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Abstract
With the aid of machine learning method, namely artificial neural networks, we established data-driven proxy models 
that could be utilized to maximize the net present value of a waterflooding process by adjusting the well control injection 
rates over a production period. These data-driven proxies were maneuvered on two different case studies, which included a 
synthetic 2D reservoir model and a 3D reservoir model (the Egg Model). Regarding the algorithms, we applied two differ-
ent nature-inspired metaheuristic algorithms, i.e., particle swarm optimization and grey wolf optimization, to perform the 
optimization task. Pertaining to the development of the proxy models, we demonstrated that the training and blind validation 
results were excellent (with coefficient of determination, R2 being about 0.99). For both case studies and the optimization 
algorithms employed, the optimization results obtained using the proxy models were all within 5% error (satisfied level of 
accuracy) compared with reservoir simulator. These results confirm the usefulness of the methodology in developing the 
proxy models. Besides that, the computational cost of optimization was significantly reduced using the proxies. This further 
highlights the significant benefits of employing the proxy models for practical use despite being subject to a few constraints.

Keywords Waterflooding optimization · Machine learning · Artificial neural network · Data-driven proxy modeling · 
Nature-inspired algorithms

Introduction

For the past decades, waterflooding or water injection has 
been one of the most prevalent techniques applied to increase 
the hydrocarbon production. Waterflooding is termed as the 
secondary production method that is conducted following 
the primary production, which is also known as natural 
depletion. During the phase of natural depletion, hydrocar-
bon fluid is recovered from the reservoirs by natural forces, 
such as expansion of fluid and rock, and influx of aquifer. 
Besides that, tertiary recovery methods, which are known 
as enhanced oil recovery (EOR), can be another option if 
secondary recovery is not effective to produce the remain-
ing hydrocarbon. Examples of EOR methods include steam 
injection and polymer flooding. Pertaining to waterflooding, 

due to the costs of water production and injection, it is essen-
tial for oil and gas companies to carefully plan the schemes 
of waterflooding to achieve higher economic returns. Such 
planning is understood as a part of production optimiza-
tion which is a very vital aspect in reservoir management 
(Thakur 1996; Udy et al. 2017). Therefore, optimization of 
waterflooding has been one of the most widely researched 
topics in the field of petroleum engineering (Van Essen et al. 
2009; Zhang et al. 2014; Ogbeiwi et al. 2018; Hong et al. 
2019).

Fundamentally, waterflooding optimization involves the 
adjustment of some relevant variables to maximize the pre-
defined objective function, like net present value (NPV), 
total oil production, etc., over a period. Additionally, this 
period can be at least in the horizon of several years or dec-
ades. Hence, it is considered as a long-term optimization 
problem. More intriguingly, different types of algorithms can 
perform this optimization as discussed in Udy et al. (2017). 
In general, these algorithms can be either derivative based or 
derivative free. Udy et al. (2017) further expounded the ben-
efits and drawbacks of implementing derivative-based algo-
rithm, like adjoint method and derivative-free algorithms, 
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including particle swarm optimization (PSO), simulated 
annealing (SA), and genetic algorithm (GA). Moreover, 
waterflooding optimization can in general be categorized 
into three different types, namely well control optimization 
(generally comprising either bottom-hole pressure (BHP) or 
rates optimization) (Sarma et al. 2008; Zhang et al. 2014; Lu 
et al. 2017), well placement optimization (Guyaguler et al. 
2002; Forouzanfar and Reynolds 2013; Volkov and Bellout 
2017), and combination of these methods together or with 
other variables, such as number of wells (Bellout et al. 2012; 
Forouzanfar and Reynolds 2014; Pouladi et al. 2020). In 
this context, the potential of waterflooding optimization for 
continuous improvement for more practical applications has 
been demonstrated.

Numerical reservoir simulation (NRS) is one of the most 
standardized tools utilized in the oil and gas industry to 
conduct the subsurface or reservoir modeling. NRS can be 
conveniently (and is also frequently) coupled with any math-
ematical algorithm to optimize waterflooding or any EOR 
techniques. This has also been one of the most common 
practices in the industry as highlighted in some literatures 
(Peaceman 1977; Jansen et al. 2009; Ertekin and Sun 2019; 
Baumann et al. 2020). Nonetheless, as perceived, NRS is 
developed based upon the physics to model the behavior of 
fluid flow in porous media. Therefore, when the system mod-
eled becomes more complex, e.g., increased heterogeneity 
of the reservoir, the transport of fluid in porous media will 
be more difficult to be solved mathematically (Mohaghegh 
2017a). This implies that the time required to complete 
the computation of NRS will increase drastically. Conse-
quently, this might lead to certain level of economic loss. 
Fortunately, thanks to the establishment of proxy modeling, 
the computational challenge can be mitigated. In this aspect, 
the word “proxy” denotes “to act on behalf of another.” This 
denotes that proxy models are the replica of numerical res-
ervoir models which can be readily employed for practical 
applications in the industry (Mohaghegh 2011; Ertekin and 
Sun 2019).

With respect to this, proxy models are alternatively 
known as data-driven models because their building blocks 
are made up of different sets of data. Hence, proxy models 
are believed to be able to replicate the results of NRS accu-
rately if the data used to develop them are representative 
of the physics being modeled. As Mohaghegh (2017b) has 
counseled, there are two main classes of proxy modeling, 
which are reduced-order models (ROMs) and response sur-
face models (RSMs). For ROMs, the simplification of the 
physics is involved and one of the most used examples of 
ROMs is capacitance resistance models (CRMs). CRMs 
were developed by Bruce (1943) and reinitiated by Yousef 
et al. (2006) to determine inter-well connectivity. Applica-
tion of CRMs in waterflooding has also been proven to be 
useful in some literatures (Liang et al. 2007; Sayarpour et al. 

2007; Hong et al. 2017). Besides that, RSMs are considered 
as statistical approaches which attempt to develop a pre-
defined form of mathematical function, e.g., linear, poly-
nomial, etc., based on the data given (Mohaghegh 2017b). 
There are also some papers (Valladão et al. 2013; Babaei and 
Pan 2016) that discuss the use of RSMs in waterflooding. 
Despite this, Mohaghegh (2017a, b) has opined that these 
classes of proxy modeling involve underlying assumptions 
and simplifications that can impede capturing the actual 
physics from pattern recognition of data provided. Thus, 
he has coined another class of proxy modeling that is built 
based upon machine learning (ML) techniques and artificial 
intelligence (AI), which has been named as “smart proxy 
modeling” (SPM). The word “smart” indicates the ability of 
the models to learn the pattern of the data provided through 
the ML and AI techniques. He has also initialized the term 
“Petroleum Data Analytics” (PDA) that focuses on the use of 
data-driven analytics and big data in the upstream of petro-
leum industry (Mohaghegh 2017a, b) and SPM is undeni-
ably a part of PDA. According to Mohaghegh (2017b), smart 
proxy models consist of an ensemble of neuro-fuzzy systems 
that can duplicate the results yielded by NRS and readily 
to be utilized for different purposes, like history matching 
(He et al. 2016; Shahkarami et al. 2018; Shahkarami and 
Mohaghegh 2020), uncertainty quantification (Mohaghegh 
2006; Mohaghegh et al. 2006, 2012), utilization of  CO2 
(Shahkarami et al. 2014; Amini and Mohaghegh 2019; Vida 
et al. 2019; Shahkarami and Mohaghegh 2020), waterflood-
ing (Alenezi and Mohaghegh 2017), and analysis of shales 
(Kalantari-Dahaghi and Mohaghegh 2011; Mohaghegh 
2013; Mohaghegh et al. 2017). Also, it is very important to 
understand that SPM is an objective-directed task in which 
the purpose of the proxies needs to be notified first prior to 
development. Having this understanding will help the mod-
elers to have a better idea of what data can be useful in the 
development of proxy models.

There are also other interesting literatures (Nait Amar 
et al. 2018, 2020; Navrátil et al. 2019; Alakeely and Horne 
2020; Ng et al. 2021) that discuss and present the use of ML 
methods in the establishment of proxies of numerical models 
in petroleum domain, especially for reservoir engineering. 
Regarding this, there is a riveting insight being provided 
by Nait Amar et al. (2018) about the modeling of proxies, 
which is the difference between static and dynamic proxy 
models. They discussed that in static proxies, the models 
were not developed as the function of time. Hence, these 
models were built to yield the results of a predefined vari-
able, such as NPV and total oil production at a particular 
time (normally at the end of simulation). In this context, 
Guo and Reynolds (2018) applied support vector regression 
(SVR) to build a static proxy model that predicted the NPV 
as a function of control sets by considering different geologi-
cal realizations. Then, the static proxy was maneuvered to 
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perform robust production optimization. Moreover, Wang 
et al. (2021) presented the application of PSO in tuning the 
hyperparameters of SVR that was developed as static proxies 
to forecast the NPV and cumulative oil production. Thereaf-
ter, this PSO–SVR model was coupled with non-dominated 
sorting genetic algorithm-II (NSGA-II) to conduct the Pareto 
optimization. Albeit the use of static proxies has been suc-
cessfully shown, they articulated that the dynamic proxies 
(established as a function of time) offered more practical 
applicability and flexibility to be used, notably under time-
dependent constraints (Nait Amar et al. 2018). In the context 
of waterflooding, Golzari et al. (2015) applied artificial neu-
ral network (ANN) modeling to build a dynamic proxy and 
coupled it with GA to optimize the production. They also 
integrated cross-validation and Jackknife Variance to evalu-
ate the quality of the proxies and perform adaptive sampling 
to add new training data if necessary. Also, Teixeira and Sec-
chi (2019) employed ANN to develop two dynamic proxies: 
one that could forecast the oil production rates as a function 
of injection rates and past oil rates and another one was to 
approximate the same output by having injection rates and 
BHP of producers as inputs.

In this paper, one of the goals is to present how dynamic 
proxy models can be developed based upon the data gen-
erated by the NRS models. There are two different NRS 
models, 2D and 3D reservoirs, being analyzed in this work. 
The purpose of the proxies is to be employed to carry out 
the well control optimization. About the proxy modeling, the 
ML technique that has been applied is ANN and the corre-
sponding training algorithm is adaptive moment estimation 
(Adam). Furthermore, we couple these proxies with two dif-
ferent nature-inspired metaheuristic algorithms, namely par-
ticle swarm optimization (PSO) and grey wolf optimization 
(GWO) to run the respective optimization. These algorithms 
would also be utilized with the NRS models for comparative 

analysis. After this introduction, we will explicate the for-
mulation of the optimization problem and the methodology 
used to establish the proxies. In this aspect, we also provide 
brief discussion about ANN, PSO, and GWO. Thereafter, we 
explain the background of the reservoir models and illustrate 
the respective results of the ANN training as well as the 
optimization study. The discussion will then follow prior to 
proceeding to the conclusions.

Methods

The entire workflow utilized to build and apply the data-
driven models for the optimization of waterflood is summa-
rized in Fig. 1. The workflow can be classified into two main 
parts, which include neural network training (also known as 
proxy modeling) and optimization routine. Prior to devel-
oping the data-driven proxies, it is essential to identify the 
purpose of these models as proxy modeling is an objective-
directed task. In this paper, the objective is to maximize the 
NPV of a waterflooding project by adjusting the control of 
injection rate of each well periodically (every 150 days) over 
3000 days. Besides that, the control of each injector is tuned 
within the range of 40  m3/day and 100  m3/day.

The NPV is expressed as shown in Eq. (1). Since the 
reservoir models presented in this paper are only oil–water 
systems, gas production rate is not considered in the formu-
lation of NPV.

(1)

NPV(�) =

ntotal∑

j=1

(
Qj

o
(�)Po − Qj

w
(�)Cw − Q

j

wi
(�)Cwi

)
× Δtj

(1 + b)tj∕D

(2)� =
[
u1, u2, u3,… , uM

]T

Fig. 1  General workflow of the methodology of data-driven proxy modeling and optimization
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where u is the control vector (e.g., control rates or BHP), M 
is the number of control variables, Qj

o
 is the field oil produc-

tion rate at timestep j, Qj
w
 is the field water production rate 

at timestep j, Qj

wi
 is the field water injection rate at timestep 

j, Δtj is the time difference between timestep j and previous 
timestep, tj is the cumulative time until timestep j that is used 
to discount the cashflow, and D is the reference period for 
discounting. In this paper, D is set to be 365 days because 
interest rate, b is in the unit of fraction per year and the 
cashflow is discounted every day.  Po,  Cw, and  Cwi corre-
spondingly mean oil price, cost of water production, and 
cost of water injection. According to Eq. (1), there are two 
important parameters we aim to obtain, either directly or 
indirectly, from the proxy models. These parameters are field 
oil and water production rates. Based on our analysis and 
investigation, we established two different proxy models, 
where one could predict the field liquid production rates at 
a specific timestep whereas the other one could estimate the 
field water cut at a particular timestep.

For both proxies, the input variables include the num-
ber of days at each timestep j,  tj; the harmonic mean of 
grid absolute permeability for each reservoir layer, k ; the 
standard deviation of grid absolute permeability for each 
reservoir layer,  kSD; the permeabilities of perforated grid 
blocks (injectors),  kinjector; the permeabilities of perforated 
grid blocks (producers),  kproducer; the field water injection 
rate (control vector); the output at the previous timestep, 
 yj-1. The mathematical formulation of the proxies1 built in 
this paper in general can be expressed as Eq. (3). Besides 
that, the harmonic mean of permeability for each reser-
voir layer is presented as Eq. (4). Nonetheless, regarding 
the input variables of the permeabilities of perforated grid 
blocks (producers and injectors), they are case-dependent 
in this paper. This implies that we have applied different 
approaches of formulation to incorporate them as parts of 
the inputs relying upon the reservoir models investigated. It 
will be discussed in detail later. In this work, the data-driven 
models were represented as the ANNs. The topologies of the 
ANNs developed here will be divulged in the next section.

(3)yj = f
(
tj, k, kSD, kinjector, kproducer, �, yj−1

)

(4)k =

∑n

i=1
Li

∑n

i=1

Li

ki

where n is the number of grid blocks,  Li is the depth at the 
top of grid block i, and  ki is the grid absolute permeability.

About the development of the proxies, the first step is to 
generate the spatiotemporal database. To develop the data-
base, we apply three different sampling techniques, which 
are Latin Hypercube sampling (LHS), Sobol Sequence sam-
pling (SSS), and Hammersley Sequence sampling (HSS) to 
generate 60 sets of samples of control rates (each set con-
sists of 20 injection rates which corresponds to one injec-
tion scenario). Respectively, peruse McKay et al. (1979), 
Sobol’ (1967), and Hammersley and Handscomb (1964) for 
more information about LHS, SSS, and HSS. Each sampling 
method is implemented to, respectively, generate 20 sets of 
samples. Thereafter, each set would be fed into the reservoir 
simulator to yield the reservoir responses. This denotes that 
60 reservoir simulations are run in total. After finishing the 
simulations, we extract the dynamic inputs and combined 
them with the static inputs to create the spatiotemporal data-
base. It is of paramount importance to have the database 
normalized and arrange in a consistent format before it is 
supplied to the neural network for training. The fundamental 
ideas of the neural network training will be delineated later. 
Before the neural network training commences, the nor-
malized database is partitioned into three different groups, 
namely training, validation, and testing, based on a ratio of 
8:1:1. In this case, only the training data is used to build 
the data-driven models. However, after each epoch (itera-
tion) of training, validation data would be simultaneously 
fed into the neural network to elude the issue of overfitting 
(Mohaghegh 2017a; Shahkarami and Mohaghegh 2020). A 
heathy training can be ensured by having the simultaneous 
decreasing trends of the training and validation errors as 
shown in Fig. 2. After the training is completed, the test-
ing data would be used to evaluate the predictability of the 
models.

Upon the completion of these three stages, the data-
driven proxies ought to undergo the blind validation before 
being practically employed. The data used in blind valida-
tion should not be part of the above-mentioned spatiotem-
poral database. Therefore, to conduct the blind validation, 
we utilize LHS, SSS, and HSS to generate other 80 sets of 
samples of control rates. Then, 80 reservoir simulations are 
run to produce the outputs of field liquid production rates 
and field water cut. These outputs are compared with the 
predicted outputs yielded by the proxy models. Only when 
the comparative study shows excellent results, we can safely 
infer that the proxy models can practically be employed. By 
having successfully established these two proxies, the field 
oil and water production rates required for the optimiza-
tion purpose can be obtained. In this paper, we implemented 
PSO and GWO to optimize the well control. The information 
about the algorithms and the parameters used to carry out 
the optimization will be presented later. We did not only 

1 The permeability used here is the horizontal permeability. The data 
of the vertical permeability can also be included in the development 
of the proxies here. However, it has not been considered in this paper 
as the current formulation already yielded very good results.
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couple these algorithms with the proxies developed here, 
but also applied them along with the numerical reservoir 
simulation. The optimal well controls resulted from the two 
approaches were then compared. Additionally, the proxy-
optimized well controls were fed into the reservoir simulator 
to yield the results that could be used to further illustrate the 
robustness of the proxy models.

Artificial neural network

ANN is a famous ML method that is established based on 
the inspiration from the working process of the biological 
neural networks in human brains. ANN consists of a lot of 
computing elements which are termed as nodes or artificial 
neurons. It has been proven to be useful and effective in cap-
turing and learning the sophisticated relationship between 
input and output data derived from any physical process as 
in traditional regression approaches. Examples of ANNs 
include feedforward neural network (FNN), convolutional 
neural network, recurrent neural network, radial basis func-
tion networks, and adaptive neuro-fuzzy inference system. 
Different types of activation functions can also be employed 
to develop an ANN and the common ones are the sigmoid 
function, the hyperbolic tangent, and the rectified linear unit 
(ReLU) function (Buduma and Locascio 2017).

In this paper, FNN with the ReLU function as its acti-
vation function was utilized. In general, FNN, also called 
multilayer perceptron (MLP), has three layers, e.g., the input 
layer, the hidden layer, and the output layer. To guarantee 
that the MLP can study the relationship between input and 
output data provided, it must undergo the training stage. 
During the training stage, the learning ability of the MLP 
is achieved by adjusting the sets of weights and biases to 
reduce the predefined loss function, including mean squared 
error (MSE) and mean absolute percentage error. In this 

paper, MSE was chosen as the loss function. Such optimi-
zation is generally conducted through the backpropagation 
(BP) approaches. These methods involve the application of 
different derivative-based algorithms, for instance, steepest 
descent gradient, the Levenberg–Marquardt algorithm, the 
Powell-Beale conjugate gradient, and Adam. In this work, 
Adam was applied as the training algorithm. For the details 
of Adam, refer to this literature (Kingma and Ba 2015). The 
relevant parameters used for the training of all the neural 
network proxies in this paper are tabulated in Table 1.

Prior to entering the MLP, the data have to be normalized 
to improve the training performance of the MLP as recom-
mended in Hemmati-Sarapardeh et al. (2020). In this paper, 
we used Eq. (5) to normalize the data between 0 and 1. After 
normalization of data, the forward propagation of the input 
data will happen to compute the outputs. The resulting out-
put data will thereafter be compared with the actual output 
data to determine the errors. After this, the errors are propa-
gated back through the MLP to iteratively tune the weights 
and biases to reach the optimal point. The architecture of 
an arbitrary FNN is demonstrated in Fig. 3 in which the red 
node acts as the bias node between the input and hidden lay-
ers whereas the node between the hidden and output layers 
is shown in green.

Fig. 2  Comparison between healthy trend of training and overfitting issue. Adapted from Shahkarami and Mohaghegh (2020)

Table 1  Parameters used to conduct neural network training using 
Adam

Adam parameters Values

Number of iterations (epochs) 2000
Learning rate 0.001
Exponential decay rates for the 1st moment estimates, β1 0.9
Exponential decay rates for the 2nd moment estimates, β2 0.999
Numerical stability constant, ε 10–7
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where  xnorm represents the normalized data point,  xj refers to 
a data point,  xmin corresponds to the data point with the low-
est value, and  xmax is the data point with the highest value. 
To assess the quality of the prediction done by the proxies, 
we used coefficient of determination,  R2 as the performance 
metrics. The respective formula is shown in Eq. (6).

where yreal
j

 means the actual data point, ypred
j

 denotes the 
predicted data point, yreal refers to the mean of all the actual 
data points, and N is the total number of data points. As 
explained, we have built four neural network proxies in this 
paper, two for each of the reservoir models studied. The 
topologies of the neural proxies are presented in Table 2 for 
2D reservoir model and Table 3 for 3D reservoir model. 
These architectures were determined via the trial and error 
approach.

Particle Swarm Optimization

The PSO algorithm is one of the most popular swarm-based 
metaheuristic algorithms that has been initiated by Kennedy 
and Eberhart (1995) through simulating the social habit of 

(5)xnorm =
xj − xmin

xmax − xmin

(6)R2 = 1 −

∑N

j=1

�
yreal
j

− y
pred

j

�2

∑N

j=1

�
y
pred

j
− yreal

�2

flying birds. Mathematically, this flock of birds is repre-
sented as a population of particles known as a swarm of par-
ticles. Each particle indicates a potential position (solution) 
in a search space and it is updated iteratively according to its 
position and velocity at previous iteration step. The motions 
of the particles are regulated by their own most optimal posi-
tion (the local best position) and their most optimal position 
in the entire swarm (the global best position). After some 
iterations, the convergence of the particles in the swarm to 
an optimal point (the best solution) will occur. The position 
and velocity of the  jth particle in a k dimensional space at 
step t are formulated as follows:

Thereafter, the velocity of each particle at next step t + 1 
is updated based on Eq. (9) and the position of a particle at 
the next iteration t + 1 is updated by using Eq. (10).

where  vjk,t and  xjk,t indicate the velocity of the jth particle 
at step t and its corresponding position in the kth dimension 
quantity, respectively. Apart from this,  pbestjk,t refers to the 
kth dimension quantity of the individual j at the local best 
position at iteration t.  gbestk,t is the kth dimension quantity 
of the swarm at the global best position at iteration t.  c1 and 
 c2, respectively, denote the cognitive and social learning fac-
tors. ω is known as the inertial weight which was introduced 

(7)xj,t =
{
xj1,t, xj2,t, xj3,t,… , xjk,t

}

(8)vj,t =
{
vj1,t, vj2,t, vj3,t,… , vjk,t

}
.

(9)
���,�+� = ω���,� + c1r1

(
�������,� − xjk,t

)
+ c2r2

(
������,� − ���,�

)

(10)xjk,t+1 = xjk,t + vjk,t+1

Fig. 3  The structure of a simple FNN model

Table 2  The architecture of ANN for 2D Reservoir Model

Layers Field liquid production rate Field water cut

Number of 
layers

Number of 
nodes

Number of 
layers

Number 
of nodes

Input 1 23 1 23
Hidden 1 100 2 50
Output 1 1 1 1

Table 3  The architecture of ANN for 3D Reservoir Model

Layers Field liquid production rate Field water cut

Number of 
layers

Number of 
nodes

Number of 
layers

Number 
of nodes

Input 1 29 1 29
Hidden 1 100 2 50
Output 1 1 1 1
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by Shi and Eberhart (1998) to enhance the convergence con-
dition.  r1 and  r2 are randomly retrieved between 0 and 1. In 
terms of the minimization problem, a cost function f (to 
be minimized) is defined. Then, to find out the local best 
solution at t + 1, Eq. (11) is used. To determine the global 
optimal solution at t + 1, Eq. (12) is applied.

The procedure described above is repeated until the stop-
ping condition is satisfied. During the optimization process, 
15 particle swarms were initially generated, 100 iterations 
were run, and the values of ω ,  c1, and  c2 were, respectively, 
set to be 0.8, 1.1, and 1.1.

Grey wolf optimization

The GWO is another well-known metaheuristic algorithm 
that was established by Mirjalili et al. (2014). This algorithm 
was developed in accordance with the natural inspiration 
derived from the social hierarchy of leadership and hunt-
ing style of grey wolves (Mirjalili et al. 2014). Pertaining 
to the paradigm of this algorithm, it is essential to recog-
nize that the population of grey wolves is divided into four 
different classes, such as alpha (α), beta (β), delta (δ), and 
omega (ω). Based upon the social hierarchy, ω wolves are 
the lowest among others and they are preceded by δ, β, and 
α. To mathematize the mechanism of GWO, a population 
of wolves is expressed as a set of random solutions. The 
fitness value of this set of solutions is then calculated and 
assessed by applying a predefined objective function (Xu 
et al. 2020). After that, the wolves’ populations are divided 
into the four previously stated classes based on the computed 
fitness value. When the optimization takes place, the three 
most optimal wolves: α, β, and δ, would eventually guide 
the other ω wolves toward the prey that acts as the global 
solution in the search space. This procedure is carried out 
via the iterative update of the positions of the wolves as 
shown below:

(11)pbestjk,t+1 =

{
pbestjk,t, if f (pbestjk,t) ≤ f(xjk,t+1)

xjk,t + 1, otherwise

(12)gbestk, t+1 =min
[
f
(
pbestjk, t+1

)]
.

(13)��⃗D =
||
|
��⃗C.����⃗Xp(t) −

��⃗X(t)
||
|

(14)��⃗X(t + 1) =
||
|
����⃗Xp(t) −

��⃗A.��⃗D
||
|

(15)��⃗A = 2�⃗a.��⃗r1 − �⃗a

(16)��⃗C = 2��⃗r2

where t means the current iteration step, ��⃗X implies the posi-
tion of a grey wolf, ����⃗Xp is the position of the prey, �⃗a is nor-
mally lowered from 2 to 0. Also, ��⃗r1 and ��⃗r2 are the random 
vectors between 0 and 1. In GWO, the position of the prey 
(the global optimal solution) is not exactly known. Hence, it 
is assumed that the positions of α, β, and δ are considered as 
the optima. Then, the other ω wolves re-calibrate their posi-
tions with respect to those of α, β, and δ as follows:

where ����⃗X𝛼(t) corresponds to the position of α wolves at step 
t, ����⃗Xβ(t) is the position of β wolves at step t, and ����⃗Xδ(t) rep-
resents the position vector of δ wolves at iteration t. α, β, 
and δ wolves will then update their positions at iteration 
t + 1 based on Eqs. (20), (21), and (22). The position of the 
solution at step t + 1 is thereafter determined based upon 
Eq. (23).

These steps are repeated until the stopping condition is 
met. During the optimization process, 15 populations of grey 
wolves were initially generated, and 100 iterations were run.

Results

Case study 1: 2D reservoir model

We first illustrate the development of a data-driven proxy 
model of a 2D heterogeneous and 2-phase (water and black 
oil) reservoir model. The heterogeneity only applies to the 
permeability in this case study. Besides that, the horizontal 
permeabilities in both x and y directions are assumed to be 
the same whereas the vertical permeability is set to be 10 
times smaller. Also, homogeneity applies to porosity and it 
is assumed to be 0.4. Regarding the size of the grid blocks, 

(17)����⃗D𝛼 =
|
|
|
���⃗C1.

����⃗X𝛼(t) −
��⃗X(t)

|
|
|

(18)����⃗Dβ =
|
|
|
���⃗C2.

����⃗Xβ(t) −
��⃗X(t)

|
|
|

(19)����⃗Dδ =
|
|
|
���⃗C3.

����⃗Xδ(t) −
��⃗X(t)

|
|
|

(20)����⃗X1 =
||
|
����⃗X𝛼(t) −

����⃗A1.
����⃗D𝛼

||
|

(21)����⃗X2 =
||
|
����⃗Xβ(t) −

����⃗A2.
����⃗Dβ

||
|

(22)����⃗X3 =
||
|
����⃗Xδ(t) −

����⃗A3.
����⃗Dδ

||
|

(23)��⃗X(t + 1) =
����⃗X1 +

����⃗X2 +
����⃗X3

3
.
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it is 10 m × 10 m × 10 m and the total number of grid blocks 
is 40 × 40 × 1. Therefore, the dimension of the whole model 
is 400 m × 400 m × 10 m. Its top is at the depth of 1500 m. 
Pertaining to the configuration of well, there are only two 
wells being drilled, namely one horizontal injector and one 
horizontal producer. The injector is drilled at the left edge 
whereas the producer is placed at the right edge. The 2D res-
ervoir model is illustrated in Fig. 4. As briefly discussed, the 
performance of the injector is controlled by the rate within 
the range of 40  m3/day and 100  m3/day whereas the producer 
is controlled by the BHP with the lower limit of 180 bar. 
Regarding the perforation in the x-direction, the injector is 
perforated at the  1st grid block whereas the producer is per-
forated at the 40th grid block. However, for y-direction, both 
wells are completed at 1st, 5th, …, 35th, 40th grid blocks. 
Permeabilities of these grid blocks (constituting 18 variables 
in total) are directly retrieved and used as the input param-
eter for neural network training. The numerical simulation 
is performed using ECLIPSE 100 software Schlumberger.

After running the required numerical reservoir simula-
tions and extracting the input and output data, the neural 
network training was correspondingly performed on the 
data-driven proxies of field liquid rate and field water cut 
by using the specification listed in Table 2. Based on Eq. (3) 
and Table 2, there are 23 input parameters applied to train 
the proxies. The performances of training, validation, and 
testing of both proxies are evaluated by using the coefficient 
of determination,  R2, and shown in Table 4. Besides that, 
for the blind validation phase, the proximity of the actual 
and targeted outputs is assessed by applying 80 injection 
schedules. Thereafter, the mean of the respective coefficient 
of determination is calculated for each proxy and tabulated 
in Table 5. For illustration purpose, only the result for a 

randomly selected injection schedule of blind validation 
(out of 80) is demonstrated for each sampling method. In 
this case, the comparison between the actual and the pre-
dicted field liquid production rates (also field water cuts) is, 
respectively, plotted as shown in Fig. 5 for LHS, in Fig. 6 
for SSS, and in Fig. 7 for HSS. According to these results, 
it is inferred that these proxy models are ready for practical 
application.

In this aspect, we defined the economic parameters as 
depicted in Table 6 to be used in the optimization process. 
As mentioned earlier, PSO and GWO would be employed 
to conduct the optimization of NPV. The optimized controls 
of field water injection rates are, respectively, illustrated in 
Fig. 8 for PSO and in Fig. 9 for GWO. Pertaining to this, 
the resulted optimal NPV of three different scenarios is 
demonstrated in Table 7 in which Scenario 1 represents the 
optimization by only using the reservoir simulator  (NPVsim), 
Scenario 2 denotes the optimal NPV obtained by feeding the 
proxy-optimized control into the simulator  (NPVsim-proxy), 
and Scenario 3 means the optimization by only using the 
proxies  (NPVproxy). Pertaining to the optimal NPVs yielded 
from three different scenarios, it can be noted that the data-
driven proxies have in general overestimated the optimal 
NPV for both algorithms. However, the absolute percentage 
error between  NPVproxy and either  NPVsim or  NPVsim-proxy 
is miniscule.

For PSO, the absolute percentage error between  NPVsim 
and  NPVproxy is around 0.14%. This shows that when the 
data-driven proxies are coupled with PSO, they can yield 
reasonable results to approximate the NPV calculated with 
the results from simulator. Furthermore, to understand 
whether the proxies produce accurate results for the calcu-
lation of NPV, the absolute percentage error between  NPVsim 
and  NPVsim-proxy is found out to be about 0.13%. Addition-
ally, the absolute percentage error between  NPVsim-proxy and 

Fig. 4  The overview of the 2D reservoir model. The color bar indi-
cates the values of horizontal permeability in x-direction in the units 
of millidarcy (mD)

Table 4  R2 of training, validation, and testing results of the data-
driven proxies

Dataset Field liquid production rate Field water cut

Training 0.9999 0.9999
Validation 0.9999 0.9999
Testing 0.9999 0.9999

Table 5  Mean R2 of blind validation of proxies based on different 
sampling techniques

Sampling methods Field liquid production rate Field water cut

LHS 0.9999 0.9995
SSS 0.9999 0.9995
HSS 0.9999 0.9995
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 NPVproxy is 0.27%. This proves the reliability of the devel-
oped proxies. Thereafter, for GWO, the absolute percent-
age error between  NPVsim and  NPVproxy is 0.34% while it 
is 0.40% between  NPVsim and  NPVsim-proxy. Also, the abso-
lute percentage error between  NPVsim-proxy and  NPVproxy is 
0.74%. Despite the higher accuracy of optimization results 
portrayed by PSO, it can be noted that GWO generally per-
forms better than PSO in the context of optimization in this 

case study. To further demonstrate the high proximity of the 
data-driven models, the plots of PSO-optimized and GWO-
optimized field water production rates of Scenario 2 against 
Scenario 3 are correspondingly illustrated in Figs. 10 and 
11. R2 obtained for Fig. 10 is 0.9998 whereas that of Fig. 11 
is 0.9989. The similar plots for field oil production rates are 
presented for PSO in Fig. 12 and GWO in Fig. 13 Then, the 
values of  R2 calculated for Figs. 12 and 13 are 0.9999.

Fig. 5  Results of blind valida-
tion of data-driven proxies of 
LHS sample set 11 (out of 80). 
a Field liquid production rate. b 
Field water cut
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Case study 2: 3D reservoir model (Egg Model)

To further demonstrate the methodology of proxy modeling 
proposed in this paper, we present the use of a more sophis-
ticated reservoir model as another case study. The model 
was initiated by Jansen et al. (2014) and termed as “Egg 
Model.” It was employed as case study in several papers 

(Van Essen et al. 2009; Hong et al. 2017). In general, it 
is considered as a channelized depositional model where 
the heterogeneity only pertains to permeability. However, 
porosity is homogeneous and set to be 0.2. Besides that, 
the initial water saturation is 0.1 and it applies to all grid 
blocks. The size of the grid blocks is 8 m × 8 m × 4 m and 
the total number of grid blocks is 60 × 60 × 7. However, the 

Fig. 6  Results of blind valida-
tion of data-driven proxies of 
SSS sample set 32 (out of 80). 
a Field liquid production rate. b 
Field water cut
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total number of active grid blocks is 18533. The horizon-
tal permeability map of Egg Model is illustrated in Fig. 14. 
The details of the geological properties of this model can be 
found in Jansen et al. (2014). Besides that, the model com-
prises eight vertical injectors and four vertical producers. 
The only modification done on the Egg Model to fulfill the 
need of the analysis here is changing the control of injectors. 
Since there are eight injectors and each of them is controlled 

by the rate within the range of 40  m3/day and 100  m3/day, 
the field injection rates are altered between 320  m3/day and 
800  m3/day. Regarding the four producers, each of them is 
controlled by the BHP with the lower limit of 395 bar.

About the completion, all the wells are perforated in 
seven layers. If we apply the formulation presented in the 
case study of 2D reservoir model to include the grid block 
permeability as the input variables, then this will result in 84 

Fig. 7  Results of blind valida-
tion of data-driven proxies of 
HSS sample set 69 (out of 80). 
a Field liquid production rate. b 
Field water cut
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variables of  kinjector and  kproducer. Thus, for practical purpose 
of eluding the curse of dimensionality, we determined the 
arithmetic mean of the permeability of the perforated grid 
blocks for each well. This could reduce the number of per-
meability variables from 84 to 12. Given there are 7 layers in 
this Egg Model, there will be a total of 14 variables of k and 
 kSD. According to Eq. (3), there are 29 input variables to be 
included to train the neural network. By employing the same 

Fig. 8  Optimized control 
rates by using simulator and 
data-driven proxies with the 
implementation of PSO

Fig. 9  Optimized control 
rates by using simulator and 
data-driven proxies with the 
implementation of GWO

Table 6  Economics parameters used for NPV calculation

Variables Values Units

Oil price,  Po 314.50 USD/m3

Cost of produced water,  Cw 37.50 USD/m3

Cost of injected water,  Cwi 37.50 USD/m3

Discount rate 0.10 per year
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methodology as explained earlier and the specifications pre-
sented in Table 3, the neural network training is conducted. 

Performance metrics of training, validation, and testing of 
the proxies of the Egg Model are presented in Table 8. Also, 

Table 7  Optimization results 
of three scenarios for PSO and 
GWO

Optimization Algorithm Scenario 1 Scenario 2 Scenario 3

GWO PSO GWO PSO GWO PSO

NPVoptimal (million USD) 16.52 16.26 16.46 16.24 16.58 16.29

Fig. 10  Plot of PSO-optimized 
field water production rates, 
comparison between Scenarios 
2 and 3

Fig. 11  Plot of GWO-optimized 
field water production rates, 
comparison between Scenarios 
2 and 3
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the mean of the corresponding coefficient of determination is 
computed for each proxy and shown in Table 9. For illustra-
tion purpose, like Figs. 5, 6, and 7, the graphs of the com-
parison between the actual and the predicted field liquid pro-
duction rates (also field water cut) are shown in Fig. 15 for 
LHS, in Fig. 16 for SSS, and in Fig. 17 for HSS. To perform 
the optimization of NPV, different economic parameters, as 
shown in Table 10, are used because using the parameters in 

Table 6 will result in a mathematically trivial solution in this 
case study. Table 11 illustrates the results of optimization 
of the three scenarios. The optimized controls of field water 
injection rates are shown in Fig. 18 for PSO and in Fig. 19 
for GWO. In this case study, the overestimation of NPV by 
the data-driven proxies for both algorithms is also noticed. 
Nevertheless, this overestimation is practically infinitesimal 
in which the application of these proxies is still feasible.

Fig. 12  Plot of PSO-optimized 
field oil production rates, 
comparison between Scenarios 
2 and 3

Fig. 13  Plot of GWO-optimized 
field oil production rates, 
comparison between Scenarios 
2 and 3
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During the optimization using PSO, the absolute percent-
age error between  NPVsim and  NPVproxy is approximately 
2.43%. Given the higher complexity of the Egg Model, the 
results produced are within satisfactory level of accuracy 
to approximate the  NPVsim. Also, the absolute percentage 
error between  NPVsim and  NPVsim-proxy, which is determined 
to be about 0.68%, portrays a higher confidence in the use-
fulness of the results obtained by the proxies. Besides that, 
the absolute percentage error between  NPVsim-proxy and 
 NPVproxy is 3.13%. It can be inferred that the proxies of Egg 
Model are deemed reliable as well. For the case of GWO, 
the absolute percentage error between  NPVsim and  NPVproxy 
is 2.72% while it is 1.81% between  NPVsim and  NPVsim-proxy. 
Also, the absolute percentage error between  NPVsim-proxy and 
 NPVproxy is 4.62%. In this case study, GWO can achieve 
a higher accuracy of optimization than PSO. In addition, 
GWO generally outperforms PSO in terms of optimization, 

except for Scenario 2. The high proximity of these data-
driven models is also captured through the demonstration of 
the plots of PSO-optimized field water production rates of 
Scenario 2 against Scenario 3 in Fig. 20 and those for GWO 
in Fig. 21.  R2 computed for Fig. 20 is 0.9986 whereas that of 
Fig. 21 is 0.9978. The similar plots for field oil production 
rates are also shown for PSO in Fig. 22 and GWO in Fig. 23. 
Then,  R2 determined for Fig. 22 is 0.9991 whereas that of 
Fig. 23 is 0.9981.

To demonstrate the accuracy and robustness of the 
approaches proposed in this study, the plots of field water 
(and oil) production rates under Scenario 2 against those 
under an unoptimized scheme are provided. To elude any 
confusion, the optimized rates used to produce these plots 
are derived from simulator. The unoptimized scheme, which 
is also known as “base case,” comprises a constant field 
injection rate of 560  m3/day over the whole production 
period. The corresponding NPV of base case is determined 
to be 152.57 million USD. Refer to Table 11 for the NPVs 
of the optimized cases (Scenario 2). Figure 24 illustrates the 
plot of PSO-optimized field water production rates (Scenario 
2) against that of base case whereas Fig. 25 portrays the 
similar plot for field oil production rates. For GWO method, 
the plots for field water and oil production rates are, respec-
tively, shown in Figs. 26 and 27. According to these four 
figures, we can fairly deduce that the optimization schemes 
have been performed practically well in the case study of 
Egg Model.

Discussion

About the results of NPV optimization in Tables 7 and 11, it 
is observed that in all three scenarios for both case studies, 
GWO reached a higher optimal NPV than PSO, except for 
Scenario 2 in Egg Model. This shows that GWO generally 
outperforms PSO to yield better optimization results based 
upon the analysis conducted in this paper. Despite this, the 
underperformance of GWO in Scenario 2 of Egg Model can 
be due to the lack of efficiency in the sampling of data for the 
neural network training. This means that the data sampled 
might not be efficiently extensive to cover the solution space 
of optimization induced by GWO. Nonetheless, based on 
the results presented, the data-driven proxies are still able to 
practically serve their objective when coupled with GWO. 
The sampling strategy used in this paper is deemed straight-
forward and still has room for improvement. This domain is 
not emphasized much as it is not the focus of our study here. 
In this aspect, the efficient sampling algorithm initiated by 
Dige and Diwekar (2018) can be taken into account as future 
work to enhance the sampling strategy in this paper.

There are a few limitations about the data-driven prox-
ies developed in this paper. One of them pertains to the 

Fig. 14  The overview of the 3D Egg Model. The color bar indicates 
the values of horizontal permeability in x-direction in the units of 
millidarcy (mD)

Table 8  R2 of training, validation, and testing results of the data-
driven proxies

Dataset Field liquid production rate Field water cut

Training 0.9999 0.9999
Validation 0.9999 0.9999
Testing 0.9999 0.9999

Table 9  Mean  R2 of blind validation of proxies based on different 
sampling techniques

Sampling methods Field liquid production rate Field water cut

LHS 0.9999 0.9992
SSS 0.9999 0.9990
HSS 0.9999 0.9990
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applicability of the models. As discussed in several litera-
tures (Mohaghegh 2011, 2017a, 2017b; Ng et al. 2021), the 
data-driven model is only relevant to the reservoir model 
being studied. This denotes that it cannot be implemented 
as the substitute for another reservoir. In addition, the devel-
oped proxy models are only able to capture the physics of the 
reservoir system that is represented by the spatiotemporal 

database. For instance, if the proxy is established for a reser-
voir model that is waterflooded, then it cannot be employed 
for the analysis of other enhanced oil recovery (EOR) meth-
ods, such as  CO2 injection and water-alternating-gas (WAG). 
The elimination of the control switch problem is considered 
as another limitation. This means that the reservoir simula-
tion system is designed in a way that for the injectors, the 

Fig. 15  Results of blind valida-
tion of data-driven proxies of 
LHS sample set 11 (out of 80). 
a Field liquid production rate. b 
Field water cut
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control will not switch from injection rates to BHP during 
the optimization process. The similar condition also applies 
to the producers (but BHP is the control for producers). 
Moreover, for the case study of Egg Model, the well rate is 
determined by equally dividing the field rate by the number 
of wells. This implies that the optimization problem pre-
sented here is slightly simplified for illustration purpose.

The aspect of computational cost is the catalyst for the 
rapid development of the proxy models. As discussed earlier, 
NRS can induce high computational footprints especially 
when the reservoir model is geologically very sophisti-
cated. Therefore, applying proxy models for further analy-
sis is undeniably time saving. To further demonstrate this 
advantage, we compare the computation time required by 

Fig. 16  Results of blind valida-
tion of data-driven proxies of 
SSS sample set 32 (out of 80). 
a Field liquid production rate. b 
Field water cut
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performing the optimization on both reservoir and proxy 
models. It was conducted on a PC which has the specifi-
cation of Intel® Core™ i9-9900 CPU @3.10 GHz with 
64.0 GB RAM. In this context, the time used by both PSO 
and GWO are very close. For the 2D reservoir model, the 
optimization took about 3 h whereas its respective proxies 
utilized about 1 h and 40 min to finish the optimization. 
Therefore, it is seen that the proxy models were able to save 

Fig. 17  Results of blind valida-
tion of data-driven proxies of 
HSS sample set 69 (out of 80). 
a Field liquid production rate. b 
Field water cut

Table 10  Economics parameters used for NPV calculation

Parameters Values Units

Oil price,  Po 440.30 USD/m3

Cost of produced water,  Cw 12.58 USD/m3

Cost of injected water,  Cwi 12.58 USD/m3

Discount rate 0.10 Per year
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about 50% of the whole computational time. More intrigu-
ingly, this advantage is more obvious for the case study of 
Egg Model. When applying the optimization algorithm on 

the Egg Model, it took about 13 h to run the optimization. 
However, the corresponding proxies only needed 2 h to do 
so. This illustrates that the data-driven proxies were 6 times 

Table 11  Optimization results 
of three scenarios for PSO and 
GWO

Optimization algorithm Scenario 1 Scenario 2 Scenario 3

GWO PSO GWO PSO GWO PSO

NPVoptimal (million USD) 157.14 155.78 154.29 154.73 161.42 159.57

Fig. 18  Optimized control 
rates by using simulator and 
data-driven proxies with the 
implementation of PSO

Fig. 19  Optimized control 
rates by using simulator and 
data-driven proxies with the 
implementation of GWO
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faster than the initial Egg Model in terms of optimization 
time.

There is also an important concern about the number 
of reservoir simulations required for building the proxy 
models. Some literatures (Mohaghegh 2011; He et  al. 
2016; Vida et  al. 2019; Shahkarami and Mohaghegh 
2020) suggested a rule of thumb that 10 to 15 simulations 
could be sufficient for the development of robust proxy 
models. Nonetheless, Nait Amar et al. (2018) had run 75 

simulations to generate the necessary database to develop 
the proxy models. Moreover, Golzari et al. (2015) even 
performed 200 simulations to build the data-driven models. 
Therefore, there is no strict rule of how many simulations 
are exactly needed to establish the spatiotemporal database. 
It is widely dependent upon the purpose of application of 
the data-driven models. Also, the bigger the database, 
the more accurate the data-driven model can be. Despite 
this, we need to understand that there is always a trade-off 

Fig. 20  Plot of PSO-optimized 
field water production rates, 
comparison between Scenarios 
2 and 3

Fig. 21  Plot of GWO-optimized 
field water production rates, 
comparison between Scenarios 
2 and 3
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between the size of the database and the computational 
time. When the database is humongous, it means that the 
neural network training might take longer time to complete. 
This challenge is termed as the curse of dimensionality. In 
this paper, we empirically selected to run 60 simulations as 
explained to establish our spatiotemporal database. Upon 
building the proxies, we performed blind validation with 
80 new data samples as discussed. Based on the results 

shown, it can be deduced that this database was deemed 
to be practically sufficient to yield useful proxies. As pre-
sented in other literatures (Nait Amar et al. 2018; Amini 
and Mohaghegh 2019; Shahkarami and Mohaghegh 2020), 
the number of blind validation cases usually is about 10 or 
even less. In our work, we presented 80 blind validation 
cases to further demonstrate the higher feasibility of practi-
cal application of our data-driven proxies.

Fig. 22  Plot of PSO-optimized 
field oil production rates, 
comparison between Scenarios 
2 and 3

Fig. 23  Plot of GWO-optimized 
field oil production rates, 
comparison between Scenarios 
2 and 3
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Conclusions

In this work, we implemented ML technique to build 
dynamic proxy models and conduct the optimization of 
well control rates on two waterflooding case studies, i.e., a 
2D synthetic reservoir model and the 3D Egg Model. The 
main objective was to achieve the maximization of NPV by 
determining the optimal control rate with the help of two 

metaheuristic algorithms, which include PSO and GWO. In 
order to do that, for each case study, we maneuvered the 
modeling of ANN to build two proxy models in which one 
could predict the field liquid production rates at a certain 
time, and another could forecast the field water cut. Thereaf-
ter, we successfully coupled these models with the optimiza-
tion algorithms to perform the waterflooding optimization. 
Based upon our investigation, GWO generally outperformed 

Fig. 24  Plot of PSO-optimized 
field water production rates 
(Scenario 2) and those of unop-
timized case

Fig. 25  Plot of PSO-optimized 
field oil production rates (Sce-
nario 2) and those of unopti-
mized case
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PSO in the context of optimization. However, the accuracy 
of results (prediction of optimized field liquid production 
rates and field water cut) was slightly higher when the prox-
ies were coupled with PSO. This could be due to the sam-
pling strategy applied in this study. Nonetheless, we con-
clude that the data-driven proxies have successfully served 
their purpose of application. Also, the results derived from 
this study verify the validity of the methodology presented 
in data-driven proxy modeling.
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