. This definition has not been finalized yet, but there is agreement
that it should be related to the type of issue being solved. For example, issues related to these can
be draft sections or chapters, and code issues could be a bugfix, a functioning module, or a function
that has resulted in a PR.

[l Points attempted actually
[ Total points done
[IPoints in progress

[l Points review in progress
200 [ Points to-do

[E Points blocked

Mar Apr May Jun Jul Aug Sep Oct Nov
2020

Figure 9.8.: Full SW Sprint. Illustration By Evelyn Honoré-Livermore.

Hardware The hardware team started using the agile framework and sprint methodology at the end
of Q2 2020. The payload design had reached a high level of maturity by then, and most of the parts
and suppliers were chosen. All satellite bus components had been procured. The remaining work
was focused on verification and validation activities, and coordination with external test facilities
and the in-house mechanical and optical labs. In addition, planning began for the design updates
for the next CubeSat to be developed. As shown in Figure 9.9, there is a break during the summer
holidays. The performance has varied over the nine two-week sprints that have been so far. Many
Scrum teams take a while to learn how to estimate points to issues and how much work can be done
in one sprint. Towards the end of the semester, the total points done matched the points attempted
better. This could be because the team became more accustomed to the Scrum workflow, or because
the deadline for delivery of the flight model was getting closer, and people felt committed to this
milestone. The blocked issues were typically due to external factors, such as lack of access to
testing or machining facilities, similar to the findings in [246]. There have been continuous redesign

and rework activities. The stand-ups helped coordinate the activities between designers and the
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group leaders organizing the support facilities. Some team members stated that using Scrum helped
them prioritize tasks and not get “distracted” during the two weeks.

However, the most significant difficulties were related to attendance and commitments to sprints. It
was challenging for the group leader to motivate the students when there were too few collaborative
tasks. We found that a two-week duration of sprints was suitable for the team because the students
were available to deliver increments in that period. Longer sprints could make it harder to motivate
the students, and shorter duration would make it challenging to deliver increments [246]. The
motivation could be improved by introducing stricter MVPs or by spending more time planning
the work up-front. The MVPs could, for example, specify new features to be included on the
hardware prototypes, iterated simulation results, increased performance, or lower manufacturing
cost. The MVPs could also be tangible, for example, 3D-printed prototypes and parts that other

team members can validate or simulated assembly and incremental tests.
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Figure 9.9.: HW sprint in barplot. There was a break during the summer holiday. Illustration By Eve-
lyn Honoré-Livermore.

Lessons learned The team experienced challenges with commitment and attendance at stand-up
meetings, especially with team members who started during the COVID-19 lockdown (fall of 2020).
There were fewer on-boarding and team building activities than previous years, and little or no
chance of face-to-face meetings. Some students used the Kanban board to organize their work, but
did not join many of the stand-ups. Based on this experience, we see that it is not sufficient to have
good workflows and tools alone, but that the social aspects also matter. The team members need to
be a part of the culture, and people need to feel that they are a part of the team, which is consistent
with findings of Garzaniti et al. [246] and Masood et al. [237]. The HYPSO team combined the
sprint planning and review meeting to reduce time spent in meetings [237], and adjusted the sprint

scoring and length to accommodate the overall school schedules and workload [237,246].
Integration, Verification and Validation

The HIL setups have been instrumental in easing integration between different systems, both
for software development, operations development, and hardware development. For software
development, the HIL setups facilitate not only verification of software changes before merging

with the master branch, but also verification that the changes work with the satellite bus via local
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engineering model versions of subsystems or the FlatSat. There have been HYPSO-initiated
interface changes, and NanoAvionics (the satellite bus provider) initiated interface changes. These
interface changes have been to improve performance or add functionality. By having a HIL
FlatSat-setup with physically distributed subsystems, engineers in Vilnius could update the modules
remotely and work concurrently with HYPSO project members. Challenges with the HIL setups
included finding people to work on setting them up and developing required functionality, such as
automatic tests, and maintaining them. It was also challenging to find sufficiently exciting thesis
topics for working with HIL and testing activities.

The HYPSO project team can choose which subsystems they need to locally with the payload
(as shown in Figure 9.7), and which subsystems can be located at the supplier premises. The
subsystems located at supplier premises can quickly receive hardware upgrades without shipping
modules back and forth. Additionally, the distributed system still allows the supplier to log in to
subsystems located in the university to perform software upgrades, configuration changes, or other
fixes.

For operations development, the HYPSO operations’ developers have been able to perform re-
hearsals to validate that the software functions and performs as expected. This has been enabled
by allowing the operator to connect to the HIL LidSat setup using the hypso-cli user interface (as
shown in Figure 9.5). Experiences from the operators were critical for preparing the first official
software release for deployment on the flight model. This is discussed in chapter 11 as well.

COVID-19

The COVID-19 pandemic caused the university to lock down on March 12th 2020. Luckily for
the team, the HIL setups had been implemented at the end of February, which allowed for remote
access and testing of software on target hardware. In addition, the regular stand-up meetings had
begun the year before, and only required a shift to a completely virtual meeting. The stand-ups
were a bit longer than they had been previously, because more people joined regularly and there
was a need to move some of the informal discussions that usually take place in the physical lab to
the stand-ups. Team members also said they appreciated the stand-up meetings because they were a
social interaction forum. The issue tracking on GitHub for software helped to follow-up the work,
monitor the project’s progress, and was not affected by the lockdown. There was an increase in
commits to the main software repositories around the time of the lockdown, and the high frequency

persisted until the end of semester, as shown in Figure 9.10.

However, no hardware integration and testing could be performed during the lockdown, since the
team members were not allowed to travel to external test facilities. This created a severe schedule
delay to the project. The hardware team spent time preparing design documentation and refining
test plans until the lockdown restrictions eased.
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Figure 9.10.: The two main software repositories commit frequencies. Illustration By Evelyn Honoré-
Livermore.

9.3.3 Educational Aspects

In the context of digital engineering, the HYPSO project organization described in this chapter
has many similarities with the projects described in Berthoud et al. [22]. The university CubeSat
project format is an inherently interdisciplinary project which prepares students for future work,
even if it may be in different industries. Additionally, the use of HIL setups, a strict GitHub
development flow, and agile practices in software and hardware development provide the students
with a more extensive skill set for future employers. The students gain practical experience using
digital engineering methods and tools, while still delivering the required coursework and thesis work.
While these skills may be gained through capstone courses as well, having an active “customer”
with strict deadlines and objectives in addition to educating students, can motivate teams to work
even harder with delivering results [238]. The customer for the HYPSO project was the group
of scientists who needed the data from the CubeSat, and the deadline was set by the commercial
launch date. However, managing CubeSat projects with agile practices requires coordination and
training, and should not be underestimated [236-238].

Although we have not done a systematic study of the transferability of skills learned during the

HYPSO project, one student mentioned that:

I have noticed that in my job, where they use Scrum with Kanban on a digital platform,
I at once felt at home and prepared for how to do my work. And I also felt that I
could contribute fast. The meeting structure and documentation (templates, as-built
documents, internal and external design reviews) were similar to how we did it in the
HYPSO project, which made it easier for me to see the value of what I had learned
and realized the relevance of the HYPSO practices. (...) I felt I was prepared to start a

job because I know how the workday is structured and how to organize my work.

Some of the graduated students have joined the team as PhD candidates and taken on leadership
roles. The rest of the graduated students have joined companies in various industries, and some still

join HYPSO design reviews or contribute to the code repository.
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9.4 Conclusions

Digital engineering is needed for managing the development of complex systems. This requires
a conscious effort throughout the organization, and the strategy must be tailored to the specific
needs and constraints. There is also a need for engineers who are trained to use digital engineering
approaches in their work, in all lifecycle phases of a project. Academic CubeSat projects provide
an arena to train future engineers by collaborating in interdisciplinary system development. The
students gain both technical and non-technical professional skills. For academic CubeSat projects,
the needs for a digital engineering strategy are often similar to the industrial setting, but the context

and constraints are quite different.

In this chapter, we have described the case of HYPSO-1, an academic CubeSat project in Norway,
where we are developing a scientific 6U satellite and ground segment. Because of the challenges
with knowledge sharing, unclear decision-making, lack of coordinated planning, and poor code
quality and documentation, the project organization introduced measures including digital engi-
neering tools and methods. We have outlined the project development lifecycle and highlighted
how agile practices supported by a digital kanban, a GitHub workflow, and HIL setups have been
essential in managing the development of the complex CubeSat. In addition, we have discussed
in which ways the digital engineering strategy chosen contributed to verification and validation
activities, integration of systems, knowledge sharing, and how the tools and methods supported
development even during the COVID-19 lockdown. However, the tools and processes alone are
not sufficient for the adoption of the DE work environment. People need to be encouraged to use
them, and social aspects such as team cohesiveness and commitment are essential. Throughout this
process, the project manager has used a participatory approach in which all team members could

influence the practices and processes.

The digital engineering strategy adopted by the HYPSO team is a low-cost, low-effort approach
using readily available tools and methods. Some methods, such as agile practices and software
repositories, have been used in other CubeSat projects. There are valuable lessons to be learned
between different academic teams and between industry and academia on how to best approach
and implement digital engineering in the organization. Future work will look at including more
MBSE tools and incorporating them with the product lifecycle proposed, to increase the common
understanding of the system and support knowledge management. Lastly, it is common to simulate
the hardware responses to combat the hurdles that using target hardware for testing can cause.
The caveat will always be that the addition of mocking software and the addition of unit tests will
be prone to the same coding mistakes as any software development. The additional overhead of
producing and maintaining a mocking library can take away resources from code development that
would otherwise provide the needed functionality or enhance it. The addition of unit tests should
be added when possible, and could help uncover undesirable side-effects of any proposed changes

to the code base.
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Future studies could look at: (1) how the graduated studies have experienced transferability of
skills and practices gained during the HYPSO project; (2) how other university projects use DE and
how the students experience it there; (3) opportunities for cooperation between the CubeSat project
and the broader university context, for example by introducing aspects with DE as a part of the

student curriculum to prepare for joining cross-disciplinary projects.
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Chapter 10

Software Development and Integration
for the HYPSO-1 Payload

Almost everything we know about good software architecture
has to do with making software easy to change

Mary Poppendieck
Implementing Lean Software Development: From Concept to Cash

This chapter presents the software architecture, development, and integration of the COTS based
hyperspectral imaging payload onboard the HYPSO CubeSat. The chosen service-oriented software
architecture provides a modular design that is planned to aid future development. Furthermore,
this software architecture is intended to support in-flight updates of the onboard image processing
capabilities of HYPSO. A perspective of the benefits of the software architecture for a general
CubeSat subsystem is also given.

The strengths and weaknesses of our development procedures for software are presented and
discussed. An issue tracking system to report defects, propose new functionality, and other
structural changes have been used during development. The issues related to defects or bugs
reported during development were analyzed and categorized to understand better what issues
typically arise for this type of project. The findings from these issues indicate the importance
of early testing, code reviews, and the continuous availability of target hardware for successful

software integration when relying on a modular design.

The HYPSO CubeSat, with the Flight Model (FM) given in Figure 10.1 is the first scientific satellite
developed by the NTNU SmallSat Lab. It is currently scheduled to be launched in January 2022.
Details of the mission concept and justifications can be found in chapter 2. The throughput of
hyperspectral sensors is often limited, due to the data volume, by the available communication

links. Thus, an OPU with a FPGA that allows for a modular architecture is used to process the
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hyperspectral image cube more efficiently in terms of data size reduction, power consumption, and

operational time, when compared to just using a CPU.

Next, we briefly describe the software development and integration of the payload, which contains
the OPU with an HSI and a RGB imager.

10.1 HYPSO-1 Project Organization

By the definition used in Berthoud et al. [22], HYPSO is a university space project. Student
continuity is often stated as a significant challenge for university-led CubeSat projects [22,252].
Within the HYPSO-1 project, students from different BSc. and MSc. programs provide contribu-
tions to the project mainly as part of their thesis, curricular projects, and as summer interns. The
team also consists of Ph.D. candidates and researchers who manage, develop, test, and provide
continuity. There is a need for project management support when developing CubeSats [22], which
includes crucial documentation to transfer knowledge and extensive reviews, in addition to the

development.

Figure 10.1.: Partially assembled CubeSat (NanoAvionics M6P platform) FM. Photo by Elizabeth F. Pren-
tice

10.1.1 Scientific Software Development

Scientific software is used for the “analysis, design, testing, and deployment of software applications
for scientific purposes [232, p. 1]”. Software applications are developed in tandem with the
research case study, algorithm development, or experiment, although some scientists may lack
the necessary training in software engineering practices. This can hinder the effectiveness of the
effort spent [232,253]. Heaton et al. [253] reviewed scientific software development practices

and highlighted that scientific software is often large, complex, and long-lived and may outlast
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the researcher — leading to problems with knowledge management caused by turnover. These
challenges may be mitigated using best practices for software development, such as documentation
[254], refactoring [254-256], issue tracking, version control [255], peer code reviews, and design

patterns.

Surveys from other university CubeSat projects recognize that software development and integration
is often a challenging and time-consuming activity [21,22]. Reconciliation of software development
with system engineering practices requires a conscious effort, and choosing and implementing the

correct system lifecycle model can be challenging [257].
10.1.2 CubeSat Software Architectures

Software architectures can generally be divided into: state-machine types, centralized architectures,
and distributed architectures using messaging systems, as described in the CubeSat flight software
architecture review in [258].

State-machine-type solutions offer a simplified implementation of the flight software when the
functional requirements are well defined. Still, a change in requirements or a discovery during
development can affect the states and transitions in unforeseen ways, and it can be challenging
to retain modularity [258]. Centralized architectures are used when there are hard real-time
requirements [259,260]. The HYPSO CubeSat is constrained by the Application Programing
Interface (API) available for the COTS camera, which requires an embedded Linux OS [260]. This
OS is not designed to have real-time processing capability, and does not guarantee that specific
processes are completed within a given deadline or at a specific time. Distributed architectures such
as a Service-Oriented Architecture (SOA) are more flexible solutions to support an incremental
development or changes in requirements, when the services are independent [258]. For SOAs, the
request-response pattern is common when developing Cubesat Space Protocol (CSP) applications
[260], and adds more flexibility and demands less coupling between modules compared with
centralized architectures [258,260]. The requirements for the HYPSO software system are detailed
in Table 10.1. The system needs to be modular and extensible to be able to utilize the available

contributors fully, and this led to the decision to use a SOA.
10.1.3 Contribution

The remainder of this chapter presents the HYPSO mission perspective, which determined how
the software architecture was designed and developed to accommodate the requirements described
in Table 10.1. The corresponding management model was adapted to support the development
and integration-related challenges. We tailored digital engineering practices to suit the university
context [261]. In addition, we chose an architecture to enable the development of the software
as modules of services and features and focused on early integration of these. This software
development approach demonstrates one way of developing a CubeSat Payload with similar

resources and challenges as found in the HYPSO mission.

10.1 HYPSO-1 Project Organization
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Table 10.1.: Requirements for HYPSO-1 CubeSat software system based on [258].

Feature Need

Extensibility The HYPSO software system shall allow for new functionality through
in-orbit upgrades.

Modularity The HYPSO software system shall allow separation of functionality to
enable concurrent development amongst the team members.

Reusability The HYPSO software system and modules shall be reused on different
assets (such as UAVs and multiple spacecraft).

Testability The HYPSO software system shall enable compilation for different CPU
architectures

Reliability I The HYPSO flight model installation shall have a “golden image” with
basic functionality that is redundantly distributed on the payload hardware,
for recovery from software failures.

Reliability II The system shall have watchdogs supported by the spacecraft bus in case
of Single Event Effects (SEEs) or other temporary malfunctions.
Reliability III | The boot loader shall be protected against accidental modification.

10.2 Software Development Process for Hypso-1

The mission and software development was distributed between the satellite bus manufacturer and
the NTNU team. Because of this, the satellite bus manufacturer provided a remote FlatSat [22]. A
FlatSat is used to mimic the hardware and software of the actual CubeSat. This remote FlatSat was
used to integrate with on their premises, such that the integration and testing of the payload with
the other subsystems could continue during the lockdown imposed by the covid-19 pandemic [261].
Partly due to the pandemic, remote software development and testing were facilitated for target
hardware of the payload while it was connected with other subsystems of the 6U satellite bus
through the remotely connected FlatSat. Due to the already planned infrastructure for remote
integration, this eased the consequences of the pandemic for the software development when
compared to the hardware development, which was more affected [261].

Specifically, multiple replicas of the OPU were connected to a FlatSat with the same electrical
interfaces to be used in the Final FM of the CubeSat. This enabled development and rapid testing
on target hardware in an environment that provided continuous integration. Testing is repeatedly
emphasized as a high priority activity when developing CubeSats [22], as it helps reduce the time
from initial code development to deployment and testing [21]. A more detailed description and

discussion of the testing setup is given in 11.

The details on how digital engineering tools were used during software development are given
in [261]. In short, the adapted agile practices have relied on a tailored Scrum approach. This
was enabled using digital engineering tools provided by GitHub™. Sharing experiences and
knowledge management, coupled with a well-defined and straightforward workflow, enabled

improved verification, validation, and integration activities. However, some of the challenges typical
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for university-led satellite projects, specifically resource management with multiple competing
objectives, were still prevalent but less so. Using the digital engineering tools, the different activities,
both development, and academic work, were given a common source, helping to compare and

prioritize them.
10.2.1 Software Lifecycle

The HYPSO mission is intended to span several years, during which multiple satellites will be
deployed in a constellation. As a result, the software development should continue over that period
to enable bug-fixing and added functionality through in-flight updates. The choice of software
architecture needs to enable both. The benefits of developing reusable software are significant. The
basic software lifecycle from ISO 24748 [262] and the different phases for our project are shown in
Figure 10.2.

Lessons learned from HYPSO-1 to
improve development for other
assets.
New development tested on
operational HYPSO-1

HYPSOD
RETIREMENT

""""""""""""""" DATA USE EXPERIENGE ™

SCIENTIST/
END-USER

Figure 10.2.: Software lifecycle based on ISO 24748 with intended use shown [262]. Illustrations by
Evelyn Honoré-Livermore

Software Concept Phase The operators and scientists provide the functionality requirements of
the software system. For example, scientists expressed needs for specific validated data products
that were allocated to functions such as camera parameter configurability and choice of specific
On-board Image Processing (OBIP) functionality obip-services [23]. The satellite operators
were not involved early in the concept phase, but joined the project after the software development
had begun. Their needs resulted in interface and functional changes, which were tested and refined
as a part of the workflow described in [261]. The obip-services are intended to be updated

during the mission.

Software Development Phase Capstone projects were derived from the requirements found in
the concept phase to support assignments to the development team [261]. These capstone projects

were further divided into tasks for the Scrum sprints used to guide development. Development

10.2 Software Development Process for Hypso-1
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included implementing new features as their need became apparent, bug-fixing as errors were
discovered, and refactoring when appropriate.

Through bi-weekly sprints [261], the developers needed to resolve that each identified issue or task
was estimated, and goals for the following sprint were set. At the end of each sprint, the progress
was reviewed and a new sprint was planned for the next period.

Software Utilization and Support Phase Not all incremental software improvements result
in a set of services that will be used in-flight. Nevertheless, there is an underlying goal of doing
rudimentary testing of each proposed code contribution so that the most recent version of the
payload software is working. More extensive testing with all available subsystems is performed
before making a flight-viable release. In this process, we are utilizing semantic versioning [263],
namely a standardized method for documenting changes between versions. This provides a high-
level description of the changes that can be more easily communicated to other team members and
software users. Semantic versioning also provides guidelines on how to ensure that changes in API

are avoided or accounted for and communicated correctly.

Software Retirement Phase It is foreseen that some modules will be re-used in other systems,

and the knowledge management in GitHub™

can support this. With the high personnel turnover
often found in CubeSat projects, it is important to have good knowledge-transfer to ensure progress
[22], such that modules can be re-used and the same functionality is not developed multiple times.
To facilitate this, the future systems are planned to utilize the same or similar COTS components

while only making incremental improvements.

10.2.2 Payload Software Architecture

As defined earlier, HYPSO employs a SOA. This allows for services to be provided by application
components to other components (both within the same subsystem, and with other subsystems)
via network communication. A service is here defined as a set of related functionality that can be
requested from the user [264].

To interface with the chosen COTS camera, the supplier’s official closed source API is used,
which constrains the selection of an OS to be an Embedded Linux system. However, this OS is
a well-established and widely used OS, and does not come with the unknown bugs of a custom
build OS, which can be common for CubeSats [265]. The OS image of the payload is therefore
built using the open-source Petalinux build system from Xilinx to deploy an Embedded Linux
system [259]. The chosen Zynq 7030 System-on-Chip (SoC) with the FPGA used for the on-board
data handling is supported by Petalinux [260]. The build system was customized to include the
payload application, and necessary drivers, as applications within the OS image [259].

The software is here defined as executable applications started on boot. These applications are

the service providers of the payload, as shown in the simplified diagram of Figure 10.3, and they
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are planned to be updated in-flight. The File Transfer (FT) service is made to interface with the
satellite provider’s API and Interface Control Document (ICD), and is compatible with both the
payload and the rest of the satellite bus subsystems. The HSI and RGB services send commands
to the respective cameras. The CSP and OS communicates with the other processes and provide
Linux commands, respectively. The Telemetry service logs the state parameters of the payload over
time.

By separating the functionality as a stand-alone executable, we can restart the subsystem into a
known state at each power on. There is no persistence in the OS image so that it will experience a
fresh start at each boot. In addition, the executable service provider can be hot-swapped during
execution. This means updating the software by simply uploading a new file without altering the
booting sequence. This enables us to have multiple service provider versions available during
operations. This addresses the first requirement in Table 10.1 about extensibility, an uncommon

feature of traditional spacecraft systems.

HYPSO-1 Simplified Payload Space Segment

R Payload Hardware
|| Telemetry | HSI QI E
i« Service F20. Service S20 SEREDE : External Driver
' | File Transfer | \RGB ueye :
i | Service S19. Service S19, . Camera | Camera Service Provider
b Drivers L RGB
'+ ICSP S Camera
' | Service S19: Service S19 FPGA Service Thread
opu-services $20; Config - FPGA
] opu-system 520 Other Subsystem
Payload
Bus

Payload Electronic S-band

[CSPvia CANI [Controller|| Power System Radio
M6P Satellite Bus

Figure 10.3.: Simplified overview of the HYPSO payload with dashed boxes as software components and
solid boxes as hardware components. The season and year for integration of the module are
given as blue text.

Firmware is defined as the system image, or opu—-system, which consists of the kernel, device
tree, root file system, and the FPGA programmable logic bitstream [259]. An updatable primary
image is stored on an SD-card, and a backup is stored in embedded memory. This backup shall not
be changed after FM assembly. The difference between the firmware and software update process is
primarily due to the amount of data that needs to be transmitted for an update, and the level of risk
associated with performing their updates. Backward error recovery for firmware updates is made
by restoring the image from embedded memory, if the primary image fails to load after attempting

to boot a set number of times.

10.2 Software Development Process for Hypso-1
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The root file system is always loaded from the boot image. This ensures that the system enters a
known state after boot. Payload data and different versions of software applications are stored on
an SD-card, and can be taken into use at run-time. The planned updates will add new versions of

the service providers [23] with new algorithms and bug-fixes.

The opu-services application/executable is the minimum viable product. This application
captures, compresses [78] and transfers hyperspectral and RGB images, communicates with other
subsystems, provides telemetry information, and provides remote shell access to the OPU. A version
of opu-system and opu-services that passed all our tests were integrated into the payload
FM and shipped to the satellite bus provider for integration with the rest of the satellite bus during
the early summer of 2021. Software intended to expand the capabilities of the payload will be
added during the mission lifespan.

A planned future application is the OBIP, which will process and derive high-level low-latency
data products from the captured data [23, 266], such as results from classification and target
detection. The application is marked in red to indicate that it is a part of a future extension of the
opu-system in Figure 10.3. With this proposed SOA, we expect to be able to update only the
software containing the services available from the payload with low risk to the mission, when
compared to updating the entire system image. With this modular and extensible design, code-
contributors can add to the system in the form of a single application or by expanding the services
available from an existing application on the platform. Updating the opu-services application

entails risks that are necessary to meet changing processing requirements.

The application repository (hypso-sw), in addition to deploying the payload executable known
as opu—services, also builds the hypso-cli. hypso-cli is the Command Line Interface
(CLI) used to send commands via CSP packets that will be propagated from the mission operator
to the satellite bus, and subsequently to the payload subsystem [260], as indicated by Figure 10.3.
CSP is a lightweight network protocol, resembling IP, that can be used as a network layer between
both physical subsystems and between different software services internal to one subsystem. CSP
supports several hardware layers, where HYPSO relies on CAN and Universal Synchronous and
Asynchronous Receiver-Transmitter (USART). The opu—system starts the opu-services in
the version packaged into the image on boot [259]. The system supports having multiple versions
of opu—-services in non-volatile memory (SD-card) and can change between them at run-time.

New versions, with bug fixes, can then be added without compromising old ones.

10.3 Software Issue Analysis

We aim to understand better what kind of problems occurred in the development and integration
process of the satellite and how we solved a subset of them. To do so, we encouraged the team to
document discovered bugs, desired features, and other proposed changes as GitHub™ “issues”.
Then we surveyed all open and closed issues labeled as bug that resided in the repositories and
separated these into four categories based on how they were discovered:
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* When interfacing between subsystems (Sub.),

* When testing the internal functions of a module or interfacing between services for the
payload (Mod.),

* When considering scientific data handling (Sci.),
¢ or miscellaneous (Misc.).

The categorization was done in two rounds; first independently by three of the authors, and then
as a group with a clarification of interpretations of the categories. The bugs related to FT, use
of external drivers with their underlying errors, and general subsystem communication from the
perspective of the payload were classified as Sub. bugs. Issues related to the functional behavior
of modules and their internal communication were classified as Mod. bugs. Issues related to data
handling were classified as Sci. bugs. The issues that did not fit any of these categories, e.g., virtual
build environment, were classified as Misc. bugs.

Table 10.2.: Categorized issues labeled as bugs.

Repository  # of issues % Closed Sub. Mod. Sci. Misc.
hypso-sw 78 76.92 27 39 2 10
opu-system 22 100.00% 2 15 0 5

The findings from over two years are given in Table 10.2 and show that most of the issues reside in
the hypso—sw repository. This is also the repository that has had the most contributors. Here, the
issues are found mainly in Sub. and Mod. bugs, with the other categories being less prominent. For
the Mod. bugs detected the FT service is a frequent source of discovered bugs. This FT service was
developed at an early stage of the project, as seen in Figure 10.3, and has been invoked frequently
when testing the functionality of other services as well.

The HSI functionality was developed as a standalone subroutine before being integrated as a service
within opu-services. If the focus had been on earlier integration of the HSI service, there
would probably have been fewer challenges to resolve during integration. The CSP and OS services
rely on third-party implementations with larger communities, and fewer or no bugs are related to
these. The RGB service is smaller/simpler and has been invoked less during testing, and has fewer
bugs related to it. The telemetry service is a late addition to opu-services, and other services

do not invoke it, and few bugs are related to this service.

Automated tests helped discover many issues. However, most of the issues reported were not
directly related to the code under review. That is, the exploratory nature of manual testing made it

possible to discover issues beyond the scope of what was initially supposed to be tested.

Other issues in hypso—sw are related to feature requests and other enhancements.

10.3 Software Issue Analysis
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10.4 Refactoring and Future Missions

In software development, refactoring is defined as “a change made to the internal structure of the
software to make it easier to understand and cheaper to modify without changing its observable
behavior.” [256, p. 565] This enhancement activity has been performed to make the code base
more maintainable and accessible for future contributors. As an example, the HSI service has
been refactored multiple times to better divide its functional parts into smaller, more maintainable
functions. This has made it easier to understand without changing its behavior. By this refactoring,
the performance of some routines was improved, thereby providing performance gains for the
arguably most important service of the payload and thus delivering a more capable mission.

A second satellite is planned; namely, HYPSO-2 [267]. This satellite is intended to feature an
additional secondary payload, a Software Defined Radio (SDR). While this payload also is based
upon a similar hardware platform as theOPU, it will have its separate system image and application
image. Parts of the codebase have been refactored to support better the hypso—sw for multiple
payloads. This relates to the application services that integrate the payload with the bus, such as
shell, CSP and FT services in addition to the telemetry services. The SOA and a common OS
running on both payloads made this possible. Successfully supporting this development within the
existing hypso-sw repository is a demonstration of the extensibility, modularity, and reusability of
the software as specified in Table 10.1.

The chosen SOA provides a high-level abstraction that enables further development of the service
modules of hypso—sw and development of new services for future satellites. The first satellites
will also benefit from future development as they can be updated. Modularization, refactoring,
and generalization have been the fundamental principles used to meet the driving needs that are
defined in Table 10.1 [267]. Several common factors for future payloads were identified through

the refactoring process to ease future development further.

10.5 Discussion and Conclusion

The software development process for the HYPSO project provided insight into how such systems

could better be developed and integrated in the future.

Relevant literature emphasizes the importance of testing [22]. Experiences from developing the
HYPSO software made it clear that testing and integration will help with discovering errors, as more
testing of a given service uncovers more bugs. It can be challenging to find the human resources to
test extensively, and this activity can be challenging to motivate in a university setting [22,261].
Integration with other modules or subsystems is also prone to introduce new insight. The analysis
of issues registered for the HYPSO software given in Section 10.3, with a focus on those labeled as

bugs, also substantiates frontloading of testing, and early integration, as recommended by [22].
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The choice of software architecture made it possible to develop functionality as independent
components or services. This helped generate several contributions from multiple contributors with

high turnover, without adversely affecting the functionality or development cycle.

The separation of platform and application, Embedded Linux OS and opu-services respec-
tively, was done to make it possible to perform in-orbit upgrades with lowered risk to the mission.
Upgrades of the system and software have yet to be demonstrated in-orbit. However, this upgrade
functionality has been tested extensively, e.g., as a part of software development. That is, new soft-
ware contributions were regularly developed on the target hardware, and the upgrade functionality

was used to deploy and test them.

The development and integration of future services for new payloads have demonstrated the
perceived benefits of the chosen software architecture [267]. The SOA enables the reuse of code

for future development.

These experiences will aid in the development of future satellites that are planned by the NTNU

SmallSat Lab and can be scaled to other similar systems as well.
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Chapter 11

Testing of the HYPSO-1 Payload

If you don’t have questions about a product’s risks, then there’s no
reason to test. If you have at least one such question, then ask: Will these

tests cost more to execute than their answers will be worth?

Gerald M. Weinberg
Perfect Software: And Other Illusions About Testing

The growing community of CubeSats vendors makes it possible to launch and fly novel payloads for
targeted applications by procuring flight-proven CubeSat platforms. The importance of embedded
software for such COTS based payload systems has increased to provide more functionality and
flexibility. As COTS components are not designed for space, they warrant extensive software and
hardware testing. The ongoing work on how the payload software testing procedure is used in the
development of the HYPSO satellite is given in this chapter. This chapter discusses the software
development strategy, the challenges that were encountered, and the lessons learned throughout the
process. In particular, the advantages of rehearsals, reviews, and manual testing are compared to

different methods for automated and programmer-driven testing.

The subsequent sections present the experiences and findings from software system integration
testing of a HSI payload for a university CubeSat mission. The HYPSO spacecraft is primarily a
science-oriented technology demonstrator enabling low-cost and high-performance hyperspectral
remote sensing and autonomous onboard processing to collect ocean color data products in collabo-
ration with other autonomous platforms [23,268], with details in chapter 2. The planned image

processing pipelines are still under development at launch and need more testing.
Contribution

Here we present how the HYPSO team performed the testing of the payload software, and how
testing strategies were adapted to support our development and integration challenges. These

adaptions made the payload software testing feasible, and possibly adequate, for the size of the
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Figure 11.1.: Relevant development and testing timeline for HYPSO

team and the mission’s acceptable risk. The testing focused on the early use of target hardware and
enabled early integration [22]. Rehearsals, reviews, and manual testing are compared to automated

and programmer-driven testing for our system.

Section 11.1 presents the background and related work. The testing strategies are described in
section 11.2. The results from the testing process are described in section 11.3. A discussion of
the findings and lessons learned are given in section 11.4. Lastly, in section 11.5, we provide

conclusions.

11.1 Background and Related Work

The CubeSat standard is a simple small satellite reference model [269]. This standard is intended
for low-cost satellites with a short project cycle relative to traditional space missions, both in
terms of development, launch, and operations [20]. A CubeSat is based on the form factor of
“cubes” or “units” with each edge measuring 10 centimeters. These units can be combined to create
satellites with different form factors, e.g., 1U, 3U, 6U, or larger [20]. With this mechanical envelope
standardization, it is possible to launch several CubeSats from a single launch vehicle, and there
are multiple CubeSat spacecraft and subsystem vendors available. Due to the standardization of the
mechanical interfaces, a CubeSat team can freely base their choice of vendor.

In this chapter, the focus is on the development and testing of the HSI payload as an onboard
processing platform, as well as its integration with the rest of the satellite bus provided by the
CubeSat vendor. The payload processor or OPU receives and transmits commands and telemetry,
as well as raw or processed payload data, to other satellite bus subsystems. The OPU does not
play a direct role in spacecraft telemetry and telecommand data management. The CubeSat vendor
provides those subsystems. This simplifies the design of the CubeSat and provides more resources
in the development of the payload [20].

The European Cooperation for Space Standardization (ECSS) body of standards encourages reviews
to assure better documentation, and states it as an opportunity for stakeholders to get an overview
of the system details [269,270]. Quality is assured in space missions by reviews and tests [22,

269]. Tests should demonstrate that the implementation meets the functional and performance
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requirements. CubeSat projects often discover unexpected and undesirable behavior during testing
and integration, and the importance of these activities are strongly emphasized [22,271].

In a university setting, there are challenges related to team organization, such as availability of
(qualified) students at the right time as well as a high turnover [22,271,272]. This influences the
whole development process, from design, implementation, test, and delivery. For many university
teams, it isn’t easy to successfully transfer knowledge to new team members. Through trial-and-
error, the HYPSO team adopted a version of an agile digital engineering workflow described
in [272]. The software architecture design to accommodate these challenges is not covered here but

in chapter 11.

All team members are encouraged to contribute to testing to mitigate the lack of a dedicated test
team. This makes adapting and implementing straightforward and efficient development and test

routines even more critical.

Complex On-Board Data Handling systems are typical for technology demonstrating CubeSats,
where more services are performed onboard. This requires more software to be developed to inter-
face, control, and operate different subsystems, which leads to a need for more testing activities.

In the literature, several approaches for software testing and integration activities of CubeSats have
been reported. The focus is often on Software In the Loop (SIL) [22,269,273], Model In the Loop
(MIL) [269,271], and/or HIL [22,269,271,273]. SIL focuses on procedures and functions for
isolated units and checks for the expected input/output relationships. MIL focuses on simulation
models and identification of expected communication flow and interference. HIL focuses on
the behavior of the software executing on the target hardware, the use of target hardware-specific
functionality, and communication with other subsystems. It is strongly encouraged to use any means

possible to enable testing, preferably on target hardware with a focus on early integration [22].

Through this chapter, we focus on the testing activities used by the HYPSO team to ensure the
desired functionality of the software deployed on the OPU and finally integrated into the CubeSat.
A summary of the testing strategies and their focus is given in Table 11.1.

Table 11.1.: Testing Strategies, with details in Section 11.2.2

Focus Category
Automated workflows focusing on CI for development and deployment HIL SIL
High availability of target hardware for development and subsequent testing. HIL
The development of test suites simulating nominal operations HIL MIL
Rehearsal with trained and untrained operators HIL MIL SIL
Post-launch Testing and Development HIL MIL SIL

11.1 Background and Related Work
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Figure 11.2.: Animage of the 6U CubeSat going to space during fi al system check at the CubeSat vendors
facilities.
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11.2 Embedded Software Testing

Ideally, the payload subsystem is tested in an environment as close to flight as possible. Here, parts
of the operation are simulated, e.g., procedures for operation and flight, and only the satellite’s
subsystems directly relevant for the payload are used. Thus, it is not strictly a HIL-system, as
we do not have any simulated input from all sensors and outputs to virtual actuators, but rather a
Payload-HIL (P-HIL).

Embedded systems are typically tested in different ways throughout various development stages.

For the HYPSO mission, we tested the functionality and performance of communication and image
processing independently. The communication is tested by interfacing the payload with the other
physical satellite bus subsystems. For the onboard image processing, the development algorithms
usually start as a proof-of-concept prototype in Matlab or Python. If the concept is promising, it
is transformed into a C program and tested on a desktop computer. This code is then ported and
adapted to the target hardware, where the processor, power, and memory resources are limited, thus
constraining the operation and performance. In this stage, target architecture-specific instructions
have been used to improve performance when possible. If appropriate, the algorithm may be
implemented in a hardware-accelerated form, employing a FPGA. This process is illustrated in
Figure 11.3.

As shown in Figure 11.1, system and integration tests started when the first HIL-setup with the OPU
was in place in February 2020. The testing continues as discovered bug fixes and new features are
intended to be updated during flight [23].

-4l

PRl 1 o be =

Algorithm Desktop Target Hardware Hardware
Concept Implementation Implementation Acceleration

Figure 11.3.: Tllustration of the algorithm development flow. If one stage passes it may move on to the
next, or be revisited.
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11.2.1 Testing Infrastructure

Figure 11.4 shows the basic system architecture for the fully deployed system. The Payload
Controller (PC) is responsible for propagating commands and responses to and from the payload.
The lightweight and broker-less messaging library used in parts of the fully deployed system
is Nanomsg Next Generation (NNG). The other abbreviations are explained below, and to some

extent in the appendix A.

Figure 11.5, 11.6, and 11.7 illustrates how multiple subsystems of the procured CubeSat platform
are accessed. Each colored box has a unique CSP address for the given test setup. Different
communication pathways can be tested by using different CSP addresses through a CAN and
internet-based connection to a FlatSat at the satellite platform vendor’s premises. The FlatSat is
a mimic of the actual CubeSat where components are installed and connected so that it can be
interfaced with remotely for testing [271].

The software propagating commands or requests from an operator to the payload uses a service-
oriented architecture based on a request-response pattern. That is, the operator sends a request
via the Command Line Interface application hypso-cli application on the ground, and the
opu-services application running on the OPU sends a response. The satellite bus and its
ground system rely upon the use of CSP, and the OPU also implements CSP as its primary

communication protocol.
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Figure 11.4.: Fully deployed system architecture. On-board Processing Unit (OPU), Flight Computer (FC),
Electrical Power Unit (EPS), Payload Controller (PC), Controller Area Network (CAN),
Ground Station (GS), Radio Frequency (RF), Nanomsg Next Generation (NNG)

LidSat for development

The LidSat-setup is the most complete and versatile setup. It includes the OPU and integrates with
the development models and prototypes of the rest of the satellite bus. It also enables testing of
communication links by UHF-radio in the test-loop, as well as the Mission Control System (MCS)
environment to emulate better the expected communication interfaces between the operator and
CubeSat, as seen in Figure 11.5. This is also used for the system functional test campaign here

called rehearsals (also known as Test-as-you-fly [22,271]), covered in Section 11.2.2.
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Figure 11.5.: The LidSat testing setups where different paths for command propagation is used by utilizing
unique CSP addresses to test communication at different levels.

P-HIL for automated tests

The Payload-HIL in Figure 11.6, featuring only the OPU and an EPS, is mainly used for automated
testing. The P-HIL setup connects to a testing automation server using Jenkins, capable of running
regression tests on PRs and after branches were merged, and periodic performance tests, as defined
by the requirements. It is also possible to remotely run the Jenkins tests on the LidSat, enabling

automatic tests of system functionality [271].
Aid for environmental tests

Environmental test setups, i.e. the Engineering Model (EM) and Qualification Model (QM) of
the payload [271] were used when the payload was tested in the expected thermal and vacuum
conditions. A setup like this is given in Figure 11.7. To support the environmental test campaigns,
semi-automated test scripts allowing controlled repetitions of tests were developed, based on the
same tests used on the P-HIL test setup. In addition, an electrical Ground Support Equipment
set, consisting of Power Supply Units (PSUs), cable harness for power, and communication was
developed, as it was not deemed expedient to test the flight-proven EPS. The PSU in Figure 11.7
can be regarded as a simplified and manual EPS.

11.2 Embedded Software Testing
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Figure 11.6.: The P-HIL testing setups where the payload and EPS is accessed via CSP over CAN marked
with dashed red line. Original Photo by Elizabeth F. Prentice
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Operator Manual EM, QM, FM
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Figure 11.7.: The testing setups used for environmental validation of the payload where it is accessed
via CSP over CAN, marked with dashed red line. The PSU is manually operated during
environmental testing. Original Photo by Elizabeth F. Prentice
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11.2.2 Testing Strategies

Several testing strategies were attempted to understand better what worked best for our team. Here
are four high-level descriptions of the testing strategies that were eventually chosen.

Continuous Integration Workflows

As part of the workflow, procedures and functions are tested using the Check Unit Testing Frame-
work for C [274]. That is, at each PR a set of unit tests are executed to check if the input/output
relationship for the functions is still as expected. Ideally, the tests would be developed first, followed
by a function that meets the defined requirements. Using this development strategy for our team has
proven difficult, possibly due to the limited timeframe student developers have, and inexperience in
the methodology. As a result, relatively few unit tests have been developed. Regardless, the tests
that exist have helped to discover undesirable artifacts.

Target Hardware for Development and Test

Ensuring target hardware availability for both development and testing has been a priority. Initial
testing is done by the developer on the target hardware, which helps to identify basic errors. When
the developer regards the code contribution as ready to be merged into the central repository,
they open a PR. A review of the written code and a test of the resulting executable(s) are then
performed by other team members. This will prompt a discussion about whether or not the code
contribution performs as intended and is maintainable. Changes can be requested before approval.
The process, further described in [272], has helped us to identify errors and bugs hidden from the
initial developer, as well as to clarify misunderstandings in functional requirements. An added
benefit is that an overview and understanding of the codebase is distributed among more team

members.

This setup made early integration tests possible, which is recommended [22]. These tests done
during development, for both new functionality and regression tests, are usually manually executed
with the payload connected to other parts of the satellite, either locally or through a remote FlatSat.
Infrastructure functionality, e.g., subsystems communication, execution of remote commands, etc.,
are tested more frequently as a result. These tests focus on high-level functionality and have
uncovered ICD issues, functional problems with Ul, illogical programming, and shortcomings of

documentation, among others.
Test Suites Simulating Nominal Operations

Automated tests, where nominal operations are simulated on the P-HIL, were also made. A Jenkins-
server builds a new version of the software for every merged PR and tests its performance on target
hardware. These test suites can also be invoked on demand. This has helped us uncover changes in

performance and changes in ICDs, as well as making consistent testing of nominal operations more
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available across different communication paths. The P-HIL is configured to be tested with both the
LidSat and a remote FlatSat provided by the CubeSat vendor. The nominal tests were also used
to test the payload during mechanical, thermal, and vacuum testing, ensuring consistent testing

procedures.
Rehearsals with Operators

An operator simulates how the satellite will be interfaced with during the mission in the rehearsals.
This includes enforcing constraints such as communication windows, injecting errors on communi-
cation links, and letting the operator carry out complicated procedures. Participants consisted of
both people familiar with the UI and people who had to rely on documentation. These rehearsals
have revealed functional issues and high-level problems, as well as uncovering procedural inac-
curacies and illogical UL It has proven multiple times to be a valuable way to test if the satellite
and its interfaces behave as desired, if the predicted constraints will hinder operations, and if the

documentation is sufficient.
Post-launch Testing and Development

The HYPSO satellite is intended to be updated during its lifetime. There are benefits of having a
replica of the system on the ground, e.g., to test telecommands and updates in a non-operational
environment [22]. We plan to use our existing test setups and strategies to test new software
modules and telecommands, train operators, and verify updates. It is planned to further extend the

existing testing infrastructure with more replicas of the CubeSat and Payload.

11.3 Testing Results

In our team, it is the creator of a unit of software that is responsible for creating unit tests. This can
lead to rapid deployment of tests. However, a risk of this approach is to create tests that pass, rather

than tests that test the current software for unexpected results.

A majority of the software testing can be automated with automated test setups. The automated
testing has helped uncover changes in the CLI, as well as unintended changes in the request-response
pattern between hypso-cli and opu-services. Three different test suites are run and cover
nominal operations of the satellite at every code change. These test suites will then give an error
if there is an interface change in the commands used for nominal operations. However, there are
still some human interactions that cannot be automated. This does not reduce the importance of
an automated test setup as it supports rapid deployment and regression testing. The automated
test setups, i.e. LidSat and P-HIL, do not necessarily test for new and unexpected states of the
system. This can lead to false confidence in the system, as a system can still fail in operations
despite passing all automated tests. This potential false confidence supports the use of manual
testing, as done during the code reviews. The manual testing should be extended to incorporate

new tests of new functionality, but this is not done currently.

11.3 Testing Results
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The issues discovered during code reviews were mainly concerned with whether or not the proposed
changes were performed as desired. When doing these reviews, functionality unrelated to the
original PR was also tested, and some issues could be reported as a result. Problems with illogical
UI and limited documentation were also addressed as part of the review. The code reviews became
an excellent platform to discuss the proposed changes and often led to incremental improvements
from the original PR. Initially, these code reviews were highly unorganized, but a more coherent
and effective process emerged when establishing a bi-weekly three-hour session for code reviews

employing mob programming.

The rehearsals performed in the fall of 2020 uncovered several new issues and areas of improvement
for the software. These issues were both quality-of-life changes for the developers and operators, but
some were crucial to the mission. The rehearsals invoke more of the complete mission infrastructure
and use more available communication paths than our other tests. This has been helpful to discover
changes in communication performance, scheduling, planning, and timing issues and learn how
the operator needs to handle errors during a satellite pass. In addition, since the communication
windows have been constrained, the rehearsals have also let operators experience the stress related
to performing a set of tasks within each time window. This experience also leads to the re-design of
procedures and the creation of more high-level functions that aid the operator in performing tasks

more efficiently. The issues resulted in, among others, the following changes:

* Improved redundancy in the power control of the payload.
* More appropriate default timeouts for file transfer between subsystems and ground.

* Improved state acknowledgment recovery during transmission loss.

11.4 Discussion

One challenge for the existing setup is the limited test coverage. Not all software units have tests
implemented for them, both with or without target hardware. At the time of writing, we have 8
test suites testing different services with 46 (successful) unit tests. It would be beneficial to be able
to test the entire satellite as part of HIL, and our team attempted to get close to this with the use
of a remote FlatSat, a local FlatSat (i.e., the LidSat), and partial reconstructions of the expected
CubeSat system.

The use of automated testing, i.e. CI, test suites, and the Jenkins server that connects to P-HIL,
lowers the barriers to perform testing and ensures repeatability in testing procedures. We can
perform regression and acceptance testing for the satellite payload within this test configuration.
Setting up this test configuration comes at an initial cost, but makes it easier to perform consistent
tests repeatedly. Setting it up took two months. Thus the overall cost of setting up the test
configuration was justified. Adding more testing functionality became more straightforward with

this setup and establishing the protocols for creating tests.
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Manual testing is labor-intensive but has some clear advantages. The tester can determine if the
code performs as intended, and we have experienced that a different perspective from a third party
has proven fruitful. The process has also been used to request essential changes, both for UI and for
operations, and more parts of the team became more familiar with the codebase by doing manual
testing. It isn’t easy to quantify the amount of manual testing versus automatic testing that is
performed, but more effort is definitely put into manual testing. During manual testing, we have
also started to do these sessions using a Remote Mob Programming-strategy, where one driver is
responsible for sharing their screen and conducting code changes, whilst the other team members
provide helpful comments, questions, and perspectives.

The most labor-intensive testing performed was the rehearsals, but they also provided instrumental
insight in terms of operations. Over the development period, we conducted two such rehearsals.
During rehearsals, where communication outages were simulated, it became clear that some of
the needed functionality for operations had not yet been properly specified. This testing helped us
specify and develop that functionality while at the same time uncovering completely new problems
that would not be caught with automated testing or code reviews.

The rigorous and extensive testing strategies used by large space organizations, such as ESA are
not always feasible for a small CubeSat team, and they do not guarantee mission success [275].
The testing strategies given here are not as rigorous or as extensive as they could be but can prove
adequate for the size of the team and the accepted risk. The rehearsals and the different HIL-like
setups lead to a firm foundation upon which to build further tests.

11.5 Conclusions

In this chapter, we have described the testing strategies adopted by the HYPSO team in the
development of their first satellite, presented the issues that these strategies uncovered, and discussed
the benefits and limitations of these testing strategies.

Certain aspects of the mission have not been tested end-to-end on target hardware before launch.
The planned image processing pipelines are still under development at launch and need more testing.
These processing pipelines will extend the capabilities of the payload and are intended to utilize
and provide relevant information from and to other assets [23,268].

The time referencing of the existing system has not been properly tested as the available clock hard-
ware has not reflected the actual target hardware for this part of the system. This is a consequence

of relying on a remote FlatSat.

Early testing is essential, as it permits more time to resolve issues. Having a testing infrastructure
available for as many developers and reviewers as possible has proven very useful. The automated
testing setups and the nominal test suites provide good test repeatability and can be extended with

little additional overhead. The rehearsals and manual testing during reviews have helped discover

115 Conclusions
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other problems that were not caught by automated testing. Having an operator in the loop when
designing software is deemed crucial for mission success, in addition to automated testing.
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Chapter 12

Discussion and Conclusions

I may not have gone where I intended to go,
but I think I have ended up where I needed to be.

Douglas Adams
The Long Dark Tea-Time of the Soul

12.1 Addressing the Research Questions

Chapter 1 introduced the following research questions:

* RQ-1. How can a CubeSat platform be developed for hyperspectral ocean color applications

and provide end-users with valuable information?

* RQ-2. What kind of algorithms or models for better hyperspectral data acquisition and
reduced data latency can be deployed on-board a CubeSat tailored for ocean color observa-

tions?

* RQ-3. How can a CubeSat be used to support the development, validation, and upgrade-

ability of new in-orbit data processing algorithms?

This concluding chapter aims to discuss how the contributions of the Ph.D. research presented here

attempt to answer these questions.

Chapter 4 presents some of the limitations of our current understanding of bio-optical properties in
optically complex waters exemplified by the Amazon River Plume. Even though the results are
shown in their preliminary form, it is possible to conclude that algorithms to derive IOPs work
well for some conditions but are not able to capture all aspects of these water types. Expanding the
QAA to better infer the properties of the spectral slope S for the computation of absorption related
to CDOM seems like the most fitting path to investigate further, given the data as it is presented

here.
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Moreover, with equipment, such as the radiometer used in 4, it should be a practical approach to
accelerate algorithm development for ocean color data. This combination of instrumentation plat-
forms or autonomous assets of some kind would enable a coupled data acquisition and interpretation

for selected areas. This concept is, to some extent, the vision of the MASSIVE project.

Thus, this system of systems should be able to effectively monitor areas of particular interest. This
system can aid in targetting the sixth sustainability goal related to the availability and management
of drinking water and sanitation. If the whole system is deployed in drinking water reservoirs,
such as Maridalsvannet outside of Oslo [276], this could help monitor the vital resource for the
largest city in Norway. Furthermore, the approach can be used by governmental agencies or other
interested parties to monitor areas of high human activity where the focus would be the fourteenth
sustainability goal related to conservation and use of the oceans, seas, and marine resources.

12.1.1 A CubeSat platform for Ocean Color Observations

Chapter 2, with appendix A, presents a CubeSat platform with hyperspectral imaging capabilities
and accompanying processing strategies to reduce the data latency and deliver ocean color data
products by using appropriate on-board processing. With the camera characteristics described
in [5], the system should be able to provide data of similar quality as other more traditional Earth

observation platforms.

Fitting these capabilities into a 6U CubeSat platform shows a potential disruptive path of performing
hyperspectral Earth observation, as it can provide a more cost-effective solution to resolve some
of the same problems. The concept and design that the payload is based on are presented in [69].
This design aims to produce hyperspectral images capable of capturing hyperspectral data cubes
of relatively high quality in a miniaturized instrument suitable for deploying on smaller platforms
cost-effectively.

How our team extended this design to accommodate better the specific needs of hyperspectral
ocean color remote sensing is described in [5, 116]. The resulting payload deployed on HYPSO-1
has a total mass of approximately 1.3 kg, not including the electronics stack. The HSI payload
is thus of a similar size and weight as other miniaturized hyperspectral imagers for cuebsats [5],
and has performance metrics previously associated with larger, more conventional hyperspectral
Earth observation payloads. For comparison, the HICO mission consisted of a hyperspectral imager
weighing more than 40 kilos, could not control its attitude freely, and was controlled by a Windows
OS that ceased to function regurarly [127]. The HICO mission level success is a topic for some
debate, but it is difficult to dispute that it has provided a data record of hyperspectral images of
coastal regions that have proven valuable for developing future missions. The camera performance
metrics associated with the HICO instrument are similar to the simulated and tested performance
found for the HYPSO-1 payload [5, 127]. Our payload thus shows how a hyperspectral imager for

ocean color can be developed for a CubeSat platform.
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The limitations due to communication links will pose a challenge when delivering end-users
with valuable information. However, these limitations will be mitigated by appropriate on-board
processing in the HYPSO-1 system. In addition to the hyperspectral imager, the payload computer
dubbed OPU controls both the RGB and HSI. Chapter 10 presents details on software architecture
and other relevant design choices aimed at delivering end-users with valuable information for the
OPU. The OPU is equipped with a FPGA and CPU and is running a well-tested Linux-based OS
specified by the SoC manufacturer. The testing regiment described in chapter 11 has shown that
the OPU can perform the expected nominal operations without any unexpected artifacts in the
expected thermal-vacuum environment where it will operate. These nominal operations, in addition
to capturing RGB and HSI images, include routine software updates of parts of the system. The
OPU can perform power-cycling and has no persistence in the OS; This, among other factors,
makes it possible to change the behavior of the system at an acceptable level of risk. Changing the
system’s behavior makes it possible to tailor the data acquisition to changing end-user specifications
even after launch.

12.1.2 Algorithms and Models for efficient Ocean Observations

As has been emphasized throughout this thesis, hyperspectral imagers can quickly acquire large
amounts of data. For spaceborne platforms, such as HYPSO-1, one of the major bottlenecks is
challenges concerning the bandwidth of the available communication links. In chapter 2 it is stated
that the HYPSO-1 satellite will have an S-band Transceiver. This radio provides a usable data rate
of 1 Mbps for down-linking, which is not that much when considering that a single raw data cube
is estimated to be in the range of 150 MBs for nominal operations.

Given that the ocean can be a highly dynamic environment, the data latency will affect the utility of
the collected data for some use cases. The on-board processing will need to be adaptable to cater to
multiple end-user applications. In some cases, end-users will appreciate lossless data and, in other
cases, data without any significant information loss. This trade-off analysis for data acquisition
becomes relevant when conducting a longitudinal study of a given area with multiple different
methods and platforms for ocean observation that are not permanent installations. On the other
hand, more operational considerations should be accounted for when providing information for
fisheries management and other decision-makers where timeliness is essential. Exploring the data
and what kind of insights it can provide is not the main focus in these more operational scenarios.
Thus the end-user should be able to accept a lossy data retrieval. That is, as long as the retrieved

information is still adequately accurate and delivered with an acceptable latency.

In chapter 5, 6, 7, and 8, this thesis provides some strategies and perspectives on how to reduce
the data latency. These are not tested on the target hardware. However, they represent simplistic
models suited to be deployed on the target hardware.

The chapters 5 and 6 focus on more general hyperspectral image processing. The former chapter

focuses on using dimensionality reduction to provide a subspace that can be analyzed by more

12.1 Addressing the Research Questions
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exploratory algorithms, here exemplified by target detection. This chapter demonstrates how to
mitigate the limitations of transformation-based encoding for HSI compression by separating
the transformed spectra into a known subspace using a pre-computed transformation matrix for
dimensionality reduction and residuals. Thus, the reduced subspace can provide similar performance
in terms of target detection as the original spectral space but with a reduced number of floating-point
operations required to compute the result. The subspace is expected to perform similarly when used
with other algorithms attempting to retrieve information from the entire spectral space available,
such as classification. How this subspace can be computed at a predetermined bitrate is discussed
in chapter 6. The subspace can be used as discussed in chapter 5 or be used for further source
encoding for HSI compression. The computed residuals can be used to improve the pre-computed
transformation matrix, provide insight into the limitations of the transformation, and provide
greater confidence in data that is retrieved using transformation-based encoding as a lossy encoding

scheme.

Chapter 7 describes methods for AC using both NN and PLS. As briefly discussed here and detailed
in [199], both these modeling strategies were able to provide the reported performance on the
simulated data set with relatively simplistic models. These models can be deployed on the target
hardware when combined with appropriate pre-processing. Either on the CPU, or the FPGA, and
this should make it possible to derive the parameters of interest in-orbit. With AC, where the
viewing geometry and atmospheric conditions are corrected for, the data will be ready for other
processing steps. By doing the AC as part of the pre-processing, the later processing stages will
get consistent spectra for the same or similar conditions, given that the AC works. This could be
especially important when classifying or detecting a priori spectra through classification or target
detection.

This shows that models could compensate for the viewing geometry and directly derive desirable
ocean color parameters. As detailed in chapter 2, this could provide end-users with the relevant
data more rapidly than if the entire data cube were to be downloaded. Furthermore, chapter 7 also
reports how these modeling strategies would perform when attempting to retrieve IOPs or end-user
specified data products derived from these parameters [7] using the simulated data with the same
simple model strategies. These options are, of course, not mutually exclusive, i.e., operationally
HYPSO-1 could provide both types of data for different end-users for the same area.

Chapter 8 provides a different validation strategy when testing similar models for similar purposes,
as shown in chapter 7. Here real-world data sets from the HICO mission are used and processed
through SeaDAS 7.2. The end products, after standard pre-processing and AC by SeaDAS 7.2, are
compared with simplistic pre-processing and simple linear models using ToA radiance to ocean
color parameters of interest. The results show that using a straightforward strategy for correcting the
viewing geometry and allowing the models to infer the ocean color parameters of interest directly
from ToA can give acceptable results when compared to the accuracy of the OC4 algorithm [16]
when using data processed by SeaDAS 7.2 as a baseline.
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Thus, these simplistic models shown in chapter 7 and 8 could be used to process the data on-board
and provide an indication of the [Chl a] of a given area. As mentioned in [7, 16], band-ratio
approaches do give a reliable relative measure of the [Chl a], but not necessarily an excellent
quantitative measure. This means that even if one were to down-link the raw data and rely on
band-ratio [Chl a] estimation algorithms, one would at best get a good relative measure of the
concentration. From a more operational perspective, it could be beneficial to reduce the data latency
by accepting the (relative) [Chl a] estimation from a different model that uses only the ToA and
viewing geometry as input and can be performed as part of the on-board processing. By reducing
the latency, this way, a map of the relative [Chl a] could be used to guide the other autonomous
assets discussed in Chap 2 and 3 as well as in [24], with reduced latency. The data that these
assets can collect can then be used to adjust the models used on-board through in-flight software
updates.

12.1.3 Adaptable Software for a CubeSat Payload

NTNU, as a research institution, wants to develop competence regarding the use of CubeSat
technology. This research includes investigating how to best utilize different payloads on CubeSat
systems. With this goal, there are clear benefits, not limited to research, of enabling the development,
validation, and upgrade-ability of new data processing algorithms in-orbit for these payloads. For
example, hyperspectral sensors from space for ocean color is a less explored scientific topic; it will
be convenient to adjust the algorithms used on-board during its operational phase.

Doing software upgrades in-orbit poses some risk; one can not be sure that the system is altered in
a way so that it will not cease to function. However, enabling in-orbit upgrades would extend the
payload’s capabilities beyond its initial launch configuration. This thesis presents a strategy for the
software architecture design and testing of the payload that enables this functionality. The concept
described in chapter 2 deems the risk of in-orbit upgrades for HYPSO-1 to be at an acceptable level
for the software architecture used.

By using a distributed service-oriented architecture as briefly described in chapter 10, with more
details given in [259,260,267], HYPSO-1 is expected to be able to do in-orbit upgrades. This
functionality is made possible by running a well-established Linux-based OS, and making sure that
the payload handler is running on top of that system in the application layer. Thus, one can upload
different versions of the application that handles the complex payload operations to OPU. This
file or executable running in the application layer supports changing between different versions
of itself at run-time. Consequently, this makes it possible to have multiple application versions
available. Changing between them does pose a negligible risk, and if a given application ends up
crashing the OS unexpectedly, there is always the option of performing a power-cycle of the OPU,
as the subsystem for power control, the EPS, is entirely separate and again is controlled by other

subsystems.

12.1 Addressing the Research Questions
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The risks of doing in-orbit upgrades are thus significantly reduced due to no persistence in the OS
in addition to a predefined booting sequence that will start the application that the OS image was
packaged with initially. The software design and implementation presented here is one approach to
support the development, validation, and upgrade-ability of new data processing algorithms in-orbit,
to some extent independent of payload instrument or sensor.

12.1.4 Research Limitations

As stated in the introduction;

“This thesis documents an introduction to some challenges of hyperspectral remote sensing for ocean
color observations, CubeSat development, and Software development. This is not an extensive
exploration of all there is to know about these complex topics but is intended to give insight into
some of the considerations taken into account when developing HYPSO-1.”

It has been challenging to determine what kind of research directions were appropriate given that the
HYPSO-1 platform and the presented methods were under development during the entire research
period. A significant amount of time and energy during the Ph.D. has been focused on leading
the development of the OPU and associated payload software. As a result, the OPU design, to
some extent, supports changes in requirements or ways we want to use the hyperspectral payload
in-flight. When comparing the learning outcomes of developing this system as a team project
to using the Ph.D. research period more focused, it is difficult to say what the different results
could have been. It is possible that the individual researcher, being me, could have made more
contributions to some of the research fields discussed here, and the impact of these contributions
would be purely speculative. However, the learning outcomes that affect the students affiliated
with the project are evident. As the system development was done as a team project, this presented
a venue for sharing experiences and knowledge. In other words, the learning outcomes for the
individual might have been reduced for the added benefit of accelerating the learning outcomes
of the group. The learning outcomes of the individual might also have been broadened and even

accelerated by the collaboration.

It is with great pleasure that I can conclude this thesis by saying that the HYPSO-1 system has
been launched into space successfully. It was launched as part of a rideshare mission by SpaceX on
the 13th of January, along with 105 other satellites. When completing this thesis, our team is still
commissioning the satellite. So far, the payload and other subsystems are behaving as expected. I
had the pleasure of pinging the payload for the first time on the 28th of January. We expect the
HYPSO-1 system to be able to investigate further the research questions raised in this thesis.

12.2 Future Perspectives

This section provides some perspectives and hopes regarding how the HYPSO-1 system and
accompanying MASSIVE project, and proposed algorithms can provide helpful information and

lessons learned for potential future CubeSat developers and data product end-users.
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12.2.1 Future Satellite Development

The HYPSO team has started the development of their second CubeSat that will have an upgraded
version of the hyperspectral payload, increased processing capabilities, and a SDR [277]. Based on
the experiences from HYPSO-1, the team plans to continue the agile work methodology for both
hardware and software, and increase the importance of team building and team cohesiveness, as
described in chapter 9. The team is also considering introducing MVPs and a clearer “definitions
of done” [237,278], which could increase the sprint performance. More extensive specifications

before implementation will also be attempted for software development. All these lessons learned
will help improve HYPSO-2, the next planned CubeSat mission.

The team has introduced a cloud-based digital tool for managing requirements, system budgets,
analysis, verification planning, and project planning. Previously, this effort was managed through
the systems engineer, but now, the team can collaborate in real-time from different sites on the same
set of requirements. These updates also feed automatically into system budgets and the product
breakdown structure. The team members can create discussions, flag components or requirements,

and assign tasks within the team. This is a part of the “Central, shared, digital information system”
shown in Figure 12.1.

Testing and
integration

*Kanban

\
\
\
«Stand-ups i
*3D-print H
/
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*3D-print digital inf ti L
+ Machining igital information s
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Design Planning
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* Stand-ups
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Figure 12.1.: Product development lifecycle with digital engineering methods and tools. Figure courtesy
of Evelyn Honoré-Livermore
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12.2.2 On-Board Processing of Hyperspectral Ocean Color Data

It can be challenging to determine what products one should archive for future data records. In [10]
it is shown one example of how data products from different ocean color satellites and other
augmenting sampling platforms can be used in unison to provide insight on long-term climate
changes over 20 years. One silver lining of the results presented in [10] is that they do not use
the raw data products from the ocean color satellites but instead derived data products. One of
the goals of the HYPSO project is to derive ocean color products of interest as part of on-board
processing. These derived data products would need quality parameters associated with them to be
relevant for policy makers [2]. How to extend the proposed algorithmic approaches intended to
effectively derive ocean color data products on-board HYPSO-1, as well as including other relevant
parameters, such as quality parameters, is a topic for future research.

12.3 Observational Pyramid

This thesis describes the work performed to create the top of the observational pyramid envisioned
by the MASSIVE project. Namely a CubeSat with its HSI payload.

The intention of the CubeSat platform described in this thesis is not to cover the same global spatial
scales that traditional Earth observation satellites do. It aims at tailoring the data acquisition for
given areas. The CubeSat and its payloads should deliver relevant and valuable information to a

given end-user by deploying apt on-board processing.

Given that the system will target smaller areas, it is appropriate to support the calibration and
validation activities of the acquired data using other autonomous assets deployed in the same places.
When the system of systems becomes more integrated, the data acquisition will function as a
feedback loop to control and correct the expected degradation and altercation of the electro-optical
components of the HSI payload. Furthermore, this feedback property can produce better and more

accurate models for a given area over time.

The envisioned observational pyramid, depicted in Figure 1.4, provides a modern and cost-effective
infrastructure concept to better monitor ocean and water areas of interest. By implementing the
payload of the apex of the observational pyramid as proposed in this thesis, one could conceivably
reach this vision.
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Appendix A

HYPSO-1 System

A.1 Satellite Bus

The hyperspectral imager was chosen to be adapted to the Multipurpose 6U Platform (M6P), a
commercially available spacecraft bus provided by NanoAvionics, with a mass of approximately
6.8 kg when fully integrated. Among the crucial subsystems in M6P are Flight Computer (FC)
for on-board data handling and ADCS functions, SatLab Global Navigation Satellite System
(GNSS) for orbit determination and time synchronization, Electrical Power System (EPS), Ultra-
High-Frequency (UHF) radio for basic space-ground communications, and Payload Controller
(PC) working as storage device and router between the payload and the satellite bus. For internal
communications, the spacecraft uses the CubeSat Space Protocol (CSP) over a Controller Area
Network (CAN), where each subsystem is a network node with a dedicated CSP address. The M6P
has 16 body-mounted triple junctions Gallium Arsenide solar cells and six Lithium-Ion batteries
with a total energy capacity of 64.9 Wh (As of 2020).

A.2 Other Components and Subsystems

To fulfill the user needs and mission CONOPS described in Section 2.1, HYPSO-1 is further
equipped with:

¢ A Nano Star Tracker ST-1 [279], and Sensor STIM 210 Inertial Measurement Unit (IMU)
[280] used for precise attitude estimation during imaging. To ensure sufficient settling time
after initialization, the sensors are turned on for at least 5 min prior to imaging. When images
are not taken, then six sun sensors, three magnetometers, and three gyroscopes are used

instead, which provide coarser attitude knowledge but consume less power;

* Four reaction wheels used for attitude control that provide up to 3.2 mNm torque each, where
three are placed orthogonally along the body axes and the fourth is tilted at an angle of 54.7°.
Two magnetorquers are placed along each body axis for reaction wheel momentum dumping;



Figure A.1.: Computer-Aided Drawing (CAD) model of HYPSO-1 with its top and front panels removed
showing the hyperspectral imager in the center, RGB camera to its left and star-tracker to its
right. Provided by Elizabeth F. Prentice
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* An IDS UI-125x RGB camera with 6 mm F/1.4 Ci series fixed lens providing a footprint
of 770 km x 540 km and spatial resolution of approximately 500 m. Its main purpose is to
support and validate hyperspectral images in the spatial domain [281];

* A 2.4 GHz 1Q Spacecom S-band Transceiver providing usable data rate of 1 Mbps for
downlinking payload data;

¢ An On-board Processing Unit (OPU) hosting a Zyng-7030 Xilinx PicoZed System-on-
a-Chip (SoC) with flight heritage [53]. It consists of two core ARM processors and a
Field Programmable Gate Array (FPGA) dedicated for on-board image processing. The
OPU allows for in-orbit updates of both software and FPGA hardware reconfigurations for
uploaded algorithms. Larger data sizes can be buffered from the OPU to the PC over CAN
before downlinking over S-band radio, or smaller amounts of data can be downloaded directly
from the OPU. Buffering data to the PC enables full utilization of the S-band data rate, and
removes the need for keeping the OPU turned on for longer than necessary. Power and
data-line distribution to the hyperspectral and RGB cameras are granted through a custom
break-out board with PicoZed interfaces. Furthermore, the OPU hosts a SD-card with 8 GB
storage capacity.

A.3 Power Budget

MG6P’s solar arrays generate approximately 11.65 W during a period of 58.9 min in sunlight out of
a total orbital period of 94.6 min. Determining if energy is sufficient during burdensome operations,
the power budget should assume a scenario where image acquisition, processing, and downlink
all happen in the same pass during sunlight. This scenario is shown in Figure A.2 for HYPSO-1
passing over a target area in Lofoten, Norway, and the selected ground stations at NTNU Trondheim,
KSAT Svalbard, and KSAT Spain.

Table A.1.: HYPSO-1 Power Budget

Subsystem Power (W) DC (%) Power Used (W)
Hyperspectral imager 3.675 1.09 0.040
RGB camera 3.375 0.55 0.020
OPU imaging 4.234 1.09 0.046
OPU image processing 4.234 6.69 0.283
OPU-PC transfer 4.234 35.33 1.496
ADCS cruise 3.441 94.72 3.259
ADCS precise 6.331 5.28 0.334
S-band radio RX 4.813 10.57 0.509
S-band radio TX+RX 12.201 10.57 1.290
Other 1.530 100 1.530
Total (+10% margin) 9.688
Generated (effective) 9.861
Remaining +0.174
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HYPSO-1

Target Area
Ground Station

Figure A.2.: HYPSO-1 in SSO at 10:25:00 on 28 May 2022. Selected ground stations are marked in white
circles. Previous, current and succeeding ground tracks are indicated by dashed lines.

Table A.1 shows the power budget with 5% component margin and the corresponding subsystem
duty cycles (DC) that includes booting up. Battery input and output efficiencies are assumed 92%
each. The power consumed in OPU, ADCS and S-band radio are separated into more than one
operational mode, while “Other” denotes the collective power consumption by FC, EPS, PC and
internal bus communications. Naturally, peaks in power are expected during image acquisition,
image processing and downlink. “ADCS precise” indicates preparing and executing the slew
maneuver during image acquisition when both the IMU and star-tracker are active, consuming
up to 1.5 W each. Adding a 10% system margin results in remaining power of about 174 mW.
Enforcing the power budget to remain safe and positive, the allowed duration is set to maximum
6.33 min for onboard image processing and 33.42 min for transferring data from OPU to PC
through CAN. Allowed duration of data transmission through S-band radio is set to 10 min which
enables downlinking up to 75 MB of data per orbit.

A.3 Power Budget
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