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Abstract

We consider the plasmonic eigenvalue problem for a general 2D domain with a curvilinear corner, studying the spectral
theory of the Neumann–Poincaré operator of the boundary. A limiting absorption principle is proved, valid when the
spectral parameter approaches the essential spectrum. Putting the principle into use, it is proved that the corner
produces absolutely continuous spectrum of multiplicity 1. The embedded eigenvalues are discrete. In particular,
there is no singular continuous spectrum.

Résumé

Nous considérons le problème de valeurs propres plasmonique pour un domaine 2D général avec un coin curviligne,
en étudiant la théorie spectrale de l’opérateur Neumann–Poincaré de la frontière. Un principe d’absorption limite est
démontré, valable lorsque le paramètre spectral s’approche du spectre essentiel. En pratique, ceci prouve que le coin
produit un spectre absolument continu de multiplicité 1. Les valeurs propres plongées sont discrètes. En particulier,
il n’y a pas de spectre continu singulier.
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1. Introduction

Let Γ be a piecewise C3 Jordan curve in R2 ' C with a single curvilinear corner of angle α , π, 0 < α < 2π, see
Figure 1. We refer to the interior and exterior of Γ as Γint and Γext. For εr ∈ C, εr < {0, 1}, a relative permittivity which
we also understand as the spectral parameter, the plasmonic eigenvalue problem seeks a potential U : Γint ∪ Γext → C
such that U(x) = o(1), x→ ∞, and 

∆U(x) = 0, x ∈ Γint ∪ Γext,

Trint U(x) = Trext U(x), x ∈ Γ,

∂ext
n U(x) = εr∂

int
n U(x), x ∈ Γ.

(1)

Here Trint U and Trext U refer to interior and exterior traces, the limiting boundary values of U on Γ from the inside
and outside of Γ, respectively. Similarly, ∂int

n U and ∂ext
n U denote outward unit normal derivatives on the boundary,

calculated with interior and exterior approach. In general, these are understood in a distributional sense based on
Green’s formula.

To solve the plasmonic problem, we make an ansatz with a double layer potential, see Example 1, which leads to
the eigenvalue problem

(K − λ)ρ = 0, λ =
εr + 1
εr − 1

.
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Figure 1: A piecewise C3-curve Γ with a corner.

Here K denotes the Neumann–Poincaré (NP) operator, or the direct value of the double layer potential,

Kρ(x) =
1
π

∫
Γ

〈y − x, ny〉

|x − y|2
ρ(y) dσ(y), x ∈ Γ,

where ny denotes the unit outward normal at y ∈ Γ, and σ is the arc length measure along Γ. To understand the
plasmonic eigenvalue problem we will thus investigate the NP operator K. We refer the reader to [2, 4] for further
study and illustration of the connection between the spectrum of the NP operator and plasmon resonances.

Because Γ has a corner, the spectral theory of K has a number of rather special features. It is known [25, 29], that
there is a Jordan curve Σ1,α with interior Σ̃1,α, illustrated in Figure 2, such that every λ ∈ −Σ̃1,α ∪ Σ̃1,α is an eigenvalue
of K : L2(Γ)→ L2(Γ). On the other hand, if we consider K as an operator on the Sobolev space H1/2(Γ) we shall prove
the following theorem. Note that eigenvectors to eigenvalues λ , 1 of K : H1/2(Γ)→ H1/2(Γ) correspond to solutions
of (1) with

∫
R2 |∇U |2 dx < ∞, see Example 1.

Theorem A. The point spectrum of K : H1/2(Γ) → H1/2(Γ) consists of a simple eigenvalue at λ = 1 and a (possibly
finite) sequence {λn} ⊂ (−1, 1) that is symmetric around λ = 0 and which can only accumulate at 0 and ±|1 − α/π|,

σp(K,H1/2(Γ)) = {λn} ∪ {1}.

The action of K on H1/2(Γ) is distinguished, in that H1/2(Γ) may be given an equivalent special norm ‖ · ‖E′ in
which K : H1/2(Γ) → H1/2(Γ) is self-adjoint. By dilation we may assume that the logarithmic capacity of Γ satisfies
cap(Γ) < 1. Then any f ∈ H1/2(Γ) may be written f = S g for a unique g ∈ H−1/2(Γ), where S is the direct value of
the single layer potential on Γ, and then

‖ f ‖2E′ = 〈g, f 〉L2(Γ).

Here we have chosen the sign of S so that this is a positive quantity, see Section 3.4. When speaking of K : H1/2(Γ)→
H1/2(Γ) as a self-adjoint operator, we always consider H1/2(Γ) to be equipped with the norm ‖ · ‖E′ .

The essential spectrum of K : H1/2(Γ) → H1/2(Γ) has been computed in [6, 28], with two somewhat different
approaches,

σess(K,H1/2(Γ)) = [−|1 − α/π|, |1 − α/π|].
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Figure 2: The sets Σ1,α, γ1,α, and Σ̃1,α \ γ1,α illustrated for α = 4π/9.

Both contributions draw on variational formulations of the plasmonic problem (1). It is in fact rather difficult to give a
useful description of the H1/2(Γ)-norm on Γ, see Section 3. In [22], the authors constructed curves Γ for which some
of the eigenvalues {λn} are embedded in [−|1 − α/π|, |1 − α/π|]. See also [15] for numerical examples.

The second main theorem is a limiting absorption principle which holds when the spectral parameter λ approaches
the essential spectrum. For simplicity, let us describe the result in the introduction only when 0 < α < π and Re λ > 0.
The case when α > π requires only a few sign-changes, and the spectral properties of K and −K on H1/2(Γ) are nearly
identical due to a symmetry.

Let γ1,α = [1 − α/π, sin((π − α)/2)]. Then (0, 1 − α/π) is contained in the region Σ̃1,α \ γ1,α. We will consider a
certain biholomorphic map

µα : Σ̃1,α \ γ1,α → {z ∈ C : |Re z| < 1/2, Im z < 0} (2)

such that µα((0, 1 − α/π)) = iR−, µα(λ̄) = −µα(λ), and Re µα(λ) < 0 for Im λ > 0. To each λ ∈ Σ̃1,α \ γ1,α we attach a
singular function qλ ∈ L2(Γ) such that

qλ(x) = φ(s)s−µα(λ),

where s denotes the arc length distance of x to the corner and φ is a cut-off function around s = 0. Note that when
Im λ > 0, the operator K − λ : H1/2(Γ)→ H1/2(Γ) is invertible by self-adjointness.

Theorem B. For g ∈ H1(Γ) and λ ∈ Σ̃1,α with Im λ > 0, let

fλ = (K − λ)−1g ∈ H1/2(Γ).

Then there are unique cλ ∈ C and f̃λ ∈ H1(Γ) such that

fλ = cλqλ + f̃λ.

Let Hλ : H1(Γ)→ C ⊕ H1(Γ) be the corresponding map

Hλg = (cλ, f̃λ).
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Then the operator-valued function λ → Hλ has a meromorphic extension to Σ̃1,α \ γ1,α with simple poles at {λn} ∩

(0, 1 − α/π), and no other poles in (0, 1 − α/π).
In particular, if u ∈ (0, 1 − α/π) and u is not an eigenvalue of K : H1/2(Γ)→ H1/2(Γ), then the limit

hu = lim
ε→0+

(K − (u + iε))−1g

exists in L2(Γ) and is of the form hu = cuqu + h̃u, where cu ∈ C and h̃u ∈ H1(Γ). Furthermore, hu is the unique solution
of this form of the equation

(K − u)hu = g.

Thus, by a Sobolev embedding theorem, the limiting solution has the asymptotics

hu(x) = du + cus−µα(u) + O(
√

s),

for x close to the corner, for some cu, du ∈ C. Recall here that Re µα(u) = 0 for u ∈ (0, 1 − α/π). One could of course
have approached the essential spectrum in Im λ < 0 instead. One would then obtain a similar statement with singular
functions of the form q̃λ(x) = φ(s)sµα(λ).

Many authors prefer to work with the L2-adjoint K∗, rather than K. Theorem B also implies a limiting absorption
principle for K∗ : H−1/2(Γ) → H−1/2(Γ), see Section 7. Numerical illustrations of this principle can be found in [18,
Figures 7 and 8].

Theorem B can be used to study the spectral theory of K : H1/2(Γ) → H1/2(Γ). In [19], the spectral resolution
of K : H1/2(Γ) → H1/2(Γ) is given explicitly in the case that Γ is a lens (which has two corners of the same angle).
To the author’s knowledge, this is the only example where the finer spectral details have been known previously. A
spectral theory problem which is similar in spirit to the plasmonic problem and which can be diagonalized explicitly
can also be extracted from the second model problem described in [5]. Formulas for spectral measures have also been
provided in certain periodic settings [12, 24].

Perhaps most notable is Carleman’s 1916 thesis [7], where the resolvent of K is investigated in great detail.
Carleman’s study was significantly ahead of its time, as the modern tools of functional analysis, function spaces, and
spectral theory were not available. At the very end of his thesis, he nonetheless writes down a resolution of K∗. Using
Theorem B we can put Carleman’s spectral resolution on formal footing.

Let K =
∫ 1
−1 λ dE(λ) be the spectral decomposition of K : H1/2(Γ) → H1/2(Γ). For g, h ∈ H1/2(Γ), we denote the

associated spectral measure by νg,h,

νg,h(Λ) = 〈E(Λ)g, h〉E′ , Λ ⊂ [−1, 1] Borel.

Theorem C. In addition to the discrete set of eigenvalues {λ′n} = {λn} ∪ {1} described in Theorem A, the spectrum of
K : H1/2(Γ)→ H1/2(Γ) consists of an absolutely continuous part of multiplicity 1,

σac(K) = [−|1 − α/π|, |1 − α/π|].

In particular, there is no singular continuous spectrum.
Furthermore, if g, h ∈ H1(Γ), then the spectral measure

νg,h = τ dλ +
∑

n

τnδλ′n

has a continuous density τ which is real analytic in (−|1 − α/π|, 0) and (0, |1 − α/π|).

In fact more will be proven in Theorem 24; a semi-explicit spectral resolution of K : H1/2(Γ) → H1/2(Γ) in
terms of eigenfunctions of K : L2(Γ) → L2(Γ) will be provided. Our analysis also extends to piecewise C3-domains
with multiple corners of various angles, but discussion will be restricted to the case of a single corner, primarily for
notational reasons.

To finish the introduction we apply Theorem C to the polarizability problem.
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Example 1 (Polarizability). Viewing Γint as an inclusion in the infinite space R2, let εr ∈ C, εr < {0, 1}, denote its
relative permittivity. To find the polarizability tensor of Γint we solve, for a field e ∈ R2, the problem

∫
R2 |∇U − e|2 dx < ∞,

∆U(x) = 0, x ∈ Γint ∪ Γext,

Trint U(x) = Trext U(x), x ∈ Γ,

∂ext
n U(x) = εr∂

int
n U(x), x ∈ Γ.

This problem has a solution if and only if there is a solution of the form

U(x) =

ε−1
r (〈e, x〉 + Dρ(x)), x ∈ Γint,

〈e, x〉 + Dρ(x), x ∈ Γext,

where Dρ is the double layer potential of some ρ ∈ H1/2(Γ). See for example [27]. The condition Trint U = Trext U
yields, by the jump formulas

Trint D f = (K + I) f , Trext D f = (K − I) f ,

that
a + (K + I)ρ = εr(a + (K − I)ρ),

where a(x) = 〈e, x〉, x ∈ Γ. That is,

(K + z)ρ = −a, z = −
εr + 1
εr − 1

.

The area-scaled polarizability tensor ω(z) : R2 → R2 is given by

ω(z)e =
εr − 1
|Γint|

∫
Γint

∇U(x) dx.

It is a linear map determined, for j, k = 1, 2, by

ω jk(z) := 〈ω(z)e j, ek〉 =
2
|Γint|

∫
Γ

ρ jbk dσ = −
2
|Γint|
〈(K + z)−1a j, S bk〉E′ ,

where e1, e2 is the standard basis of R2, and a j(x) = 〈e j, x〉, b j(x) = 〈e j, nx〉, and ρ j = −(K + z)−1a j, j = 1, 2. The
polarizability tensor ω(z) is thus clearly well-defined when −z < σ(K,H1/2(Γ)), and in particular when Im z > 0. For
z ∈ R we define the limit polarizabilities as

ω+
jk(z) = lim

ε→0+
ω jk(z + iε), j, k = 1, 2,

whenever this is well-defined.
Let I = (−|1 − α/π|, |1 − α/π|). Since a j, S bk ∈ H1(Γ), there is by Theorem C a density τ jk ∈ L1(I) which is real

analytic on I \ {0}, a sequence of eigenvalues {λ′n} that can only accumulate at 0 and the endpoints of I, and a sequence
(τ jk(n)) ∈ `1 such that

−ω jk(z) =

∫
I

τ jk(u)
u + z

du +
∑

n

τ jk(n)
λ′n + z

, Im z > 0.

By [16, Theorem 5.2], τ j j(u) ≥ 0 and τ j j(n) ≥ 0, for j = 1, 2, u ∈ I, and all n.
Furthermore, the limit polarizability ω+

jk(z) is real analytic for z ∈ R, except possibly when −z ∈ {λ′n} ∪ {0,±|1 −
α/π|}. Figure 3 gives a numerical illustration of the limit polarizability ω+

11 in the case when

Γ =

{
sin(πs)

(
cos

(
2π
7

(s − 1/2)
)
, sin

(
2π
7

(s − 1/2)
))

: s ∈ [0, 1]
}
, (3)

a droplet-shape with a corner of angle α = 2π/7. Note also that in this case ω+
22(z) = −ω+

11(−z) and ω+
12 = ω+

21 = 0.
Figure 4 illustrates the limit polarizability for a unit square Γ, and suggests that in general, one can not expect the
spectral measures of K : H1/2(Γ)→ H1/2(Γ) to have smooth densities at λ = 0. The figures were produced by running
the programs demo17.m and demo17b.m, available as a part of Johan Helsing’s tutorial on the RCIP method [14].
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Figure 3: The limit polarizability ω+
11(z), −1 ≤ z ≤ 1, when Γ is as in (3), a droplet-shape with a corner of angle α = 2π/7.
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Figure 4: The limit polarizability ω+
11(z), −1 ≤ z ≤ 1, when Γ is a unit square.
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2. Layout and proof strategy

Section 3 contains a taxonomy of Sobolev spaces on R+ and their relationship with the Mellin transform. This is
needed in order to describe the Sobolev spaces Hη(Γ), 0 ≤ η ≤ 1. Particular attention is paid to the matching condition
at the corner between Γ− and Γ+ (Figure 1), which is required for a function on Γ to belong to Hη(Γ). The condition
is somewhat subtle for the critical index η = 1/2. We also a give a characterization of H1/2(Γ) in terms of single layer
potentials, leading to the special E′-norm in which K is self-adjoint. Finally, we outline the basic spectral theory of
K : E′ → E′.

In Section 4 we first explain how to expand K into a sum of Mellin operators in the vicinity of a curvilinear corner,
referring to calculations made by Costabel [9] and Costabel and Stephan [10]. Very roughly speaking, we have the
following situation: with respect to the decomposition L2(Γ) = L2(Γ−) ⊕ L2(Γ+) ⊕ L2(Γc), see Figure 1, for suitable
parametrizations of Γ±, we that that

K =

 0 φKα 0
φKα 0 0

0 0 0

 + higher order terms.

Here φ is a cut-off function, and Kα is a Mellin convolution operator whose kernel has Mellin transform

K̂α(z) =
sin((π − α)z)

sin(πz)
, −1 < Re z < 1.

Suppose that (Kα − λ) f = g, for a function g ∈ C∞c ([0,∞)) and a function f : R+ → C which in a suitable sense has a
Mellin transform on the line Re z = 0. Suppose also that K̂α(µ) = λ for some unique µ in the strip −1/2 < Re µ < ε,
ε > 0. From the equation (Kα − λ) f = g we deduce that the Mellin transform f̂ of f has a meromorphic extension to
−1/2 < Re z < ε with poles at 0 and µ. This corresponds to the fact that f (s) = cφ(s)s−µ + f̃ (s), where c ∈ C and f̃ is
of higher regularity than f .

To formalize this argument we first study the transcendental equation K̂α(z) = λ. By conformal mapping theory,
we show that K̂α is univalent on certain strips and half-strips. In fact, µα, as described in (2) and of central importance
to Theorem B, is the inverse of a restriction of K̂α. Secondly, we have to perform the Mellin analysis of Kα very
carefully, as we are interested in functions f belonging precisely to the Sobolev space H1/2(R+) of critical index.

Assume for simplicity that 0 < α < π. In Section 5 we apply these results to show that if λ ∈ Σ̃1,α with Im λ > 0
and (K − λ) fλ = g for fλ ∈ H1/2(Γ) and g ∈ H1(Γ), then fλ is of the form

fλ = cλqλ + f̃λ.

Here qλ is the singular function described before Theorem B and f̃λ ∈ H1(Γ). Hence the operator Hλ of Theorem B
can be understood as the restriction to H1(Γ) of the resolvent (K −λ)−1, for λ ∈ Σ̃1,α, Im λ > 0. We will then show that
λ 7→ H−1

λ is an analytic family of Fredholm operators for λ ∈ Σ̃1,α \ γ1,α. Thus, by the analytic Fredholm theorem, Hλ

has a meromorphic extension to all of Σ̃1,α \ γ1,α. Combined with the spectral theorem for K : H1/2(Γ)→ H1/2(Γ), we
deduce Theorems A, B, and C, except for the statement about the multiplicity of the a.c. spectrum.

We could equally well have started by defining the operators H̃λ via restriction of the resolvent to H1(Γ) for
Im λ < 0 (rather than Im λ > 0). We then find that λ 7→ H̃λ has a meromorphic extension through the essential
spectrum to Im λ ≥ 0.

In Section 6 we then construct the spectral resolution of K : H1/2(Γ)→ H1/2(Γ) through the formal relation

d
du

E((−∞, u)) = (2πi)−1(Hu − H̃u),

where E is the projection-valued spectral measure of K. This will in particular show that the absolutely continuous
spectrum has multiplicity 1.

In Section 7 we tie up some loose ends, and briefly discuss a number of relevant open problems.
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3. Preliminaries

3.1. A description of functions on Γ

Let Γ+ and Γ− be two Jordan arcs with parametrizations s 7→ z±(s), s ∈ [0, 1], intersecting only at z+(0) = z−(0) =

0, where the arcs make an angle α, 0 < α < 2π, α , π. We assume that Γ± are parametrized by arc length from the
corner for, say, s ∈ [0, 1/2). We also suppose that Γ+ and Γ− are joined together by a Jordan arc Γc which makes

Γ = Γ− ∪ Γ+ ∪ Γc

into a piecewise C3 Jordan curve, smooth everywhere except for at the origin. See Figure 1. By rotation and reflection,
we may thus assume that

z−(s) = eiαs +
i
2
κ−eiαs2 + O(s3), z+(s) = s +

i
2
κ+s2 + O(s3).

For the rest of the article, fix a positive C∞(R2)-function χ such that χ ≡ 1 in a neighborhood of 0 and such that

supp χ ∩ Γ ⊂
⋃
±

{z±(s) : s ∈ [0, 1/2)}.

Let 0 < s∗± < 1/2 be the largest numbers for which χ(z±(s)) = 1 for all s ∈ [0, s∗±]. Choose also a C3 parametrization
s 7→ zc(s), s ∈ [0, 1], of the smooth part Γ \

⋃
±{z±(s) : s ∈ [0, s∗±/2)} of Γ.

Then any function f on Γ may be decomposed as f = χ f + (1 − χ) f , where χ f is naturally associated with the
pairs of functions ( f+, f−),

f±(s) = χ(z±(s)) f (z±(s)), s ∈ R+.

Similarly, we associate (1 − χ) f with the function

fc(s) = (1 − χ(zc(s))) f (zc(s)), s ∈ R+.

3.2. Mellin transforms
For appropriate functions f : R+ → C and z ∈ C, we denote the Mellin transform of f by f̂ (z),

f̂ (z) =M f (z) =

∫ ∞

0
sz f (s)

ds
s
.

We now list some standard lemmas that are easy to prove.

Lemma 1. Suppose that F is analytic and rapidly decreasing in the strip β < Re z < γ, that is, for every ε > 0 and
k,m ∈ N0 we have that (

d
dz

)k

F(z) = O((1 + | Im z|)−m), β + ε < Re z < γ − ε.

Then F = f̂ is the Mellin transform of a unique function f ∈ C∞(R+) such that, for every k and ε > 0,(
t

d
dt

)k

f (t) = O(t−β−ε), t → 0+,

and (
t

d
dt

)k

f (t) = O(t−γ+ε), t → ∞.

More precisely,

f (t) = (M−1F)(t) =
1

2πi

∫
Re z=ρ

t−zF(z) dz,

for any β < ρ < γ. Conversely, if f ∈ C∞(0,∞) satisfies these conditions, then f̂ exists and is rapidly decreasing in
the strip β < Re z < γ.
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We will reserve the letter φ to always mean a decreasing cut-off function φ ∈ C∞([0,∞)) around 0, with support
in [0, 1). That is, 1 − φ is compactly supported in R+ = (0,∞).

Lemma 2. For µ ∈ C, let f (s) = φ(s)s−µ. Then

f̂ (z) =
ψ(z)
z − µ

, Re z > Re µ,

where ψ is entire and rapidly decreasing as | Im z| → ∞, and

ψ(µ) = −

∫ ∞

0
φ′(s) ds > 0.

Proof. For Re z > Re µ, integration by parts yields that

f̂ (z) = −
1

z − µ

∫ 1

0
sz−µφ′(s) ds.

As a function of z, the integral is clearly entire and, by further integration by parts, rapidly decreasing.

Lemma 3. Let 1/2 < η ≤ 1 and let f ∈ C∞c (R+). Then, for any µ ∈ C with 1/2 − η < Re µ ≤ 0,

| f̂ (µ)|2 .
1

Re µ + η − 1/2

∫
Re z=1/2−η

(1 + |z|2)η| f̂ (z)|2 |dz| +
∫

Re z=1/2
| f̂ (z)|2 |dz|.

Proof. Apply Cauchy–Schwarz to the Cauchy formula

f̂ (µ) =
1

2πi

∫
Re z=1/2

f̂ (z)
z − µ

dz −
1

2πi

∫
Re z=1/2−η

f̂ (z)
z − µ

dz.

3.3. Sobolev spaces on R+

For 0 < η ≤ 1, the Sobolev space Hη(R+) is the completion of C∞c ([0,∞)) in the norm

‖ f ‖2Hη(R+) = ‖ f ‖2L2(R+) + | f |2Hη(R+),

where, for η < 1,

| f |2Hη(R+) =

∫ ∞

0

∫ ∞

0

| f (s) − f (t)|2

|s − t|1+2η ds dt

and for η = 1,
| f |H1(R+) = ‖ f ′‖L2(R+).

As usual, we let H0(R+) = L2(R+). Thus Hη(R+) is the restriction of Hη(R) to R+.
We also need the weighted Sobolev spaces Wη

0 (R+), 0 ≤ η ≤ 1, also called Kondratiev spaces, which are the
completion of C∞c (R+) in the norm

‖ f ‖2Wη
0 (R+) =

∫ ∞

0
| f (s)|2

ds
s2η + | f |2Hη(R+) ≈

∫
Re z=1/2−η

(1 + |z|2)η| f̂ (z)|2 |dz|.

We refer to [11] for properties of these spaces.
For η > 1/2, by a Sobolev embedding theorem, the functions f ∈ Hη(R+) are continuous on [0,∞). With this in

mind we also define, for 1/2 ≤ η ≤ 1, the space

Wη(R+) = Cφ ⊕Wη
0 (R+),

where, as always, φ is a cut-off function around 0.
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Note that the classical fractional Hardy inequality [21] actually shows that if η , 1/2, then∫ ∞

0
| f (s)|2

ds
s2η . | f |2Hη(R+), f ∈ C∞c (R+).

It follows that for 0 < η < 1/2, Hη(R+) = Wη
0 (R+)∩L2(R+). For η > 1/2, if f ∈ Hη(R+), then by the Hardy inequality,

f − f (0)φ ∈ Wη
0 (R+) ∩ L2(R+). Conversely, if f ∈ Wη(R+) ∩ L2(R+), then f ∈ Hη(R+).

To summarize, for η , 1/2 we have the following.

Lemma 4. For 0 < η < 1/2, f ∈ Wη
0 (R+) ∩ L2(R+) if and only if f ∈ Hη(R+) and

‖ f ‖2Hη(R+) ≈ ‖ f ‖
2
Wη

0 (R+) + ‖ f ‖2L2(R+).

For 1/2 < η ≤ 1, f ∈ Wη(R+) ∩ L2(R+) if and only if f ∈ Hη(R+), and

‖ f ‖2Hη(R+) ≈ ‖ f ‖
2
Wη(R+) + ‖ f ‖2L2(R+) ≈ ‖ f − f (0)φ‖2Wη

0 (R+) + | f (0)|2 + ‖ f ‖2L2(R+).

The case of chief concern, η = 1/2, is much more delicate. When restricted to (0, 1), the difference between
H1/2(R+) and Wη

0 (R+) is no longer finite-dimensional in nature, as we just saw was the case for η , 1/2. In terms of
the Mellin transform, we have for f ∈ C∞c ([0,∞)), that [11, Lemma 2.6]:

‖ f ‖2H1/2(R+) ≈

∫
Re=1/2

| f̂ (z)|2 |dz| +
∫

Re z=0

|z|2

1 + |z|
| f̂ (z)|2 |dz|. (4)

Here the Mellin transform on the line Re z = 0 is understood as a limit from Re z > 0. This interpretation is unprob-
lematic, since the singularity at z = 0 is removed by the factor |z|2, see Lemmas 1 and 2.

Finally, the following result follows by interpolation.

Lemma 5. Let 1/2 < η ≤ 1. If f ∈ Hη(R+), then f ∈ W1/2(R+) and

‖ f ‖W1/2(R+) . ‖ f ‖Hη(R+).

Proof. Suppose that f ∈ Hη(R+). Then, by Lemma 4, f − f (0)φ ∈ Wη
0 (R+) and f − f (0)φ ∈ L2(R+) = W0

0 (R+). But
(Wη

0 (R+))0≤η≤1 is an interpolation scale, and thus f − f (0)φ ∈ W1/2
0 (R+) with

‖ f − f (0)φ‖W1/2
0 (R+) . ‖ f − f (0)φ‖Hη(R+) . ‖ f ‖Hη(R+) + | f (0)|.

This yields the conclusion.

3.4. Sobolev spaces on Γ and single layer potentials
We introduced the different Sobolev spaces on R+ in order to give the following description of Hη(Γ), see [11,

Lemma 2.7]. It is stated in terms of the decomposition of f : Γ → C into the triple ( f−, f+, fc) of functions supported
in [0, 1), described in Subsection 3.1.

Lemma 6. f ∈ Hη(Γ) if and only if f+ + f− ∈ Hη(R+), f+ − f− ∈ Wη
0 (R+) and fc ∈ Wη

0 (R+). Furthermore,

‖ f ‖2Hη(Γ) ≈ ‖ f+ + f−‖2Hη(R+) + ‖ f+ − f−‖2Wη
0 (R+) + ‖ fc‖2Wη

0 (R+).

We will also make use of an alternative characterization of H1/2(Γ). For a charge f on Γ, consider the single layer
potential

S f (x) =
1

2π

∫
Γ

log
1
|x − y|

f (y) dσ(y), x ∈ R2.

Then, by Green’s formula and the jump formulas for ∂int
n S f and ∂ext

n S f ,

∂int
n S f =

1
2

(I − K∗) f , ∂ext
n S f =

1
2

(−I − K∗) f

10



one sees that
〈S f , f 〉L2(Γ) =

∫
R2
|∇S f |2 dx > 0, 0 , f ∈ L2

0(Γ), (5)

cf. [30, Theorem 4.9] and [20, Lemma 1]. Here the requirement that f ∈ L2
0(Γ), that is,

∫
Γ

f dσ = 0, arises from the
need for sufficient decay of S f (x) as x→ ∞ in order to apply Green’s formula in the exterior.

There is a unique ρ0 ∈ L2(Γ) such that
∫

Γ
ρ0 dσ = 1 and S ρ0 ≡ D is constant on Γ [30, Section 4]. This equilibrium

distribution ρ0 of Γ is an element of the one-dimensional kernel of K∗−I. It may happen that D ≤ 0, which corresponds
to the fact the logarithmic capacity cap(Γ) ≥ 1. However, in this case we may simply replace Γ by εΓ for a sufficiently
small ε > 0, so that D > 0. By the homogeneity of the kernel of K, there is no loss of generality in assuming that
D > 0. Thus we assume that cap(Γ) < 1 throughout.

This ensures that S : L2(Γ) → L2(Γ) is a positive definite operator without kernel. Indeed, if L2(Γ) 3 g = f + cρ0
for some f ∈ L2

0 and c ∈ C, then
〈S g, g〉L2(Γ) = 〈S f , f 〉L2(Γ) + D|c|2.

By Verchota’s results, [30, Theorem 4.11], we also know that S : L2(Γ) → H1(Γ) is an isomorphism. By duality,
so is S : H−1(Γ) → L2(Γ). By interpolation [23, Theorem 15.1], we also find that S : H−1/2(Γ) → H1/2(Γ) is an
isomorphism, and furthermore that

‖ f ‖2H−1/2(Γ) ≈ 〈S f , f 〉L2(Γ) =: ‖ f ‖2E, f ∈ H−1/2(Γ).

Thus the completion E of L2(Γ) in the ‖ · ‖E-norm is naturally isomorphic to H−1/2(Γ). See [26, Theorem 14 and
Corollary 15] for more details.

The discussion also yields that E′ = SE, equipped with the norm

‖S f ‖E′ = ‖ f ‖E, f ∈ H−1/2(Γ),

is naturally isomorphic to H1/2(Γ).

Lemma 7.
‖ f ‖2E′ = 〈S −1 f , f 〉L2(Γ), f ∈ H1/2(Γ),

yields an equivalent norm on H1/2(Γ), ‖ f ‖2H1/2(Γ) ≈ ‖ f ‖
2
E′

.

We shall always equip H1/2(Γ) either with the norm given in Lemma 6 or the ‖ · ‖E′ -norm, depending on the
context. A different approach to Lemma 7 can be found in [2, 4], in which S is gently but suitably modified to avoid
the assumption that cap(Γ) < 1.

3.5. The Neumann–Poincaré operator
The double layer potential of a charge f on Γ is given by

D f (x) =
1
π

∫
Γ

〈y − x, ny〉

|x − y|2
f (y) dσ(y), x ∈ Γint ∪ Γext.

The NP operator is its direct value

K f (x) =
1
π

∫
Γ

〈y − x, ny〉

|x − y|2
f (y) dσ(y), x ∈ Γ.

As Γ is piecewise C3, this latter integral exists in the ordinary sense for almost every x ∈ Γ, for sufficiently nice f . We
will consider K as a bounded operator K : Hs(Γ)→ Hs(Γ), 0 ≤ s ≤ 1. We denote by K∗ the L2(Γ)-adjoint of K.

In the E-norm, K∗ : E → E is actually self-adjoint,

〈K∗ f , g〉E = 〈S K∗ f , g〉L2(Γ) = 〈S f ,K∗g〉L2(Γ) = 〈 f ,K∗g〉E, f , g ∈ H−1/2(Γ).

This holds because of the Plemelj formula

KS = S K∗ : H−1/2(Γ)→ H1/2(Γ),

which also shows that K∗ : E → E and K : E′ → E′ are unitarily equivalent.

11



Lemma 8. K : E′ → E′ is self-adjoint.

We now discuss the basic spectral theory of K : H1/2(Γ)→ H1/2(Γ). First of all,

K + I : H1/2(Γ)→ H1/2(Γ) and K − I : H1/2(Γ)/C→ H1/2(Γ)/C

are invertible for any Lipschitz domain; this follows by interpolation between the corresponding results on L2(Γ) and
H1(Γ), due to Verchota [30]. That

σ(K,H1/2(Γ)) ⊂ (−1, 1]

is also well known, and follows from the invertibility of K + I and the variational principle,

〈K∗ f , f 〉E
〈 f , f 〉E

=

∫
Γext
|∇S f |2 dx −

∫
Γint
|∇S f |2 dx∫

Γext
|∇S f |2 dx +

∫
Γint
|∇S f |2 dx

,

valid for f ∈ E ' H−1/2(Γ) such that
∫

Γ
f dσ = 1

D 〈 f , ρ0〉E = 0. This formula is established by combining Green’s
formula with the jump formulas for ∂int

n S f and ∂ext
n S f , cf. (5). λ = 1 is a simple eigenvalue of K : H1/2(Γ)→ H1/2(Γ),

with the constants functions as eigenfunctions.
Except for the simple eigenvalue λ = 1, the spectrum σ(K,H1/2(Γ)) is symmetric with respect to λ = 0. In fact,

there is a unitary map V : E′/C→ E′/C such that

V−1KV = −K : E′/C→ E′/C.

More precisely, as elucidated in [20, Section 5], K : E′/C → E′/C is unitarily equivalent to the operator of the angle
between the spaces of single layer potential fields in R2 and harmonic fields supported only in Γint, both equipped with
the energy norm. This principle remains valid for Lipschitz domains [27]. However, the act of harmonic conjugation
(i.e. the interior Hilbert transform) yields a unitary equivalence between this operator and its additive inverse. We
refer to [20, Proposition 6] for further details in the case of a smooth boundary Γ; the considerations for Lipschitz
domains are very similar, and it would lead us too far away to present them here. In any case, we will only rely on
this symmetry for the eigenvalues, which have been treated in [15, Theorem 2.1].

As mentioned in the introduction, for our particular curve Γ with a single corner of angle α, it has been shown in
[6, 28] that

σess(K,H1/2(Γ)) = [−|1 − α/π|, |1 − α/π|].

4. Mellin analysis on R+

For a function f : Γ→ C and s ∈ R+, we let

K± f (s) = (K f )±(s), Kc f (s) = (K f )c(s).

Since Γ is C3 outside the corner, the integral kernel of Kc, defined on R+×Γ, is C1 and compactly supported. Therefore

Kc : L2(Γ)→ C1
c ((0, 1])

is continuous.
To analyze K± we will now recall a number of calculations from [9, 10]. For the cut-off function φ around 0,

described in Subsection 3.2, we have that

K± f (s) = φ(s)Kα f∓(s) + φ(s)V± f∓(s) + R± f (s). (6)

Here, for a function f on R+,

Kα f (s) =

∫ ∞

0
Kα(s, t) f (t) dt, V± f (s) =

∫ ∞

0
V±(s, t) f (t) dt,

12



where

Kα(s, t) = −
1
π

Im
(

eiα

teiα − s

)
,

and

V±(s, t) = ∓
1

2π
Re

(
eiα(κ∓t2eiα − 2κ∓st + κ±s2)

(teiα − s)2

)
.

R± are smoothing operators whose kernels have bounded derivatives in s,

R± : L2(Γ)→ C1((0, 1]).

Since its integral kernel is homogeneous of degree −1, Kα is a Mellin convolution operator,

Kα f (s) =

∫ ∞

0
Kα(s/t, 1) f (t)

dt
t
,

and
K̂α(z) :=M(Kα(·, 1))(z) =

sin((π − α)z)
sin(πz)

.

Note that K̂α is analytic and rapidly decreasing in −1 < Re z < 1. Let f ∈ C∞c ([0,∞)). Then f̂ (z) is defined for
Re z > 0, but has a meromorphic extension to Re z > −1 with a simple pole at 0, see Lemma 2. Taking this pole into
account yields thatM(Kα f ) also has a meromorphic extension from 0 < Re z < 1 to −1 < Re z < 1 with

M(Kα f )(z) = K̂α(z) f̂ (z) =
sin((π − α)z)

sin(πz)
f̂ (z).

The kernels of V± are homogeneous of degree 0 and formally one has

M(V± f )(z) = V̂±(z) f̂ (z + 1)

:= ∓
(z + i)(κ∓ cos((π − α)z) + κ± cos((π − α)(z + 1))

2 sin(πz)
f̂ (z + 1).

However,M(V±(·, 1))(z) does not actually exist for any z. Instead, a more sophisticated argument, which looks at the
meromorphic continuations of the individual terms of V±, is needed. This is carried out in [9, Theorem 2], from which
we extract a special case.

Lemma 9. The operators Z± : L2(Γ)→ H1(R+) are bounded, where

Z± f = φV± f∓, f ∈ L2(Γ).

We also need to know that the remainder terms of the expansion (6) yield continuous functions at the corner.

Lemma 10. The operator C : L2(Γ)→ W1
0 (R+) is bounded, where

C f = φ(V+ f− − V− f+) + (R+ − R−) f .

Proof. By Lemma 9, we already know that C : L2(Γ) → H1(R+) is bounded, and actually supp C f ⊂ [0, 1) for every
f ∈ L2(Γ). Thus, by Lemma 4, we only need to check that C f (0) = 0, for arbitrary f ∈ L2(Γ).

First of all, it is very well known that K : C(Γ) → C(Γ) is bounded, see for example [31]. In particular, K+ f (0) =

K− f (0) for continuous f . Secondly, it is clear that Kα : W1
0 (R+)→ W1

0 (R+) is bounded, since K̂α(z) is bounded on the
line Re z = −1/2. Therefore φKα : W1

0 (R+) → W1
0 (R+) is bounded as well. Thus C f (0) = 0 for f ∈ H1(Γ), since in

this case f− − f+ ∈ W1
0 (R+), and

C f = (K+ − K−) f − φKα( f− − f+).

However, since H1(Γ) is dense in L2(Γ), it follows that C f (0) = 0 for arbitrary f ∈ L2(Γ).
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To perform the Mellin analysis of Kα, we first have to investigate the function K̂α. Since K̂2π−α(z) = −K̂α(z) it is
sufficient to consider the case when 0 < α < π – unless stated otherwise, we now assume that 0 < α < π in the rest of
this section. Note also that K̂α(−z) = K̂α(z), that K̂α(z̄) = K̂α(z), and that at z = 0,

K̂α(z) = 1 −
α

π
+
α(π − α)(2π − α)

6π
z2 + O(z3). (7)

Definition 11. For 0 ≤ η ≤ 1, we let
Ση,α = clos K̂α((1/2 − η) + iR).

For η , 1/2, we denote the interior of Ση,α by Σ̃η,α.

Clearly, Σ1−η,α = Ση,α. For η = 1/2 we obtain a closed interval, traversed twice,

Σ1/2,α = [0, 1 − α/π].

For η , 1/2, Ση,α is a simple closed curve, whose interior Σ̃η,α ⊂ {Re λ > 0} contains Σ1/2,α, except for the point 0,

(0, 1 − α/π] ⊂ Σ̃η,α ⊂ {Re λ > 0}.

In fact, the regions Σ̃η,α are increasing in 1/2 < η ≤ 1. Of course, 0 ∈ Ση,α for every 0 ≤ η ≤ 1. All of these statements,
and more, are included in the (proof of the) following lemma.

Lemma 12. K̂α is a biholomorphism considered as a map

K̂α : {z : |Re z| < 1/2, Im z < 0} → Σ̃1,α \ γ1,α,

where γ1,α = [1 − α/π, sin((π − α)/2)], as well as a map

K̂α : {z : −1/2 < Re z < 0} → Σ̃1,α \ γ2,α,

where γ2,α = [0, 1 − α/π].

Remark. Figure 2 illustrates several aspects of the following proof.

Proof. First we show that K̂α is a homeomorphism as a map

K̂α : {iy : −∞ ≤ y ≤ 0} → [0, 1 − α/π].

Indeed,

K̂α(iy) =
sinh((π − α)y)

sinh(πy)

is a strictly increasing function for −∞ ≤ y ≤ 0, sending −∞ to 0 and 0 to 1−π/α. To verify this, note that ∂yK̂α(iy) > 0
is equivalent to

sinh(ut) cosh(t) < u sinh(t) cosh(ut),

where t = πy < 0 and 0 < u = 1 − α/π < 1. But this inequality follows easily from the fact that

d
dt

[u sinh(t) cosh(ut) − sinh(ut) cosh(t)] = (u2 − 1) sinh(ut) sinh(t).

Secondly, a similar calculus argument shows that K̂α is a homeomorphism as a map

K̂α : {0 ≤ x ≤ 1/2} → [1 − α/π, sin((π − α)/2)].

More precisely, ∂xK̂α(x) > 0 is equivalent to the inequality

sin(ut) cos t < u cos(ut) sin t,

14



where u = 1 − α/π and t = πx > 0. For 0 < x ≤ 1/2, this follows easily by the fact that

d
dt

[u cos(ut) sin t − sin(ut) cos(t)] = (1 − u2) sin t sin(ut).

Thirdly, we consider the curve υ, where υ(t) = K̂α(1/2 − it), 0 ≤ t ≤ ∞, noting that

υ(t) = sin
(
π − α

2

) cosh((π − α)t)
cosh(πt)

− i cos
(
π − α

2

) sinh((π − α)t)
cosh(πt)

.

With yet another almost identical calculus argument, we see that Re υ(t) is strictly decreasing in t. Thus υ is a simple
curve which lies, except for the endpoints sin((π − α)/2) and 0, in the quadrant {z : Re z > 0, Im z < 0}.

Combining the three demonstrated facts, we see that K̂α is a homeomorphism of Jordan curves

K̂α : ∂{z : 0 < Re z < 1/2, Im z < 0} → [0, sin((π − α)/2)] ∪ υ,

where the boundary on the left-hand side is understood on the Riemann sphere. Note that υ = Σ1,α ∩ {z : Im z ≤ 0}
and thus that the interior of the curve [0, sin((π − α)/2)] ∪ υ coincides with Σ̃1,α ∩ {z : Im z < 0}, by the symmetries

K̂α(−z) = K̂α(z) and K̂α(z̄) = K̂α(z). Since points z = ε2 − iε, ε > 0 small, are certainly mapped to the interior, cf. (7),
the maximum principle shows that

K̂α : {z : 0 < Re z < 1/2, Im z < 0} → Σ̃1,α ∩ {z : Im z < 0}.

Since K̂α is a homeomorphism of the Jordan curve boundaries (on the Riemann sphere) of these two domains, it
follows by the converse to Carathéodory’s theorem, cf. [8, 14.5, Exercise 10], that

K̂α : {z : 0 ≤ Re z ≤ 1/2, Im z ≤ 0} → (clos Σ̃1,α ∩ {z : Im z ≤ 0}) \ {0}

is a homeomorphism, and a biholomorphism of the interiors.
The statement of the lemma is now obtained by piecing together the four demonstrated facts, using the symmetries

of K̂α.

Definition 13. For 0 < α < π, we denote the inverse of

K̂α : {z : |Re z| < 1/2, Im z < 0} → Σ̃1,α \ γ1,α

by
µα : Σ̃1,α \ γ1,α → {z : |Re z| < 1/2, Im z < 0},

where γ1,α = [1 − α/π, sin((π − α)/2)].

Note that µα maps (0, 1 − α/π) to iR− and that Re µα(λ) > 0 if Im λ < 0, while Re µα(λ) < 0 if Im λ > 0, by the
proof of Lemma 12.

To illustrate, when α = π/2, µπ/2 is easily computed, and is given by

µπ/2(λ) = −
2i
λ

log
(

1
2λ

+
√

(2λ)−2 − 1
)
,

and is a conformal biholomorphism

µπ/2 : Σ̃1,π/2 \ γ1,π/2 → {z : |Re z| < 1/2, Im z < 0},

where γ1,π/2 = [1/2, 1/
√

2].
We are now ready to investigate Kα as an operator. Again, we may limit the discussion to the case when 0 < α < π.

Lemma 14. Kα : Hη(R+) → Hη(R+) is bounded for 0 ≤ η ≤ 1. If λ < Ση,α ∪ Σ1,α and λ , K̂α(0) = 1 − α/π, then
Kα − λ : Hη(R+)→ Hη(R+) is bounded from below:

‖(Kα − λ) f ‖Hη(R+) & ‖ f ‖Hη(R+).
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Proof. For 0 ≤ η ≤ 1/2, by Lemma 4 and (4), we have for f ∈ C∞c ([0,∞)) that

‖ f ‖2Hη ≈

∫
Re z=1/2

| f̂ (z)|2|dz| +
∫

Re z=1/2−η

|z|4η

(1 + |z|)2η | f̂ (z)|2|dz|.

As stated earlier, M((Kα − λ) f )(z) = (K̂α(z) − λ) f̂ (z), initially for 0 < Re z < 1, and for −1 < Re z < 1, z , 0, by
analytic continuation. Since K̂α(z) is bounded on the lines Re z = 1/2 and Re z = 1/2 − η, we see that Kα is bounded
on Hη. Similarly, if λ < Ση,α ∪ Σ1,α, then Kα − λ : Hη → Hη is bounded from below, for |K̂α(z) − λ| is strictly bounded
from below on these lines.

For η > 1/2, by Lemma 4, any f ∈ Hη may be written f = f (0)φ + h, where h ∈ H̃η := Wη
0 ∩ L2, with

‖ f ‖2Hη ≈ | f (0)|2 + ‖h‖2
H̃η

= | f (0)|2 + ‖h‖2Wη
0

+ ‖h‖2L2 .

The same argument as above yields the boundedness and boundedness from below of Kα − λ : H̃η → H̃η, assuming
that λ < Ση,α ∪ Σ1,α. In the notation of Lemma 2,

M((Kα − λ)φ)(z) =
ψ(z)(1 − α/π − λ)

z
+ ψ1(z), 0 < Re z < 1,

where ψ1(z), like ψ(z), is analytic and rapidly decreasing in the strip −1 < Re z < 1. In particular, by Lemma 1,
ψ1(z) = d̂(z), −1 < Re z < 1, for a function d ∈ H̃η, d(t) satisfying the appropriate bounds at t = 0 and t = ∞. Thus,
applying Lemmas 1 and 2 again,

(Kα − λ)φ = (1 − α/π − λ)φ + d ∈ Hη.

This in particular shows that Kα is bounded on Hη.
Suppose now that (Kα − λ)( f (0)φ + h) = 0, and that λ , 1 − α/π, in addition to the condition that λ < Ση,α ∪ Σ1,α.

Then we just saw that (Kα − λ)φ < H̃η. Since (Kα − λ)h ∈ H̃η, it must be that f (0) = 0. But we already know
that the kernel is trivial on H̃η and therefore that h = 0 also. Hence Kα − λ has trivial kernel on Hη. Furthermore,
(Kα −λ) : H̃η → H̃η being bounded below, (Kα −λ)H̃η is closed in H̃η, and thus in Hη. Therefore (Kα −λ)Hη is closed
as well. Combined with the trivial kernel, this demonstrates that Kα − λ : Hη → Hη is bounded from below.

Remark. Theorem 16 shows that Kα − λ : H1(R+)→ H1(R+) is not invertible for λ ∈ Σ̃1,α with Im λ , 0.

Lemma 15. Let 1/2 ≤ η ≤ 1. Then Kα : Wη(R+) → Wη(R+) is bounded. If λ < Ση,α and λ , K̂α(0) = 1 − α/π, then
Kα − λ : Wη(R+)→ Wη(R+) is invertible.

Proof. As in the proof of Lemma 14, Kα : Wη(R+) → Wη(R+) is bounded. When λ < Ση,α, it is also clear that
(Kα − λ) : Wη

0 (R+) → Wη
0 (R+) is invertible, since (K̂α(z) − λ)−1 is uniformly bounded from below on the line Re z =

1/2 − η. Note that φ < Wη
0 (R+), and that, as in the proof of Lemma 14,

(Kα − λ)φ = (1 − α/π − λ)φ + d,

where d ∈ Wη
0 (R+). It easily follows that (Kα−λ) : Wη(R+)→ Wη(R+) is invertible, if in addition 1−α/π−λ , 0.

We now come to the main result of this section.

Theorem 16. Suppose that λ ∈ Σ̃1,α with Im λ , 0. Furthermore, assume that g ∈ H1(R+), and that fλ ∈ H1/2(R+)
solves the equation

(Kα − λ) fλ = g.

Then fλ is of the form
fλ(s) = cλφ(s)s− sgn(Im λ)µα(λ) + f̃λ,

where cλ ∈ C, and f̃λ ∈ W1(R+). Additionally, the solution satisfies the estimate

|cλ|2 + ‖ f̃λ‖2W1(R+) ≤ Cλ‖g‖2H1(R+).
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For λ < clos Σ̃1,α, if we consider a solution jλ ∈ H1/2(R+) to

(Kα − λ) jλ = g,

then jλ ∈ W1(R+) and ‖ jλ‖W1(R+) ≤ Cλ‖g‖H1(R+).

Remark. If π < α < 2π, then the same statement is true upon replacing Σ̃1,α with −Σ̃1,2π−α and the exponent
− sgn(Im λ)µα(λ) with sgn(Im λ)µ2π−α(−λ).

Proof. We first assume that λ ∈ Σ̃1,α and Im λ > 0. By (the proof of) Lemma 12, z = µα(λ) is the unique solution to
the equation K̂α(z) = λ satisfying −1/2 − ε ≤ Re z < −Re µα(λ), for some ε > 0. To obtain the decomposition of fλ,
suppose first that g is of the form g = g(0)φ + h, where h ∈ C∞c (R+). Let

wλ(s) =
g(0)

1 − α
π
− λ

φ(s),

and let

vλ(s) =
dĥ(µα(λ))

d
dz K̂α(µα(λ))︸         ︷︷         ︸

cλ

φ(s)s−µα(λ),

where

d−1 = Resz=µα(λ)M(φ(s)s−µα(λ))(z) = −

∫ 1

0
φ′(s) ds > 0.

See Lemma 2. Since
(K̂α(z) − λ) f̂λ(z) = g(0)φ̂ + ĥ(z), (8)

initially for almost every z on the line Re z = 0, we find that f̂λ has a meromorphic extension to the strip −1/2 − ε <
Re z < −Re µα(λ). Furthermore, by Lemmas 1 and 2, we see that f̂λ− v̂λ− ŵλ is analytic and rapidly decreasing in this
strip, where the individual terms are understood by meromorphic extension. Thus, by Lemma 1, there is a function
uλ ∈ C∞(R+), satisfying the appropriate bounds at 0 and∞, such that

ûλ(z) = f̂λ(z) − v̂λ(z) − ŵλ(z), −1/2 − ε < Re z < Re−µα(λ), (9)

where, again, we are adding up terms individually understood by continuation. Then uλ ∈ W1
0 , and by (8), Lemma 3,

and Lemma 4, we obtain
|cλ|2 + ‖uλ‖2W1

0
. ‖g‖2H1 , (10)

with a constant that may depend on λ.
From (9), we see that fλ − wλ ∈ W1/2

0 . Furthermore, uλ + vλ ∈ W1/2
0 , and since the Mellin transform is an

isomorphism of W1/2
0 onto a weighted L2-space on Re z = 0, we conclude that fλ = vλ + wλ + uλ. This demonstrates

the decomposition of fλ for this particular type of right-hand side g = g(0)φ + h, h ∈ C∞c (R+), with f̃λ = wλ + uλ.
We now treat the case of a general function g ∈ H1, still assuming that Im λ > 0. Then, by Lemma 5, g ∈ W1/2

(and g ∈ H1/2). Thus, by Lemma 15, there is k ∈ W1/2 such that (Kα − λ)k = g. The functions k, fλ, and g are all
elements of the spaceH defined as the completion of C∞c ([0,∞)) in the norm

‖ f ‖2
H

=

∫ ∞

0

∫ ∞

0

| f (s) − f (t)|2

|s − t|2
ds dt ≈

∫
Re z=0

|z|2

1 + |z|
| f̂ (z)|2 |dz|.

Then (Kα − λ)k = (Kα − λ) fλ = g remain valid as equations inH . However, Kα − λ : H → H is bounded from below,
since |K̂α(z) − λ| is bounded from below on Re z = 0. Thus fλ = k ∈ W1/2.

Choose now a sequence gn = g(0)φ + hn, hn ∈ C∞c (R+), such that gn → g in H1, and thus in W1/2. By Lemma 15,
we may then let

fλ,n = (K − λ)−1gn ∈ W1/2,
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and fλ,n → fλ in W1/2 as n → ∞. The argument that led to the decomposition and the estimate (10) applies equally
well if we start with the information that fλ,n ∈ W1/2 (rather than fλ,n ∈ H1/2). Therefore we may decompose

fλ,n(s) = cλ,nφ(s)s−µα(λ) + f̃λ,n(s), f̃λ,n ∈ W1,

with the estimate
|cλ,n|2 + ‖ f̃λn‖

2
W1 . ‖gn‖

2
H1 .

Furthermore, the decomposition is unique, since K − λ : W1/2 → W1/2 is invertible, and φ(s)s−µα(λ) < W1. Thus by
applying the analysis with right-hand side gn − gm, we conclude that

|cλ,n − cλ,m|2 + ‖ f̃λ,n − f̃λ,m‖2W1 . ‖gn − gm‖
2
H1 .

Thus there exist cλ and f̃y ∈ W1 such that cyn → cλ and f̃λ,n → f̃λ in W1. Thus

fλ = cλφ(s)s−µα(λ) + f̃λ

and the same estimate
|cλ|2 + ‖ f̃λ‖2W1 . ‖g‖2H1

holds.
The case when λ ∈ Σ̃1,α and Im λ < 0 is the same, except that the solution to K̂α(z) = λ in the strip −1/2 < Re z < 0

now occurs at z = −µα(λ).
The case when λ < clos Σ̃1,α is also treated analogously, except that in this case |K̂α(z) − λ| is uniformly bounded

from below on a strip −1/2 − ε < Re z < 1/2 + ε.

5. The NP operator on Γ

We now return to the study of K : H1/2(Γ) → H1/2(Γ). For simplicity we still assume that 0 < α < π, but will
indicate the changes that need to be made for π < α < 2π along the way. Recall that the E′-norm is an equivalent
Hilbert space norm on H1/2(Γ) in which K is self-adjoint. Thus K − λ : H1/2(Γ) → H1/2(Γ) is invertible whenever
Im λ , 0.

Theorem 17. Suppose that λ ∈ Σ̃1,α with Im λ , 0, g ∈ H1(Γ) and that fλ ∈ H1/2(Γ) is the solution to

(K − λ) fλ = g.

Then there is cλ ∈ C and functions hλ,± ∈ H1(R+) supported in [0, 1) such that

fλ,±(s) := ( fλ)±(s) = cλφ(s)s− sgn(Im λ)µα(λ) + hλ,±(s), s > 0.

Furthermore, fλ,c := ( fλ)c ∈ W1
0 (R+). We have the estimate

|cλ|2 + ‖hλ,+ + hλ,−‖2H1(R+) + ‖hλ,+ − hλ,−‖2W1
0 (R+) + ‖ fy,c‖2W1

0 (R+) ≤ Cλ‖g‖2H1(Γ).

If instead λ ∈ −Σ̃1,α with Im λ , 0, then the the same statement holds with

fλ,± = ±cλφ(s)ssgn(Im λ)µα(−λ) + hλ,±(s).

Remark. For π < α < 2π, the same statement is true with −µ2π−α(−λ) in place of µα(λ).

Proof. Suppose that λ ∈ Σ̃1,α with Im λ , 0. By the expansions (6) of K±, Lemma 9 and the equation (K − λ) fλ = g,
we see that φKα fλ,∓ − λ fλ,± ∈ H1(R+). Furthermore, as an operator acting on L2([0, 1]), W = (1 − φ)Kα has a kernel
W(s, t), W ∈ C1([0,∞) × [0, 1]) such that

|W(s, t)| . 1/s, |∂sW(s, t)| . 1/s2, s ≥ 1.
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It follows that W : L2([0, 1])→ H1(R+) is bounded. Hence

Kα f∓ − λ fλ,± ∈ H1(R+).

Therefore,
(Kα − λ)( fλ,− + fλ,+) ∈ H1(R+),

and
(Kα + λ)( fλ,− − fλ,+) ∈ H1(R+).

By Theorem 16, there are cλ ∈ C and j1, j2 ∈ W1(R+) such that

( fλ,− + fλ,+)(s) = 2cλφ(s)s− sgn(Im λ)µα(λ) + j1(s), ( fλ,− − fλ,+)(s) = j2(s).

Then we obtain the desired decomposition by letting

hλ,+ = ( j1 − j2)/2, hλ,− = ( j1 + j2)/2.

Clearly, hλ,± ∈ H1(R+), since both j1 and j2 belong to W1(R+) and are supported in [0, 1). Furthermore, we must have
hλ,+ − hλ,− = fλ,+ − fλ,− ∈ W1

0 (R+), since fλ,+ − fλ,− ∈ W1/2
0 (R+). Finally, to see that fλ,c ∈ W1

0 (R+), we only have to
observe that fλ,c = λ−1(Kc fλ − gc), and that Kc maps H1/2(Γ) into W1

0 (R+). The existence of the estimate now follows
from the closed graph theorem, since we know that (K − λ)−1 : H1(Γ)→ H1/2(Γ) is bounded.

The case when λ ∈ −Σ̃1,α follows along the same lines.

The following result on the Fredholm property of K − λ : Hη(Γ) → Hη(Γ) is standard, but a proof is included in
lieu of an exact reference.

Theorem 18. Let 1/2 < η ≤ 1, and suppose that λ < −Ση,α ∪ Ση,α and λ , ±(1 − α/π). Then K − λ : Hη(Γ)→ Hη(Γ)
is Fredholm.

Proof. Let φ1 ∈ C∞([0,∞)) be a cut-off function around 0 with sufficiently small support. Define W : Hη(Γ)→ Hη(Γ)
by

W± f = (W f )± = φ1Kαφ1 f∓, Wc f = (W f )c ≡ 0.

Note that the continuity of W f at the corner follows from the boundedness of Kα : Wη
0 (R+) → Wη

0 (R+). Then, by the
expansion (6), Lemma 9, Lemma 10, and the compact embedding of Hη(Γ) into L2(Γ), we know that

K −W : Hη(Γ)→ Hη(Γ)

is compact. To prove the lemma, we will show that R : Hη(Γ)→ Hη(Γ) is a parametrix for W − λ, where

(Rg)± =
1
2

(
φ1(Kα − λ)−1φ1(g+ + g−) ± φ1(Kα + λ)−1φ1(g− − g+)

)
−

1
λ

(1 − φ2
1)g±

and (Rg)c = − 1
λ
gc. Here we mean (Kα ± λ)−1 as an inverse on Wη(R+), as in Lemma 15, noting that a compactly

supported function f belongs to Wη(R+) if and only if it belongs to Hη(R+).
Obviously, (R(W − λ))c f = ((W − λ)R)c f = fc, and a standard (somewhat tedious) calculation shows that

((W − λ)R)+ f ± ((W − λ)R)− f = f+ ± f− + Cr
± f

and
(R(W − λ))+ f ± (R(W − λ))− f = f+ ± f− + Cl

± f

where Cr
+,C

l
+ : Hη(Γ) → Hη(R+) and Cr

−,C
l
− : Hη(Γ) → Wη

0 (R+) are compact operators. Thus (W − λ)R − I and
R(W − λ) − I are compact operators. That is, W − λ, and therefore K − λ, are Fredholm.

Remark. An inspection of the proofs of Lemma 15 and Theorem 18 shows that K − λ : Hη(Γ) → Hη(Γ) is also
Fredholm for λ = ±(1 − α/π), 1/2 < η ≤ 1. However, we shall not need this.
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We introduce for λ ∈ Σ̃1,α \ γ1,α the function qλ,α ∈ L2(Γ) such that

(qλ,α)±(s) = φ(s)s−µα(λ), (qλ,α)c ≡ 0.

Note that −1/2 < Re µα(λ) < 1/2 for such λ, by design. Similarly, for λ ∈ −(Σ̃1,α \ γ1,α) we define qλ,α so that

(qλ,α)±(s) = ±φ(s)sµα(−λ), (qλ,α)c ≡ 0.

For each λ ∈ −(Σ̃1,α \ γ1,α) ∪ (Σ̃1,α \ γ1,α), we then consider the operator

Tλ : C ⊕ H1(Γ)→ H1(Γ)

such that
Tλ(c, f ) = (K − λ)(cqλ,α + f ).

Lemma 19. Tλ : C ⊕ H1(Γ) → H1(Γ) is bounded, and the operator-valued function λ 7→ Tλ is analytic in Σ̃1,α \ γ1,α

and −(Σ̃1,α \ γ1,α).

Proof. We only have to check that λ 7→ (K − λ)qλ,α ∈ H1(Γ) is well-defined and analytic. By the expansion (6),

[(K − λ)qλ,α]± = φKα(qλ,α)∓ − λφ(qλ,α)± − λ(1 − φ)(qλ,α)± + φV±(qλ,α)∓ + R±qλ,α.

Since λ 7→ qλ,α ∈ L2(Γ) and λ 7→ (1 − φ)(qλ,α)± ∈ W1
0 (R+) are analytic, it is by Lemmas 9 and 10 sufficient to

demonstrate that
λ 7→ φ(Kα + λ)((qλ,α)− − (qλ,α)+) ∈ W1

0 (R+)

and
λ 7→ φ(Kα − λ)((qλ,α)− + (qλ,α)+) ∈ H1(R+)

are analytic.
The question therefore boils down to proving that λ 7→ (Kα − λ)vλ ∈ W1

0 (R+) is analytic for λ ∈ Σ̃1,α \ γ1,α, where
vλ(s) = φ(s)s−µα(λ). Integration by parts yields that

v̂λ(z) =
ψλ(z)

z − µα(λ)
, Re z > Re µα(λ),

where ψλ(z) = −
∫ 1

0 sz−µα(λ)φ′(s) ds. Therefore

M((Kα − λ)vλ)(z) =
K̂α(z) − λ
z − µα(λ)

ψλ(z) (11)

has an analytic extension to −1 < Re z < 1 which is rapidly decreasing. By Lemma 1, there is uλ ∈ C∞(0,∞),
satisfying the appropriate bounds at 0 and∞, such that

ûλ =M((Kα − λ)vλ)(z), −1 < Re z < 1.

In particular this holds for Re z = 1/2, and thus uλ = (Kα − λ)vλ. On the other hand, it is clear from (11) that
uλ ∈ W1

0 (R+).
Furthermore, for λ in a sufficiently small neighborhood of a fixed λ0 ∈ Σ̃1,α\γ1,α, ûλ and d

dλ ûλ are rapidly decreasing
in a strip |Re z + 1/2| < ε, ε > 0 sufficiently small, with uniform estimates. Cauchy’s formula then implies that

λ→ ûλ ∈ L2(Re z = −1/2, (1 + |z|2)|dz|)

is analytic. This is of course the same as saying that

λ 7→ (Kα − λ)vλ ∈ W1
0 (R+)

is analytic.
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By slight abuse of notation, we will identify the pair T−1
λ g = (cλ, f̃λ) with the function cλqλ,α + f̃λ ∈ L2(Γ),

T−1
λ g = cλqλ,α + f̃λ.

Theorem 20. Tλ : C⊕H1(Γ)→ H1(Γ) is invertible for every λ ∈ Σ̃1,α \γ1,α with Im λ ≥ 0, except for λ = ρn belonging
to a (possibly finite) sequence {ρn} ⊂ (0, 1 − α/π) that can only accumulate at 0 or (1 − α/π). Tρn is Fredholm with
index 0 for every such exceptional point. The operator-valued function λ 7→ T−1

λ has a meromorphic extension to all
of Σ̃1,α \ γ1,α, having a pole at each ρn in addition to possible poles for Im λ < 0. At each pole, the negative order
operator coefficients in the Laurent expansion are of finite rank. Outside of the poles, it holds that

(K − λ)T−1
λ g = g, g ∈ H1(Γ). (12)

Similarly, Tλ is invertible for every λ ∈ −(Σ̃1,α \ γ1,α) with Im λ ≥ 0, except for a sequence {ρ′n} ⊂ (−(1 − α/π), 0)
that can only accumulate at 0 or −(1 − α/π). All the conclusions of the previous case hold.

Proof. We treat only the case when λ ∈ Σ̃1,α \ γ1,α, as the other statement is proven in exactly the same way.
First of all, we observe that Tλ is invertible for Im λ > 0. For suppose that Tλ(c, f ) = 0 for some c ∈ C, f ∈ H1(Γ).

Then h = cqλ,α+ f ∈ H1/2(Γ) satisfies (K−λ)h = 0. However, K−λ : H1/2(Γ)→ H1/2(Γ) is invertible for all Im λ , 0,
and thus h = 0, whence c = f = 0. To see that any g ∈ H1(Γ) is in the range of Tλ, note, again by the invertibility of
K − λ : H1/2(Γ)→ H1/2(Γ), that there is fλ ∈ H1/2(Γ) satisfying (K − λ) fλ = g. But by Theorem 17, this solution is of
the form fλ = cλqλ,α + f̃λ, with f̃λ ∈ H1(Γ).

Secondly, by Theorem 18 and Lemma 19, λ 7→ Tλ, λ ∈ Σ̃1,α \ γ1,α, is an analytic family of Fredholm operators.
Since Tλ is invertible for at least one λ, we have that ind Tλ = 0 for every λ. Furthermore, by the analytic Fredholm
theorem [13, Corollary 8.4], the set {wn}, of points where Twn fails to be invertible, is discrete in Σ̃1,α \ γ1,α, and T−1

λ is
meromorphic, with finite rank negative order operator coefficients at its poles. Equation (12) remains valid all λ , wn,
by analyticity.

As we shall now speak of K : H1/2(Γ)→ H1/2(Γ) as a self-adjoint operator, it is in the sequel important to think of
H1/2(Γ) as being equipped with the E′-norm. Let K =

∫ 1
−1 λ dE(λ) be the spectral decomposition of K. Recall that for

f , h ∈ H1/2(Γ), we denote by
ν f ,h(Λ) = 〈E(Λ) f , h〉E′ , Λ ⊂ [−1, 1] Borel,

the associated spectral measure.

Lemma 21. The sequences {ρ′n} and {ρn} of Theorem 20 are precisely those eigenvalues of K : H1/2(Γ) → H1/2(Γ)
that are embedded in (−(1 − α/π), 0) ∪ (0, 1 − α/π). Therefore ρ′n = −ρn, if ordered correctly. Each ρn is in fact a
simple pole of T−1

λ , and for g, h ∈ H1(Γ),

νg,h({ρn}) = −Resλ=ρn〈T
−1
λ g, h〉E′ . (13)

A similar statement holds for ρ′n.

Proof. Suppose that λ ∈ (0, 1 − α/π) is an eigenvalue of K with eigenvector f ∈ H1/2(Γ), ‖ f ‖E′ = 1. Then ν f , f is
a point mass at λ, ν f , f ({λ}) = 1. By density, we can find g ∈ H1(Γ) such that g = f + h, with ‖h‖E′ < 1/4. Then
νg,g({λ}) ≥ 1/2, since

νg,g = ν f , f + 2 Re ν f ,h + νh,h.

Hence,

y〈(K − (λ + iy))−1g, g〉E′ =

∫ 1

−1

y dνg,g(x)
x − (λ + iy)

→ iνg,g({λ}) , 0, (14)

as y→ 0+, by the dominated convergence theorem. On the other hand, if λ < {ρn}, then

(K − (λ + iy))−1g = T−1
λ+iyg→ T−1

λ g, y→ 0+,
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with convergence in C ⊕ H1(Γ), and therefore in L2(Γ). Thus, since S −1g ∈ L2(Γ),

〈(K − (λ + iy))−1g, g〉E′ → 〈T−1
λ g, S −1g〉L2(Γ),

as y→ 0+, a contradiction. Therefore λ ∈ {ρn}.
Conversely, suppose that λ = ρn for some n. Then T−1

λ′ has a pole at λ′ = λ of some order n ≥ 1, and thus we can
arrange f , h ∈ H1(Γ) such that

Im〈yn(K − (λ + iy))−1 f , h〉E′ ≥ 1

for y > 0 small. Since
Re νg,h({λ}) = lim

y→0+
Im〈y(K − (λ + iy))−1 f , h〉E′

it must be that n = 1 and E({λ}) , 0, that is, λ is an eigenvalue of K : H1/2(Γ)→ H1/2(Γ).
The formula for νg,g({ρn}) now follows by comparing (14) with the fact that

y〈(K − (λ + iy))−1g, g〉E′ = −i〈Resλ=ρn T−1
λ g, S −1g〉L2(Γ) + O(y).

The more general formula (13) follows by a polarization argument.
An identical argument works for the eigenvalues in (−(1 − α/π), 0). The fact that {ρ′n} = {−ρn} then follows by the

symmetry of the spectrum described in Subsection 3.5.

Remark. Of course the choice to define qλ,α to agree with the decomposition of Theorem 17 for Im λ > 0, rather than
Im λ < 0, was arbitrary. We could instead have let

(q̃λ,α)±(s) = φ(s)sµα(λ), (q̃λ,α)c ≡ 0, λ ∈ Σ̃1,α \ γ1,α,

and
(q̃λ,α)±(s) = ±φ(s)s−µα(−λ), (q̃λ,α)c ≡ 0, λ ∈ −(Σ̃1,α \ γ1,α).

Letting
T̃λ(c, f ) = (K − λ)(cq̃λ,α + f ),

the same proof yields that inside −(Σ̃1,α \ γ1,α) ∪ (Σ̃1,α \ γ1,α), λ → T̃−1
λ has a meromorphic extension from Im λ < 0

to Im λ > 0. The real poles coincide with the eigenvalues of K : H1/2(Γ)→ H1/2(Γ).

We have now essentially proven Theorem A and Theorem B. It is obvious how to modify the construction for
π < α < 2π based on the remark after Theorem 17.

Proof of Theorems A and B. The desired conclusions are immediate from Theorem 20 and Lemma 21, with Hλ = T−1
λ .

It only remains to note that the eigenvalues of K : H1/2(Γ) → H1/2(Γ) that lie outside [−|1 − α/π|, |1 − α/π|] can only
accumulate at ±|1 − α/π|, since we know already that σess(K,H1/2(Γ)) = [−|1 − α/π|, |1 − α/π|].

We now prove Theorem C, except for the statement on multiplicity. Let {λn} denote the eigenvalues of K : H1/2(Γ)→
H1/2(Γ).

Theorem 22. The absolutely continuous part of the spectrum of K : H1/2(Γ)→ H1/2(Γ) is given by

σac(K) = [−|1 − α/π|, |1 − α/π|].

There is no singular continuous spectrum.
Furthermore, if g, h ∈ H1(Γ), then the spectral measure

νg,h = τ dλ +
∑

n

τnδλn

has a continuous density τ which is real analytic in (−|1 − α/π|, 0) and (0, |1 − α/π|).
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Proof. As always, we may restrict ourselves to the case when 0 < α < π. Since we know that σess(K,H1/2(Γ)) =

[−(1 − α/π), 1 − α/π] and that the eigenvalues {λn} can only accumulate to 0 and ±(1 − α/π), it is sufficient to prove
that there is no singular continuous spectrum. Suppose to the contrary that K had some singular continuous part in its
spectrum. Then there would exist a closed Lebesgue null set E with

E ⊂ (−(1 − α/π), 0) ∪ (0, 1 − α/π), E ∩ {λn} = ∅,

and f ∈ H1/2(Γ), ‖ f ‖E′ = 1, such that supp ν f , f ⊂ E and ν f , f (E) = 1. By density, there is g ∈ H1(Γ) such that g = f +h,
where ‖h‖E′ < 1/4. Then

νg,g(E) = (ν f , f + 2 Re ν f ,h + νh,h)(E) ≥ 1/2.

By inner regularity there is thus a closed Lebesgue null set F ⊂ E such that νg,g(F) > 0. However, by the theorem of
de la Vallée-Poussin, the singular part of νg,g is supported on the set of λ ∈ [−1, 1] such that

Im 〈(K − (λ + iy))−1g, g〉E′ = Im
∫ 1

−1

dνg,g(x)
x − (λ + iy)

=

∫ 1

−1

y dνg,g(x)
(x − λ)2 + y2 → ∞,

as y→ 0+. However, if λ ∈ F, then, as in the proof of Lemma 21,

〈(K − (λ + iy))−1g, g〉E′ → 〈T−1
λ g, S −1g〉L2(Γ),

as y → 0+. This is a contradiction, and we conclude that K has absolutely continuous spectrum outside of its
eigenvalues.

If g ∈ H1(Γ), we now know that the spectral measure may be decomposed as

νg,g = τ dλ +
∑

n

τnδλn ,

where
∑

n τn =
∑

n νg,g({λn}) < ∞ and
∫ 1
−1 τ dλ < ∞. Then by Fatou’s theorem and (13),

πτ(λ) = lim
y→0+

∫ 1

−1

y τ(x) dx
(x − λ)2 + y2

= lim
y→0+

∫ 1

−1

y dνg,g(x)
(x − λ)2 + y2 + Im

∑
λn∈(0,1−α/π)

νg,g({λn})
(λ + iy) − λn


= lim

y→0+
Im

 〈(K − (λ + iy))−1g, g〉E′ −
∑ Resλ=λn〈T

−1
λ g, S −1g〉L2(Γ)

(λ + iy) − λn


= Im

 〈T−1
λ g, S −1g〉L2(Γ) −

∑
λn∈(0,1−α/π)

Resλ=λn〈T
−1
λ g, S −1g〉L2(Γ)

λ − λn


for almost every λ. On the right-hand side we have subtracted off every pole from T−1

λ g in (0, 1 − α/π), showing that
τ(λ) is indeed real analytic in this interval. A similar argument holds for (−(1 − α/π), 0). For the general case of a
spectral measure νg,h, g, h ∈ H1(Γ), we employ the polarization identity.

6. The spectral resolution

To prove that the a.c. spectrum has multiplicity 1, and thereby finish the proof of Theorem C, we will in this
section construct the diagonalization of K : H1/2(Γ) → H1/2(Γ) somewhat explicitly. We will assume that 0 < α < π,
the case of π < α < 2π being analogous.

Lemma 23. Suppose that λ ∈ (−(1 − α/π), 0) ∪ (0, 1 − α/π) is not an eigenvalue of K : H1/2(Γ) → H1/2(Γ). Then
K − λ : L2(Γ)→ L2(Γ) is Fredholm, has full range, and

dim ker(K − λ)|L2(Γ) = 1.
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Proof. Since Tλ : C ⊕ H1(Γ)→ H1(Γ) is invertible, we know that

dim ker(K − λ)|H1(Γ) = 0, codim(K − λ)H1(Γ) = 1.

Thus the Fredholm operator K∗ − λ : H−1(Γ)→ H−1(Γ) has full range and

dim ker(K∗ − λ)|H−1(Γ) = 1.

The result follows, since S : H−1(Γ)→ L2(Γ) is an isomorphism, and

(K − λ) = S (K∗ − λ)S −1 : L2(Γ)→ L2(Γ),

by the Plemelj formula.

Theorem 24. Let I = (−(1−α/π), 1−α/π), and let {λn}n∈N denote the eigenvalues of K : H1/2(Γ)→ H1/2(Γ), indexed
by a countable set N, and let {en}n∈N denote a corresponding set of eigenvectors, orthonormal in the E′-norm. There
is a function e : I → L2(Γ) satisfying the following:

• For every λ ∈ I, λ < {λn} ∪ {0}, we have that e(λ) ∈ ker(K − λ)|L2(Γ).

• If we for f ∈ H1(Γ) let

U f (λ) = 〈 f , e(λ)〉E′ , U f (n) = 〈 f , en〉E′ , λ ∈ I, n ∈ N,

then U extends to a unitary map U : H1/2(Γ)→ L2(I) ⊕ `2(N).

• Furthermore, U diagonalizes K : H1/2(Γ)→ H1/2(Γ):

UKU−1 p(λ) = λp(λ), UKU−1 p(n) = λn p(n),

for p ∈ L2(I) ⊕ `2(N), λ ∈ I, and n ∈ N.

In particular, the absolutely continuous spectrum of K : H1/2(Γ)→ H1/2(Γ) has multiplicity 1.

Proof. For λ ∈ I, λ < {λn} ∪ {0}, let S λ : H1(Γ)→ L2(Γ) be defined by

S λg = (2πi)−1(T−1
λ − T̃−1

λ )g, g ∈ H1(Γ),

where T̃λ was defined in the remark after Lemma 21. Then, by (12), S λ maps H1(Γ) into ker(K − λ)|L2(Γ). Thus, by
Lemma 23, there must be e′λ ∈ ker(K − λ)|L2(Γ) and e′′λ ∈ L2(Γ) such that

S λg = 〈g, e′′λ 〉E′e
′
λ, g ∈ H1(Γ).

On the other hand, by Theorem 22 the spectral measure νg,g has a smooth density at λ, and therefore

〈S λg, g〉E′ = (2πi)−1 lim
y→0+

∫ 1

−1

(
1

x − (λ + iy)
−

1
x − (λ − iy)

)
dνg,g(x)

= lim
y→0+

1
π

∫ 1

−1

y dνg,g(x)
(x − λ)2 + y2 = ν′g,g(λ).

In particular, 〈g, e′′λ 〉E′〈e
′
λ, g〉E′ ≥ 0 for every g ∈ H1(Γ). Thus there must be a constant cλ ≥ 0 such that e′′λ = cλe′λ. We

define
e(λ) =

√
cλe′λ,

and let U be as in the theorem statement, so that

|Ug(λ)|2 = 〈S λg, g〉 = ν′g,g(λ), g ∈ H1(Γ), λ ∈ I \ ({λn} ∪ {0}).
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Then, for g ∈ H1(Γ) and λ ∈ I, λ < {λn} ∪ {0}, we have that

UKg(λ) = 〈Kg, e(λ)〉E′ = 〈g,Ke(λ)〉E′ = λUg(λ),

and, similarly, UKg(n) = λnUg(n) for n ∈ N.
To complete the proof, we need to show that U extends to a unitary map of H1/2(Γ) onto L2(I) ⊕ `2(N). Observe

first that for any g ∈ H1(Γ), ∫
I
|Ug(λ)|2 dλ +

∑
n

|Ug(n)|2 =

∫ 1

−1
dνg,g = ‖g‖2E′ . (15)

Thus U extends to an isometry U : H1/2(Γ) → L2(I) ⊕ `2(N) and, by continuity, the relationship |Ug(λ)|2 = ν′g,g(λ)
continues to be valid for every g ∈ H1/2(Γ), for almost every λ ∈ I. By polarization, this also implies that

Ug(λ)Uh(λ) = ν′g,h(λ), a.e. λ ∈ I, g, h ∈ H1/2(Γ). (16)

Let P be the closed linear span of {en}n∈N in H1/2(Γ). By (16), we then have that U f (λ) = 0 for f ∈ P and almost
every λ ∈ I. Therefore, in view of (15), P 3 f 7→ {U f (n)}n∈N is a unitary map of P onto `2(N). Note also that
Ug(n) = 0 for every g ∈ P⊥ and n ∈ N.

We now treat the part of K : H1/2(Γ) → H1/2(Γ) with absolutely continuous spectrum. By Theorem 22 and the
spectral theorem, there is a measure dν(λ) = ν′(λ) dλ on I and a decreasing sequence B2 ⊃ B3 ⊃ · · · of Borel sets such
that K : P⊥ → P⊥ is unitarily equivalent to

Mν ⊕ Mν|B2
⊕ Mν|B3

⊕ · · · ,

where, for a measure τ, Mτ denotes the operator of multiplication by the independent variable λ on L2(τ). Let
Y : P⊥ → L2(ν) ⊕ L2(ν|B2 ) ⊕ · · · be the unitary that realizes this equivalence. The spectral density of two functions
g, h ∈ P⊥ is then given by

ν′g,h = ((Yg)1(Yh)1 + (Yg)2(Yh)2 + · · · )ν′, (17)

where the jth component (Yg) j is supported in B j for every j ≥ 2 and g ∈ P⊥. Choose g ∈ H1(Γ) such that ν′g,g is
non-zero in (−(1 − α/π), 0) and in (0, 1 − α/π), and let g̃ be the projection of g onto P⊥. Since ν′g,g is real analytic in
these two intervals by Theorem 22, it can only vanish on a null set in I. Noting that ν′g,g = ν′g̃,g̃ and applying (17) we
therefore see that ν must be mutually absolutely continuous with the Lebesgue measure dλ in I. We may therefore
assume that ν is the Lebesgue measure on I, ν′ ≡ 1.

Let
(P⊥)1 = {g ∈ P⊥ : (Yg) j = 0 for j ≥ 2},

so that (P⊥)1 3 g→ (Yg)1 ∈ L2(I) is unitary. Combining (16) and (17) we then have that

Ug(λ)Uh(λ) = (Yg)1(λ)(Yh)1(λ), a.e. λ ∈ I, g, h ∈ (P⊥)1. (18)

Fix h ∈ (P⊥)1 as the function such that (Yh)1 ≡ 1. Then, by (18), |Uh(λ)| = 1 for almost every λ, and

Ug(λ) = Uh(λ)(Yg)1(λ), a.e. λ ∈ I, g ∈ (P⊥)1.

We conclude that g 3 (P⊥)1 7→ Ug|I ∈ L2(I) is unitary. Since g 3 P⊥ 7→ Ug|I ∈ L2(I) is an isometry by (15), this
implies that (P⊥)1 = P⊥, that K : P⊥ → P⊥ is unitarily equivalent to Mdλ : L2(I)→ L2(I), and that U is unitary.

7. Final remarks

7.1. Limiting absorption principle for K∗

Theorem B can be restated as a limiting absorption principle for K∗ : H−1/2(Γ) → H−1/2(Γ). For simplicity,
suppose that 0 < α < π, Im λ > 0 and λ ∈ Σ̃1,α. Let fλ ∈ H−1/2(Γ) be the solution of the equation (K∗ − λ) fλ = g, for
some given g ∈ L2(Γ). Since K∗ = S −1KS , we then find that

fλ = S −1T−1
λ S g
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Hence, by Theorem 20 and Lemma 21, λ → fλ has an analytic H−1(Γ)-valued extension to every λ0 ∈ (0, 1 − α/π)
which is not an eigenvalue of K∗ : H−1/2(Γ)→ H−1/2(Γ). Note that

fλ0 = S −1T−1
λ0

S g = cλ0 S −1qλ0,α + hλ0 , (19)

where cλ0 ∈ C and hλ0 ∈ L2(Γ). To make this explicit, one should identify the singular behavior of S −1qλ,α ∈ H−1(Γ),
λ ∈ Σ̃1,α. It seems quite clear that

S pλ,α = dλqλ,α + oλ,α, (20)

where 0 , dλ ∈ C, oλ,α ∈ H1(Γ), and pλ,α ∈ H−1(Γ) is the distribution defined by

〈pλ,α, f 〉L2(Γ) =

∫ 1

0
φ(s)s−µα(λ)−1(( f− + f+)(s) − ( f− + f+)(0)) ds +

( f− + f+)(0)
µα(λ)

∫ 1

0
s−µα(λ)φ′(s) ds, f ∈ H1(Γ).

Note that if Im λ > 0, then pλ,α ∈ L1(Γ) and pλ,α(z±(s)) = s−µα(λ)−1 for small s > 0. For Im λ ≤ 0, pλ,α is obtained by
analytic continuation from Im λ > 0. Equation (19) then reads as

fλ0 =
cλ0

dλ0

pλ0,α + h̃λ0 ,

where h̃λ0 ∈ L2(Γ).
To check the validity of (20), one should perform a Mellin analysis of the single layer potential S , with similar

details to those presented for K in Section 4. Calculations yielding the analogue of the expansion (6) can be found in
[9, 10]. It is perhaps easiest to start with Im λ > 0 (and λ ∈ Σ̃1,α), and to then apply analytic continuation in λ. The
specifics are left to the interested reader.

7.2. Open problems
As mentioned in the introduction, the analysis we have carried out also applies to piecewise C3-domains in R2 with

finitely many corners. In principle, it should also be possible to extend the analysis to domains in 3D with certain types
of conical points, although many aspects will be significantly more involved. Based on the index theory presented
in [17], one would then expect to see pieces of absolutely continuous spectrum of arbitrarily large multiplicity. For
domains in 3D with edges, parts of the absolutely continuous spectrum should have infinite multiplicity [26].

For 2D domains with corners, an outstanding question is whether K : H1/2(Γ) → H1/2(Γ) can have a countably
infinite number of eigenvalues. Single corner domains featuring eigenvalues embedded in the essential spectrum,
that is, in the absolutely continuous spectrum, were constructed in [22]. A numerical example exhibiting embedded
eigenvalues, obtained by adding three corners to an ellipse, has been presented in [15]. However, neither of these
examples suggest that there can be infinitely many eigenvalues.

Conjecture. Let Γ be a piecewise C3 Jordan curve with finitely many corners, whose angles lie strictly between 0 and
π. Then K : H1/2(Γ)→ H1/2(Γ) has finitely many eigenvalues.

For smooth boundaries Γ satisfying certain conditions, it has been demonstrated in the recent preprint [1] that
oscillations of the eigenfunctions of the NP operator localize at points of high curvature. A study of this phenomenon
for embedded eigenvalues, for domains with singularities, would be very appealing.

Another interesting question is how to recover Γ from the spectral data of K : H1/2(Γ) → H1/2(Γ). For real
algebraic Γ, this question has been successfully considered in [3].
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