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A B S T R A C T   

The field planning process is a crucial phase in the life of a hydrocarbon field when many design features must be 
decided upon. The field development team has the task of finding a configuration of these field design features 
which maximizes the value of the company’s asset while considering several constraints. This paper presents a 
decision support methodology suitable for the early stage of the field planning process. The methodology is 
applied on a synthetic field called Safari. This field is characterized by having multiple reservoir units, where 
these reservoir units are non-communicating and have distinct properties. The reservoirs, namely Løve, Nese-
horn, and Sebra, have original oil-in-place (OOIP) of 75, 55, and 13 million sm3, respectively. Both Løve and 
Nesehorn have a permeability of 250 mD, whereas Sebra has a higher permeability of 450 mD. All these res-
ervoirs lie 2500 m below the sea level with an initial reservoir pressure of 280 bara and an initial reservoir 
temperature of 80 ◦C. The main part of the methodology is a mathematical optimization that uses (i) proxy 
models to represent the flow performance of the production system and to estimate the development costs and 
(ii) piecewise linear (PWL) approximations to represent the non-linear functions. In this study, two optimization 
problems with the objective function to maximize plateau duration or net present value (NPV) are formulated 
and solved. The optimization models consider production schedule, drilling schedule, and recovery mechanism 
as the decision variables. Some constraints concerning production, injection, and drilling are also included in the 
optimization models. According to the optimization results, the objective value can be improved by considering 
more decision variables in the optimization problems. For example, including the drilling schedule and recovery 
mechanism as decision variables gives us 85% higher optimal NPV than optimizing the production schedule 
alone. Several investigations have been made to reduce the optimization runtime and to ensure the accuracy of 
the optimization results. Furthermore, the uncertainty of the optimization results has been quantified through 
uncertainty analyses. These analyses consider three uncertain parameters, i.e., OOIP, development costs, and oil 
price. Two approaches have been evaluated for conducting the uncertainty analysis, i.e., using the Latin hy-
percube sampling (LHS) method and using a probability tree. The uncertainty analysis using a probability tree is 
recommended because it requires less time to complete while produces similar results as the other approach.   

1. Introduction 

The life cycle of a hydrocarbon field typically consists of the 
following stages (Jahn et al., 2008; The Ministry of Petroleum and En-
ergy and the Ministry of Labour and Social Affairs, 2018):  

1. Business case identification: gaining access, exploration and 
appraisal 

2. Project planning: feasibility studies, conceptual studies and pre-
liminary engineering  

3. Project execution: detailed engineering, construction testing and 
start-up  

4. Production  
5. Abandonment and decommissioning 

The work presented in this paper is relevant for the early phases of 
field planning, i.e., feasibility studies and conceptual studies. Field 
planning is a crucial phase in the life of a hydrocarbon field because it 
aims to determine the best strategy to develop the field under significant 
uncertainties in all aspects, like subsurface, cost, production perfor-
mance, contractual conditions, among others. The best strategy is 
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commonly associated with the technically-feasible strategy that has the 
highest economic performance. 

To fulfill the goal of field planning, a value chain model is typically 
established by the field development team. In this value chain model, 
reservoir models are often built and used to determine the reservoirs’ 
time-dependent behavior, such as recovery factor and production pro-
file, for a given set of inputs. The value chain model also includes many 
field design features that are often considered, such as type of offshore 
structure, recovery mechanism, number of wells & its drilling schedule, 
production system layout, production schedule, processing facilities, 
and many more (Haldorsen, 1996). Decisions on these field design fea-
tures have impacts not only on the field production profile but also on 
the cost profile. Thus, they affect the economic of the field development. 

The field development team has to configure these field design fea-
tures such that the economic value of the field is maximized. However, 
the development team’s outcome is often suboptimal. It is because only 
a few configurations are evaluated due to time constraints. In conse-
quence of this conventional approach, there might be other configura-
tions which might give a higher economic value that are left unstudied. 
To resolve the problem, optimization can be applied to find, in an 
automated manner, the best configuration of field design features that 
fulfills a given set of constraints within a relatively shorter amount of 
time. 

In the literature, there are several studies that involve optimization 
to assist the field planning process. These studies use optimization to 
find the best configuration of parameters like well characteristics, dril-
ling program, production and injection strategies, etc., in order to 
maximize the economic value or the hydrocarbon recovery. Some 
studies done by Jonsbråten (1998), Tupac et al. (2007), Bellout et al. 
(2012) and Simonov et al. (2019) use complex reservoir models to 
represent the reservoir performance. Unfortunately, those complex 
reservoir models are usually not available in the early of field planning 
phase. Moreover, these studies only use reservoir models to compute the 
production profile, neglecting the effect of production network. This 
simplification may result inaccuracy of the production profile. Other 
authors such as Nazarian (2002), Litvak et al. (2007), Volz et al. (2008), 
Litvak and Angert (2009), Litvak et al. (2011), and Silva et al. (2019) 
have conducted their studies using a more realistic representation of the 
production system, i.e. by coupling the subsurface models with the 
production network models. However, even if the field development 
team managed to built the complex reservoir models at the early of field 
planning phase and then integrate them with the production network 

models, performing optimizations on those complex models are chal-
lenging tasks because they require considerable computational power. 
Furthermore, with the use of complex models, we often encounter 
non-linear optimization problems, which are typically difficult and 
time-consuming to solve. In addition to the optimization processes, 
setting up those complex models is often complicated and requires 
considerable time. 

In the field planning process, especially at the early phase, the 
amount of available information about the field is typically very limited. 
Moreover, a lot of simplifications are also made when establishing the 
value chain model. Because of these, the uncertainties of parameters like 
reservoir characteristics, development/operational costs, oil price, etc., 
are typically bigger. It is important for the field development team to 
consider these uncertainties when making decisions on the field design 
features. Among the studies mentioned earlier, only some of them take 
into account uncertainties while performing optimization during field 
planning process. For example, the studies by Litvak et al. (2007), Litvak 
and Angert (2009) and Litvak et al. (2011) include the subsurface un-
certainties, whereas the study by Jonsbråten (1998) considers the un-
certainty of oil price. 

Recently, González et al. (2019) presented a methodology applicable 
to the field planning process, particularly for the early stage. The pro-
posed methodology uses optimization to identify the best production 
strategy for a field. The differentiating features of the methodology are 
given as follows:  

• The methodology involves the development of a proxy model to 
represent the performance of the production system. The funda-
mental of the proxy model is the well potential concept that is often 
used in reservoir engineering. However, the concept has been 
extended to also include the effect of the production network. The 
use of this proxy model, instead of a complex numerical model, 
benefits the optimization process, i.e., reducing the computational 
power.  

• The methodology includes the modeling of an optimization problem 
to maximize net present value (NPV) subjected to some constraints. 
The decision variables of the optimization problem are drilling and 
production schedule. Initially, the optimization problem is modeled 
as a mixed-integer non-linear programming (MINLP) problem. The 
authors then reformulated the optimization problem into a mixed- 
integer linear programming (MILP) problem by approximating the 
non-linearities with piecewise linear (PWL) functions, using the 

Abbreviations 

ABEX Abandonment expenditure (unit: Mill. NOK) 
AMPL A mathematical programming language 
CAPEX-SUB Capital expenditure for subsea equipment (unit: Mill. 

NOK) 
CAPEX-TOP Capital expenditure for topside equipment (unit: Mill. 

NOK) 
CPU Central processing unit 
DRILLEX Drilling expenditure (unit: Mill. NOK) 
EXPEX Exploration expenditure (unit: Mill. NOK) 
FPSO Floating production storage and offloading 
GL Gas lift 
GOR Gas-oil ratio (unit: sm3 gas/sm3 oil) 
GPL General public license 
IAM Integrated asset modeling 
ID Inner diameter (unit: m) 
IPR Inflow performance relationship 
IQR Interquartile range 
kro Relative permeability of oil 

krw Relative permeability of water 
LHS Latin hypercube sampling 
MBE Material balance equation 
MD Measured depth (unit: m) 
Mill Million 
MILP Mixed-integer linear programming 
MINLP Mixed-integer non-linear programming 
NOK Norwegian krone 
NPD Norwegian petroleum directorate 
NPV Net present value (unit: Mill. NOK) 
OOIP Original oil-in-place (unit: Mill. sm3) 
OPEX Operating expense (unit: Mill. NOK) 
PI Productivity index 
PWL Piecewise linear 
SOS1 Special ordered sets of type 1 
SOS2 Special ordered sets of type 2 
TVD True vertical depth (unit: m) 
USD United State dollar 
VRR Voidage replacement ratio  
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SOS2 model. The advantages of having an MILP problem when 
compared against the non-linear optimization problem are (i) it 
usually requires less computational effort to solve, (ii) it guarantees 
the global optimal solutions, and (iii) the existing algorithms to solve 
the problem are relatively mature. 

• The methodology evaluates the effect of several uncertain parame-
ters -such as costs, reservoir size, well productivity, and layout of the 
production system- by using a probability tree. 

This paper presents a further development of the automated field 
planning methodology proposed by González et al. (2019). The 
distinctive characteristics and contributions of the present study are 
given as follows:  

• The study applies and extends the methodology for a field with three 
reservoir units. In addition to drilling and production schedule, the 
recovery mechanism of each reservoir unit is considered for opti-
mization. Additionally, injection volumes constrains were included 
depending on the injectors’ drilling schedule. These require funda-
mental and major changes in the optimization model presented by 
González et al. (2019).  

• The study develops an optimization model to maximize field plateau 
duration.  

• The study explores ways to speed up the optimization process, e.g., 
(i) determining proper numbers of breakpoints for constructing the 
PWL functions, (ii) identifying the more-efficient and rigorous 
approach to compute the production and injection rates of gas and 
water, (iii) testing different solvers. Moreover, to ensure the accuracy 
of the optimization results, the study evaluates (i) different break-
points selection methods and (ii) different numerical integration 
techniques for estimating the cumulative production/injection. 

• The study compares two methods for quantifying the effect of un-
certainties on the optimization results, i.e., by using the Latin hy-
percube sampling (LHS) method and by using a probability tree. The 
uncertainty analysis performed in the study considers three uncer-
tain parameters, i.e., original oil-in-place (OOIP), development costs, 
and oil price. 

Like the methodology proposed by González et al. (2019), this study 
also uses a proxy model representing the flow performance of the pro-
duction system. The proxy model is obtained by simulating an integrated 
model of the production system. The integrated model couples reservoir 
models, well models, and a production network model. There are some 
simplifications made for constructing the integrated model, namely:  

1. The reservoir is modeled with the tank model. 
In the early phases of field planning, we typically have very little 
knowledge about the reservoir. Maps showing the distribution of 
reservoir properties, such as porosity and permeability, are not yet 
available. Thus, it is common to model the reservoir as a tank with 
homogeneous properties. Using the material balance equation (MBE) 
on the tank model, we may predict the reservoir performance.  

2. The producers in each reservoir are identical. 
Due to the absence of properties distribution maps, it is frequent to 
represent all producers penetrating a single reservoir unit with a 
single well model. One important input for constructing the well 
model is permeability, which will be used to estimate the well’s 
productivity index (PI). The input permeability is usually acquired 
from the well-testing interpretation or the core analysis.  

3. The future inflow performance relationship (IPR) of the producers 
was corrected with the variation in oil, gas, and water saturation of 
the reservoir tank. 
For constructing the well model, we employ a reservoir inflow model 
that takes permeability and relative permeability curve as the inputs. 
In this inflow model, the fluid saturation of the reservoir tank 

influences the well’s future PI and therefore affects the well’s future 
IPR.  

4. For simulations of scenarios with pressure support, we assume that 
the injection process has a voidage replacement ratio (VRR) of 100%. 
VRR of 100% means that the volume of fluid injected into a reservoir 
tank is equal to the volume of fluid produced from that reservoir 
tank. One implication of the assumption is that the injection process 
starts as the reservoir begins to produce. 

These simplifications are the most significant limitations of the in-
tegrated model. 

2. Methodology 

This section briefly describes the main workflow followed in the 
study (see Fig. 1). At first, two proxy models are developed. One proxy 
model is to represent the production system’s flow performance, while 
the other one is to estimate the development and operational cost (dis-
cussed in Section 3). Using the proxy models, the next step is to 
formulate production optimization problems. Two optimization prob-
lems are modeled in this study. One aims to maximize plateau duration 
(discussed in Section 4) and the other one aims to maximize NPV (dis-
cussed in Section 5). The presence of some non-linear functions in the 
formulations makes the optimization problems categorized as MINLP 
problems. Next, we transform the MINLP problems into MILP problems 
by approximating the non-linearities with piecewise linear (PWL) 
functions, and then we solve those MILP problems (discussed in Section 
6). The final part of the study is to quantify the effects of uncertainties on 
the optimization results (discussed in Section 9). 

3. Description of the Safari field case and the proxy models 

The work presented in this paper is based on a synthetic case named 
Safari. The Safari field is an imaginary offshore field located in the North 
Sea, east of Johan Sverdrup and Grane field and west of Haugesund. The 
field is characterized by having multiple reservoir units that are non 
communicating and have unique properties. The field consists of three 
undersaturated oil reservoirs, i.e. Løve, Nesehorn, and Sebra. Løve is 
characterized by nearly circular reservoir shape, highest oil-in-place, 
and heavier oil. Nesehorn and Sebra are almost identical in term of 
reservoir properties, except Sebra has much less oil-in-place but has 
higher permeability. All production wells are completed with gas-lift as 
the artificial lift method. Development using an FPSO is chosen for the 
field. In this development alternative, production from each reservoir is 
tied with a separate flowline to a constant-pressure separator at the 
FPSO. Moreover, the facilities construction and installation phase is 
commenced from 1st January 2019 and lasts for four years. The field first 

Fig. 1. Main workflow of the study.  
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oil and abandonment are expected to be in 2023 and 2040, respectively, 
which gives a total production period of 17 years. This production 
period was considered constant during the optimization. More details 
about the Safari field are given in Appendix A. 

Production potential curves are generated as a proxy model to 
represent the flow performance of the production system considering 
reservoir unit, well and gathering network. As the reservoir units are 
hydraulically independent from each other, their production potential 
curves were generated independently. These curves indicate the 
maximum oil production rate as a function of cumulative oil production, 
reservoir unit, recovery mechanism and number of producers. These 
production potential curves allow us to plan a production schedule 
without a need to run a simulation of the production system model 
(González et al., 2019; Angga, 2019). Further discussion about pro-
duction potential curves is provided by Stanko (2020). 

The workflow for generating the production potential curves is 
depicted in Fig. 2. First, the reservoir models and the well models are 
established. The reservoir models are created using a commercial ma-
terial balance simulator (MBAL), whereas the well models are con-
structed using a commercial steady-state well simulator (PROSPER). 
Next, a production network model is built using a commercial steady- 
state network simulator (GAP). In this software, the reservoir models 
and the well models are coupled with the production network model to 
form an integrated model of the production system. 

A production potential curve is obtained by running one simulation 
of the integrated model. The number of simulation cases required de-
pends on the number of combinations of (i) reservoir unit, (ii) recovery 
mechanism, and (iii) number of producers. In this study, 80 simulation 
cases are defined and stored in a case database in Excel. After defining 
the simulation cases, we combine the case database and the integrated 
model of the production system using a commercial Integrated Asset 
Modeling (IAM) software called RESOLVE. The use of the IAM software 
allows us to run the simulation cases automatically. All the aforemen-
tioned commercial programs are provided by Petroleum Experts (2020). 

After the simulation cases are defined and the integrated model is 
built, the production potential curves are generated by running simu-
lations ensuring that maximum oil rate is produced at each time. This 
usually requires opening wellhead chokes fully, performing gas-lift 
allocation optimization, and often discarding production constraints 
(e.g., erosional velocity, maximum liquid rate, maximum gas rate). The 
runtime to complete one simulation ranges from 15 min to 3 h, 
depending on the complexity of the integrated production system 

model. After performing the simulations, the production potential 
curves are finally constructed by plotting the maximum oil production 
rate against the cumulative oil production. Examples of the production 
potential curve are provided in Appendix B. 

In this study, an optimization problem to maximize NPV is formu-
lated and solved. To enable us calculating the NPV, another proxy model 
to estimate the development and operational cost is developed based on 
input data provided by AkerSolutions. In this proxy model, the devel-
opment and operational cost comprised of six elements, i.e., exploration 
expenditure (EXPEX), drilling expenditure (DRILLEX), abandonment 
expenditure (ABEX), capital expenditure for subsea equipment (CAPEX- 
SUB), capital expenditure for topside equipment (CAPEX-TOP), and 
operating expense (OPEX). For each element, the cost associated is 
expressed as a linear equation with single or multiple explanatory var-
iables. Furthermore, the costs amounts are paid on specific years. Details 
of the cost proxy model are given in Appendix C. 

4. Optimization model to maximize field plateau duration 
(“CASE-1”) 

Mathematical formulation of an optimization problem with the 
objective function to maximize plateau duration is discussed in this 
section. In this optimization model, the variables to optimize comprise 
(i) the yearly production and injection rates, (ii) number of wells and 
their drilling schedule and (iii) recovery mechanism for every reservoir 
unit. 

The objective function deployed on the optimization model is 
expressed as follows: 

minimize
∑

t∈{2,…,nt}

(
qplateauo,f − qto,f

)
(1)  

where qplateau
o,f : a desired plateau rate for the field oil production, qt

o,f : field 
oil production rate at time t. The time scale used in this work is years. 
Visually, the objective function is aimed to minimize the gray area in 
Fig. 3. 

The optimization is subjected to several equality and inequality 
constraints. The first constraint is that the yearly field oil rates must be 
lower than or equal to the desired plateau rate. 

qto,f ≤ q
plateau
o,f , ∀t ∈ {2,…, nt} (2) 

Oil production rate of a particular reservoir is restrained by the 

Fig. 2. Workflow for generating the production potential curves.  

I.G.A.G. Angga and M. Stanko                                                                                                                                                                                                              



Journal of Petroleum Science and Engineering 205 (2021) 108773

5

maximum rate the reservoir can deliver, which is represented by the 
production potential. 

qto,r ≤ q
t
opp,r, ∀r∈R and ∀t ∈ {2,…, nt} (3)  

qto,r ≤ q
t− 1
opp,r, ∀r∈R and ∀t ∈ {2,…, nt} (4)  

where qt
o,r and qt

opp,r are the oil production rate and the oil production 
potential of reservoir r at time t, respectively. As mentioned earlier, the 
oil production potential of reservoir r at time t is partly dependent on the 
cumulative oil production of that reservoir at time t. In this work, the 
cumulative oil production is estimated with the backward rectangular 
integration rule. With this integration technique, the oil production rate 
qt

o,r is assumed to be constant from time t − 1 to t. For this reason, a 
constraint expressed by Eq. (4) is included in the formulation. 

For a particular time, the oil production potential of a reservoir is 
non-linearly dependent on (i) the reservoir, r, (ii) the recovery mecha-
nism of the reservoir, Mr, (iii) the number of oil producers in the 
reservoir at that time, Nt

op,r and (iv) the cumulative oil produced from the 
reservoir by that time, Nt

p,r. 

qtopp,r = qopp
(
r,Mr,Ntop,r,N

t
p,r

)
(5) 

In this work, four types of recovery mechanism are considered, i.e., 
natural depletion (Mr = 1), water injection (Mr = 2), gas injection 
(Mr = 3) and water-gas injection (Mr = 4). 

As mentioned earlier, the injection process is assumed to have a VRR 
of 100%. One consequence of this assumption is that the injection pro-
cess begins from the first day of the production period. Another conse-
quence is that the injection rate can be very high in order to balance the 
production rate. To achieve a very high injection rate, a very high in-
jection pressure might be needed. An enormous injection pressure could 
damage the formation around the injector. To prevent this from 
happening, we introduce operational constraints that limit the injection 
rate. 

qtgi,r ≤N
t− 1
gi,r ⋅ qcapabilitygi , ∀r∈R and ∀t ∈ {2,…, nt} (6)  

qtwi,r ≤N
t− 1
wi,r ⋅ qcapabilitywi , ∀r∈R and ∀t ∈ {2,…, nt} (7)  

where qt
gi,r: gas injection rate of reservoir r at time t, qt

wi,r: water injection 
rate of reservoir r at time t, Nt− 1

gi,r : number of gas injectors in reservoir r at 

time t − 1, Nt− 1
wi,r : number of water injectors in reservoir r at time t − 1, 

qcapability
gi : maximum gas injection rate for each gas injector, qcapability

wi : 
maximum water injection rate for each water injector. By applying these 
constraints in the optimization model, the production rate is indirectly 
restrained so that the injection rate does not exceed its upper limit. In 
addition, the constraints might keep the injection pressure not becoming 
extremely high. 

The rate of gas injected to reservoir r at time t is computed using the 
following linear function. 

qtgi,r = qgi
(
Gt− 1
i,r ,G

t
i,r

)
(8)  

where Gt− 1
i,r and Gt

i,r are the cumulative gas injection to reservoir r at time 
t − 1 and time t, respectively. The cumulative gas injection itself is a 
non-linear function of (i) the reservoir, (ii) the recovery mechanism of 
the reservoir and (iii) the cumulative oil produced from the reservoir. 

Gti,r =Gi
(
r,Mr ,Ntp,r

)
(9) 

The same approach is taken to compute the water injection rate, qt
wi,r, 

the gas production rate, qt
g,r, and the water production rate, qt

w,r. 
Several constraints related to drilling are included in the optimiza-

tion model. For example, the number of wells is non-decreasing from 
time to time. This means that once the well is drilled, it will not be 
plugged and abandoned until the end of the field lifetime. 

Nt− 1
op,r ≤N

t
op,r, ∀r∈R and ∀t ∈ {2,…, nt} (10)  

Nt− 1
gi,r ≤N

t
gi,r , ∀r∈R and ∀t ∈ {2,…, nt} (11)  

Nt− 1
wi,r ≤N

t
wi,r , ∀r∈R and ∀t ∈ {2,…, nt} (12)  

where Nt
op,r, Nt

gi,r and Nt
wi,r are the numbers of oil producers, gas injectors 

and water injectors, respectively, available in reservoir r at time t. 
The numbers of injectors have to satisfy the following constraints. 

Ntgi,r ≤ zgi,r⋅N
max
gi,r , ∀r ∈ R and ∀t ∈ T (13)  

Ntwi,r ≤ zwi,r⋅N
max
wi,r , ∀r ∈ R and ∀t ∈ T (14)  

where Nmax
gi,r and Nmax

wi,r are the maximum numbers of gas injectors and 
water injectors, respectively, allowed to be drilled in reservoir r. In 
equations above, zgi,r and zwi,r are binary variables where the values 
depend on the recovery mechanism of reservoir r. zgi,r becomes one if the 
reservoir applies gas injection or water-gas injection (Mr = 3 or Mr = 4), 
and becomes zero if the reservoir chooses natural depletion or water 
injection (Mr = 1 or Mr = 2). For zwi,r, it becomes one if the reservoir 
applies water injection or water-gas injection (Mr = 2 or Mr = 4), and 
becomes zero if the reservoir chooses natural depletion or gas injection 
(Mr = 1 or Mr = 3). 

In addition, the following constraints are included to govern the 
number of pre-drilled production and injection wells and the number of 
wells drilled per year. 

N1
op,f ≤ Npre− drilledop (15)  

N1
gi,f +N

1
wi,f ≤ Npre− drilledit (16)  

Ntwt,f − N
t− 1
wt,f ≤N

max− drilled
wt , ∀t ∈ {2,…, nt} (17)  

where Npre− drilled
op : the maximum number of pre-drilled oil producers, 

Npre− drilled
it : the maximum number of pre-drilled injectors, Nt

wt,f : the 
number of all wells (producers and injectors) in the field at time t, 
Nmax− drilled

wt : the maximum number of wells drilled per year. 

Fig. 3. Visualization of the objective function, i.e., to minimize the gray area. 
The blue line is the desired plateau rate for field oil production and the red line 
is the actual field oil production rate. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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5. Optimization model to maximize NPV (“CASE-2”) 

This section discusses the formulation of another optimization 
problem. The optimization model has the objective to maximize NPV by 
configuring the same decision variables as in the previous optimization 
model. The objective function is expressed as follows: 

maximize NPV (18) 

The reference date for NPV calculation is 1st Jan 2019. In addition, 
taxes and royalties are not considered for NPV calculation. 

All constraints included in the previous optimization model are 
applied for this formulation, except the one related to the desired 
plateau rate (Eq. (2)). In addition to that, several other parameters and 
variables required for NPV calculation are included in this formulation. 
For example, the present value of EXPEX, Pv,ex, is modeled with a 
constant. 

Pv,ex = constant (19) 

In the cost proxy model, DRILLEX is solely dependent on the number 
of wells drilled. Therefore, the present value of DRILLEX for pre-drilled 
wells, Ppre− drilled

v,dx , only depends on the number of pre-drilled wells, N1
wt,f , 

Ppre− drilledv,dx =Pv,dx
(
N1
wt,f

)
(20)  

while the present value of DRILLEX made at time t, Pt
v,dx, only depends 

on the number of wells drilled from time t to t+ 1. 

Ptv,dx =Pv,dx
(
Nt+1
wt,f ,N

t
wt,f

)
(21) 

The present value of ABEX, Pv,ax, depends on the numbers of oil 
producers, gas injectors and water injectors at the end of the field life-
time, i.e., time t = nt. 

Pv,ax=Pv,ax
(
Nntop,f ,N

nt
gi,f ,N

nt
wi,f

)
(22) 

In the cost proxy model, CAPEX-SUB has linear dependency on the 
numbers of subsea templates, Nst,f , and subsea xmas trees, Nxt,f . 

Pv,sx =Pv,sx
(
Nst,f ,Nxt,f

)
(23) 

The subsea templates which have four available slots are allocated 
for the oil producers. On the contrary, the subsea xmas trees are inten-
ded for the gas or water injectors. The numbers of subsea templates and 
xmas trees are obtained by applying the following constraints. 

Nst,f =
∑

r∈R
Nst,r (24)  

Nst,r ≥
Nntop,r

4
(25)  

Nxt,f =Nntgi,f + N
nt
wi,f (26)  

where Nst,r: the number of subsea templates in reservoir r, Nnt
op,r: the 

number of oil producers in reservoir r at the end of the field lifetime. 
The present value of CAPEX-TOP, Pv,tx, is determined based on the 

production capacities of the processing facility, i.e., qcapacity
o , qcapacity

g and 
qcapacity

w . 

Pv,tx =Pv,tx
(
qcapacityo , qcapacityg , qcapacityw

)
(27) 

The production capacities of the processing facility are obtained by 
applying the following constraint. 

qcapacityl ≥ qtl,f , ∀l∈{o, g,w} and ∀t ∈ {2,…, nt} (28) 

The present values of all expenditures made before the field enters 
the production period, i.e., before 1st Jan 2023, are summarized in a 

variable called Pv,pp. The value of the variable is computed with the 
following expression. 

Pv,pp =Pv,ex + Ppre− drilledv,dx + Pv,ax + Pv,sx + Pv,tx (29)  

With reference to the operating costs proxy model, the present value of 
OPEX spent at time t, Pt

v,ox, is a linear function of (i) the number of oil 
producers available for maintenance and (ii) the average production 
rates of oil, gas and water from time t − 1 to t. 

Ptv,ox =Pv,ox
(
Nt− 1
op,f , q

t
o,f , q

t
g,f , q

t
w,f

)
(30) 

In this optimization model, the source of revenue is limited only to 
the sales of oil production. The present value of revenue obtained at time 
t, Pt

v,re, depends on (i) the amount of oil produced from time t − 1 to t, (ii) 
the oil price, Po, and (iii) the exchange rate, Xr. Both oil price and ex-
change rate are inputs for the optimization, and they are assumed con-
stant throughout the life of the field. 

Ptv,re =Pv,re
(
Ntp,f ,N

t− 1
p,f ,Po,Xr

)
(31) 

The discounted values of the cash flow of various points in time are 
computed based on the present values of DRILLEX, OPEX and revenue. 

Dtcf =Dcf
(
Ptv,dx,P

t
v,ox,P

t
v,re

)
(32) 

NPV is finally determined using the following equation. 

NPV = − Pv,pp +
∑

t∈T
Dtcf (33)  

6. Linear reformulation and solving the optimization problems 

The presence of some non-linear functions in the previous formula-
tions makes the optimization problems fall in a class called mixed- 
integer non-linear programming (MINLP) problem. Due to the irreg-
ular behavior of the non-linear function, some challenges emerge when 
solving an MINLP, such as difficulty to verify the global optimal and high 
optimization runtime. Therefore, the optimization problem has been 
reformulated as a mixed-integer linear programming (MILP) problem. 
To do so, each of the non-linear functions is replaced with a piecewise 
linear (PWL) function. The PWL functions are obtained by imposing 
SOS2 or SOS1 constraints. SOS2 is an ordered set of non-negative vari-
ables, which at most two can be non-zero, and if two are non-zero these 
must be consecutive in their ordering. On the other hand, SOS1 ensures 
only one variable can be non-zero in an ordered set of non-negative 
variables. A more detailed explanation about PWL approximation is 
available in the following literature: Codas et al. (2012); Silva and 
Camponogara (2014); Hoffmann (2014); Hoffmann and Stanko (2017); 
Hoffmann et al. (2019); Angga (2019). Detailed MILP formulations for 
both optimization problems are provided in Appendix E and F. 

To solve the MILP problems, we use commercial solvers such as 
CPLEX (IBM, 2020) and Gurobi (GUROBI OPTIMIZATION, 2020). These 
commercial solvers implement and combine the simplex algorithm and 
the branch-and-cut algorithm. A more detailed explanation about the 
simplex algorithm and the branch-and-cut algorithm can be found in 
Dantzig (1951, 1963); Crowder et al. (1983); Hoffman and Padberg 
(1991); Grötschel and Holland (1991); Padberg and Rinaldi (1991). In 
this work, formulations of the optimization problems are scripted in a 
modeling language named AMPL (A Mathematical Programming Lan-
guage). AMPL is designed to solve a wide range of optimization prob-
lems, and it closely resembles the symbolic algebraic notation that many 
modelers use to describe mathematical programs (AMPL, 2020). This 
makes it convenient to formulate and solve an optimization problem in 
AMPL. In addition, AMPL offers an interface to various commercial 
solvers for solving many classes of mathematical optimization. 
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7. Optimization results 

In this section, we show the benefit of involving more decision var-
iables for optimization. Previously, we have formulated two optimiza-
tion problems, one to maximize field plateau duration and another one 
to maximize NPV, by changing the production schedule, drilling 
schedule, and recovery mechanism. We called these optimization 
problems CASE-1 and CASE-2, respectively. In addition, two other 
optimization problems have been formulated and solved in this work, i. 
e., REF-CASE-1 and REF-CASE-2. These optimization problems have the 
same objective functions as CASE-1 and CASE-2, except they only 
optimize the production schedule. For the REF cases, the recovery 
mechanism and drilling schedule input were defined manually by en-
gineers and deemed as the most appropriate. Table 1 shows the differ-
ences between the optimization models. Inputs for the drilling schedule 
and the recovery mechanism are specified by the user. To produce 
comparable results, the criteria for specifying the input drilling schedule 
are similar to the drilling constraints applied in the optimization models, 
i.e., Eq. (10) to Eq. (17). These constraints specify (i) that once the wells 
are drilled it is not possible to “undrill” them, (ii) that the total number 
and type of injection wells depend on the recovery mechanism, and (iii) 
that there is a maximum number of wells allowed to drill each year. 

The objective value, optimality gap and runtime for each optimiza-
tion model are summarized in Table 2. The time to solve REF-CASE-1 
and REF-CASE-2 is minimal. The values of the optimality gap for these 
optimization models indicate that the global optimal solutions have 
been found. On the other hands, the optimization routines for CASE-1 
and CASE-2 are stopped once the runtime reaches the specified time 
limit, i.e., 12 h. The values of the optimality gap for these optimization 
models indicate that there might exist a better feasible solution which 
could improve the current-best objective value. However, even though 
the best integer solutions for CASE-1 and CASE-2 are not guaranteed to 
be the global optimal solutions, CASE-1 has a better objective value than 
REF-CASE-1, while CASE-2 has a much better objective value than REF- 
CASE-2 (≈ 85% higher NPV). Based on these findings, it can be 
concluded that involving more decision variables in the optimization 
model could further improve the objective value, but consequently re-
quires a longer optimization runtime. 

Other optimization results like recovery mechanism, drilling 
schedule and production schedule are provided in Appendix G. In gen-
eral, the optimization results suggest: 

• To apply water-gas injection for Løve and water injection for Nese-
horn and Sebra as their recovery mechanism  

• Not to drill and produce the reservoir units in sequence, but better to 
develop them simultaneously  

• It is not necessary to drill new wells in the mid-to-late field lifetime 
because the field production is already limited by some operational 
constraints, e.g. the processing capacity of produced water. 

8. Improving the computational efficiency and accuracy 

The way we formulate an optimization problem often has an impact 
on the optimization runtime. This section investigates several ap-
proaches to lower the optimization runtime while maintaining a good 
degree of accuracy of the optimization results. The findings of these 
investigations have been implemented to the formulations presented 
previously. 

8.1. Determining the appropriate numbers of breakpoints for constructing 
the PWL functions 

For constructing a PWL function, we need to define a set of break-
points which will be used for making the linear interpolation. The more 
breakpoints involved, the better the PWL function represents the non- 
linear behavior of the original function. However, more breakpoints 
involved also mean more variables in the optimization problem, and 
thus lead to a longer optimization runtime. Therefore, there is a balance 
to find between the optimization runtime and the accuracy of the PWL 
approximation. 

An investigation was carried out to find the required numbers of 
breakpoints, particularly the Np breakpoints for making PWL approxi-
mations of several non-linear functions. This investigation uses the 
simpler optimization problem, i.e., the REF-CASE-1. Seven cases with 
different number of Np breakpoints are tested (as shown in Table 3). In 
this investigation, the Np breakpoints are selected with a constant in-
terval depending on the number of Np breakpoints used (for example, 
see Fig. 4). Note that the Np breakpoints defined for a particular case are 
used for constructing all the production potential curves. 

CASE-3 is REF-CASE-1 with the highest number of Np breakpoints 
(30). Since this case uses more Np breakpoints than the other tested 
cases, the results obtained from this case are considered as the most 
accurate results and therefore defined as the references for comparison. 
To have a quantitative comparison, the relative error, Er, is calculated. 
This relative error indicates how far the results of a particular case 
deviate from the results of the reference case. The expression to compute 
Er is given as follows: 

Table 1 
Summary of optimization models.   

CASE-1 REF-CASE-1 CASE-2 REF- 
CASE-2 

Objective 
function 

max plateau 
duration 

max plateau 
duration 

max 
NPV 

max NPV 

Production 
schedule 
(qt

o, qt
g, qt

w , qt
gi, 

qt
wi)  

variable variable variable variable 

Drilling schedule 
(Nt

op, Nt
gi, Nt

wi)  
variable input variable input 

Recovery 
mechanism 

variable input variable input 

(M)      

Table 2 
Optimization results.   

CASE-1 REF-CASE-1 CASE-2 REF-CASE-2 

Objective value 190421 
sm3/d 

201293 
sm3/d 

32068 mill. 
NOK 

17387 mill. 
NOK 

Optimality gap 1.53% 0.00% 16.88% 0.00% 
Runtime 12 h. 0.23 s. 12 h. 0.13 s. 
Number of 

variables 
8113 3814 8197 3898 

Number of 
constraints 

2488 1986 2603 2101  

Table 3 
Comparison of cases evaluated for determining the appropriate number of Np 

breakpoints.  

CASE 
nr. 

Number of Maximum Er (reference = CASE-3)  Meet 
below 

Np 

breakpoints  
Løve Nesehorn Sebra Field 10% 

criteria? 

3 30 0.00% 0.00% 0.00% 0.00% Yes 
4 25 0.46% 6.61% 0.98% 3.19% Yes 
5 20 0.62% 2.07% 6.30% 1.12% Yes 
6 15 0.67% 3.24% 2.60% 1.60% Yes 
7 10 1.19% 3.96% 7.13% 2.51% Yes 
8 7 3.69% 4.65% 12.93% 3.69% No 
9 5 8.30% 9.18% 19.27% 8.30% No  
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Et,cr,r =

⃒
⃒
⃒qt,co,r − qt,refo,r

⃒
⃒
⃒

qt,refo,r
(34)  

where Et,c
r,r: relative error for reservoir r at time t in case c, qt,c

o,r and qt,ref
o,r : 

oil production rate of reservoir r at time t obtained in case c and in the 
reference case, respectively. The maximum Er for all cases are summa-
rized in Table 3. As shown in the table, the maximum Er generally goes 
up when fewer Np breakpoints are used. To maintain the accuracy of the 
optimization results, we define an upper limit for the maximum Er, i.e., 
10%. To meet this criteria, at least ten Np breakpoints are needed. This 
“optimum” number of breakpoints has been adopted when reformulat-
ing and solving the optimization problems in Section 6. 

The relationship between the number of Np breakpoints and the 
optimization runtime is presented in Fig. 5. As shown in the figure, the 
runtime exponentially increases when the PWL approximation uses 
more Np breakpoints. By reducing the number of Np breakpoints from 30 
to 10, we manage to make the optimization process 150 times faster. 

8.2. Selecting the breakpoints for constructing the PWL functions 

The use of a uniform spacing between the breakpoints can still lead 
to a poor fitting of the original non-linear function. An example of this is 
shown in Fig. 4 (∀Np ∈ [0, 2] mill. sm3). In the literature, there are some 
automated methods available for selecting breakpoints, such as ones 

presented by Hamann and Chen (1994); Hoffmann (2014). However, in 
this work, the Np breakpoints are manually selected based on visual 
observation. The Np breakpoints are chosen in such a way the difference 
between the non-linear function and its PWL approximation is minimal. 
Fig. 6 illustrates the PWL functions that are constructed using the 
manually selected breakpoints. The green circle in the figure indicates 
an improvement of the PWL function in representing the non-linear 
function. For a given number of breakpoints, a lower value of 
maximum Er is anticipated when the manually-selected breakpoints are 
used instead of the uniformly-spaced breakpoints. 

8.3. Evaluating approaches to compute the production and injection rates 
of gas and water 

The optimization problems presented in this paper include the pro-
duction and injection rates of gas and water as variables. The way these 
rates are estimated influences the total number of variables involved, 
and consequently the optimization runtime. For this reason, another 
investigation is carried out to identify the most efficient approach for 
computing these rates. In this investigation, we compare two methods 
for calculating the gas production rate. 

The first method for calculating the gas production rate is inspired by 
the work of González et al. (2019). In this method, we first estimate the 
producing gas-oil ratio (GOR) of reservoir r at time t, Rt

p,r. This producing 
GOR is non-linearly dependent on (i) the reservoir, (ii) the recovery 
mechanism of the reservoir and (iii) the cumulative oil produced from 
the reservoir. 

Rtp,r =Rp
(
r,Mr ,Ntp,r

)
(35) 

The gas production rate of reservoir r at time t, qt
g,r, is then obtained 

by multiplying the producing GOR with the corresponding oil produc-
tion rate, qt

o,r. This multiplication of variables makes the optimization 
model becomes an MINLP problem. To transform the optimization 
model into an MILP problem, another PWL function is established to 
approximate the non-linear function: 

qtg,r = qg
(
Rtp,r, q

t
o,r

)
(36) 

In the second approach, we first estimate the cumulative gas pro-
duced from reservoir r at time t, Gt

p,r, and at time t − 1, Gt− 1
p,r . The cu-

mulative gas production itself is a non-linear function of (i) the 
reservoir, (ii) the recovery mechanism of the reservoir and (iii) the cu-
mulative oil produced from the reservoir. 

Fig. 4. An example of a PWL function constructed using ten Np breakpoints to 
approximate a non-linear function. 

Fig. 5. Relationship between the number of Np breakpoints and the optimiza-
tion runtime. 

Fig. 6. An example of a PWL function constructed using ten manually-selected 
Np breakpoints. 
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Gtp,r =Gp
(
r,Mr,Ntp,r

)
(37) 

The advantage of this approach is that the same SOS2 variables that 
are already in use for estimating qt

opp,r (Eq. (5)) can be utilized for esti-
mating Gt

p,r. Thus, this approach introduces significantly fewer addi-
tional variables than the first approach. 

The rate of gas production from reservoir r at time t, qt
g,r, is then 

computed with a linear function that is dependent on the cumulative gas 
production of reservoir r at time t − 1 and time t: 

qtg,r = qg
(
Gt− 1
p,r ,G

t
p,r

)
(38) 

The gas production profiles obtained from both methods are almost 
identical (see Fig. 7). There is, however, a minor discrepancy between 
the profiles. The reason might be an inaccurate approximation of the 
non-linear function Rt

p,r = Rp(r,Mr,Nt
p,r). Fig. 8 compares the runtime of 

optimization models implementing the two methods. The optimization 
process is considerably slower when the first method is used. It is 
because the implementation of the first method involves a lot of auxil-
iary variables for constructing the PWL function. Since the second 
method is computationally more efficient, the method is adopted in our 
optimization models. Furthermore, the idea of the second method is 
applied to estimate the water production rate, qt

w,r, gas injection rate, 
qt

gi,r, and water injection rate, qt
wi,r. 

8.4. Evaluating numerical integration techniques to compute the 
cumulative fluid production or injection 

Authors investigate the use of two numerical integration techniques 
in the optimization model, i.e., the backward rectangular rule and the 
trapezoidal rule. For example, the cumulative gas production is esti-
mated as the following if the backward rectangular rule is adopted: 

Gtp,r =G
t− 1
p,r +Δt ⋅ qtg,r, ∀r∈R, ∀t ∈ {2,…, nt} (39) 

When the trapezoidal rule is applied, the cumulative gas production 
is calculated as follows: 

Gtp,r =G
t− 1
p,r +Δt ⋅

qt− 1
g,r + qtg,r

2
, ∀r∈R, ∀t ∈ {2,…, nt} (40) 

Fig. 9 compares the gas production profiles that are obtained from a 
case employing the backward rectangular rule and a case using the 
trapezoidal rule. As shown in this figure, the gas production rate oscil-
lates severely in the case that employs the trapezoidal rule. A further 
investigation determines that the oscillations occur because we have an 
under-determined system, i.e., fewer equations than unknowns. 

Referring to Eq. (40), note that we use nt − 1 equations (t ∈ {2,…,nt}) to 
determine the gas production rate at nt points in time. 

The oscillation issue does not emerge when the backward rectan-
gular rule is applied. It is because nt − 1 equations are used to determine 
the gas production rate at nt − 1 points in time (see Eq. (39)). This nu-
merical integration technique is therefore adopted in our optimization 
models for computing the cumulative fluid production or injection. 

8.5. Optimizing the parallel computing 

Parallel computing often helps to speed up the optimization process. 
Generally, the more the CPU cores involved, the faster the optimization 
process is. A study is performed to demonstrate how the number of CPU 
cores influences the optimization process. Four cases with different 
numbers of CPU cores are generated and run (see Table 4). The opti-
mization process is terminated once the runtime reaches a specified time 
limit, i.e., 12 h. The objective value, optimality gap and runtime for each 
case are summarized in Table 4. By comparing these parameters, it is 
decided to use four CPU cores for solving the optimization problems. 

8.6. Choosing the solver type 

There are many solvers available to solve an MILP problem. A study 
was carried out to evaluate the performance of two extensively used 

Fig. 7. Comparison of the gas production profile obtained from the 
two methods. 

Fig. 8. Comparison of the optimization runtime between the cases applying the 
first method and the second method. 

Fig. 9. Comparison of the gas production profile between the cases applying 
the rectangular rule and the trapezoidal rule. 
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solvers, namely: CPLEX and Gurobi. In this study, four cases are 
considered (see Table 5). The differences between the cases are only the 
objective function and the solver employed. CASE-14 and -15 are basi-
cally CASE-1 solved using CPLEX and Gurobi solver, respectively. 
Likewise, CASE-16 and -17 are CASE-2 solved using CPLEX and Gurobi 
solver, respectively. The solvers use almost all its default settings when 
solving the optimization problems. Like the previous study, the opti-
mization process is also stopped after running for 12 h. The objective 
value, optimality gap and runtime for each case are summarized in 
Table 5. By comparing these parameters, it is concluded that Gurobi has 
a slightly better performance for solving the optimization problem to 
maximize plateau duration, whereas CPLEX performs better for solving 
the optimization problem to maximize NPV. 

9. Uncertainties quantification 

During field development planning, most of the inputs used for 
analysis are highly uncertain. In our case, the uncertainty of the opti-
mization results originates from the imperfect information used for the 
optimization inputs. This section is focused on discussing how the un-
certainties affect the optimization results, particularly for the optimi-
zation problem to maximize NPV. 

9.1. Uncertain parameters 

The uncertainty analysis presented in this paper considers three 
uncertain parameters, i.e., original oil-in-place (OOIP), development 
costs and oil price. The details of each uncertain parameter are provided 
as follows. 

Variation of OOIP is expressed with the following equation: 

Nr =UN ⋅Nbaser (41)  

where Nr: OOIP of reservoir r, Nbase
r : base value for OOIP of reservoir r, 

UN: uncertainty factor for OOIP. The base value for OOIP of reservoir r is 
the one given in Appendix A, particularly in Table A.1. Distribution of 
the value of UN is assumed to follow a normal distribution. The mean 
and standard deviation of the normal distribution are 1 and 0.2, 
respectively. Variation of OOIP does change the production potential 
curve and eventually affects the optimization results. Fig. 10 illustrates 
how the production potential curve changes as the OOIP varies. The 
production potential curve for each OOIP is obtained by running a 
simulation of the integrated production system model with the corre-
sponding OOIP input. Referring to this figure, it is found that the pro-
duction potential curve is stretched or squeezed in the horizontal 
direction proportionally to the change of OOIP. This means that if a 

reservoir has x% higher OOIP, the oil production potential (qopp) will 
drop to a certain value after x% more oil has been produced. For 
example, in a reservoir with an OOIP of 75 million sm3, the oil pro-
duction potential drops to 5000 sm3/d after the reservoir has produced 
13.35 million sm3 oil (see the green line in Fig. 10). Nevertheless, for a 
40% larger reservoir (OOIP of 105 million sm3), the oil production po-
tential drops to 5000 sm3/d after 18.7 million sm3 (40% more) oil has 
been produced (see the red line in Fig. 10). This property is obtained 
from the fact that a larger reservoir has a slower production decline. 

The variation of OOIP has different implications and consequences 
on each optimization model. For the optimization model that maximizes 
plateau duration, a higher OOIP will result in a longer plateau period. 
For the optimization model that maximizes NPV, a higher OOIP allows 
the reservoir to be produced at higher plateau rates or at the same 
plateau rate for a longer time, thus increasing revenue. However, a 
higher OOIP also requires drilling more wells and having larger pro-
duction capacities for the processing facility. Therefore, the OOIP 
greatly affects the optimal strategy to develop the field, where higher 
OOIPs usually lead to more aggressive field designs with bigger facil-
ities, more wells, and higher production. 

Variation of development costs is expressed with the following 
equation: 

Ce=UC⋅Cbasee (42)  

where Ce: cost associated to cost element e, Cbase
e : base value for cost 

associated to cost element e, UC: uncertainty factor for development 

Table 4 
Comparison of cases evaluated for optimizing the parallel computing.  

CASE nr. Objective function Solver Number of Objective value Optimality gap Runtime (h.) 

CPU cores 

10 max plateau duration CPLEX 16 190947 5.91% 12 
11 max plateau duration CPLEX 8 190421 3.24% 12 
12 max plateau duration CPLEX 4 190421 1.55% 12 
13 max plateau duration CPLEX 2 190421 2.42% 12  

Table 5 
Comparison of cases evaluated for choosing the solver type.  

CASE nr. Objective function Solver Number of Objective value Optimality gap Runtime (h.) 

CPU cores 

14 max plateau duration CPLEX 4 190421 1.55% 12 
15 max plateau duration Gurobi 4 190421 1.53% 12 
16 max NPV CPLEX 4 32068 16.88% 12 
17 max NPV Gurobi 4 32068 20.03% 12  

Fig. 10. Change of production potential curve with respect to OOIP.  
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costs. Again, the cost elements consist of EXPEX, DRILLEX, ABEX, 
CAPEX-SUB, CAPEX-TOP and OPEX. The base value for cost associated 
to cost element e is the one obtained from the cost proxy model (Ap-
pendix C). Distribution of the value of UC is modeled with a normal 
distribution. The mean and standard deviation of the normal distribu-
tion are 1 and 0.2, respectively. This distribution type is common to use 
at the early stage of field development (Alexander Hall and Delille, 
2011). 

Variation of oil price is expressed with the following equation: 

Po=UPo ⋅Pbaseo (43)  

where Po: oil price, Pbase
o : base value for oil price, UPo : uncertainty factor 

for oil price. The base value for oil price is 60 USD/bbl, and it is constant 
throughout the production period. Distribution of the value of UPo is 
modeled with a uniform distribution. The minimum and maximum of 
the uniform distribution are 0.4 and 1.6, respectively. This distribution 
type is chosen to represent a higher degree of uncertainty possessed by 
the oil price. 

9.2. Uncertainty analysis 

In this paper, uncertainty analyses are carried out using two ap-
proaches. The first uncertainty analysis uses the Latin hypercube sam-
pling (LHS) method. This sampling method is preferred over the random 
sampling method because it can recreate the input probability distri-
bution through fewer iterations. In other words, for the same number of 
iterations, the use of LHS method will provide more accurate uncer-
tainty analysis results than the use of random sampling method. In the 
uncertainty analysis using the LHS method, we generate 100 samples, i. 
e., 100 combinations of UN, UC and UPo . The optimization is run for each 
one of these combinations. 

The other method employed is a probability tree. To create the 
probability tree, we need to discretize the continuous probability dis-
tributions of the uncertainty factors UN, UC and UPo . To do so, we first 
define that each uncertainty factor has three possible values, i.e., equal 
to the values of P90, P50 and P10. The probability associated with each 
possible value or branch is then determined using a technique presented 
by McNamee and Celona (2008). In addition, the uncertainties of OOIP, 
development costs and oil price are independent of each other. The 
resulting probability tree is shown in Fig. 11. Referring to this proba-
bility tree, there are 33 combinations of UN, UC and UPo . Again, the 
optimization is run for each one of these combinations. 

9.3. Results of the uncertainty analysis 

The results of the uncertainty analyses are presented using box plots. 
The box plot shows the P75, P50, P25 and average values of each var-
iable (the number of wells or the field oil production rate for each time 
step). In addition to that, the box plot denotes a lower whisker, Wl, and 
an upper whisker, Wu. These whiskers cap the distribution and are 
typically defined as follows (Dümbgen and Riedwyl, 2007): 

Wl =max{min, (P75 − 1.5 ⋅ IQR)} (44a)  

Wu=min{max, (P25+ 1.5 ⋅ IQR)} (44b)  

where IQR stands for interquartile range and is found as the difference 
between P25 and P75. For the uncertainty analysis using a probability 
tree, the expected value is computed and also presented in the box plot. 

Distributions of the optimal drilling schedule and the optimal oil 
production profile obtained from both uncertainty analyses are shown in 
Figs. 12 and 13, respectively. In these figures, it can be observed that 
both uncertainty analyses produce almost similar results. The only 
notable difference is that the uncertainty analysis using a probability 
tree produces slightly narrower ranges of the lower and upper whiskers. 
This difference most likely originates from the discretization of the 
continuous probability distributions, where it misses the upper and 
lower extremes of the distributions. Considering the resemblance of 
results from both uncertainty analyses, the uncertainty analysis using a 
probability tree is preferred because it evaluates fewer cases, and thus 
requires a shorter time to complete. Note that this preference is valid 
only for the scope of uncertainty analysis performed in this study, i.e., 
involving only three uncertain parameters. 

10. Conclusions  

• A decision support methodology suitable for the early stage of the 
field planning process is presented. The methodology is applied on a 
synthetic field that has multiple non-communicating reservoir units 
producing independently to a common processing facility. The main 
part of the methodology is a mathematical optimization that uses (i) 
proxy models to represent the performance of the production system 
and to estimate the development costs and (ii) PWL approximations 
to represent some non-linear functions. In this study, the optimiza-
tion models are aimed to maximize plateau duration or NPV by 
seeking the best configuration of production schedule, drilling 
schedule and recovery mechanism, while honoring several 
constraints.  

• The optimization results denote that the objective value can be 
improved by considering more decision variables in the optimization 
problems. For example, including the drilling schedule and recovery 
mechanism as decision variables gives us 85% higher optimal NPV 
than optimizing the production schedule alone.  

• Measures to speed up the optimization process and to ensure the 
accuracy of the optimization results are discussed. These measures 
have been implemented for formulating and solving the optimization 
problems.  

• Uncertainty of the optimization results has been quantified through 
uncertainty analyses. These analyses consider three uncertain pa-
rameters, i.e., OOIP, development costs, and oil price. Two ap-
proaches have been evaluated for conducting the uncertainty 
analysis, i.e., using the LHS method and using a probability tree. The 
uncertainty analysis using a probability tree is recommended 
because it requires less time to complete while produces almost 
similar results as the LHS method. 
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Appendix A. Detailed Information about the Safari Field 

Fig. 12. Distributions of the optimal drilling schedule obtained from the two uncertainty analyses.  

Fig. 13. Distributions of the optimal oil production profile obtained from the two uncertainty analyses.  
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Fig. A.1. Location of Safari field and its reservoir units. The base figure is taken from NPD (2020).  

Fig. A.2. Layout of Safari field production system for the development using an FPSO   

Table A.1 
Initial reservoir condition & fluid properties  

Parameter Løve Nesehorn Sebra Unit 

Reservoir pressure 280 280 280 bara 
Reservoir temperature 80 80 80 oC 
OOIP 75 55 13 Mill. sm3 

Aquifer volume 30 20 20 Mill. sm3 

Oil density 933.99 850 850 kg/m3 

Gas density 0.8 0.75 0.75 sp. gravity 
Solution GOR 50 150 150 sm3/sm3 

Saturation pressure 174.4 257.3 257.3 bara   

Table A.2 
Reservoir rock properties  

Parameter Løve Nesehorn Sebra Unit 

Permeability 250 250 450 mD 
Porosity 0.18 0.18 0.18  
Reservoir thickness 50 50 50 m 
Irreducible water saturation (Swirr) 0.25 0.25 0.25  

(continued on next page) 
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Table A.2 (continued ) 

Parameter Løve Nesehorn Sebra Unit 

Residual oil saturation (Sor) 0.25 0.25 0.25  
krw@(1 − Sor) 0.8 0.8 0.8  
kro@Swirr  0.8 0.8 0.8  
Corey exponent for water 1.5 1.5 1.5  
Corey exponent for oil 1.5 1.5 1.5    

Table A.3 
Well properties  

Parameter Løve Nesehorn Sebra Unit 

Water depth 120 120 120 m 
Well MD (TVD) 3500 (2500) 3500 (2500) 3500 (2500) m 
Wellbore radius 0.12 0.12 0.12 m 
Well drainage radius 800 800 800 m 
Skin factor +5 +5 +5  
Tubing ID 0.124 0.124 0.124 m 
Artificial lift gas lift (GL) GL GL  
GL valve depth 3000 3000 3000 m 
GL gas gravity 0.7 0.7 0.7 sp. gravity 
GL maximum injection rate 400 400 400 1000 sm3/d  

Appendix B. Proxy Model of the Production System

Fig. B.1. Examples of the production potential curve  
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Appendix C. Proxy Model for Cost Estimation 

EXPEX: The future value of EXPEX, Fv,ex, is calculated as follows: 

Fv,ex =
∑

t∈{− 3,− 2,…,0}

At (C.1)  

where At is a constant. The value of this constant is given in Table C.1. The distribution of EXPEX is summarized in Table C.2. The non-positive time 
index t (in Table C.2 to Table C.5 and Appendix F) correlates with the number of years before the field production starts. 

DRILLEX: The future value of DRILLEX made at time t, Ft
v,dx, is calculated as follows: 

Ftv,dx =B⋅
(
Nt+1
wt,f − N

t
wt,f

)
(C.2)  

where B indicates the drilling cost for a well, and the term (Nt+1
wt,f − Nt

wt,f ) represents the number of wells drilled from time t to t+ 1. The value of 
coefficient B is given in Table C.1. 

ABEX: The future value of ABEX, Fv,ax, is calculated as follows: 

Fv,ax=

(
∑

t∈{− 3,− 2,…,0}

Ct

)

+D1 ⋅Nntop,f +D2⋅
(
Nntgi,f +N

nt
wi,f

)
(C.3)  

where Nnt
op,f , N

nt
gi,f and Nnt

wi,f are the numbers of oil producers, gas injectors and water injectors, respectively, at the end of the field lifetime. Ct is a 
constant, while D1 and D2 are coefficients. The values of these constant and coefficients are given in Table C.1. The distribution of ABEX is summarized 
in Table C.3. Note that the amounts of ABEX are in reality executed after the field stops producing. However, the amounts presented (in Table C.3) are 
the discounted amounts as if they are executed before the production period. 

CAPEX-SUB: The future value of CAPEX-SUB, Fv,sx, is calculated as follows: 

Fv,sx =E1⋅Nst,f + E2⋅Nxt,f (C.4)  

where Nst,f and Nxt,f are the numbers of subsea templates and subsea xmas trees in the field, respectively. E1 and E2 are coefficients, and their values are 
given in Table C.1. The distribution of CAPEX-SUB is summarized in Table C.4. 

CAPEX-TOP: The future value of CAPEX-TOP, Fv,tx, is calculated as follows: 

Fv,tx =G1⋅qcapacityo + G2⋅qcapacityg + G3⋅qcapacityw (C.5)  

where qcapacity
o , qcapacity

g and qcapacity
w are the capacities of the processing facility to handle oil, gas and water production, respectively. G1, G2 and G3 are 

coefficients, and their values are given in Table C.1. The distribution of CAPEX-TOP is summarized in Table C.5. 
OPEX: The future value of OPEX spent at time t, Ft

v,ox, is calculated as follows: 

Ftv,ox =H1 + H2⋅Nt− 1
op,f + H3⋅qto,f + H4⋅qtg,f + H5⋅qtw,f (C.6)  

where Nt− 1
op,f represents the number of oil producers available for maintenance, while qt

o,f , q
t
g,f and qt

w,f represent the average production rates of oil, gas 
and water, respectively, from time t − 1 to t. H1 is a constant, while H2, H3, H4 and H5 are coefficients. The values of these constant and coefficients are 
given in Table C.1.  

Table C.1 
Values of constants and coefficients used in the cost proxy model  

Constant/Coefficient Value Unit 

A− 3  665 Mill. NOK 
A− 2  240 Mill. NOK 
A− 1  380 Mill. NOK 
A0  366 Mill. NOK 
B 480 Mill. NOK/well 
C− 3  192 Mill. NOK 
C− 2  449 Mill. NOK 
C− 1  449 Mill. NOK 
C0  192 Mill. NOK 
D1  12 Mill. NOK/oil producer 
D2  5 Mill. NOK/injector 
E1  484 Mill. NOK/template 
E2  50 Mill. NOK/xmas tree 
G1  0.10914 Mill. NOK/(sm3/d) 
G2  0.23848 Mill. NOK/(1000 sm3/d) 
G3  0.22074 Mill. NOK/(sm3/d) 
H1  400 Mill. NOK 

(continued on next page) 
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Table C.1 (continued ) 

Constant/Coefficient Value Unit 

H2  4 Mill. NOK/oil producer 
H3  0.007388 Mill. NOK/(sm3/d) 
H4  0.018289 Mill. NOK/(1000 sm3/d) 
H5  0.022829 Mill. NOK/(sm3/d)   

Table C.2 
Distribution of EXPEX  

t Date of Expenditure Expenditure 

− 3 1st Jan 2019 A− 3  

− 2 1st Jan 2020 A− 2  

− 1 1st Jan 2021 A− 1  

0 1st Jan 2022 A0    

Table C.3 
Distribution of ABEX  

t Date of Expenditure Expenditure 

− 3 1st Jan 2019 C− 3 + D1⋅Nnt
op,f 

+ D2⋅(Nnt
gi,f + Nnt

wi,f )

− 2 1st Jan 2020 C− 2  

− 1 1st Jan 2021 C− 1  

0 1st Jan 2022 C0    

Table C.4 
Distribution of CAPEX-SUB  

t Date of Expenditure Expenditure 

− 3 1st Jan 2019 Fv,sx/4  
− 2 1st Jan 2020 Fv,sx/4  
− 1 1st Jan 2021 Fv,sx/4  
0 1st Jan 2022 Fv,sx/4    

Table C.5 
Distribution of CAPEX-TOP  

t Date of Expenditure Expenditure 

− 3 1st Jan 2019 Fv,tx/4  
− 2 1st Jan 2020 Fv,tx/4  
− 1 1st Jan 2021 Fv,tx/4  
0 1st Jan 2022 Fv,tx/4   

Appendix D. Description of Optimization Parameters, Sets and Variables  

Table D.1 
Optimization parameters  

Parameter Description 

nr  Number of reservoir units in the field 
nt  Number of time steps 
tup  Number of operational days per year 

qplateau
o,f  

Desired plateau rate for the field oil production 
(unit: sm3/d) 

qcapability
gi  

Maximum gas injection rate of a gas injector 
(unit: 1000 sm3/d) 

qcapability
wi  

Maximum water injection rate of a water injector 
(unit: sm3/d) 

Npre− drilled
op  Maximum number of pre-drilled oil producers 

(continued on next page) 
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Table D.1 (continued ) 

Parameter Description 

Npre− drilled
it  

Maximum number of pre-drilled injectors 

Nmax− drilled
wt  Maximum number of wells drilled each year 

Nmax
gi,r  Maximum number of gas injectors drilled in 

reservoir r 
Nmax

wi,r  Maximum number of water injectors drilled in 
reservoir r 

d Yearly discount rate 
Po  Oil price (unit: USD/bbl) 
Xr  Exchange rate (unit: NOK/USD) 
Xv  Volume conversion constant (unit: bbl/m3)   

Table D.2 
Sets of reservoirs and time steps  

Set Description 

R Set of all reservoir units 
T Set of all time steps   

Table D.3 
Reservoir variables  

Variable Description 

Mr  Recovery mechanism of reservoir r 
qt

opp,r  Oil production potential of reservoir r at time t 
(unit: sm3/d) 

qt
o,r  Oil production rate of reservoir r at time t 

(unit: sm3/d) 
qt

g,r  Gas production rate of reservoir r at time t 
(unit: 1000 sm3/d) 

qt
w,r  Water production rate of reservoir r at time t 

(unit: sm3/d) 
qt

gi,r  Gas injection rate of reservoir r at time t 
(unit: 1000 sm3/d) 

qt
wi,r  Water injection rate of reservoir r at time t 

(unit: sm3/d) 
Nt

p,r  Cumulative oil production of reservoir r at time t 
(unit: Mill. sm3) 

Gt
p,r  Cumulative gas production of reservoir r at time t 

(unit: Mill. sm3) 
Wt

p,r  Cumulative water production of reservoir r at time t 
(unit: Mill. sm3) 

Gt
i,r  Cumulative gas injection of reservoir r at time t 

(unit: Mill. sm3) 
Wt

i,r  Cumulative water injection of reservoir r at time t 
(unit: Mill. sm3) 

Nt
op,r  Number of oil producers in reservoir r at time t 

Nt
gi,r  Number of gas injectors in reservoir r at time t 

Nt
wi,r  Number of water injectors in reservoir r at time t 

Nt
wt,r  Number of wells in reservoir r at time t 

Nst,r  Number of subsea templates in reservoir r 
zgi,r  Binary variable which the value depends on the 

recovery mechanism of reservoir r 
zwi,r  Binary variable which the value depends on the 

recovery mechanism of reservoir r   

Table D.4 
Field variables  

Variable Description 

qt
opp,f  Field oil production potential at time t 

(unit: sm3/d) 
qt

o,f  Field oil production rate at time t 
(unit: sm3/d) 

qt
g,f  

(continued on next page) 
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Table D.4 (continued ) 

Variable Description 

Field gas production rate at time t 
(unit: 1000 sm3/d) 

qt
w,f  Field water production rate at time t 

(unit: sm3/d) 
qt

gi,f  Field gas injection rate at time t 
(unit: 1000 sm3/d) 

qt
wi,f  Field water injection rate at time t 

(unit: sm3/d) 
Nt

p,f  Cumulative oil production of the field at time t 
(unit: Mill. sm3) 

Gt
p,f  Cumulative gas production of the field at time t 

(unit: Mill. sm3) 
Wt

p,f  Cumulative water production of the field at time t 
(unit: Mill. sm3) 

Gt
i,f  Cumulative gas injection of the field at time t 

(unit: Mill. sm3) 
Wt

i,f  Cumulative water injection of the field at time t 
(unit: Mill. sm3) 

Nt
op,f  Number of oil producers in the field at time t 

Nt
gi,f  Number of gas injectors in the field at time t 

Nt
wi,f  Number of water injectors in the field at time t 

Nt
wt,f  Number of wells in the field at time t 

Nst,f  Number of subsea templates in the field 
Nxt,f  Number of subsea xmas trees in the field   

Table D.5 
Sets of breakpoints used in the MILP formulations  

Set Description 

VNp  Set of cumulative oil production (Np) breakpoints  
VNop,r  Set of number of oil producers (Nop) breakpoints for 

reservoir r  
VMr  Set of recovery mechanism (M) breakpoints for 

reservoir r   

Table D.6 
Breakpoints used in the MILP formulations  

Parameter Description 

̂Nj,k,l
p,r  

Cumulative oil production of reservoir r at 
breakpoint (j,k, l)  

̂Nj,k,l
op,r  

Number of oil producers in reservoir r at 
breakpoint (j,k, l)  

̂Mj,k,l
r  

Recovery mechanism of reservoir r at 
breakpoint (j,k, l)  

̂qj,k,l
opp,r  

Oil production potential of reservoir r at 
breakpoint (j,k, l)  

̂Gj,k,l
p,r  

Cumulative gas production of reservoir r at 
breakpoint (j,k, l)  

̂Wj,k,l
p,r  

Cumulative water production of reservoir r at 
breakpoint (j,k, l)  

̂Gj,k,l
i,r  

Cumulative gas injection of reservoir r at 
breakpoint (j,k, l)  

̂Wj,k,l
i,r  

Cumulative water injection of reservoir r at 
breakpoint (j,k, l)  

zm,n
gi  

Value of binary variable zgi at breakpoint (m,n)  

zm,n
wi  

Value of binary variable zwi at breakpoint (m,n)  

Mm,n  Recovery mechanism at breakpoint (m,n)    
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Table D.7 
Auxiliary variables used in the MILP formulations  

Variable Description 

λj,k,l
r,t  

Weighting variable for breakpoint (j,k, l), 
for reservoir r at time t  

αj
r,t  SOS2 variable for breakpoint j, for reservoir r 

at time t 
βk

r,t  SOS2 variable for breakpoint k, for reservoir r 
at time t 

γlr,t  SOS1 variable for breakpoint l, for reservoir r 
at time t 

ωm,n
r  Weighting variable for breakpoint (m,n), 

for reservoir r  
ψm

r  SOS1 variable for breakpoint m, for reservoir r 
τnr  SOS1 variable for breakpoint n, for reservoir r   

Table D.8 
Economic variables  

Variable Description 

Pv,ex  Present value of EXPEX (unit: Mill. NOK) 

Ppre− drilled
v,dx  

Present value of DRILLEX for pre-drilled wells 
(unit: Mill. NOK) 

Pt
v,dx  Present value of DRILLEX made at time t 

(unit: Mill. NOK) 
Pv,ax  Present value of ABEX (unit: Mill. NOK) 
Pv,sx  Present value of CAPEX-SUB 

(unit: Mill. NOK) 
Fv,tx  Future value of CAPEX-TOP 

(unit: Mill. NOK) 
Pv,tx  Present value of CAPEX-TOP 

(unit: Mill. NOK) 
Ft

v,ox  Future value of OPEX spent at time t 
(unit: Mill. NOK) 

Pt
v,ox  Present value of OPEX spent at time t 

(unit: Mill. NOK) 
Pt

v,re  Present value of revenue obtained at time t 
(unit: Mill. NOK) 

Pv,pp  Present value of all expenditures made before the field enters the production period (unit: Mill. NOK) 
Dt

cf  Discounted cash flow at time t (unit: Mill. NOK) 
NPV  Net present value (unit: Mill. NOK)   

Table D.9 
Other variables  

Variable Description 

qcapacity
o  Capacity of the processing facility to handle 

oil production (unit: sm3/d) 
qcapacity

g  Capacity of the processing facility to handle 
gas production (unit: 1000 sm3/d) 

qcapacity
w  Capacity of the processing facility to handle 

water production (unit: sm3/d)  

Appendix E. MILP Formulation of the Optimization Problem to Maximize Field Plateau Duration 

Objective function: 

minimize
∑

t∈{2,…,nt}

(
qplateauo,f − qto,f

)
(E.1) 

Operational constrains: 

qto,f ≤ q
plateau
o,f , ∀t ∈ {2,…, nt} (E.2)  

qto,r ≤ q
t
opp,r, ∀r∈R and ∀t ∈ {2,…, nt} (E.3)  

qto,r ≤ q
t− 1
opp,r, ∀r∈R and ∀t ∈ {2,…, nt} (E.4) 
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qtgi,r ≤N
t− 1
gi,r ⋅ qcapabilitygi , ∀r∈R and ∀t ∈ {2,…, nt} (E.5)  

qtwi,r ≤N
t− 1
wi,r ⋅ qcapabilitywi , ∀r∈R and ∀t ∈ {2,…, nt} (E.6) 

Drilling constraints: 

Nt− 1
op,r ≤N

t
op,r, ∀r∈R and ∀t ∈ {2,…, nt} (E.7)  

Nt− 1
gi,r ≤N

t
gi,r, ∀r∈R and ∀t ∈ {2,…, nt} (E.8)  

Nt− 1
wi,r ≤N

t
wi,r, ∀r∈R and ∀t ∈ {2,…, nt} (E.9)  

Ntgi,r ≤ zgi,r⋅N
max
gi,r , ∀r ∈ R and ∀t ∈ T (E.10)  

Ntwi,r ≤ zwi,r⋅N
max
wi,r , ∀r ∈ R and ∀t ∈ T (E.11)  

N1
op,f ≤ Npre− drilledop (E.12)  

N1
gi,f +N

1
wi,f ≤ Npre− drilledit (E.13)  

Ntwt,f − N
t− 1
wt,f ≤N

max− drilled
wt , ∀t ∈ {2,…, nt} (E.14) 

Equality constraints: 

N1
p,r = 0, ∀r ∈ R (E.15)  

Ntp,r =N
t− 1
p,r +

tup⋅qto,r
106 , ∀r∈R and ∀t ∈ {2,…, nt} (E.16)  

Gtp,r =G
t− 1
p,r +

tup⋅qtg,r
103 , ∀r∈R and ∀t ∈ {2,…, nt} (E.17)  

Wt
p,r =W

t− 1
p,r +

tup⋅qtw,r
106 , ∀r∈R and ∀t ∈ {2,…, nt} (E.18)  

Gti,r =G
t− 1
i,r +

tup⋅qtgi,r
103 , ∀r∈R and ∀t ∈ {2,…, nt} (E.19)  

Wt
i,r =W

t− 1
i,r +

tup⋅qtwi,r
106 , ∀r∈R and ∀t ∈ {2,…, nt} (E.20)  

Ntwt,r =N
t
op,r + N

t
gi,r + N

t
wi,r , ∀r ∈ R and ∀t ∈ T (E.21)  

Ntop,f =
∑

r∈R
Ntop,r, ∀t ∈ T (E.22)  

Ntgi,f =
∑

r∈R
Ntgi,r, ∀t ∈ T (E.23)  

Ntwi,f =
∑

r∈R
Ntwi,r , ∀t ∈ T (E.24)  

Ntwt,f =
∑

r∈R
Ntwt,r , ∀t ∈ T (E.25)  

qtopp,f =
∑

r∈R
qtopp,r, ∀t ∈ T (E.26)  

qto,f =
∑

r∈R
qto,r, ∀t ∈ {2,…, nt} (E.27)  

qtg,f =
∑

r∈R
qtg,r, ∀t ∈ {2,…, nt} (E.28)  

qtw,f =
∑

r∈R
qtw,r, ∀t ∈ {2,…, nt} (E.29)  

qtgi,f =
∑

r∈R
qtgi,r, ∀t ∈ {2,…, nt} (E.30)  

qtwi,f =
∑

r∈R
qtwi,r , ∀t ∈ {2,…, nt} (E.31) 
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Ntp,f =
∑

r∈R
Ntp,r, ∀t ∈ T (E.32)  

Gtp,f =
∑

r∈R
Gtp,r , ∀t ∈ T (E.33)  

Wt
p,f =

∑

r∈R
Wt
p,r, ∀t ∈ T (E.34)  

Gti,f =
∑

r∈R
Gti,r, ∀t ∈ T (E.35)  

Wt
i,f =

∑

r∈R
Wt
i,r, ∀t ∈ T (E.36) 

Constraints induced by PWL approximations: 

Ntp,r =
∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅̂Nj,k,lp,r , ∀r ∈ R,∀t ∈ T (E.37)  

Ntop,r =
∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅̂Nj,k,lop,r , ∀r ∈ R,∀t ∈ T (E.38)  

Mr =
∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅ ̂Mj,k,l
r , ∀r ∈ R, ∀t ∈ T (E.39)  

qtopp,r =
∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅ ̂qj,k,lopp,r , ∀r ∈ R,∀t ∈ T (E.40)  

1=
∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t , ∀r ∈ R,∀t ∈ T (E.41)  

αjr,t =
∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t , ∀r ∈ R, ∀t ∈ T, ∀j ∈ VNp (E.42)  

βkr,t =
∑

j∈VNp

∑

l∈VMr

λj,k,lr,t , ∀r ∈ R,∀t ∈ T, ∀k ∈ VNop,r (E.43)  

γlr,t =
∑

j∈VNp

∑

k∈VNop,r

λj,k,lr,t , ∀r ∈ R,∀t ∈ T, ∀l ∈ VMr (E.44)  

{
αjr,t , j∈VNp

}
 is  SOS2, ∀r∈R,∀t ∈ T (E.45)  

{
βkr,t, k∈VNop,r

}
 is  SOS2, ∀r∈R,∀t ∈ T (E.46)  

{
γlr,t, l∈VMr

}
 is  SOS1, ∀r∈R,∀t ∈ T (E.47)  

Gtp,r =
∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅̂Gj,k,lp,r , ∀r ∈ R,∀t ∈ T (E.48)  

Wt
p,r =

∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅ ̂Wj,k,l
p,r , ∀r ∈ R,∀t ∈ T (E.49)  

Gti,r =
∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅̂Gj,k,li,r , ∀r ∈ R, ∀t ∈ T (E.50)  

Wt
i,r =

∑

j∈VNp

∑

k∈VNop,r

∑

l∈VMr

λj,k,lr,t ⋅ ̂Wj,k,l
i,r , ∀r ∈ R, ∀t ∈ T (E.51)  

zgi,r =
∑

m∈{1,2}

∑

n∈{1,2}

ωm,nr ⋅ zm,ngi , ∀r ∈ R (E.52)  

zwi,r =
∑

m∈{1,2}

∑

n∈{1,2}

ωm,nr ⋅ zm,nwi , ∀r ∈ R (E.53)  

Mr =
∑

m∈{1,2}

∑

n∈{1,2}

ωm,nr ⋅Mm,n, ∀r ∈ R (E.54) 
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1=
∑

m∈{1,2}

∑

n∈{1,2}

ωm,nr , ∀r ∈ R (E.55)  

ψmr =
∑

n∈{1,2}

ωm,nr , ∀r∈R, ∀m ∈ {1, 2} (E.56)  

τnr =
∑

m∈{1,2}

ωm,nr , ∀r∈R, ∀n ∈ {1, 2} (E.57)  

{
ψ1
r ,ψ2

r

}
 is  SOS1, ∀r ∈ R (E.58)  

{
τ1
r , τ2

r

}
 is  SOS1, ∀r ∈ R (E.59) 

Constraints for the variables: 

Mr ∈Z, ∀r ∈ R (E.60)  

zgi,r ∈{0, 1}, ∀r ∈ R (E.61)  

zwi,r ∈{0, 1}, ∀r ∈ R (E.62)  

Ntop,r ∈Z, ∀r ∈ R and ∀t ∈ T (E.63)  

Ntgi,r ∈Z, ∀r ∈ R and ∀t ∈ T (E.64)  

Ntwi,r ∈Z, ∀r ∈ R and ∀t ∈ T (E.65)  

Ntwt,r ∈Z, ∀r ∈ R and ∀t ∈ T (E.66)  

Ntop,f ∈Z, ∀t ∈ T (E.67)  

Ntgi,f ∈Z, ∀t ∈ T (E.68)  

Ntwi,f ∈Z, ∀t ∈ T (E.69)  

Ntwt,f ∈Z, ∀t ∈ T (E.70)  

All  variables ≥ 0 (E.71)  

Appendix F. MILP Formulation of the Optimization Problem to Maximize NPV 

Objective function: 

maximize NPV (F.1) 

In this formulation, we use all constraints involved in the previous optimization model (one provided in Appendix E), except Eq. (E.2). Some 
additional constraints are included to compute NPV. 

Constraint to calculate EXPEX: 

Pv,ex =
∑

t∈{− 3,− 2,…,0}

At
(1 + d)(t+3) (F.2) 

Constraints to calculate DRILLEX: 

Ppre− drilledv,dx =
B⋅N1

wt,f

(1 + d)3 (F.3)  

Ptv,dx =
B⋅
(
Nt+1
wt,f − Ntwt,f

)

(1 + d)(t+3) , ∀t ∈ {1, 2,…, nt − 1} (F.4) 

Constraint to calculate ABEX: 

Pv,ax=

(
∑

t∈{− 3,− 2,…,0}

Ct
(1 + d)(t+3)

)

+D1 ⋅Nntop,f +D2⋅
(
Nntgi,f +N

nt
wi,f

)
(F.5) 

Constraints to calculate CAPEX-SUB: 

Pv,sx =
∑

t∈{− 3,− 2,…,0}

E1⋅Nst,f + E2⋅Nxt,f
4⋅(1 + d)(t+3) (F.6) 
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Nst,f =
∑

r∈R
Nst,r (F.7)  

Nst,r ≥
Nntop,r

4
, ∀r ∈ R (F.8)  

Nxt,f =Nntgi,f + N
nt
wi,f (F.9) 

Constraints to calculate CAPEX-TOP: 

Fv,tx =G1⋅qcapacityo + G2⋅qcapacityg + G3⋅qcapacityw (F.10)  

Pv,tx =
∑

t∈{− 3,− 2,…,0}

Fv,tx
4⋅(1 + d)(t+3) (F.11)  

qcapacityo ≥ qto,f , ∀t ∈ {2,…, nt} (F.12)  

qcapacityg ≥ qtg,f , ∀t ∈ {2,…, nt} (F.13)  

qcapacityw ≥ qtw,f , ∀t ∈ {2,…, nt} (F.14) 

Constraints to calculate OPEX: 

Ftv,ox =H1 +H2 ⋅Nt− 1
op,f +H3 ⋅ qto,f +H4 ⋅ qtg,f +H5 ⋅ qtw,f , ∀t ∈ {2,…, nt} (F.15)  

Ptv,ox =
Ftv,ox

(1 + d)(t+3), ∀t ∈ {2,…, nt} (F.16) 

Constraint to calculate revenue: 

Ptv,re =
Po⋅Xr⋅Xv⋅

(
Ntp,f − Nt− 1

p,f

)

(1 + d)(t+3) , ∀t ∈ {2,…, nt} (F.17) 

Constraints to calculate NPV: 

Pv,pp =Pv,ex + Ppre− drilledv,dx + Pv,ax + Pv,sx + Pv,tx (F.18)  

D1
cf = − P1

v,dx (F.19)  

Dtcf =P
t
v,re − P

t
v,ox − P

t
v,dx, ∀t ∈ {2, 3,…, nt − 1} (F.20)  

Dntcf =P
nt
v,re − P

nt
v,ox (F.21)  

NPV = − Pv,pp +
∑

t∈T
Dtcf (F.22) 

Constraints for the variables: 

Nst,r ∈Z, ∀r ∈ R (F.23)  

Nst,f ∈ Z (F.24)  

Nxt,f ∈ Z (F.25)  

All  variables  except  Dtcf  and  NPV ≥ 0 (F.26)  

Appendix G. Extended Optimization Results 
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Fig. G.1. Comparison of optimization results between CASE-1 and REF-CASE-1: recovery mechanism. Description on the value of Mr : 1 = natural depletion, 2 =
water injection, 3 = gas injection, 4 = water & gas injection. 

Fig. G.2. Comparison of optimization results between CASE-1 and REF-CASE-1: drilling schedule  

Fig. G.3. Comparison of optimization results between CASE-1 and REF-CASE-1: oil production rate and potential   
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Fig. G.4. Comparison of optimization results between CASE-2 and REF-CASE-2: recovery mechanism. Description on the value of Mr : 1 = natural depletion, 2 =
water injection, 3 = gas injection, 4 = water & gas injection. 

Fig. G.5. Comparison of optimization results between CASE-2 and REF-CASE-2: drilling schedule  

Fig. G.6. Comparison of optimization results between CASE-2 and REF-CASE-2: oil production rate and potential   
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Fig. G.7. Comparison of optimization results between CASE-2 and REF-CASE-2: discounted cash flow and its cumulative  

Appendix H. Source Code Availability 

The source codes of the optimization models are available under GNU GPL v3 (2007) license on GitHub.1 
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