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Abstract
We demonstrate how to construct spectral triples for twisted group C∗-algebras of 
lattices in phase space of a second-countable locally compact abelian group using 
a class of weights appearing in time–frequency analysis. This yields a way of con-
structing quantum Ck-structures on Heisenberg modules, and we show how to obtain 
such structures using Gabor analysis and certain weighted analogues of Feichting-
er’s algebra. We treat the standard spectral triple for noncommutative 2-tori as a spe-
cial case, and as another example we define a spectral triple on noncommutative 
solenoids and a quantum Ck-structure on the associated Heisenberg modules.

Keywords Spectral triples · Gabor frames · Hilbert C∗-modules

Mathematics Subject Classification 43A20 · 43A70 · 46L87 · 58B34

1 Introduction

The interplay between Gabor analysis and noncommutative geometry [8] has been 
explored earlier and has recently attracted some interest, see for example [2–4, 10, 
11, 22, 23, 25, 28, 29]. Indeed, problems in Gabor analysis can often effectively 
be rephrased as operator algebraic questions. Moreover, Gabor analysis provides a 
way to generate projective modules over noncommutative tori [28]. Hence, results in 
Gabor analysis supply interesting examples of structures studied in operator algebra 
theory and noncommutative geometry. The main part of this paper focuses on the 
latter aspect.
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We are interested in smooth structures on the level of projective modules over C∗

-algebras, which we call quantum Ck-structures, or QCk-structures. These are based 
on QCk-structures on spectral triples for these C∗-algebras. Our focus is on Heisen-
berg modules over twisted group C∗-algebras of lattices in G × Ĝ for a second-count-
able locally compact abelian group G.

In terms of Gabor analysis, the notion of QCk-modules over noncommutative tori 
translates into better time-frequency localization of the window function generating 
the frame. It is common to refer to a Gabor frame generated by a Gaussian as better 
than one generated by e.g. a triangle function. Our results turn this observation into 
a rigorous statement and weighted analogues of Feichtinger’s algebra appear natu-
rally in this context.

We discuss in detail the noncommutative 2-torus and noncommutative solenoids, 
introduced in [26, 27]. For the noncommutative 2-torus, we show that our approach 
yields an equal QCk-structure as if using the standard spectral triple, and for the non-
commutative solenoid, our construction provides a definition of smoothness which 
so far has not appeared in the literature. Note that the smooth structures introduced 
by Connes for noncommutative tori are also smooth in our sense but his approach 
does not allow one to identify structures with a fixed regularity like QCk-structures.

In Sect. 2, we review relevant material on Hilbert C∗-modules and standard mod-
ule frames with a focus on equivalence bimodules describing Morita equivalent C∗

-algebras. Section 3 contains the basics on Gabor frames for lattices in G × Ĝ for 
a second-countable locally compact abelian group G, and we define Feichtinger’s 
algebra M1(G) , the prime example of a modulation space, and weighted variants 
M1

v
(G) for a natural class of weights on G × Ĝ . In this section, we also show how 

to obtain twisted group C∗-algebras and Heisenberg modules by ways of convolu-
tion algebras and modulation spaces. In Sect.  4, we make precise the meaning of 
quantum Ck-structures. Furthermore, this section contains the main results of the 
paper: (i) the construction of QCk-structures on twisted group C∗-algebras of lat-
tices in G × Ĝ , and (ii) a description of QCk-structures on Heisenberg modules, and 
that these are just weighted Feichtinger algebras. At the end of the section, we treat 
the noncommutative 2-torus and the noncommutative solenoid in detail. We pro-
vide examples of projective modules that are QCk but not QCk+1 , and some that are 
smooth.

2  Preliminaries

This section is dedicated to reminding the reader about module frames and Morita 
equivalence. We assume basic knowledge about C∗-algebras, Banach ∗-algebras, and 
their modules.

In the sequel, we will let the C∗-algebra-valued inner product on a left Hilbert C∗

-module be denoted by  , and likewise the C∗-algebra-valued inner product on a 
right Hilbert C∗-module will be denoted by .

Module frames were introduced in [16]. However, for the purposes of this paper, 
it will suffice to look at finite module frames.
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Definition 2.1 Let A be a C∗-algebra, let E be a left Hilbert A-module, and let (gi)li=1 
be a sequence in E. We say (gi)li=1 is a module frame for E if there exist constants 
C,D > 0 such that

as elements of A for all f ∈ E . If C = D = 1 we say (gi)li=1 is a Parseval module 
frame for E.

For a left Hilbert A-module E, we associate to any finite sequence (gi)li=1 ⊂ E the 
A-adjointable operator

This operator is called the frame operator of (gi)li=1 . Note that the frame operator is a 
positive operator on E as  for all f ∈ E . The following is a special 
case of [1, Theorem 1.2] and might be useful to keep in mind.

Proposition 2.2 Let (gi)li=1 be a sequence in a left Hilbert A-module E. Then (gi)li=1 is 
a module frame for E if and only if Θ(gi)

∶ E → E is invertible.

Definition 2.3 Let E be a left Hilbert A-module and let (gi)li=1 ⊂ E be a frame. 
Denote by Θ the frame operator of (gi)li=1 . We say (Θ−1gi)

l
i=1

 is the canonical dual 
frame of (gi)li=1 , and we say (Θ−1∕2gi)

l
i=1

 is the canonical Parseval frame associated 
to (gi)li=1.

Given a frame (gi)li=1 for a left Hilbert A-module E, with frame operator Θ , we see 
that the canonical dual frame (Θ−1gi)

l
i=1

 has the property that

for all f ∈ E . Indeed, this follows by writing out f = Θ−1Θf = ΘΘ−1f  . Any 
sequence (hi)li=1 such that

for all f ∈ E will be called a dual sequence of (gi)li=1 . Likewise, if we write out 
f = Θ−1∕2ΘΘ−1∕2f  , we get that the canonical Parseval frame associated to (gi)li=1 has 
the property

(2.1)
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for all f ∈ E , and is a Parseval module frame as in (2.1).
The following result follows from [24, Proposition 3.9]. There it is assumed 

the C∗-algebra is unital, but we include a weakened version of the result so that it 
is clear that this assumption can be dropped.

Proposition 2.4 Let E be a Hilbert A-module and let (gi)li=1 and (hi)li=1 be sequences 
in E. If

for all f ∈ E , then (hi)li=1 is a frame for E.

The modules of interest in this paper will be Morita equivalence bimodules. 
For a reference on Morita equivalence of C∗-algebras, we refer the reader to [34].

Definition 2.5 Let A and B be C∗-algebras. A Morita equivalence bimodule between 
A and B, or an A-B-equivalence bimodule, is a Hilbert A-B-bimodule E satisfying 
the following conditions: 

i) ∙⟨E,E⟩ = A and ⟨E,E ⟩∙ = B , where ∙⟨E,E⟩ = span ℂ{ ∙⟨ f , g⟩ ∣ f , g ∈ E} and 
likewise for ⟨E,E ⟩∙.

ii) For all f , g ∈ E , a ∈ A and b ∈ B , 

iii) For all f , g, h ∈ E , 

Now let A ⊂ A and B ⊂ B be dense Banach ∗-subalgebras such that the envelop-
ing C∗-algebra of A is A, and the enveloping C∗-algebra of B is B. Suppose further 
that there is a dense A-B-inner product submodule E ⊂ E such that the conditions 
above hold with A,B, E instead of A, B, E. In that case, we say E is an A-B-pre-
equivalence bimodule.

Module frames in Morita equivalence bimodules were extensively studied in 
[4]. We summarize the results we will need.

Proposition 2.6 Let E be an A-B-equivalence bimodule where B is unital, with an A
-B-pre-equivalence bimodule E ⊂ E . Moreover, let (gi)li=1 be a sequence in E and let 
Θ denote the frame operator of (gi)li=1 . Then the following hold:

⟨af , g ⟩∙ = ⟨f , a∗g ⟩∙ and ∙⟨ fb, g⟩ = ∙⟨ f , gb∗⟩.

∙⟨ f , g⟩h = f ⟨g, h ⟩∙ .
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i)  (gi)li=1 is a module frame for E as a Hilbert A-module if and only if 
 is invertible in B.

ii)  If (gi)li=1 is a module frame for E as an A-module, then the canonical dual is 
given by (hi)li=1 , where

for all j = 1,… , l , and the canonical Parseval frame associated to (gi)li=1 is given by 
(h�

i
)l
i=1

 , where

for all j = 1,… , l.

iii)  Suppose B ⊂ B is spectrally invariant with the same unit, and that (gi)li=1 is 
a module frame for E as an A-module with gi ∈ E for all i = 1,… , l . Then 
Θ−1gi ∈ E and Θ−1∕2gi ∈ E for all i = 1,… , l.

Proof Statement i) is immediate by [4, Proposition 3.14]. Since the action of Θ is 
implemented by right multiplication by  by [4], it follows that Θ−1 is 
implemented by right multiplication by  , and the action of Θ−1∕2 
is implemented by right multiplication by  . Hence statement ii) 
follows as well. In statement iii) the fact that Θ−1gi ∈ E for all i = 1,… , l is immedi-
ate by [4, Proposition 3.15]. But then if  by spectral invariance, so 
is  . So it follows that Θ−1∕2gi ∈ E for all i = 1,… , l also.   ◻

3  Gabor analysis on LCA groups, weighted Feichtinger algebras 
and twisted group C∗‑algebras

Before discussing the mathematical objects of interest, we recall some central con-
cepts from Gabor analysis on locally compact abelian (LCA) groups.

3.1  Gabor analysis on LCA groups and weighted Feichtinger algebras

Througout this section, we fix a second-countable LCA group G, and we will let Λ 
be a lattice in G × Ĝ , that is, Λ is a cocompact and discrete subgroup in G × Ĝ . Here 
Ĝ is the dual group of G. The group G × Ĝ is sometimes called the time-frequency 
plane of G or the phase space of G. We will have to restrict to lattices Λ as we 
wish to make use of the localization procedure developed in [3] in a particular case. 
Namely, we need to be able to localize both the C∗-algebra C∗(Λ, c) and a Heisen-
berg module, defined in (3.2) and (3.3). Further, the assumption that G is second-
countable is imposed due to our proof of (4.6) relying on Λ being �-compact.
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Given G and Λ we will need to make some choices regarding the Haar measures 
and how they relate to one another. The convention we will use is the following: Given 
a second-countable LCA group G, we fix a Haar measure �G on G and normalize the 
Haar measure �

Ĝ
 on Ĝ such that the Plancherel theorem holds. The lattice Λ will be 

equipped with the counting measure. On (G × Ĝ)∕Λ we put the Haar measure such that 
Weil’s formula holds, that is, such that for all f ∈ L1(G × Ĝ) we have

where �̇� = 𝜉 + Λ.

Definition 3.1 The size of Λ , denoted s(Λ) , is defined as

Remark 3.2 When Λ is a lattice it is in particular cocompact. Hence (G × Ĝ)∕Λ is 
compact, which implies s(Λ) < ∞.

For any point � = (x,�) ∈ G × Ĝ we define the time-frequency shift �(�) by

where Tx is the time-shift operator given by

and M� is the modulation operator, or the frequency-shift operator, given by

We define the Heisenberg 2-cocycle

for any two elements �1 = (x1,�1), �2 = (x2,�2) ∈ G × Ĝ . Moreover, we define the 
associated symplectic cocycle

for �1 = (x1,�1), �2 = (x2,�2) ∈ G × Ĝ . Make particular note of the fact that

∫G×�G

f (𝜉)d𝜇
G×�G(𝜉) = ∫(G×�G)∕Λ ∫Λ

f (𝜉 + 𝜆)d𝜇Λ(𝜆)d𝜇(G×�G)∕Λ(�̇�),

s(Λ) = ∫(G×Ĝ)∕Λ

1d�
(G×Ĝ)∕Λ

.

(3.1)�(�) = M�Tx ∶ L2(G) → L2(G),

Tx ∶ L2(G) → L2(G)

f (t) ↦ f (t − x), t ∈ G,

M� ∶ L2(G) → L2(G)

f (t) ↦ �(t)f (t), t ∈ G.

c ∶ (G × Ĝ) × (G × Ĝ) → �

(�1, �2) ↦ �2(x1)

cs ∶ (G × Ĝ) × (G × Ĝ) → �

(�1, �2) ↦ �2(x1)�1(x2).
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The 2-cocycle and the symplectic cocycle are intimately related to time–frequency 
shifts. Indeed, routine calculations yield the following identities which may be help-
ful to keep in mind

Using the symplectic cocycle cs , we define the adjoint subgroup of Λ , denoted Λ◦ , 
by

It is then clear that [�(�),�(�)] = 0 for all � ∈ Λ and all � ∈ Λ◦ . By [21, p. 234] we 
may identify Λ◦ with ((G × Ĝ)∕Λ)̂ and we pick the dual measure on Λ◦ correspond-
ing to the measure on (G × Ĝ)∕Λ induced from the chosen measure on Λ . That is, 
the measures are chosen so that the Plancherel theorem holds with respect to Λ◦ and 
(G × Ĝ)∕Λ . Since Λ is a lattice, it is in particular cocompact, hence it follows that 
((G × Ĝ)∕Λ)̂ is discrete, from which it follows that Λ◦ is discrete. But (Λ◦)◦ ≅ Λ is 
discrete, from which the analogous argument implies Λ◦ is also cocompact. Hence 
Λ◦ is also a lattice, and we may rightfully call it the adjoint lattice of Λ . Having 
picked the counting measure on Λ , the induced measure on Λ◦ is the counting meas-
ure scaled with the constant s(Λ)−1 [22, equation (13)].

For any function g ∈ L2(G) , we may define the short-time Fourier transform with 
respect to g. It is the operator

Using the short-time Fourier transform, we define the Feichtinger algebra M1(G) by

M1(G) becomes a Banach space when equipped with the norm

for some g ∈ M1(G) ⧵ {0} . Indeed it is known that any nonzero g ∈ M1(G) yields 
an equivalent norm on M1(G) . We may of course do the same for Λ . It is, how-
ever, known that when Λ is discrete, M1(Λ) = �

1(Λ) with equivalent norms. For 
proofs of these statements, see for example [20, Proposition 4.10, Lemma 4.11, 
Theorem 4.12].

To describe smoothness, we will need dense subspaces of M1(Λ) and M1(G) . To 
this end, we have the following definition.

c(�1, �2) = c(−�1, �2) = c(�1,−�2).

�(�1)�(�2) = c(�1, �2)�(�1 + �2)

�(�1)�(�2) = cs(�1, �2)�(�2)�(�1)

�(�1)
∗ = c(�1, �1)�(−�1).

Λ◦ ∶= {� ∈ G × Ĝ ∣ cs(� , �) = 1 for all � ∈ Λ}.

Vg ∶ L2(G) → L2(G × Ĝ)

Vgf (�) = ⟨f ,�(�)g⟩.

M1(G) ∶= {f ∈ L2(G) ∣ Vf f ∈ L1(G × Ĝ)}.

‖f‖M1(G) ∶= ∫G×Ĝ

�Vgf (�)�d�
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Definition 3.3 Let Δ be a second-countable LCA group. By a weight on Δ we mean 
a function v ∶ Δ → [0,∞) satisfying the following conditions: 

i) v(� + �) ≤ v(�)v(�) for all �,� ∈ Δ (submultiplicativity).
ii) v has polynomial growth, i.e. there are D > 0 and s > 0 such that 

v(�) ≤ D(1 + d(�, 0))s for all � ∈ Δ , where d is a translation-invariant metric 
generating the topology of Δ.

iii) v(�) = v(−�) for all � ∈ Δ (radial symmetry).

Remark 3.4 If v(0) = 0 , then for any � ∈ Δ

hence the weight v is identically zero. For this reason, we will assume in the rest of 
the article that v(0) ≠ 0 . Note then that submultiplicativity of the weight v implies 
v(0) ≥ 1 . Indeed, by the calculation

we obtain the desired relation by dividing by v(0) on both sides. But by radial sym-
metry we then have

for all � ∈ Δ . It follows that v(�) ≥ 1 for all � ∈ Δ.

Example Let G = ℝ and consider the phase space G × Ĝ ≅ ℝ × ℝ̂ ≅ ℝ2 . For every 
s > 0 , the function vs(x,�) = (1 + |x|2 + |�|2)s∕2 , x,� ∈ ℝ , is a weight on ℝ2.

Some of the above assumptions in the definition of a weight are sometimes 
not present to get a more general version of weights, see for example [18]. In the 
interest of brevity, we adopt the definition of weight above.

Definition 3.5 Let Δ be a second-countable LCA group and let v be a weight on Δ . 
We then define the weighted L1-space L1

v
(Δ) by

It is well known that L1
v
(Δ) is a Banach space with the natural norm, that is, 

with the norm

for f ∈ L1
v
(Δ).

We may then define the relevant subspaces of the Feichtinger algebra.

v(�) = v(� + 0) ≤ v(�)v(0) = 0,

v(0) = v(0 + 0) ≤ v(0)v(0) = v(0)2

1 ≤ v(0) = v(� − �) ≤ v(�)v(−�) = v(�)2

L1
v
(Δ) ∶= {f ∈ L1(Δ) ∣ f ⋅ v ∈ L1(Δ)}.

‖f‖L1
v
(Δ) ∶= ∫Δ

�f (�)�v(�)d�
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Definition 3.6 Let v ∶ G × Ĝ → [0,∞) be a weight. We then define the weighted 
Feichtinger algebra M1

v
(G) by

We do the same for Λ by restricting weights from G × Ĝ to Λ ⊂ G × �G.

We have the following result from [14, Theorem  4.1] which will be important 
to keep in mind when we define a Banach module action of �1

v
(Λ, c) (see (3.2)) on 

M1
v
(G) in (3.3).

Proposition 3.7 M1
v
(G) is a Banach space when equipped with the norm

for some g ∈ M1
v
(G) ⧵ {0} . Any g ∈ M1

v
(G) ⧵ {0} yields an equivalent norm.

Note that for a weight v of polynomial growth on G × Ĝ M1
v
(G) is dense in the 

Banach space M1(G) , because the Schwartz–Bruhat space is dense in M1(G) by [33] 
and by Osborne’s characterization of the Schwartz–Bruhat space [32].

In (4.4), we will link the QCk-structure statements for Heisenberg modules of 
(4.3) with the study of Gabor frames. To this end we introduce the relevant concepts 
from Gabor analysis now.

Definition 3.8 A Gabor system G(g;Λ) is a collection of time-frequency shifts of a 
function g of the form {�(�)g ∣ � ∈ Λ} . We call it a Gabor frame for L2(G) if it is a 
frame for the Hilbert space L2(G) , that is, if the following inequalities are satisfied 
for all f ∈ L2(G)

for some 0 < C ≤ D < ∞ . If C = D = 1 , we call G(g;Λ) a Parseval Gabor frame. If 
only the upper frame bound is satisfied, we say G(g;Λ) is a Bessel system, and the 
function g is called a Bessel vector for Λ.

Extending to the case where we have functions g1,… , gl ∈ L2(G) , we define a 
multi-window Gabor system by G(g1,… , gl;Λ) ∶= G(g1;Λ) ∪⋯ ∪ G(gl;Λ) . We call 
it a multi-window Gabor frame for L2(G) if there exist constants 0 < C ≤ D < ∞ 
such that

for all f ∈ L2(G) . Again, if C = D = 1 we call G(g1,… , gl;Λ) a Parseval multi-win-
dow Gabor frame. If only the upper frame bound is satisfied, we say G(g1,… , gl;Λ) 
is a Bessel system, and the functions {g1,… , gl} are called Bessel vectors for Λ.

M1
v
(G) ∶= {f ∈ L2(G) ∣ Vf f ∈ L1

v
(G × Ĝ)}.

‖f‖M1
v
(G) ∶= ∫G×Ĝ

�Vgf (�)�v(�)d�,

(3.2)C��f ��2
2
≤ �

�∈Λ

�⟨f ,�(�)g⟩�2 ≤ D��f ��2
2
,

(3.3)C��f ��2
2
≤

l�

i=1

�

�∈Λ

�⟨f ,�(�)gi⟩�2 ≤ D��f ��2
2
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Intimately related to Bessel systems G(g;Λ) are the coefficient mapping

and the synthesis mapping

A straightforward calculation shows that Dg,Λ = C∗
g,Λ

 . These allow us to define the 
following operator.

Definition 3.9 For a Bessel system G(g;Λ) , we define the Gabor frame operator Sg,Λ 
by

Likewise, given a multi-window Bessel system G(g1,… , gl;Λ) , we define the multi-
window Gabor frame operator Sg1,…,gl,Λ

 by

Note that boundedness of the (multi-window) Gabor frame operator is guaran-
teed by the upper norm bounds in (3.2) and (3.3). If G(g1,… , gl;Λ) is a frame, the 
corresponding lower bound guarantees that the (multi-window) Gabor frame 
operator is invertible. Also, since Sg,Λ = C∗

g,Λ
◦Cg,Λ , the Gabor frame operator is 

positive and thus the multi-window Gabor frame operator is positive, too. Hence 
for a Gabor frame G(g;Λ) (resp. a multi-window Gabor frame G(g1,… gl;Λ) ) the 
corresponding Gabor frame operator Sg,Λ (resp. multi-window Gabor frame oper-
ator Sg1,…gl,Λ

 ) is a bounded, positive, and invertible operator. Indeed, it is well 
known that the converse statement is also true.

3.2  Twisted group C∗‑algebras

We proceed to introduce the relevant Banach ∗-algebras and C∗-algebras. As 
above we let G denote a second-countable LCA group and let Λ ⊂ G × �G be a 
lattice. Furthermore, v will be a weight on G × Ĝ , and c denotes the Heisenberg 
2-cocycle. Indeed, in the rest of the paper, c will denote this 2-cocycle. We then 
wish to study the v-weighted c-twisted group algebra �1

v
(Λ, c) . This is the space 

�
1
v
(Λ) equipped with c-twisted convolution

and c-twisted involution

Cg,Λ ∶ L2(G) → �
2(Λ), f ↦ {⟨f ,�(�)g⟩}�∈Λ,

Dg,Λ ∶ �
2(Λ) → L2(G), {c�}� ↦

∑

�∈Λ

c��(�)g

Sg,Λ ∶ L2(G) → L2(G), Sg,Λ = Dg,Λ◦Cg,Λ.

Sg1,…,gl,Λ
∶ L2(G) → L2(G), Sg1,…,gl,Λ

=

l∑

i=1

Sgi,Λ.

a1 ∗c a2(�) =
∑

��∈Λ

a1(�
�)a2(� − ��)c(��, � − ��)
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for a, a1, a2 ∈ �
1
v
(Λ) and � ∈ Λ . The unweighted space, that is, with weight v = 1 , 

will be denoted �1(Λ, c).

Remark 3.10 We will sometimes suppress the notation ∗c and just write a1a2 instead 
of a1 ∗c a2.

The following result is well known.

Proposition 3.11 �1
v
(Λ, c) is a Banach ∗-algebra when equipped with the norm 

‖a‖
𝓁1
v
(Λ,c) = ‖a ⋅ v‖

𝓁1(Λ).

We may do the same for 𝓁1
v
(Λ◦) to make 𝓁1

v
(Λ◦, c) . Note the conjugate cocycle.

The following result may be considered folklore, but proofs in special cases as 
well as allusions to a proof of the general case can be found in [12, 18, Lemma 5.1] 
and [17, Proposition 11.1.3]

Proposition 3.12 Let Λ be a (second-countable) discrete group, let v be a weight on 
Λ and let p ∈ [1,∞) . Then �1

v
(Λ) acts continuously on �p

v (Λ) by convolution. That 
is, �1

v
(Λ) ∗ �

p
v (Λ) ⊂ �

p
v (Λ) and there exists a constant C > 0 such that

for a ∈ �
1
v
(Λ) and b ∈ �

p
v (Λ).

There is a natural way of associating to �1
v
(Λ, c) a C∗-algebra. Indeed, we do the 

procedure for �1(Λ, c) to complete it to a C∗-algebra, and it will be clear that by den-
sity of �1

v
(Λ, c) in �1(Λ, c) we would obtain the same C∗-algebra if we were to do the 

same procedure with �1
v
(Λ, c) . The procedure is as follows. We have a c-projective 

unitary representation of Λ on L2(G) via (3.1). This gives a nondegenerate c-projec-
tive ∗-representation of �1(Λ) , or equivalently, a nondegenerate ∗-representation of 
�
1(Λ, c) , on L2(G) by setting

for f ∈ L2(G) and a ∈ �
1(Λ) . This representation is faithful [38]. We thus obtain a 

C∗-algebra by completing �1(Λ, c) in the norm ‖a‖�(L2(G)) for a ∈ �
1(Λ, c) . But Λ is 

an abelian group, hence �1(Λ, c) has a unique C∗-completion [2, Theorem 3.1]. So 
we may denote the (unique) C∗-completion of �1(Λ, c) by C∗(Λ, c) , and denote the 
norm by ‖ ⋅ ‖C∗ . We refer to this C∗-algebra as the c-twisted group C∗-algebra of Λ . 
Since �1

v
(Λ, c) is dense in �1(Λ, c) and ‖ ⋅ ‖

𝓁1
v
≥ ‖ ⋅ ‖

𝓁1 ≥ ‖ ⋅ ‖C∗ , we would obtain 
the same C∗-algebra by doing the procedure with �1

v
(Λ, c) . We do the same proce-

dure for 𝓁1
v
(Λ◦, c) and obtain C∗(Λ◦, c) . The C∗-algebras C∗(Λ, c) and C∗(Λ◦, c) are 

a∗(�) = c(−�, �)a(−�)

‖a ∗ b‖
�
p
v (Λ)

≤ C‖a‖
�1
v
(Λ)‖b‖�p

v (Λ)
,

�(a)f =
∑

�∈Λ

a(�)�(�)f
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closely related. Indeed, they are Morita equivalent, which we will discuss in (3.3), 
and will have use for in (4.3).

To show that weighted Feichtinger algebras are examples of QCk-modules in 
(4.3), we will show how certain module frames implement said QCk-structure. It 
will then be important that the module frames are suitably regular. To guarantee 
this, we need the following important result from [19]. We also refer to [2] for the 
result in the unweighted case written out explicitly for other LCA groups than just 
ℝd.

Proposition 3.13 Let G be a second-countable LCA group and let Λ ⊂ G × �G 
be a lattice. Then �1(Λ, c) is spectrally invariant in C∗(Λ, c) . If, in addition, Λ is 
finitely generated and v is a weight on G × Ĝ , then �1

v
(Λ, c) is spectrally invariant in 

C∗(Λ, c).

3.3  Weighted Feichtinger algebras as modules

To get the desired modules, we will need the following result, see [15, Proposition 
5.1, Proposition 5.2]. The arguments for G = ℝ extend in a straightforward way to 
the general case.

Proposition 3.14 Let Λ ⊂ G × �G be a lattice and let v be a weight on G × Ĝ . Then 
the following hold:

i)  Let � ∈ Λ and f ∈ M1
v
(G) . Then �(�)f ∈ M1

v
(G) and

ii)  If a ∈ �
1
v
(Λ) and f ∈ M1

v
(G) , then 

∑
�∈Λ a(�)�(�)f ∈ M1

v
(G) and

for some C > 0 independent of a and f.

iii)  If f , g ∈ M1
v
(G) , then (⟨f ,�(�)g⟩)�∈Λ ∈ �

1
v
(Λ).

Since �1
v
(Λ, c) is a Banach ∗-algebra by (3.11), we may now give M1

v
(G) a left 

Banach �1
v
(Λ, c)-module structure by defining

for a ∈ �
1
v
(Λ, c) and f ∈ M1

v
(G) . We may turn M1

v
(G) into an inner product module 

over �1
v
(Λ, c) by defining

‖�(�)f‖M1
v
≤ v(�)‖f‖M1

v
.

‖
�

�∈Λ

a(�)�(�)f‖M1
v
≤ C‖a‖

�1
v
‖f‖M1

v

(3.4)a ⋅ f =
∑

�∈Λ

a(�)�(�)f
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for f , g ∈ M1
v
(G) . Here  is the �1

v
(Λ, c)-valued inner product. That the module 

action is continuous, and that the module action and the inner product are well-
defined follows from (3.14). We likewise get a right 𝓁1

v
(Λ◦, c)-inner product module 

structure on M1
v
(G) by setting

for f ∈ M1
v
(G) and b ∈ 𝓁

1
v
(Λ◦, c) , and

for f , g ∈ M1
v
(G) . These are also well-defined by (3.14). Actually, with the above 

defined actions and inner products, M1
v
(G) becomes a pre-equivalence bimodule 

between �1
v
(Λ, c) and 𝓁1

v
(Λ◦, c) . This verification was done for the Schwartz-Bru-

hat case in [38, Theorem 2.15] and for the Feichtinger algebra case in [28, Theo-
rem 3.13]. We may complete M1

v
(G) in the Hilbert C∗-module norm coming from 

C∗(Λ, c) (or equivalently the norm from C∗(Λ◦, c) ) to obtain a C∗(Λ, c)-C∗(Λ◦, c)

-equivalence bimodule, which we will denote by EG,Λ . Such modules are known in 
the literature as Heisenberg modules.

The C∗-algebra C∗(Λ, c) has a very useful property which we will have great 
need for in (4.2). Indeed, through the standard GNS-construction using the 
canonical trace coming from the extension of

and the c-left regular representation we get that C∗(Λ, c) embeds continuously into 
the Hilbert space �2(Λ) . Likewise C∗(Λ◦, c) embeds continuously into the Hil-
bert space 𝓁2(Λ◦) . Furthermore, the Heisenberg module EG,Λ can be continuously 
embedded in L2(G) . This statement can be proved by ways of localization as in [3]. 
However, since we are working exclusively with lattices in phase space, we use a 
different and simpler proof.

Proposition 3.15 EG,Λ ↪ L2(G) continuously.

Proof A straightforward calculation will show that

for all g ∈ M1(G) . Now let (fn)n ⊂ M1(G) be a Cauchy sequence in EG,Λ-norm. Then 
since tr is continuous, we have

(3.5)

(3.6)f ⋅ b =
∑

�◦∈Λ◦

b(�◦)�(�◦)∗f

(3.7)

tr ∶ �
1(Λ, c) → ℂ

a ↦ a(0).
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We may then define a map � ∶ EG,Λ → L2(G) as the continuous extension of the iden-
tity map on M1(G) . Using that 𝜄(M1(G)) ⊂ 𝜄(M1(G)) it follows that EG,Λ ⊂ L2(G) .  
 ◻

Example 1 (The noncommutative 2-torus) We look at how we obtain the noncom-
mutative 2-torus from the above constructions and how the weighted Feichtinger 
algebras M1

v
(ℝ) can be completed to Hilbert C∗-modules. For details, we refer the 

reader to [28] where this is done in depth for more general noncommutative 2d-tori, 
d ∈ ℕ.

Let (x,�) ∈ ℝ × ℝ̂ ≅ ℝ2 . On L2(ℝ) the time shift operator Tx is then

and the modulation operator M� is

for f ∈ L2(ℝ) . The time–frequency shift �(x,�) is then

for f ∈ L2(ℝ) . Moreover, the Heisenberg 2-cocycle is given by

Now let Λ ⊂ ℝ2 be a lattice and let v be a weight on ℝ2 . As before we get a faithful 
representation of �1

v
(Λ, c) on L2(ℝ) by

for f ∈ L2(ℝ) and a ∈ �
1
v
(Λ, c) . Completing �1

v
(Λ, c) in the induced operator norm 

we obtain a C∗-algebra C∗(Λ, c) , which is also known as the noncommutative 
2-torus. The usual noncommutativity parameter � of e.g. [37] is determined by the 
lattice. In particular, Λ = Lℤ2 for some L ∈ GL(ℝ2) , and then � = detL . By ways of 
(3.4) and (3.5) we complete M1

v
(ℝ) to a Heisenberg module Eℝ,Λ over C∗(Λ, c) . We 

may indeed do the same for 𝓁1
v
(Λ◦, c) and get a right Hilbert module structure by 

ways of (3.6) and (3.7). Then Eℝ,Λ becomes a C∗(Λ, c)-C∗(Λ◦, c)-equivalence bimod-
ule with M1

v
(ℝ) as an �1

v
(Λ, c)-𝓁1

v
(Λ◦, c)-pre-equivalence bimodule.

0 = lim
m,n→∞

tr ( ∙⟨ fm − fn, fm − fn⟩) = lim
m,n→∞

‖fm − fn‖22.

Txf (t) = f (t − x), t ∈ ℝ,

M�f (t) = e2�i�tf (t), t ∈ ℝ,

�(x,�)f (t) = e2�i�tf (t − x), t ∈ ℝ,

c((x,�), (y, �)) = e−2�i�x.

�(a)f =
∑

�∈Λ

a(�)�(�)f
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4  QCk and smooth quantum structures on twisted group algebras

4.1  Smoothness in noncommutative geometry

We dedicate this section to presenting a notion of smoothness used in noncommuta-
tive geometry. Given a C∗-algebra A, we fix a spectral triple (A,H,D) for A, where 
A ⊂ A is a dense ∗-subalgebra, H is a Hilbert space and D ∶ H → H is a densely 
defined selfadjoint operator.

The concept of regular spectral triples was introduced by Connes in [9], but we 
adopt the terminology of quantum Ck spectral triples introduced in [6].

Definition 4.1 Let A be a C∗-algebra and let (A,H,D) be a spectral triple for A. 
We say (A,H,D) is quantum Cn , or QCn , n ∈ ℕ , if for all a ∈ A both a and [D, a] 
are in the domain of ad n(|D|) . Here ad j(|D|)(a) is the j times iterated commutator 
[|D|, [|D|,… , [|D|, a]…]] , j ∈ ℕ . If (A,H,D) is QCn for all n ∈ ℕ , we say it is QC∞.

With this definition, we obtain a notion of smoothness on the C∗-algebra A. 
Namely, for any n ∈ ℕ it is by (4.1) natural to define

Indeed, given a spectral triple (A,H,D) for a C∗-algebra A, saying A ⊂ QAn is 
equivalent to saying (A,H,D) is QCn.

With a QCn-structure on a C∗-algebra A we can, for any Hilbert A-module E, 
specify natural QCn-submodules.

Definition 4.2 Let A be a C∗-algebra equipped with a QCn spectral triple for some 
n ≥ 1 , and let E be a left Hilbert A-module. Suppose there exists a uniformly norm 
bounded approximate unit (em)∞m=1 for E, with

Here Θg,h is the rank one module operator  . We say that 
(E, (em)

∞
m=1

) is a QCn-A-module if  for all i, j ∈ {1,… ,m} and all 
m ∈ ℕ . If (E, (em)∞m=1) is a QCk-A-module for all k ∈ ℕ , we say (E, (em)∞m=1) is a  
QC∞-A-module.

The above definition has, to the authors’ knowledge, not appeared in the literature 
before, but is inspired by the definition of Ck-modules in [31].

QAn ∶= {a ∈ A ∣ both a and [D, a] are in Dom ( ad n(|D|))}.

(4.1)em =

m∑

i=1

Θgi,gi
.
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4.2  Smooth structures on twisted group C∗‑algebras

At last, we can make precise a QCk-structure on twisted group C∗-algebras of lattices 
in phase space. To do this, we introduce the relevant spectral triples. We remind the 
reader that the LCA group G is assumed to be second-countable.

To construct spectral triples we shall want to consider the following.

Definition 4.3 Let v be a weight on G × Ĝ , let Λ ⊂ G × �G be a lattice, and let 
f ∶ [0,∞) → [0,∞) be a function. We say f is spectral triple compatible for v with 
respect to Λ if the following conditions are satisfied: 

i) There is a constant Cdif ∈ [0,∞) such that 

 for all �,� ∈ Λ.
ii) There are constants Cfin,Cgr ∈ (0,∞) such that 

 for all � ∈ Λ , and 

 for all but finitely many � ∈ Λ.
iii) For any real number M > 0 , the set {𝜆 ∈ Λ ∣ (f◦v)(𝜆) < M} is finite.

Remark 4.4 Note that condition ii) of (4.3) implies that for any q ∈ [1,∞] there is a 
constant Cq ∈ [0,∞) , depending only on q, such that

for all a ∈ 𝓁
q

(f◦v)
(Λ) . Moreover, since f may have zeros, 𝓁q

(f◦v)
(Λ) is in general not a 

Banach space.

Remark 4.5 The subscripts dif and gr on the constants in (4.3) are chosen so that 
in subsequent calculations it will be easier to understand which properties of f are 
being invoked. The subscript dif reflects that it expresses a bound on a difference 
and gr reflects a growth condition. The constant Cfin will not be repeatedly invoked, 
but is needed for a norm estimate in the proof of (4.6).

Even though in (3.3), we had very few restrictions on the weight v in terms of 
growth, condition iii) of (4.3) will generally require both v and f to “grow”. For 
example, if v is a constant weight, there can not exist any spectral triple compat-
ible function f for v unless Λ is a finite group. Thus we note that for a general 
weight on Λ , the collection of spectral triple compatible functions may be empty.

|(f◦v)(� + �) − (f◦v)(�)| ≤ Cdif(f◦v)(�)

(f◦v)(�) ≤ Cgrv(�)

v(�) ≤ Cfin(f◦v)(�),

‖a‖
𝓁
q

(f◦v)
(Λ) ≤ Cq‖a‖𝓁q

v (Λ)
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For a lattice Λ ⊂ G × �G , a weight v on G × Ĝ , and a spectral triple compatible 
function f for v with respect to Λ , we consider the (unbounded) selfadjoint opera-
tor D on �2(Λ)⊕ �

2(Λ) given by

We have the following result.

Theorem 4.6 Let v be a weight on G × Ĝ , let Λ be a lattice in G × Ĝ , let f be a spec-
tral triple compatible function for v with respect to Λ , and let D be defined by (4.2). 
Then (�1

vn
(Λ, c),�2(Λ)⊕ �

2(Λ),D) is an even spectral triple for C∗(Λ, c) whenever 
n ≥ 1 , and �1

vn
(Λ, c) ⊂ QC∗(Λ, c)k for n ≥ k + 1 . In other words, if n ≥ k + 1 then the 

spectral triple is quantum Ck.

Proof We begin by verifying that (�1
vn
(Λ, c),�2(Λ)⊕ �

2(Λ),D) is an even spectral 
triple for C∗(Λ, c) when n ≥ 1 . Note first that Dom (D) is given by

Throughout the proof, will do the calculations as if the action of �1
vn
(Λ, c) on �2(Λ) 

is by c-twisted convolution, denoted ∗c . This is technically only true on a dense sub-
space (for example �1

v
(Λ) ⊂ �

2(Λ) ), but the actual action is the continuous exten-
sion of c-twisted convolution. Due to the many conditions we need to check in this 
proof, we will not make an effort to specify that the elements of �2(Λ) are such that 
the action of �1(Λ, c) on them is given by c-twisted convolution. Rather we will just 
assume this for simplicity, and it will be clear from the calculations that the results 
go through with the usual extension by density arguments.

To see that a ⋅ Dom (D) ⊂ Dom (D) for all a ∈ �
1
vn
(Λ, c) , let (b, b�)T ∈ Dom (D).

Due to the form of D it suffices to show (f◦v) ⋅ (a ∗c b) ∈ 𝓁
2(Λ) . We have the 

following

(4.2)D =

(
0 (f◦v)

(f◦v) 0

)
.

Dom (D) = {(b, b�)T ∈ 𝓁
2(Λ)⊕ 𝓁

2(Λ) ∣ (f◦v)b, (f◦v)b� ∈ 𝓁
2(Λ)}.

‖(f◦v) ⋅ (a ∗c b)‖2𝓁2(Λ)
=
�

�∈Λ

(f◦v)(�)2��
�

�∈Λ

a(�)b(� − �)c(�, � − �)��
2

≤ �

�∈Λ

(f◦v)(�)2��
�

�∈Λ

�a(�)��b(� − �)��c(�, � − �)���
2

≤ C2
gr

�

�∈Λ

v(�)2��
�

�∈Λ

�a(�)��b(� − �)���
2

= C2
gr

�

�∈Λ

v(�)2�(�a� ∗ �b�)(�)�2

= C2
gr
‖�a� ∗ �b�‖2

𝓁2
v
(Λ)

≤ C2
gr
C2‖�a�‖2

𝓁1
v
(Λ)

‖�b�‖2
𝓁2
v
(Λ)

= C2
gr
C2‖a‖2

𝓁1
v
(Λ)

‖b‖2
𝓁2
v
(Λ)

,
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where C is the constant obtained using (3.12). Note that ‖b‖2
�2
v
(Λ)

 is finite by the 
assumption of the existence of Cfin in condition ii) of (4.3). By the calculation it then 
follows that aDom (D) ⊂ Dom (D) for all a ∈ �

1
vn
(Λ, c).

To show that [D, a] extends to a bounded operator on �2(Λ) for all a ∈ �
1
vn
(Λ) , 

note that for (b, b�)T ∈ �
2(Λ)⊕ �

2(Λ) we have

Hence it suffices to show that there is K ≥ 0 such that 
‖(f◦v) ⋅ (a ∗c b) − a ∗c ((f◦v) ⋅ b)‖𝓁2(Λ) ≤ K‖b‖

𝓁2(Λ) for all b ∈ �
2(Λ) . Using (4.3) 

we then have

where we once again obtain the constant C using (3.12). It follows that [D,  a] 
extends to a bounded operator on �2(Λ).

Lastly, we need to verify that (1 + D2)−1∕2 extends to a compact operator on 
�
2(Λ) . Since D is just a multiplication operator, we see that (1 + D2)−1∕2 is just the 

multiplication operator

We will find a sequence of finite rank operators converging to (1 + D2)−1∕2 . For sim-
plicity, we only look at one component, and denote by A the multiplication operator 

[D, a]

(
b

b�

)
=

(
(f◦v) ⋅ (a ∗c b

�) − a ∗c ((f◦v) ⋅ b
�)

(f◦v) ⋅ (a ∗c b) − a ∗c ((f◦v) ⋅ b)

)
.

‖(f◦v) ⋅ (a ∗c b) − a ∗c (((f◦v)) ⋅ b)‖2𝓁2(Λ)

=
�

�∈Λ

��
�

�∈Λ

(f◦v)(�)a(�)b(� − �)c(�, � − �)

− a(�)b(� − �)(f◦v)(� − �)c(�, � − �)��
2

≤ �

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)�c(�, � − �)��(f◦v)(�) − (f◦v)(� − �)���
2

≤ �

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)�Cdif(f◦v)(�)
��
2

≤ C2
dif

�

�∈Λ

��
�

�∈Λ

�a(�)�b(� − �)�Cgrv(�)
��
2

= C2
dif
C2
gr

�

�∈Λ

��
�

�∈Λ

�a(�)�v(�)�b(� − �)���
2

= C2
dif
C2
gr
‖(�a� ⋅ v) ∗ �b�‖2

𝓁2(Λ)

= C2
dif
C2
gr
C2‖�a� ⋅ v‖2

𝓁1(Λ)
‖�b�‖2

𝓁2(Λ)

= C2
dif
C2
gr
C2‖�a�‖2

𝓁1
v
(Λ)

‖�b�‖2
𝓁2(Λ)

= C2
dif
C2
gr
C2‖a‖2

𝓁1
v
(Λ)

‖b‖2
𝓁2(Λ)

,

(1 + D2)−1∕2 =

(
(1 + (f◦v)2)−1∕2 0

0 (1 + (f◦v)2)−1∕2

)
.
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given by multiplication by (1 + (f◦v)2)−1∕2 . As G is locally compact and second-
countable, it is �-compact, and so we deduce that Λ is also �-compact. We may then 
find a nested sequence of finite sets (Fn) with ∪n∈ℕFn = Λ . Denote by �� , � ∈ Λ , the 
standard basis for �2(Λ) . We then define An , n ∈ ℕ , to be the multiplication operator 
given by

Then An is a finite-rank operator for all n ∈ ℕ , and we claim that An converges to A 
in operator norm as n → ∞ . For an operator defined by scalar multiplication on an 
orthonormal basis it is easy to prove that the operator norm is given by the supre-
mum of the absolute value of the scalars. Using this, we get

which goes to 0 as n → ∞ by condition iii) of (4.3). We deduce that A is the operator 
norm limit of finite rank operators, hence a compact operator. As

we also deduce that (1 + D2)−1∕2 is a compact operator. This shows that 
(�1

vn
(Λ, c),�2(Λ)⊕ �

2(Λ),D) is a spectral triple for C∗(Λ, c) whenever n ≥ 1 . It is an 
even spectral triple since it is graded by

It remains to show that (�1
vn
(Λ, c),�2(Λ)⊕ �

2(Λ),D) is a QCk spectral triple for 
n ≥ k + 1 . Note that

since D is just a multiplication operator and (f◦v)(�) ≥ 0 for all � ∈ Λ . We also note 
that we can write out the commutator quite explicitly. An easy induction argument 
will show that

An�� ∶=

{
(1 + ((f◦v)(�))2)−1∕2�� if � ∈ Fn

0 otherwise.

‖A − An‖op = sup
�∈Λ

‖(A − An)��‖2

= sup
�∈Λ⧵Fn

‖(1 + ((f◦v)(�))2)−1∕2��‖2

= sup
�∈Λ⧵Fn

�(1 + ((f◦v)(�))2)−1∕2�

(1 + D2)−1∕2 =

(
A 0

0 A

)
,

� =

(
1 0

0 − 1

)
.

|D| =
(
(f◦v) 0

0 (f◦v)

)

ad k(|D|)(a) =
k∑

i=0

(−1)i
(
k

i

)
|D|k−ia|D|i.
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We need only look at what happens in one component. Let b ∈ �
2(Λ) and 

a ∈ �
1
vn
(Λ, c) . We have by slight abuse of notation

with the constant C obtained using (3.12). It follows that a ∈ �
1

vk
(Λ) implies 

a ∈ Dom ( ad k(|D|)) . In particular it holds for a ∈ �
1
vn
(Λ, c) as long as n ≥ k.

Along the same lines, we verify that [D, a] ∈ Dom ( ad k(|D|)) for a ∈ �
1
vn
(Λ, c) , 

n ≥ k + 1 . Ignoring the fact that D interchanges the two components, we have for 
b ∈ �

2(Λ) by slight abuse of notation

‖ ad k(�D�)(a)(b)‖2
𝓁2(Λ)

= ‖
k�

i=0

(−1)i
�
k

i

�
�D�k−ia�D�i(b)‖2

𝓁2(Λ)

=
�

�∈Λ

��
�

�∈Λ

k�

i=0

(−1)i
�
k

i

�
(f◦v)(�)k−ia(�)⋅

(f◦v)(� − �)ib(� − �)c(�, � − �)��
2

=
�

�∈Λ

��
�

�∈Λ

a(�)b(�, � − �)c(�, � − �)⋅

k�

i=0

(−1)i
�
k

i

�
(f◦v)(�)k−i(f◦v)(� − �)i��

2

≤ �

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)��c(�, � − �)�⋅

�
k�

i=0

(−1)i
�
k

i

�
(f◦v)(�)k−i(f◦v)(� − �)i���

2

=
�

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)��(f◦v)(�) − (f◦v)(� − �)�k��
2

≤ �

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)�Ck
dif
(f◦v)(�)k��

2

≤ C2k
dif

�

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)�Ck
gr
v(�)k��

2

= C2k
dif
C2k
gr

�

�∈Λ

��
�

�∈Λ

�a(�)�v(�)k�b(� − �)���
2

= C2k
dif
C2k
gr
‖(�a�vk) ∗ �b�‖2

𝓁2(Λ))

≤ C2k
dif
C2k
gr
C2‖�a�vk‖2

𝓁1(Λ)
‖�b�‖2

𝓁2(Λ)

= C2k
dif
C2k
gr
C2‖�a�‖2

𝓁
1

vk
(Λ)

‖�b�‖2
𝓁2(Λ)

= C2k
dif
C2k
gr
C2‖a‖2

𝓁
1

vk
(Λ)

‖b‖2
𝓁2(Λ)

,
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once again with constant C obtained from (3.12). We then see that 
�
1
vn
(Λ, c) ⊂ QC∗(Λ, c)k if n ≥ k + 1 , which finishes the proof.   ◻

Now let D be given by

Then D = |D| , and the following is also true by more or less the same proof as above 
except for the grading.

Theorem 4.7 Let v be a weight on G × Ĝ , let Λ be a lattice in G × Ĝ , let f be a spec-
tral triple compatible function for v with respect to Λ , and let D be defined by (4.3). 

‖ ad k(�D�)([D, a])(b)‖2
𝓁2(Λ)

= ‖
k�

i=0

(−1)i
�
k

i

�
�D�k−i[D, a]�D�ib‖2

𝓁2(Λ)

=
�

�∈Λ

��
�

�∈Λ

a(�)b(� − �)c(�, � − �)⋅

� k�

i=0

(−1)i
�
k

i

��
(f◦v(�)k+1−i(f◦v)(� − �)i

− (f◦v)k−i(�)(f◦v)(� − �)i+1
����

2

≤ �

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)��c(�, � − �)��(f◦v)(�) − (f◦v)(� − �)�⋅

�
k�

i=0

(−1)i
�
k

i

�
(f◦v)(�)k−i(f◦v)(�)i���

2

=
�

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)�⋅

�(f◦v)(�) − (f◦v)(� − �)��(f◦v)(�) − (f◦v)(� − �)�k��
2

≤ �

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)�Cdif(f◦v)(�)C
k
dif
(f◦v)(�)k��

2

≤ C2k+2
dif

�

�∈Λ

��
�

�∈Λ

�a(�)��b(� − �)�Cgrv(�)C
k
gr
v(�)��

2

= C2k+2
dif

C2k+2
gr

�

�∈Λ

��
�

�∈Λ

�a(�)�v(�)k+1�b(� − �)���
2

= C2k+2
dif

C2k+2
gr

‖(�a� ⋅ vk+1) ∗ �b�‖2
𝓁2(Λ)

≤ C2k+2
dif

C2k+2
gr

C2‖�a� ⋅ vk+1‖2
𝓁1(Λ)

‖�b�‖2
𝓁2(Λ)

= C2k+2
dif

C2k+2
gr

C2‖�a�‖2
𝓁
1

vk+1
(Λ)

‖�b�‖2
𝓁2(Λ)

= C2k+2
dif

C2k+2
gr

C2‖a‖2
𝓁
1

vk+1
(Λ)

‖b‖2
𝓁2(Λ)

,

(4.3)D =

(
(f◦v) 0

0 (f◦v)

)
.
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Then (�1
vn
(Λ, c),�2(Λ)⊕ �

2(Λ),D) is a spectral triple for C∗(Λ, c) whenever n ≥ 1 , 
and �1

vn
(Λ, c) ⊂ QC∗(Λ, c)k for n ≥ k + 1 . In other words, if n ≥ k + 1 then the spec-

tral triple is quantum Ck.

4.3  Modulation spaces as smooth modules

In (4.6), we saw how to obtain an even QCk spectral triple 
(�1

vn
(Λ, c),�2(Λ)⊕ �

2(Λ),D) for C∗(Λ, c) whenever n ≥ k + 1 . The goal of this sec-
tion is to show how the Heisenberg module EG,Λ of (3.3) can be equipped with a 
QCk-structure for any k ∈ ℕ . The proof follows the lines of [37, Proposition 2.1] and 
[38, Proposition 3.7].

Proposition 4.8 Let v be a weight on G × Ĝ , let Λ be a finitely generated lattice in 
G × Ĝ , let f be a spectral triple compatible function for v with respect to Λ , and let 
C∗(Λ, c) be given a QCk-structure by ways of (4.6) or (4.7) for some k ∈ ℕ . Then 
there is a uniformly norm bounded approximate unit (em)∞m=1 of the form (4.1) such 
that (EG,Λ, (em)

∞
m=1

)  is a QCk-module over C∗(Λ, c).

Proof We first fix k ∈ ℕ . It suffices to prove that we can find a (uniformly norm 
bounded) approximate unit (em)∞m=1 where

for which  for all i, j ∈ {1,… ,m} and all 
m ∈ ℕ , as determined by (4.6) or (4.7). Indeed, we will find a unit. Note first that 
EG,Λ is a C∗(Λ, c)-C∗(Λ◦, c)-equivalence bimodule and both C∗-algebras are uni-
tal. Moreover, we know that M1

vk+1
(G) is an �1

vk+1
(Λ, c)-𝓁1

vk+1
(Λ◦, c)-pre-equivalence 

bimodule. Now note that 𝓁1

vk+1
(Λ◦, c) is unital with the same unit as C∗(Λ◦, c) . Fur-

thermore, 𝓁1

vk+1
(Λ◦, c) is spectrally invariant in C∗(Λ◦, c) by (3.13). Hence we are in 

the situation of (2.6). Since M1

vk+1
(G) is a pre-equivalence bimodule, we may find 

finitely many elements h1,… , hl, h
�
1
,… , h�

l
∈ M1

vk+1
(G) such that  is 

invertible. As 𝓁1

vk+1
(Λ◦, c) is spectrally invariant in C∗(Λ◦, c) , it follows that

If we then set  we get

em =

m∑

i=1

Θgi,gi
,
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But then (hi)li=1 is a module frame for EG,Λ by (2.4) with hi ∈ M1

vk+1
(G) for all 

i = 1,… , l . It then follows by (2.6) that there are g1,… , gl ∈ M1

vk+1
(G) such that 

 For any f ∈ EG,Λ we then have

which shows that (gi)li=1 has the desired property. Since  for all 
i, j = 1,… , l , it follows that (EG,Λ, (gi)

l
i=1

) is a QCk-module over C∗(Λ, c) .   ◻

Remark 4.9 Note that in (4.8) one can omit the assumption that Λ is finitely gener-
ated if we can guarantee that the gi ’s in the proof exist with gi ∈ M1

vk+1
(G) for all 

i = 1,… , l . Indeed the only reason to include the qualifier that Λ is finitely gener-
ated is that we a priori do not know that such a generating sequence (gi)li=1 exists in 
the general case, and therefore want to use (3.13).

Even in the case of elementary groups as in [38], the above results are stronger 
than just being able to find tight module frames with elements in the Schwartz space. 
Indeed, in case G = ℝd , d ∈ ℕ , and Λ is a lattice in ℝd × ℝ̂d ≅ ℝ2d , Parseval module 
frames with elements in Schwartz space S(ℝd) would give the Heisenberg module a 
QC∞-structure. However, the Feichtinger algebra approach gives the possibility of 
finding Parseval module frames which give the Heisenberg module a QCk-structure, 
which is not simultaneously a QCk+1-structure. We give some examples for the non-
commutative 2-torus in (4.5).

4.4  The link to Gabor analysis

The existence of sufficiently regular approximate identities from (4.2) is in the set-
ting of Heisenberg modules a result about existence of multi-window Gabor frames 
with windows in suitably weighted Feichtinger algebras.

The following result is a special case of [3, Theorem 3.16].

Proposition 4.10 Let G be a second-countable LCA group, let Λ ⊂ G × �G be a lat-
tice, and let g1,… , gl be elements of the Heisenberg module EG,Λ . Then the follow-
ing are equivalent:

i)  The set {g1,… , gl} is a Parseval module frame for EG,Λ as a left C∗(Λ, c)-mod-
ule. That is, for all f ∈ EG,Λ we have

ii)  The system
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is a Parseval multi-window Gabor frame for L2(G).

The following is then immediate by (4.8) and (4.10).

Theorem 4.11 Let v be a weight on G × Ĝ , let Λ be a lattice in G × Ĝ , let f be a 
spectral triple compatible function for v with respect to Λ , and let C∗(Λ, c) be given 
a QCk-structure by ways of (4.6) or (4.7) for some k ∈ ℕ . Then a Parseval multi-win-
dow Gabor frame G(g1,… , gl;Λ) for L2(G) with gj ∈ M1

vn
(G) , j = 1,… , l , n ≥ k + 1 , 

gives the Heisenberg module EG,Λ the structure of a QCk-module over C∗(Λ, c).

4.5  Example: the noncommutative 2‑torus

We refer the reader to [6] or [40] for details on this example. What follows will 
also build on (1).

On the noncommutative 2-torus, denoted C∗(Λ, c) in this section, there are two 
canonical unbounded derivations denoted by �1 and �2 . They are given by

for (a(x,�))(x,�)∈Λ ∈ C∗(Λ, c) . These are only densely defined, but we see that 
�
1
v
(Λ, c) ⊂ Dom 𝜕i for i = 1, 2 , where v is the weight v(x,�) = (1 + x2 + �2)1∕2 . In 

the rest of this section v will denote this weight. We may then consider the spectral 
triple for the noncommutative 2-torus given by

where D is the unbounded operator given by

Lemma 4.12 The triple

defined above is a spectral triple for C∗(Λ, c).

Proof For a ∈ �
1
v
(Λ, c) it follows by the Leibniz rule for �i , i = 1, 2 , that 

a ⋅ Dom (D) ⊂ Dom (D) . Moreover, a standard calculation will show that the com-
mutator [D, a] extends to left multiplication by the matrix

G(g1,… , gl;Λ) = {�(�)gj ∶ � ∈ Λ, 1 ≤ j ≤ l}

�1 ∶ (a(x,�))(x,�)∈Λ ↦ (2�ixa(x,�))(x,�)∈Λ

�2 ∶ (a(x,�))(x,�)∈Λ ↦ (2�i�a(x,�))(x,�)∈Λ,

(�1
v
(Λ, c),�2(Λ)⊕ �

2(Λ),D)

D =

(
0 �1 + i�2

−�1 + i�2 0

)
.

(�1
v
(Λ, c),�2(Λ)⊕ �

2(Λ),D)
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which is a bounded operator. That a(1 + D2)−1∕2 extends to a compact operator fol-
lows as in the proof of (4.6).   ◻

Remark 4.13 The spectral triple of (4.12) is also known as the canonical spectral tri-
ple for the noncommutative 2-torus. However, the ∗-subalgebra of C∗(Λ, c) typically 
chosen is the one consisting of the Schwartz sequences.

D is a selfadjoint operator and D2 is the multiplication operator given by

We now let (f◦v)(�) = 2�(v(�)2 − 1)1∕2 for � ∈ Λ . Then one can verify that f is spec-
tral triple compatible for v with respect to any lattice Λ ⊂ ℝ2 , and we obtain

Hence

which we create by ways of (4.2) is related to the canonical spectral triple for the 
noncommutative 2-torus. By (4.7),

equips the noncommutative 2-torus with a QCk-structure if n ≥ k + 1 . However,

also equips the noncommutative 2-torus with a QCk-structure if n ≥ k + 1 . We 
saw that it defined a spectral triple in (4.12). That a ∈ �

1
vn
(Λ, c) is such that 

a ∈ Dom ( ad k(|D|) for n ≥ k + 1 follows exactly as in the proof of (4.6). If we real-
ize that �1(a) + i�2(a) ∈ �

1

vn−1
(Λ, c) and −�1(a) + i�2(a) ∈ �

1

vn−1
(Λ, c) , it also follows 

that [D, a] ∈ Dom ( ad k(|D|)) for n ≥ k + 1 by essentially the same argument as in 
the proof of (4.6), since we did that proof looking only at one component. Hence 
the twisted convolution algebra �1

vn
(Λ, c) becomes a suitable ∗-subalgebra to give the 

noncommutative 2-torus a QCk-structure for n ≥ k + 1 both for the canonical spec-
tral triple and for the spectral triple constructed by ways of (4.2).

By (4.4), we may then equip Heisenberg modules with QCk-structures by find-
ing suitably regular multi-window Gabor frames. We illustrate this with some 
examples. Note, however, that there are very few functions g ∈ L2(ℝ) for which 
the set

(
0 �1(a) + i�2(a)

−�1(a) + i�2(a) 0

)
,

D2 =

(
4�2(x2 + �2) 0

0 4�2(x2 + �2)

)
.

(
(f◦v) 0

0 (f◦v)

)
=

(
2�(x2 + �2)

1

2 0

0 2�(x2 + �2)
1

2

)
= |D|.

(�1
v
(Λ, c),�2(Λ)⊕ �

2(Λ), |D|)

(�1
vn
(Λ, c),�2(Λ)⊕ �

2(Λ), |D|)

(�1
vn
(Λ, c),�2(Λ)⊕ �

2(Λ),D)
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is known.

Example (QC∞-structures) Let Λ = �ℤ × �ℤ be a lattice in ℝ2 with 𝛼, 𝛽 > 0 and 
𝛼𝛽 < 1 . This yields a Heisenberg module Eℝ,Λ by the constructions above. A cel-
ebrated result in time–frequency analysis tells us that time–frequency shifts of 
the Gaussian g(t) = 21∕4e−�t

2 determine a Gabor frame G(g, �ℤ × �ℤ) for L2(ℝ) if 
and only if 𝛼𝛽 < 1 , see [30, 39]. If S then denotes the frame operator with respect 
to g, G(S−1∕2g, �ℤ × �ℤ) is a Parseval frame for L2(ℝ) . By (2.6) it follows that if 
g ∈ M1

vs
(ℝ) , s ∈ [0,∞) , so is S−1∕2g . But g is a Schwartz function, hence it is in 

∩s≥0M1
vs
(ℝ) = S(ℝ) [17, Proposition 11.3.1], where S(ℝ) denotes the Schwartz func-

tions on ℝ . It follows that {S−1∕2g} gives the Heisenberg module Eℝ,Λ a QC∞-struc-
ture for all 𝛼𝛽 < 1.

Example (QCk-structure) Let g be a function in M1

vk+1
(ℝ) . Then by [17, p. 120] G(g;Λ) 

is a frame for L2(ℝ) for some Λ = �ℤ × �ℤ , as long as 𝛼, 𝛽 > 0 are small enough. 
Let S be the frame operator of g. Then as above it follows that S−1∕2g ∈ M1

vk+1
(ℝ) 

also. As in the previous example it follows that {S−1∕2g} then gives Eℝ,Λ a QCk

-structure.
For explicit examples of QCk-structures on Heisenberg modules that are 

not simultaneously QC∞-structures one may use B-splines BN , see [7, Sec-
tion A.8, Section  11.7]. It is known that G(BN ,Λ) is a frame for L2(ℝ) whenever 
Λ = 𝛼ℤ × 𝛽ℤ ⊂ ℝ2 is such that � ∈ (0,N) and � ∈ (0, 1∕N] [7, Corollary 11.7.1]. 
Values of k for which a given BN gives a Heisenberg module a QCk-structure can be 
done via the Rihaczek distribution R(g, g)(x,�) = g(x)ĝ(�)e−2�ix�.

For the following example, note that if g ∈ L2(ℝ) and Λ ⊂ ℝ × �ℝ is so that 
G(g;Λ) is a frame for L2(ℝ) , then s(Λ) ≤ 1 [36]. For Λ = �ℤ × �ℤ , 𝛼, 𝛽 > 0 , 
s(Λ) = �� . However, even for s(Λ) > 1 we may construct Heisenberg modules. 
To obtain QCk-structures on such Heisenberg modules Eℝ,Λ , we need several 
generators.

Example (Multiple generators) Suppose G(g;Λ) is a Gabor system for L2(ℝ) and sup-
pose s(Λ) ∈ [l − 1, l) , for some integer l ≥ 2 . Then there exist points z1, ..., zl in ℝ2 
and a lattice Λ0 such that Λ = z1Λ0 ∪⋯ ∪ znΛ0 with s(Λ0) < 1 , see the proof of [22, 
Corollary 5.6]. Hence if G(g,Λ0) is a Gabor frame, then G(�(z1)g, ..., �(zl)g;Λ) is a 
multi-window Gabor frame for L2(ℝ).

In particular, let g be the Gaussian and let �� be in [l − 1, l) for some n ∈ ℕ . 
Then there exist z1, ..., zl in ℝ2 such that G(�(z1)g, ..., �(zl)g;�ℤ × �ℤ) is a multi-
window Gabor frame for L2(ℝ) . Hence if S is the multi-window frame operator for 
G(�(z1)g, ...,�(zl)g;�ℤ × �ℤ) , then {S−1∕2g1,… , S−1∕2gn} implements a QC∞-struc-
ture on Eℝ,Λ.

{Λ ⊂ ℝ × �ℝ ∣ Λ is a lattice and G(g;Λ) is a frame for L2(ℝ)}
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4.6  Example: the noncommutative solenoid

Noncommutative solenoids have attracted some interest in the theory of operator 
algebras [26, 27] and time–frequency analysis [11]. Let us discuss how it fits into 
our framework. We denote the field of p-adic numbers by ℚp and by ℤp its closed 
unit ball, the p-adic integers. Recall that ℝ ×ℚp is a self-dual locally compact 
group, see [35].

For any � ∈ ℝ ⧵ {0} the mapping

embeds ℤ[1∕p] as a lattice into ℝ ×ℚp and is self-dual, see e.g. [27]. Heisenberg 
modules over noncommutative solenoids have been linked with Gabor frames for 
lattices in ℝ ×ℚp in [11]. Noncommutative solenoids are the twisted group C∗-alge-
bra C∗(Λ, c) of Λ,

see [26, 27]. Note that Λ is not finitely generated and hence C∗(Λ, c) is not generated 
by finitely many unitaries as is the case of the noncommutative 2-torus.

For every � = (�∞,�p) ∈ ℝ ×ℚp we define the modulation operator by

for (t∞, tp) ∈ ℝ ×ℚp . A Gabor system generated by a function g ∈ L2(ℝ ×ℚp) and 
the lattice

is thus of the form

Let us construct a spectral triple on noncommutative solenoids, which as far as we 
know has not been considered before in the literature. As Dirac operator, we take the 
one introduced in (4.2) to ℝ ×ℚp for the lattice Λ = {(�q, q, �r, r) ∶ q, r ∈ ℤ[1∕p]}

One of the results in [11, Corollary 3.3] allows us to construct QCk structures on the 
Heisenberg module Eℝ×ℚp,Λ

.
For the construction of smooth structures, we consider the weighted Feicht-

inger algebras M1
vs
(ℝ ×ℚp) , where the weight v

s
(x,�, q, r) = (1 + |x|2 + |�

|2 + |q|2 + |r|2)s∕2 for s ≥ 0 . It follows from, e.g., [13, Theorem 7], that the func-
tions in M1

vs
(ℝ ×ℚp) are exactly those of the form

�� ∶ ℤ[1∕p] → ℝ ×ℚp, ��(q) = (�q, q)

Λ = 𝜓𝛼(ℤ[1∕p]) × 𝜓𝛽(ℤ[1∕p]) = {(𝛼q, q, 𝛽r, r) ∶ q, r ∈ ℤ[1∕p]}, 𝛼, 𝛽 > 0,

M�f (t∞, tp) ∶= M�∞,�p
f (t∞, tp) = e2�i(�∞t∞−{�ptp}p)f (t∞, tp),

Λ = 𝜓𝛼(ℤ[1∕p]) × 𝜓𝛽(ℤ[1∕p]) = {(𝛼q, q, 𝛽r, r) ∶ q, r ∈ ℤ[1∕p]}, 𝛼, 𝛽 > 0

{�(�)g}�∈Λ =
{
(t∞, tp) ↦ e2�i(�rt∞−{rtp}p)g(t∞ − �q, tp − q)

}
q,r∈ℤ[1∕p]

.

D =

(
0 (1 + |x|2 + |�|2 + |q|2 + |r|2)s∕2

(1 + |x|2 + |�|2 + |q|2 + |r|2)s∕2 0

)
.
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for all j ∈ ℕ and such that 
∑

j∈ℕ ‖f
(ℝ)

j
‖M1

vs
(ℝ) ‖f

(ℚp)

j
‖M1

vs
(ℚp)

< ∞ . The norm on 
M1

vs
(ℝ ×ℚp) is given by

where the functions f, {f (ℝ)
j

}j∈ℕ and {f (ℚp)

j
}j∈ℕ are related as in (4.4) and the infimum 

is taken over all possible representations of f as in (4.4).

Theorem  4.14 For any g(ℝ) ∈ �0(ℝ) and 𝛼, 𝛽 > 0 the following statements are 
equivalent:

i)  The function g(ℝ) generates a Gabor frame for L2(ℝ) with respect to the lattice 
�ℤ × �ℤ.

ii)  For any prime number p the function g = g(ℝ) ⊗ 𝟙ℤp
 generates a Gabor frame 

for L2(ℝ ×ℚp) with respect to the lattice

in ℝ ×ℚp × ℝ̂ × ℚ̂p.

Even though the lattice Λ of (4.14) is not finitely generated, we can still use the 
developed machinery to describe QCk structures on Eℝ×ℚp,Λ

 , as alluded to in (4.9). 
Indeed, we have that {�(q, r)𝟙ℤp

}q,r∈ℤ[1∕p] is an orthonormal basis for L2(ℚp) and if 
g(ℝ) is the Gaussian function, then g(ℝ) ⊗ 𝟙ℤp

 generates a Gabor frame for 
L2(ℝ ×ℚp) if and only if 𝛼𝛽 < 1 . Since 𝟙ℤp

 is in M1
vk
(ℚp) for any k ≥ 0 , then 

S−1∕2g(ℝ) ⊗ 𝟙ℤp
 generates a Parseval frame for L2(ℝ ×ℚp) if and only if 𝛼𝛽 < 1 . By 

the explicit description of M1
vk
(ℝ ×ℚp) given in (4.4), we have that there exists a 

QCk structure on Eℝ×ℚp,Λ
 for any k ≥ 0 . We could of course do similar constructions 

by for example choosing g(ℝ) to be some other function from the examples of (4.5).
Thus the results for the noncommutative 2-torus may also be used to obtain QCk

-structures for the Heisenberg modules over noncommutative solenoids. Hence we 
have QCk-structures on the Heisenberg module Eℝ×ℚp,Λ

 which does not rely on any 
kind of derivations on the noncommutative solenoids and indicates the usefulness of 
modulation spaces in this context.
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(4.4)f =
∑

j∈ℕ

f
(ℝ)

j
⊗ f

(ℚp)

j
where f

(ℝ)

j
∈ M1

vs
(ℝ), f

(ℚp)

j
∈ M1

vs
(ℚp)

‖f‖M1
vs
(ℝ×ℚp)

= inf
��

j∈ℕ

‖f (ℝ)
j

‖M1
vs
(ℝ) ‖f

(ℚp)

j
‖M1

vs
(ℚp)

�
,

Λ = ��(ℤ[1∕p]) × ��(ℤ[1∕p]) = {(�q, q, �r, r) ∶ q, r ∈ ℤ[1∕p]}
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