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1. Introduction

In operator theory one views the space of trace class operators S1 as the noncommuta-
tive analogue of the space of absolutely integrable functions L1(Rd) by viewing the trace 
of an operator as the substitute of the Lebesgue integral of a function. Over the years 
this point of view has led to a number of results in operator theory where one has ex-
tended concepts for functions to operators in an attempt to formulate operator-theoretic 
analogues of statements about functions. Guided by this meta-statement, Werner has 
proposed an operator-theoretic variant of harmonic analysis in [57], which originated 
from his work in quantum physics and is thus referred to as “quantum harmonic analy-
sis”.

In this paper we establish a version of Wiener’s Tauberian theorem in the setting of 
quantum harmonic analysis. Wiener’s Tauberian theorem is a cornerstone of harmonic 
analysis. In short, it analyses the asymptotic properties of a bounded function by testing 
it with convolution kernels.

Theorem (Wiener’s Tauberian theorem). Suppose f ∈ L∞(Rd) and h ∈ L1(Rd) with a 
non-vanishing Fourier transform ĥ. Then the following implication holds for A ∈ C: if

lim
x→∞

(h ∗ f)(x) = A

∫
Rd

h(y) dy,

then for any g ∈ L1(Rd) we have

lim
x→∞

(g ∗ f)(x) = A

∫
Rd

g(y) dy.

Moreover, Wiener noticed that the Tauberian condition holds only for h ∈ L1(Rd)
satisfying the condition ĥ(ω) �= 0 for any ω ∈ Rd. The key step in the proof of this 
equivalence is based on the following approximation theorem. For f ∈ L1(Rd) we denote 
by Txf(t) = f(t − x) the translate of f by x ∈ Rd.

Theorem (Wiener’s approximation theorem). For f ∈ L1(Rd) we have that span{Txf :
x ∈ Rd} = L1(Rd) if and only if f̂(ω) �= 0 for any ω ∈ Rd.

In quantum harmonic analysis one complements the convolution f ∗ g(x) =∫
Rd f(t)g(x − t) dt of f, g ∈ L1(Rd) with two new convolution operations: the con-

volution f � S of f ∈ L1(Rd) and a trace class operator S, and the convolution S � T

of two trace class operators S and T . This is achieved by replacing, for z ∈ R2d, the 
translation Tzf of a function by the translation αz(R) of a bounded operator R given 
by

αz(R) = π(z)Rπ(z)∗ for z ∈ R2d,
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where (π(z)ψ) (t) = e2πiω·tψ(x − t) denotes the time-frequency shift of ψ ∈ L2(Rd) by 
z = (x, ω) ∈ R2d.

For f ∈ L1(R2d) and S ∈ S1, where S1 denotes the trace class operators, the convo-
lution f � S ∈ S1 is then defined by the Bochner integral

f � S :=
∫

R2d

f(z)αz(S) dz,

which is another trace class operator. The convolution S � T of two operators S, T ∈ S1

is the function

S � T (z) = tr(Sαz(Ť )) for z ∈ R2d,

where Ť = PTP , with P the parity operator Pψ(t) = ψ(−t).
In summary, the convolutions f � S and S � T arise as extensions of the convolution 

of functions where one replaces either one or both L1-functions with trace class opera-
tors. The seminal paper [57] contains a number of operator-theoretic versions of basic 
results from harmonic analysis, e.g. the Riemann-Lebesgue lemma, the Hausdorff-Young 
theorem and Wiener’s approximation theorem. The variant of Wiener’s approximation 
theorem in [57] concerns translates of a trace class operator being dense in the space 
of trace class operators, and is established by defining an operator-theoretic Fourier 
transform, the Fourier-Wigner transform FW (S) ∈ L∞(R2d) of a trace class operator S.

The appropriate Fourier transform for functions in L1(R2d) is the symplectic Fourier 
transform Fσ and the following classes of functions and operators are going to be crucial 
in our Tauberian theorems for quantum harmonic analysis:

W (R2d) := {f ∈ L1(R2d) : Fσ(f)(z) �= 0 for any z ∈ R2d},

W := {S ∈ S1 : FW (S)(z) �= 0 for any z ∈ R2d}.

Our first main result is a generalization of Wiener’s Tauberian Theorem for functions on 
R2d. Here K denotes the space of compact operators on L2(Rd) and IL2 is the identity 
operator.

Theorem 4.1 (Tauberian theorem for bounded functions). Let f ∈ L∞(R2d), and assume 
that one of the following equivalent statements holds for some A ∈ C:

(i) There is some S ∈ W such that

f � S = A · tr(S) · IL2 + K

for some compact operator K ∈ K.
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(ii) There is some a ∈ W (R2d) such that

f ∗ a = A ·
∫

R2d

a(z) dz + h

for some h ∈ C0(R2d).

Then both of the following statements hold:

(1) For any T ∈ S1, f � T = A · tr(T ) · IL2 + KT for some compact operator KT ∈ K.
(2) For any g ∈ L1(R2d), f ∗ g = A ·

∫
R2d g(z) dz + hg for some hg ∈ C0(R2d).

We note that the equivalence (ii) ⇐⇒ (2) is Wiener’s original Tauberian theorem. 
Similarly to Wiener’s Tauberian theorem, this theorem concerns the asymptotic prop-
erties of the operator R when we use the common intuition that asymptotic properties 
of an operator are properties that are invariant under compact perturbations, see [7, 
Chap. 3]. There is also a version of the preceding theorem for bounded operators:

Theorem 5.1 (Tauberian theorem for bounded operators). Let R ∈ L(L2), and assume 
that one of the following equivalent statements holds for some A ∈ C:

(i) There is some S ∈ W such that

R � S = A · tr(S) + h

for some h ∈ C0(R2d).
(ii) There is some a ∈ W (R2d) such that

R � a = A ·
∫

R2d

a(z) dz · IL2 + K

for some compact operator K ∈ K.

Then both of the following statements hold:

(1) For any T ∈ S1, R � T = A · tr(T ) + hT for some hT ∈ C0(R2d).
(2) For any g ∈ L1(R2d), R � g = A ·

∫
R2d g(z) dz · IL2 +Kg for some compact operator 

Kg ∈ K.

These Tauberian theorems have numerous applications to localization operators, 
Toeplitz operators and quantization schemes. The link to localization operators allows 
us to add another equivalent assumption to Theorem 4.1, formulated in terms of the 
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short-time Fourier transform. Recall that the short-time Fourier transform Vφψ of ψ for 
the window φ is given by Vφψ(z) = 〈ψ, π(z)φ〉.

Proposition 4.3. Let A ∈ C. Then f ∈ L∞(R2d) satisfies the equivalent conditions (i)
and (ii) in Theorem 4.1 if and only if

(iii) There is some non-zero Schwartz function Φ on R2d such that for every R > 0

lim
|x|→∞

sup
|ω|≤R

|VΦ(f −A)(x, ω)| = 0.

As condition (ii) in Theorem 4.1 is the condition from Wiener’s classical Tauberian 
theorem, condition (iii) above, which first appeared in the context of localization op-
erators in [27], is a new characterization of the functions to which Wiener’s classical 
Tauberian theorem applies.

To be precise, the localization operator Aϕ1,ϕ2
f with mask f ∈ L∞(R2d) and windows

ϕ1, ϕ2 ∈ L2(Rd), is defined by

Aϕ1,ϕ2
f (ψ) =

∫
R2d

f(z)Vϕ1ψ(z)π(z)ϕ2 dz.

The link from localization operators to Theorem 4.1 is then the simple relation Aϕ1,ϕ2
f =

f � (ϕ2⊗ϕ1), where ϕ2⊗ϕ1(ψ) = 〈ψ,ϕ1〉L2 ϕ2. Localization operators are further linked 
to Toeplitz operators on Gabor spaces Vϕ(L2) – which contain the Bargmann-Fock space 
as a special case – this allows the study of Toeplitz operators using Theorem 4.1.

The Gabor space associated with ϕ with ‖ϕ‖L2 = 1 is Vϕ(L2) := Vϕ(L2(Rd)) ⊂
L2(R2d). The Gabor space Vϕ(L2) is a reproducing kernel Hilbert space with reproducing 
kernel

kϕz (z′) = 〈π(z)ϕ, π(z′)ϕ〉L2 = Vϕ(π(z)ϕ)(z′),

for any ψ ∈ L2(Rd). We will show that the intersection of different Gabor spaces is trivial 
whenever the windows are not scalar multiples of each other. Every f ∈ L∞(R2d) then 
defines a Gabor Toeplitz operator Tϕ

f : Vϕ(L2) → Vϕ(L2) by

Tϕ
f (Vϕψ) = PVϕ(L2)(f · Vϕψ),

where PVϕ(L2) : L2(R2d) → Vϕ(L2) is the orthogonal projection. It is well-known that 
Tϕ
f and Aϕ,ϕ

f are unitarily equivalent.
If the window function ϕ is the Gaussian ϕ0(x) = e−πx2 , then Vϕ0(L2) is, up to 

a simple unitary transformation, the space of entire functions on Cd known as the 
Bargmann-Fock space F2(Cd). For every F ∈ L∞(Cd) one defines the Bargmann-Fock 
Toeplitz operator TF2

F on F2(Cd) by
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TF2

F (H) = PF2(F ·H)

for any H ∈ F2(Cd). One has that if f ∈ L∞(R2d) and F ∈ L∞(Cd) are related by 
F (x + iω) = f(x, −ω) the following operators are unitarily equivalent:

(1) The localization operator Aϕ0,ϕ0
f : L2(Rd) → L2(Rd).

(2) The Gabor Toeplitz operator Tϕ0
f : Vϕ0(L2) → Vϕ0(L2).

(3) The Bargmann-Fock Toeplitz operator TF2

F : F2(Cd) → F2(Cd).

Since Aϕ0,ϕ0
f = f � (ϕ0 ⊗ ϕ0), the equivalences above allow us to translate statements 

from convolutions of operators to Toeplitz operators. One of the results we translate 
to Toeplitz operators follows by noting that the Tauberian theorems concern compact 
perturbations of a scaling of the identity, i.e. operators A · IL2 + K for 0 �= A ∈ C and 
K ∈ K. Inspired by this – without using the Tauberian theorem itself – we apply Riesz’ 
theory of such operators to obtain sufficient conditions for localization operators to be 
isomorphisms:

Proposition 4.10. Let 0 �= M ∈ R, a ∈ L∞(R2d) and Δ ⊂ R2d a set of finite Lebesgue 
measure. Assume that the following assumptions hold:

(i) a(z) ≥ −M for a.e. z ∈ R2d,
(ii) a(z) > −M for z /∈ Δ,
(iii) a satisfies assumption (i) or (ii) in Theorem 4.1 with A = 0.

Let f = M + a. Then Aϕ,ϕ
f is an isomorphism on L2(Rd) for any 0 �= ϕ ∈ L2(Rd).

We translate these results to the polyanalytic Bargmann-Fock space F2
n(Cd) for n ∈

Nd – in particular F2
0 (Cd) is the Bargmann-Fock space F2(Cd).

Proposition 4.12.

(1) If Ω ⊂ Cd satisfies that Ωc has finite Lebesgue measure, then TF2
n

χΩ is an isomorphism 
on F2

n(Cd).
(2) There is a real-valued, continuous F ∈ L∞(Cd) such that lim|z|→∞ |F (z)| does not 

exist, yet TF2
n

F is an isomorphism on F2
n(Cd).

Another class of our results concerns the Berezin transform. For the Gabor space 
Vϕ(L2) we can express the Berezin transform Bϕ : Vϕ(L2) → L∞(R2d) as a convolution 
of operators. In particular, the Berezin transform of the Gabor Toeplitz operator Tϕ

f is 
simply a convolution of functions:

BϕTϕ
f (z) =

(
f ∗ |Vϕϕ|2

)
(z).
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Pitt’s classical theorem gives a condition on f ∈ L∞(R2d) that ensures that f ∗ g ∈
C0(R2d) for g ∈ W (R2d) implies f ∈ C0(R2d). In particular, this holds for uniformly 
continuous f . A natural analogue of uniformly continuous functions for operators is the 
set

C1 := {R ∈ L(L2) : z �→ αz(R) is continuous from R2d to L(L2)},

see [12,57]. Werner has obtained the following result in [57] which in light of our Taube-
rian theorem is an analogue of Pitt’s theorem for operators.

Theorem 5.2. Let R ∈ C1. The following are equivalent.

• R ∈ K.
• R � S ∈ C0(R2d) for some S ∈ W.
• R � f ∈ K for some f ∈ W (R2d).

Fulsche [32] has recently noted that the preceding theorem implies a result in [11] for 
the Bargmann-Fock space. We show that the result holds for any Gabor space Vϕ(L2)
under certain conditions on ϕ. We would like to stress that it is a Pitt-type theorem for 
the Tauberian theorem for operators.

Theorem 5.4. Let ϕ ∈ L2(Rd) with ‖ϕ‖L2 = 1 satisfy that Vϕϕ has no zeros, and let T ϕ

be the Banach algebra generated by Toeplitz operators Tϕ
f ⊂ L(Vϕ(L2)) for f ∈ L∞(R2d). 

Then the following are equivalent for T̃ ∈ T ϕ.

• T̃ is a compact operator on Vϕ(L2).
• BϕT̃ ∈ C0(R2d).

Furthermore, if T̃ = Tϕ
f for some slowly oscillating f ∈ L∞(R2d), then the conditions 

above are equivalent to lim|z|→∞ |f(z)| = 0.

Examples of ϕ satisfying that Vϕϕ has no zeros were recently investigated in [37], 
for example the one-sided exponential. Hence these ϕ’s give different reproducing kernel 
Hilbert spaces Vϕ(L2) such that Toeplitz operators are compact if and only if their 
Berezin transform vanishes at infinity.

The main result in [11] follows in particular, as shown in [32]. We have added a 
statement on slowly oscillating functions that follows from the original version of Pitt’s 
theorem.

Theorem 5.5 (Bauer, Isralowitz). Let T F2 be the Banach algebra generated by the Toeplitz 
operators TF2

F for F ∈ L∞(Cd). The following are equivalent for T̃ ∈ T F2 .

• T̃ is a compact operator on F2(Cd).
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• BF2
T̃ ∈ C0(Cd).

If T̃ = TF2

F for a slowly oscillating F ∈ L∞(Cd), then the conditions above are equivalent 
to lim|z|→∞ F (z) = 0.

As a consequence we state a compactness result for Toeplitz operators.

Corollary 5.5.1. A Toeplitz operator TF2

F for F ∈ L∞(Cd) is a compact operator on 
F2(Cd) if and only if

f ∗ |Vϕ0ϕ0|2 ∈ C0(R2d),

where f(x, ω) = F (x − iω) for x, ω ∈ Rd and |Vϕ0ϕ0(z)|2 = e−π|z|2 .

Finally, Theorem 5.2 gives a simple condition for compactness of localization operators 
in terms of the Gaussian ϕ0.

Proposition 5.6. Let f ∈ L∞(R2d) and ψ1, ψ2 ∈ L2(Rd). The localization operator Aψ1,ψ2
f

is compact if and only if

f ∗ (Vϕ0ψ2Vϕ0ψ1) ∈ C0(R2d).

Finally we recall from [51] that any R ∈ L(L2) defines a quantization scheme given 
by f �→ f � R for f ∈ L1(R2d) and a time-frequency distribution QR, given by sending 
ψ ∈ L2(Rd) to QR(ψ)(z) = (ψ⊗ψ) �Ř(z) for z ∈ R2d. The distribution QR is of Cohen’s 
class since we have QR(ψ) = aŘ ∗ W (ψ, ψ), where aŘ is the Weyl symbol of Ř and 
W (ψ, ψ) the Wigner distribution of ψ.

In the final section we deduce a statement relating compactness properties of the 
quantization scheme of f �→ f � R to properties of QR(ψ).

Proposition 6.1. Let R ∈ L(L2). The following are equivalent.

(i) QR(ϕ) ∈ C0(R2d) for some ϕ ∈ L2(Rd) such that Vϕϕ has no zeros.
(ii) g � R ∈ K for some g ∈ W (R2d).
(iii) QR(ψ) ∈ C0(R2d) for all ψ ∈ L2(Rd).
(iv) f � R ∈ K for all f ∈ L1(R2d).

Hence if one takes the Gaussian ϕ0 for (i), then checking if QR(ϕ0) ∈ C0(R2d) provides 
a simple test for checking whether Conditions (iii) and (iv) hold. We apply this result 
to Shubin’s τ -quantization scheme and Born-Jordan quantization.
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1.1. Notations and conventions

For topological vector spaces X, Y , we denote by L(X, Y ) the set of continuous, linear 
operators from X to Y . If X = Y we write L(X ) = L(X, X). The space of compact 
operators on L2(Rd) is denoted by K. For 1 ≤ p < ∞ we let Sp denote the Schatten 
p-class of compact operators with singular values in 
p, and we use the convention that 
S∞ = L(L2). In particular, S1 denotes the space of trace class operators on L2(Rd), and 
the trace of a trace class operator T ∈ S1 is denoted by tr(T ). Also, S2 is the space of 
Hilbert-Schmidt operators, which form a Hilbert space with respect to the inner product 
〈S, T 〉S2 = tr(ST ∗).

Given a topological vector space X and its continuous dual X ′, the action of x∗ ∈ X ′

on y ∈ x is denoted by 〈x∗, y〉X′,X . To agree with the Hilbert space inner product we use 
the convention that the duality bracket is linear in the first coordinate and antilinear in 
the second coordinate. The Schwartz functions on Rd are denoted by S (Rd).

The Euclidean norm on Rd or Cd will be denoted by | · |. For Ω ⊂ Rd, χΩ denotes 
the characteristic function of Ω. As usual, C0(Rd) denotes the continuous functions on 
Rd vanishing at infinity, and we use L0(Rd) to denote the space of measurable, bounded 
functions f on Rd such that lim|z|→∞ f(z) = 0, i.e. for every ε > 0 there is R > 0 such 
that |f(z)| < ε for a.e. |z| > R. We will refer to Lp-spaces on Rd, R2d and Cd, and 
sometimes we will omit explicit reference to the underlying space when it is clear from 
the context, for instance by writing L(L2) for L(L2(Rd)). In all statements, measurability 
and “almost everywhere” properties will refer to Lebesgue measure.

2. Preliminaries

2.1. Concepts from time-frequency analysis

The mathematical theory of time-frequency analysis will provide the setup and many 
of the tools we use in this paper. We therefore introduce the time-frequency shifts π(z) ∈
L(L2) for z = (x, ω) ∈ R2d, given by

(π(z)ψ) (t) = e2πiω·tψ(t− x) for ψ ∈ L2(Rd).

The time-frequency shift π(z) is clearly given as a composition π(z) = MωTx of a mod-
ulation operator Mωψ(t) = e2πiω·tψ(t) and a translation operator Txψ(t) = ψ(t − x). 
Given ψ, φ ∈ L2(Rd), the short-time Fourier transform Vφψ of ψ with window φ is the 
function on R2d defined by

Vφψ(z) = 〈ψ, π(z)φ〉L2 for z ∈ R2d.

The short-time Fourier transform satisfies the important orthogonality relation
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∫
R2d

Vφ1ψ1(z)Vφ2ψ2(z) dz = 〈ψ1, ψ2〉L2 〈φ2, φ1〉L2 , (1)

see [30,35], sometimes called Moyal’s identity. Throughout this paper we will use ϕ0 to 
denote the normalized Gaussian

ϕ0(t) = 2d/4e−πt2 for t ∈ Rd,

and we will often refer to its short-time Fourier transform, which by [35, Lem. 1.5.2] is 
given by

Vϕ0ϕ0(z) = e−πix·ωe−π|z|2/2 for z = (x, ω); (2)

the reader should note already at this point that Vϕ0ϕ0 has no zeros.

2.1.1. Wigner functions and the Weyl transform
Given φ, ψ ∈ L2(Rd), a close relative of the short-time Fourier transform Vφψ is the 

cross-Wigner distribution W (ψ, φ) defined by

W (ψ, φ)(x, ω) =
∫
Rd

ψ(x + t/2)φ(x− t/2)e−2πiω·t dt for (x, ω) ∈ R2d.

The cross-Wigner distribution is the main tool needed to introduce the Weyl trans-
form, which associates to any f ∈ S ′(R2d) an operator Lf ∈ L(S (Rd), S ′(Rd)) defined 
by requiring

〈Lf (ψ), φ〉S ′(Rd),S (Rd) = 〈f,W (φ, ψ)〉S ′(R2d),S (R2d) for all φ, ψ ∈ S (Rd). (3)

By the Schwartz kernel theorem [41], any S ∈ L(S (Rd), S ′(Rd)) is the Weyl transform 
Lf for some unique f ∈ S ′(R2d). We denote this f by aS , and call it the Weyl symbol
of S. In other words, S = LaS

. Note that there is no relationship between boundedness 
of the function f and boundedness of the operator Lf on L2(Rd): there is f ∈ L∞(R2d)
such that Lf /∈ L(L2), and there is S ∈ L(L2) such that aS /∈ L∞(R2d). See Remark 20
for examples.

Example 2.1 (Rank-one operators). Given ψ, φ ∈ L2(Rd), the rank-one operator ψ⊗φ ∈
L(L2) is defined by

(ψ ⊗ φ)(ξ) = 〈ξ, φ〉L2 ψ for ξ ∈ L2(Rd).

It is well-known that the Weyl symbol of ψ ⊗ φ is W (ψ, φ).



F. Luef, E. Skrettingland / Journal of Functional Analysis 280 (2021) 108883 11
2.1.2. Localization operators
For a mask f ∈ L∞(R2d) and a pair of windows ϕ1, ϕ2 ∈ L2(Rd), we define the 

localization operator Aϕ1,ϕ2
f (ψ) ∈ L(L2) by

Aϕ1,ϕ2
f (ψ) =

∫
R2d

f(z)Vϕ1ψ(z)π(z)ϕ2 dz,

where the integral is interpreted weakly in the sense that we require〈
Aϕ1,ϕ2

f (ψ), φ
〉
L2(Rd)

=
〈
f, Vϕ2φVϕ1ψ

〉
L2(R2d) for any ψ, φ ∈ L2(Rd). (4)

It is well-known that Aϕ1,ϕ2
f is bounded on L2(Rd) for f ∈ L∞(R2d) and ϕ1, ϕ2 ∈ L2(Rd)

[20], but one may also define localization operators for other Banach function spaces of 
masks f and windows ϕ1, ϕ2 by interpreting the brackets in (4) as duality brackets, see 
[20]. We postpone this discussion until we have a more suitable framework, which we 
now introduce.

2.2. Quantum harmonic analysis: convolutions of operators and functions

In this section we introduce the quantum harmonic analysis developed by Werner 
in [57], the main concepts of which are convolutions of operators and functions and a 
Fourier transform of operators. For a more detailed introduction in our terminology we 
refer to [50]. Given any z ∈ R2d and an operator R ∈ L(L2), we define the translation
αz(R) of R by z to be the operator

αz(R) = π(z)Rπ(z)∗.

At the level of Weyl symbols, we have that

αz(R) = LTz(aR),

hence αz corresponds to a translation of the Weyl symbol. For f ∈ L1(R2d) and S ∈ S1

we then define the convolution f � S ∈ S1 by the Bochner integral

f � S := S � f :=
∫

R2d

f(z)αz(S) dz. (5)

Hence the convolution of a function with an operator is a new operator. The convo-
lution S � T of two operators S, T ∈ S1 is the function

S � T (z) = tr(Sαz(Ť )) for z ∈ R2d. (6)
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Here Ť = PTP , with P the parity operator Pψ(t) = ψ(−t). Then S � T ∈ L1(R2d) with ∫
R2d S � T (z) dz = tr(S)tr(T ) and S � T = T � S [57]. Taking convolutions with a fixed 

operator or function is easily seen to be a linear map.
One of the most important properties of the convolutions (5) and (6) is that they 

interact nicely with each other and with the usual convolution f ∗ g(x) =
∫
Rd f(t)g(x −

t) dt of functions, as is most strikingly shown by their associativity [50,57].

Proposition 2.1. The convolutions (5) and (6) are associative. Written out in detail, this 
means that for S, T, R ∈ S1 and f, g ∈ L1(R2d) we have

(R � S) � T = R � (S � T )

f ∗ (R � S) = (f � R) � T

(f ∗ g) � R = f � (g � R).

Remark 1. Special cases of this associativity have appeared several times in the litera-
ture, typically with less transparent formulations and proofs than those allowed by the 
convolution formalism. See for instance [27, Prop. 3.10].

The convolutions also have an interesting interpretation in terms of the Weyl symbol, 
as we have that

S � T (z) = aS ∗ aT (z) (7)

af	S(z) = f ∗ aS(z).

As is shown in detail in [50], one can extend the domains of the convolutions by duality. 
For instance, the convolution f � S ∈ L(L2) of S ∈ S1 and f ∈ L∞(R2d) is defined by

〈f � S, T 〉L(L2),S1 =
〈
f, Š∗ � T

〉
L∞,L1

.

Combining this with a complex interpolation argument gives a version of Young’s in-
equality [50,57]. Recall our convention that S∞ = L(L2).

Proposition 2.2 (Young’s inequality). Let 1 ≤ p, q, r ≤ ∞ be such that 1
p + 1

q = 1 + 1
r . If 

f ∈ Lp(R2d), S ∈ Sp and T ∈ Sq, then f � T ∈ Sr and S � T ∈ Lr(R2d) may be defined 
and satisfy the norm estimates

‖f � T‖Sr ≤ ‖f‖Lp‖T‖Sq ,

‖S � T‖Lr ≤ ‖S‖Sp‖T‖Sq .

Remark 2. It is worth noting that if S ∈ S1 and T ∈ L(L2), then S � T is still given by 
(6), which can be interpreted pointwise, so that S �T is a continuous, bounded function.
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Young’s inequality above shows that the convolutions interact in a predictable way 
with Lp(R2d) and Sq. We now show that the same is true for functions vanishing at 
infinity and compact operators. Recall that L0(R2d) denotes the Banach subspace of 
L∞(R2d) consisting of f ∈ L∞(R2d) that vanish at infinity. The following result shows 
that convolutions with trace class operators interchange L0(R2d) and K, which is the 
basis for our main theorems. These results are known, in particular we mention that part 
(ii) was proved for rank-one operators S in [14] using essentially the same proof.

Lemma 2.3. Let R ∈ K and f ∈ L0(R2d). If S ∈ S1, then

(i) R � S ∈ C0(R2d),
(ii) f � S ∈ K,

and if a ∈ L1(R2d) then

(iii) R � a ∈ K,
(iv) f ∗ a ∈ C0(R2d).

Proof. Part (i) is [50, Prop. 4.6]. For (ii) and (iv), note that any f ∈ L0(R2d) is the 
limit in the norm topology of L∞(R2d) of a sequence of compactly supported functions 
fn – simply pick fn = f · χBn(0), where Bn(0) = {z ∈ R2d : |z| < n}. Clearly fn ∈
L1(R2d), hence fn � S ∈ S1 ⊂ K. We therefore have by Young’s inequality (recall that 
S∞ = L(L2)):

‖f � S − fn � S‖L(L2) = ‖(f − fn) � S‖L(L2) ≤ ‖f − fn‖L∞‖S‖S1 → 0 as n → ∞,

so f � S is the limit in the operator norm of compact operators, hence itself compact. 
Similarly, fn ∗a ∈ C0(R2d) and fn ∗a converges uniformly to f ∗a by Young’s inequality 
‖(f − fn) ∗ a‖L∞ ≤ ‖f − fn‖L∞‖a‖L1 , so that f ∗ a ∈ C0(R2d). Finally, (iii) follows 
by noting that any R ∈ K is the limit in the operator norm of a sequence Rn ∈ S1 of 
finite-rank operators. Then Rn�a ∈ S1 is compact, so it follows by ‖(R−Rn) �a‖L(L2) ≤
‖R−Rn‖L(L2)‖a‖L1 that R�a is the limit in the operator norm of a sequence of compact 
operators, hence itself compact. �
Remark 3. In combination with Proposition 2.2 and the fact that Sp ⊂ K for p < ∞, we 
see that Lp(R2d) � S1 ⊂ K for p = 0 and 1 ≤ p < ∞.

Finally, the convolutions preserve identity elements [57, Prop. 3.2 (3)]. Here IL2 ∈
L(L2) is the identity operator and 1 ∈ L∞(R2d) is given by 1(z) = z.

Lemma 2.4. Let S ∈ S1 and f ∈ L1(R2d). Then

S � IL2 = tr(S) · 1,
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S � 1 = tr(S) · IL2 ,

f � IL2 =
∫

R2d

f(z) dz · IL2 ,

f ∗ 1 =
∫

R2d

f(z) dz · 1.

2.2.1. Fourier transforms of functions and operators
As our Fourier transform of functions on R2d we will use the symplectic Fourier 

transform Fσ, given, for f ∈ L1(R2d), by

Fσf(z) =
∫

R2d

f(z′)e−2πiσ(z,z′) dz′ for z ∈ R2d,

where σ is the standard symplectic form σ((x1, ω1), (x2, ω2)) = ω1 · x2 − ω2 · x1. Clearly 
Fσ is related to the usual Fourier transform f̂(z) =

∫
R2d f(z′)e−2πiz·z′

dz′ by

Fσ(f)(x, ω) = f̂(ω,−x),

so Fσ shares most properties with f̂ : it extends to a unitary operator on L2(R2d) and 
to a bijection on S ′(R2d) – see [21]. In addition, Fσ is its own inverse: Fσ ◦ Fσ = IL2 .

We will also use a Fourier transform of operators, namely the Fourier-Wigner trans-
form FW introduced by Werner [57] (Werner calls it the Fourier-Weyl transform, our 
usage of Fourier-Wigner agrees with [30]). When S ∈ S1, FW (S) is the function

FW (S)(z) = e−πix·ωtr(π(−z)S) for z = (x, ω) ∈ R2d. (8)

As is shown in [51,57], FW extends to a unitary mapping FW : S2 → L2(R2d) and a 
bijection onto S ′(R2d) from L(S ′(Rd), S (Rd)).

The Fourier transforms interact in the expected way with convolutions [57]: if S, T ∈
S1 and f ∈ L1(R2d), then

Fσ(S � T ) = FW (S) · FW (T ), (9)

FW (f � S) = Fσ(f) · FW (S). (10)

We may also connect FW and Fσ by the Weyl transform. In fact, we have by [51, Prop. 
3.16] that

FW (Lf ) = Fσ(f) for f ∈ S ′(R2d). (11)

A main concern for this paper will be functions and operators satisfying that the 
appropriate Fourier transform never vanishes. Following the notation of [49] for the 
function case, we introduce the following notation:
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W (R2d) := {f ∈ L1(R2d) : Fσ(f)(z) �= 0 for any z ∈ R2d},

W := {S ∈ S1 : FW (S)(z) �= 0 for any z ∈ R2d}.

The key tool for proving the Tauberian theorem for operators is the following gener-
alization of Wiener’s approximation theorem, originally proved by Werner [57]. See also 
[47,50] for more general statements.

Theorem 2.5 (Werner). Let S ∈ S1. The following are equivalent.

(1) The linear span of the translates {αz(S)}z∈R2d is dense in S1.
(2) S ∈ W.
(3) The set L1(R2d) � S = {f � S : f ∈ L1(R2d)} is dense in S1.
(4) The map T �→ S � T is injective from L(L2) to L∞(R2d).
(5) The set S1 � S = {T � S : T ∈ S1} is dense in L1(R2d).
(6) The map f �→ f � S is injective from L∞(R2d) to L(L2).

2.2.2. The special case of rank-one operators
When S ∈ S1 is a rank-one operator ψ⊗φ for ψ, φ ∈ L2(Rd), then many of the concepts 

introduced above are familiar concepts from time-frequency analysis. First we note that 
by [50, Thm. 5.1], localization operators Aϕ1,ϕ2

f can be described as convolutions by

Aϕ1,ϕ2
f = f � (ϕ2 ⊗ ϕ1). (12)

Other convolutions and Fourier-Wigner transforms of rank-one operators are sum-
marized in the next lemma. See [50, Thm. 5.1 and Lem. 6.1] for proofs. Here ϕ̌(t) :=
(Pϕ)(t) = ϕ(−t).

Lemma 2.6. Let ϕ1, ϕ2, ξ1, ξ2 ∈ L2(Rd) and S ∈ L(L2). Then, for (x, ω) ∈ R2d,

(1) FW (ϕ1 ⊗ ϕ2)(x, ω) = eiπx·ωVϕ2ϕ1(x, ω).
(2) S � (ϕ1 ⊗ ϕ2)(z) = 〈Sπ(z)ϕ̌1, π(z)ϕ̌2〉L2 .
(3) (ξ1 ⊗ ξ2) � (ϕ̌1 ⊗ ϕ̌2)(x, ω) = Vϕ2ξ1(x, ω)Vϕ1ξ2(x, ω).

In particular, for ξ, ϕ ∈ L2(Rd)

(ξ ⊗ ξ) � (ϕ̌⊗ ϕ̌)(z) = |Vϕξ(z)|2.

Example 2.2 (Standard Gaussian). By (2), FW (ϕ0 ⊗ ϕ0)(z) = e−π|z|2/2. We point out 
this simple case as it shows that ϕ0 ⊗ ϕ0 ∈ W. In particular, W is non-empty.
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3. Toeplitz operators and Berezin transforms

In this section we will introduce some families of reproducing kernel Hilbert spaces and 
the corresponding Toeplitz operators and Berezin transforms. We will relate these spaces 
and operators to the convolutions introduced in Section 2.2, which will later allow us to 
deduce results for reproducing kernel Hilbert spaces from the main results this paper. 
By far the most studied of the spaces we consider is the Bargmann-Fock space F2(Cd), 
and we will later investigate whether some well-known result for F2(Cd) can hold for 
other of the reproducing kernel Hilbert spaces we consider.

3.1. Gabor spaces Vϕ(L2)

Let ϕ ∈ L2(Rd) with ‖ϕ‖L2 = 1. By (1), the short-time Fourier transform

Vϕ : L2(Rd) → L2(R2d)

is an isometry, and one easily confirms that its adjoint operator is

V ∗
ϕF =

∫
R2d

F (z)π(z)ϕ dz for F ∈ L2(R2d),

where the vector-valued integral is interpreted in a weak sense, see [35, Sec. 3.2] for 
details. The Gabor space associated with ϕ is then the image Vϕ(L2(Rd)) ⊂ L2(R2d), 
which we denote by Vϕ(L2) for brevity. One can show using (1) that

V ∗
ϕVϕ = IL2(Rd),

VϕV
∗
ϕ = PVϕ(L2), (13)

where PVϕ(L2) denotes the orthogonal projection onto the subspace Vϕ(L2) of L2(R2d). 
This means that Vϕ is a unitary operator from L2(Rd) to Vϕ(L2), with inverse V ∗

ϕ |Vϕ(L2). 
By writing out the operators in (13) one deduces that Vϕ(L2) is a reproducing kernel 
Hilbert space with reproducing kernel

kϕz (z′) = 〈π(z)ϕ, π(z′)ϕ〉L2 = Vϕ(π(z)ϕ)(z′), (14)

meaning that we have the reproducing formula

Vϕψ(z) = 〈Vϕψ, k
ϕ
z 〉L2(R2d)

for any ψ ∈ L2(Rd). Every f ∈ L∞(R2d) then defines a Gabor Toeplitz operator Tϕ
f :

Vϕ(L2) → Vϕ(L2) by

Tϕ
f (Vϕψ) = PVϕ(L2)(f · Vϕψ).
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To study such Toeplitz operators in this paper, we will use the map

Θϕ : L(Vϕ(L2)) → L(L2)

Θϕ(T̃ ) := V ∗
ϕ |Vϕ(L2)T̃ Vϕ for T̃ ∈ L(Vϕ(L2)). (15)

As Vϕ : L2(Rd) → Vϕ(L2) is unitary, Θϕ encodes a unitary equivalence, and is easily 
seen to be a linear, multiplicative and isometric isomorphism. We obtain the following 
well-known and easily verified result.

Proposition 3.1. Let ϕ ∈ L2(Rd) with ‖ϕ‖L2 = 1 and f ∈ L∞(R2d). Then

Aϕ,ϕ
f = Θϕ(Tϕ

f ).

In particular, Tϕ
f and Aϕ,ϕ

f are unitarily equivalent.

Now recall that in a reproducing kernel Hilbert space H consisting of functions on 
R2d with normalized reproducing kernel kz for z ∈ R2d, the Berezin transform BT̃ of a 
bounded operator T̃ ∈ L(H) is the function R2d → C defined by

BT̃ (z) =
〈
T̃ kz, kz

〉
H .

For the Gabor space Vϕ(L2) we can express the Berezin transform Bϕ : Vϕ(L2) →
L∞(R2d) as a convolution of operators.

Lemma 3.2. Let ϕ ∈ L2(Rd) with ‖ϕ‖L2 = 1, and let T̃ ∈ L(Vφ(L2)). Then

BϕT̃ (z) = Θϕ(T ) � (ϕ̌⊗ ϕ̌)(z).

In particular the Berezin transform of the Gabor Toeplitz operator Tϕ
f is

BϕTϕ
f (z) =

(
f ∗ |Vϕϕ|2

)
(z).

Proof. Since kϕz (z′) = Vϕ(π(z)ϕ)(z′) by (14), we have

Θϕ(T̃ ) � (ϕ̌⊗ ϕ̌)(z) =
〈
Θϕ(T̃ )π(z)ϕ, π(z)ϕ

〉
L2(Rd) by Lemma 2.6

=
〈
V ∗
ϕ T̃ Vϕ(π(z)ϕ), π(z)ϕ

〉
L2(Rd) by (15)

=
〈
T̃ Vϕ(π(z)ϕ), Vϕ(π(z)ϕ)

〉
L2(R2d)

= BϕT̃ (z).

Since Proposition 3.1 and (12) give that

f � (ϕ⊗ ϕ) = Aϕ,ϕ
f = Θϕ(Tϕ

f ),
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we get from the first part that and associativity of convolutions that

BϕTϕ
f = [f � (ϕ⊗ ϕ)] � (ϕ̌⊗ ϕ̌) = f ∗ |Vϕϕ|2 by Lemma 2.6. �

Remark 4. Gabor spaces and their relation to localization operators has been discussed in 
[42], with emphasis on f ∈ L∞(R2d) depending only on x. The reproducing kernel kϕz has 
also been studied as the kernel of determinantal point processes called Weyl-Heisenberg 
ensembles [4,5].

3.1.1. Gabor spaces with different windows
Having introduced the Gabor spaces Vϕ(L2), we naturally ask whether the properties 

of Vϕ(L2) as a reproducing kernel Hilbert space depend on the window ϕ in an essential 
way. As a first result in this direction, we note that the intersection of different Gabor 
spaces is trivial whenever the windows are not scalar multiples of each other, first proved 
with different methods in [34, Thm. 4.2].

Lemma 3.3. Let ϕ1, ϕ2 ∈ L2(Rd) with ‖ϕ1‖L2 = ‖ϕ2‖L2 = 1. If there exists c ∈ C such 
that ϕ1 = cϕ2, then Vϕ1(L2) = Vϕ2(L2). Otherwise Vϕ1(L2) ∩ Vϕ2(L2) = {0}.

Proof. If ϕ1 = cϕ2, then Vϕ1ξ = Vϕ2(cξ), which implies the first part. Then assume that 
0 �= Vϕ1ξ = Vϕ2ψ for ξ, ψ ∈ L2(Rd). It follows by Lemma 2.6 that

ξ ⊗ ϕ1 = ψ ⊗ ϕ2,

as FW is a bijection from S2 to L2(R2d). Taking adjoints, we get

ϕ1 ⊗ ξ = ϕ2 ⊗ ψ. (16)

If we apply (16) to ξ, we obtain

ϕ1 =
〈ξ, ψ〉L2

‖ξ‖2
L2

ϕ2.

Note that dividing by ‖ξ‖2
L2 is allowed, as we assumed Vϕ1ξ �= 0 which by (1) implies 

ξ �= 0. �
Even though the result above shows that Gabor spaces with different windows ϕ1 and 

ϕ2 usually have trivial intersection, there is always an obvious Hilbert space isomorphism 
Ψ : Vϕ1(L2) → Vϕ2(L2) given by Ψ = Vϕ2V

∗
ϕ1
|Vϕ1 (L2). However, this does not preserve the 

reproducing kernels: kϕ1
z = Vϕ1(π(z)ϕ1) by (14), so clearly Ψ(kϕ1

z ) = Vϕ2(π(z)ϕ1). By 
the injectivity of Vϕ2 , the only way Ψ(kϕ1

z ) = Vϕ2(π(z)ϕ1) can equal kϕ2
z = Vϕ2(π(z)ϕ2)

is if ϕ1 = ϕ2.
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If we use Proposition 3.1 and Lemma 3.2 to translate parts of Theorem 2.5 into a 
result on Toeplitz operators, we clearly see that the properties of the window ϕ must be 
taken into account when studying Toeplitz operators on Vϕ(L2).

Proposition 3.4. Let ϕ ∈ L2(Rd) with ‖ϕ‖L2 = 1. The following are equivalent.

(1) Vϕϕ has no zeros.
(2) The Berezin transform Bϕ is injective on L(Vϕ(L2)).
(3) The map f �→ Tϕ

f is injective from L∞(R2d) to L(Vϕ(L2)).

Proof. The result will follow from Theorem 2.5 once we have shown that each state-
ment is equivalent to a statement in that theorem with S = ϕ ⊗ ϕ. As FW (S)(x, ω) =
eiπx·ωVϕϕ(x, ω) by Lemma 2.6, (1) states that S ∈ W. Since Proposition 3.1 gives that 
Tϕ
f is unitarily equivalent with Aϕ,ϕ

f = f � S, the map f �→ Tϕ
f is injective if and only if 

the map f �→ f � S is injective. Similarly, since Lemma 3.2 gives that

BϕT̃ (z) = Θϕ(T̃ ) � Š

and Θϕ : L(Vϕ(L2)) → L(L2) is a bijection, we get that Bϕ is injective if and only 
if T �→ T � Š is injective. It is simple to check that the last condition is equivalent to 
T �→ T � S being injective, as a calculation shows that T � Š(z) = Ť � S(−z). �
Remark 5. The other parts of Theorem 2.5 could also be translated into statements on 
Vϕ(L2), and one could obtain other equivalences by imposing weaker requirements on 
the set of zeros of Vϕϕ, see [47,50].

3.2. Toeplitz operators on Bargmann-Fock space

For the Gaussian ϕ0, the Gabor space Vϕ0(L2) is closely related to another much-
studied reproducing kernel Hilbert space: the Bargmann-Fock space F2(Cd), consisting 
of all analytic functions F on Cd such that ‖F‖F2 < ∞, where ‖F‖F2 is the norm 
induced by the inner product

〈F,G〉F2 =
∫
Cd

F (z)G(z)e−π|z|2 dz.

An important tool in the study of F2(Cd) is the Bargmann transform, which is the 
unitary mapping B : L2(Rd) → F2(Cd) defined by

B = A ◦ Vϕ0 , (17)

where A : L2(R2d) → L2(Cd, e−π|z|2dz) is a unitary operator given by
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A(f)(x + iω) = e−πix·ωe
π
2 |z|2f(x,−ω) for z = (x, ω) ∈ R2d.

The restriction A|Vϕ0 (L2) is unitary from Vϕ0(L2) to F2(Cd), as it may be written as the 
composition B ◦ V ∗

ϕ0
|Vϕ0 (L2) of unitary operators. Hence A allows us to relate the spaces 

Vϕ0(L2) and F2(Cd).
The orthogonal projection from L2(Cd, e−π|z|2dz) to F2(Cd) is given by

PF2 = BB∗ = AVϕ0V
∗
ϕ0
A∗ = APVϕ0 (L2)A∗, (18)

and the non-normalized reproducing kernel of F2(Cd) is

Kz(z′) = eπz·z
′

for z, z′ ∈ Cd.

For our purposes it is convenient to note that we can use the reproducing kernel kϕ0
(x,ω)

for Vϕ0(L2) to express Kz for z = x + iω by

Kz(x′ + iω′) = eiπx·ωeπ|z|
2/2

[
Akϕ0

(x,−ω)

]
(x′ + iω′), (19)

as follows from the calculation〈
B(ψ), eiπx·ωeπ|z|

2/2Akϕ0
(x,−ω)

〉
F2

= e−πix·ωeπ|z|
2/2

〈
AVϕ0ψ,Akϕ0

(x,−ω)

〉
F2

= e−πix·ωeπ|z|
2/2

〈
Vϕ0ψ, k

ϕ0
(x,−ω)

〉
L2(R2d)

= e−πix·ωeπ|z|
2/2Vϕ0ψ(x,−ω)

= B(ψ)(x + iω).

For every F ∈ L∞(Cd) one defines the Bargmann-Fock Toeplitz operator TF2

F on 
F2(Cd) by

TF2

F (H) = PF2(F ·H)

for any H ∈ F2(Cd). Using (18) and the unitarity of A, one can calculate that if 
f ∈ L∞(R2d) and F ∈ L∞(Cd) are related by

F (x + iω) = f(x,−ω) for x, ω ∈ R2d, (20)

then

Tϕ0
f = A∗TF2

F A. (21)

In combination with Proposition 3.1 this gives the following result.
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Proposition 3.5. Let f ∈ L∞(R2d) and F ∈ L∞(Cd) be related by (20). Then the follow-
ing operators are unitarily equivalent.

(1) The localization operator Aϕ0,ϕ0
f : L2(Rd) → L2(Rd).

(2) The Gabor Toeplitz operator Tϕ0
f : Vϕ0(L2) → Vϕ0(L2).

(3) The Bargmann-Fock Toeplitz operator TF2

F : F2(Cd) → F2(Cd).

Remark 6. The simple result above is far from new, going back to at least [19]. A related 
and more complicated question that appears in the literature is to relate Aϕ,ϕ

f , where ϕ

needs no longer be Gaussian, to a Bargmann-Fock Toeplitz operator TF2

(I+D)F , where D
is some differential operator [2,19,25].

The Berezin transform can also be defined on F2(Cd). Since A : Vϕ(L2) → F2(Cd)
is unitary, one easily checks using (19) that the normalized reproducing kernel k̃z on 
F2(Cd) is

k̃z(z′) = eiπx·ω
[
Akϕ0

(x,−ω)

]
(x′ + iω′) for z = x + iω, z′ = x′ + iω′.

This implies the following result on the Berezin transform BF2 on F2(Cd).

Lemma 3.6. Let T̃ ∈ L(F2(Cd)). Then

BF2
T̃ (x + iω) = Bϕ0 [A∗T̃A](x,−ω)

= (B∗T̃B) � (ϕ0 ⊗ ϕ0)(x,−ω).

In particular, if F ∈ L∞(Cd), then

BF2
TF2

F (x + iω) =
(
f ∗ |Vϕ0ϕ0|2

)
(x,−ω),

where f ∈ L∞(R2d) is given by f(x, ω) = F (x − iω) and |Vϕ0ϕ0(z)|2 = e−π|z|2 .

Proof. By definition,

BF2
T̃ (x + iω) =

〈
T̃ k̃x+iω, k̃x+iω

〉
F2

=
〈
T̃Akϕ0

(x,−ω),Akϕ0
(x,−ω)

〉
F2

=
〈
A∗T̃Akϕ0

(x,−ω), k
ϕ0
(x,−ω)

〉
L2(R2d)

= Bϕ0 [A∗T̃A](x,−ω).

That this last expression equals (B∗T̃B) �(ϕ0⊗ϕ0)(x, −ω) follows from Lemma 3.2, since 
B∗T̃B = V ∗

ϕ0
[A∗T̃A]Vϕ0 . For the formula for Toeplitz operators, combine the first part 

with (21) and the final part of Lemma 3.2. �
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The results above show the intimate connection between F2(Cd) and the Gabor space 
Vϕ0(L2). Many of the results known for F2(Cd) can easily be translated into results for 
Vϕ0(L2), and we will later investigate certain conditions on ϕ that allow us to generalize 
these results to other Gabor spaces Vϕ(L2).

3.3. Polyanalytic Bargmann-Fock spaces

By (17), we may identify Vϕ0(L2) and the Bargmann-Fock space by the operator A :
L2(R2d) → L2(Cd, e−π|z|2dz). If the Gaussian ϕ0 is replaced by another Hermite function 
ϕn for n ∈ Nd, and we define the polyanalytic Bargmann transform Bn : L2(Rd) →
L2(Cd, e−π|z|2dz) by

Bn = A ◦ Vϕn
,

then the image of Bn, which we denote by F2
n, is again a reproducing kernel Hilbert 

space with reproducing kernel Kϕn
z for z = x + iω given by

Kϕn
z (x′ + iω′) = eiπx·ωeπ|z|

2/2
[
Akϕn

(x,−ω)

]
(x′ + iω′).

Unlike the Bargmann-Fock space F2 = F2
0 , F2

n does not in general consist of analytic 
functions, but rather of so-called polyanalytic functions. For this reason F2

n is sometimes 
called the true polyanalytic Fock space of degree n [1,3,9]. Following [46,54] we define, 
given F ∈ L∞(Cd), the polyanalytic Toeplitz operator T

F2
n

F : F2
n → F2

n by

T
F2

n

F (H) = PF2
n
(F ·H)

for H ∈ F2
n. Similarly to Bargmann-Fock space the orthogonal projection PF2

n
from 

L2(Cd, e−π|z|2dz) to F2
n is given by

PF2
n

= BB∗ = AVϕn
V ∗
ϕn

A∗.

If f ∈ L∞(R2d) and F ∈ L∞(Cd) are related as in (20), one can show that Tϕn

f =
A∗T

F2
n

F A. Hence we obtain the following result.

Proposition 3.7. Let f ∈ L∞(R2d) and F ∈ Cd be related as in (20). For n ∈ Nd, the 
following operators are unitarily equivalent.

(1) The localization operator Aϕn,ϕn

f : L2(Rd) → L2(Rd).
(2) The Gabor Toeplitz operator Tϕn

f : Vϕn
L2 → Vϕn

L2.
(3) The polyanalytic Toeplitz operator TF2

n

F : F2
n(Cd) → F2

n(Cd).
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We have related polyanalytic Toeplitz operators to Gabor Toeplitz operators on 
Vϕn

(L2). By [44, (4.16)], Vϕn
ϕn has zeros if and only if n �= 0. An easy argument using 

the previous proposition then translates Proposition 3.4 into the following statement. A 
version of this is also discussed with different tools in [54, Sec. 5.1.2].

Proposition 3.8. Let n ∈ Nd. The map F �→ T
F2

n

F is injective from L∞(Cd) if and only 
if n = 0. In other words, assigning a bounded function to a Toeplitz operator is only 
injective on the Bargmann-Fock space.

4. A Tauberian theorem for bounded functions

As our first main result we present a generalization of Wiener’s classical Tauberian 
theorem that applies to bounded functions and convolutions with integrable functions 
and trace class operators. The key tool is Werner’s generalization of Wiener’s approxi-
mation theorem from Theorem 2.5.

Theorem 4.1 (Tauberian theorem for bounded functions). Let f ∈ L∞(R2d), and assume 
that one of the following equivalent statements holds for some A ∈ C:

(i) There is some S ∈ W such that

f � S = A · tr(S) · IL2 + K

for some compact operator K ∈ K.
(ii) There is some a ∈ W (R2d) such that

f ∗ a = A ·
∫

R2d

a(z) dz + h

for some h ∈ C0(R2d).

Then both of the following statements hold:

(1) For any T ∈ S1, f � T = A · tr(T ) · IL2 + KT for some compact operator KT ∈ K.
(2) For any g ∈ L1(R2d), f ∗ g = A ·

∫
R2d g(z) dz + hg for some hg ∈ C0(R2d).

Proof. We start by proving that (i) and (ii) are equivalent. Assume (i), and consider 
a = S �S ∈ L1(R2d). Since Fσ(S �S)(z) = FW (S)(z)2 for any z ∈ R2d by (9), we obtain 
both that Fσ(a) has no zeros and (by evaluating the relation at z = 0) that∫

a(z) dz = tr(S) · tr(S).

R2d
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Then observe using associativity of the convolutions that

f ∗ a = f ∗ (S � S)

= (f � S) � S

= (A · tr(S) · IL2 + K) � S

= A · tr(S) · tr(S) + K � S by Lemma 2.4

= A ·
∫

R2d

a(z) dz + K � S,

and K �S ∈ C0(R2d) by Lemma 2.3. The proof that (ii) implies (i) is similar by picking 
S = a �T , where T ∈ S1 is any operator in W. Then FW (S)(z) = Fσ(a)(z)FW (T )(z) by 
(10), so FW (S) has no zeros and tr(S) =

∫
R2d a(z) dz · tr(T ) by evaluating the relation 

at z = 0. Furthermore, associativity of convolutions gives

f � S = f � (a � T )

= (f ∗ a) � T

=

⎛⎝A ·
∫

R2d

a(z) dz + h

⎞⎠ � T

= A ·
∫

R2d

a(z) dz · tr(T ) · IL2 + h � T by Lemma 2.4

= A · tr(S) · IL2 + h � T,

and h � T ∈ K by Lemma 2.3. Hence (i) and (ii) are equivalent.
The fact that (ii) implies (2) is Wiener’s classical Tauberian theorem. The proof will 
therefore be completed if we can show (i) =⇒ (1), so assume that S satisfies (i), and 
for now assume A = 0. In short, we assume f � S ∈ K. We need to show that f � T ∈ K
for any T ∈ S1. Part (3) of Theorem 2.5 implies that T is the limit in the norm of 
S1 of a sequence rn � S for rn ∈ L1(R2d). By commutativity and associativity of the 
convolutions,

f � (rn � S) = rn � (f � S) ∈ K by Lemma 2.3.

Proposition 2.2 then gives that

‖f � T − f � (rn � S)‖L(L2) ≤ ‖f‖L∞‖T − rn � S‖S1 → 0 as n → ∞.

Hence f �T is the limit in the operator norm of compact operators, thus compact. Finally, 
assume that A �= 0. Then (f −A) � S ∈ K by Lemma 2.4, so the result for A = 0 implies 
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that (f −A) � T ∈ K for any T ∈ S1, and applying Lemma 2.4 again we see that this is 
equivalent to (1). �

The case A = 0 is particularly interesting, as it concerns the compactness of operators 
of the form f � T for T ∈ S1. We will return to this special case on several occasions.

Remark 7.

(1) Note that the convolution of a bounded and an integrable function is continuous, 
so we lose no generality by assuming that h and hg belong to C0(R2d) rather than 
merely assuming that they belong to L0(R2d).

(2) As already mentioned in the proof, the classical Tauberian theorem of Wiener is the 
implication (ii) =⇒ (2).

(3) The conditions on the Fourier transforms of S in (i) are necessary to imply (1) and 
(2). To see this, assume that S ∈ S1 satisfies FW (S)(z0) = 0 for some z0 = (x0, ω0) ∈
R2d. Then consider the function fz0(z) = e2πiσ(z0,z) ∈ L∞(R2d). One can show that 
for any T ∈ S1 we have

fz0 � T = FW (T )(z0)e−πix0·ω0π(z0).

In particular, fz0 � S = 0 ∈ K since FW (S)(z0) = 0, so apart from the con-
dition on FW (S) we see that S satisfies (i) with A = 0. However, fz0 � T =
FW (T )(z0)e−πix0·ω0π(z0) is not compact if FW (T )(z0) �= 0, hence (1) is not true 
for fz0 . A similar argument with the same functions fz0 shows that the condition on 
a in (ii) is also necessary.

4.1. A result by Fernández and Galbis

In [27], Fernández and Galbis proved the following result on compactness of localiza-
tion operators.

Theorem 4.2 (Fernández and Galbis). Let f ∈ L∞(R2d). Then Aϕ1,ϕ2
f is compact for all 

ϕ1, ϕ2 ∈ S (Rd) if and only if there is a non-zero Φ ∈ S (R2d) such that for every R > 0

lim
|x|→∞

sup
|ω|≤R

|VΦf(x, ω)| = 0. (22)

Remark 8.

(1) This requirement is weaker than both f ∈ L0(R2d) and VΦf ∈ C0(R4d) for some non-
zero Φ ∈ S (R2d). Proving that either of these two statements implies compactness 
of Aϕ1,ϕ2

f requires far less advanced tools than (22), see [27].
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(2) The theorem holds for f ∈ M∞(R2d), where M∞(R2d) consists of all f ∈ S ′(R2d)
such that Vϕ0f ∈ L∞(R4d). The space M∞(R2d) contains L∞(R2d) and certain 
distributions such as Dirac’s delta distribution, see [35].

This allows us to add another equivalent assumption to Theorem 4.1, formulated in 
terms of the short-time Fourier transform of f .

Proposition 4.3. Let A ∈ C. Then f ∈ L∞(R2d) satisfies the equivalent conditions (i)
and (ii) in Theorem 4.1 if and only if

(iii) There is some non-zero Schwartz function Φ on R2d such that for every R > 0

lim
|x|→∞

sup
|ω|≤R

|VΦ(f −A)(x, ω)| = 0.

Proof. Consider the operator S = ϕ0 ⊗ ϕ0. Then S ∈ W by (2) and f � S = Aϕ0,ϕ0
f by 

(12). If (iii) is satisfied, Theorem 4.2 implies using Lemma 2.4 that

Aϕ0,ϕ0
f−A = (f −A) � S = f � S −A · tr(S) · IL2

is compact, hence (i) holds. If (i) holds, then Theorem 4.1 (1) implies that

f � (ϕ2 ⊗ ϕ1) −A · tr(ϕ2 ⊗ ϕ1) · IL2 = (f −A) � (ϕ2 ⊗ ϕ1) = Aϕ1,ϕ2
f−A

is compact for any ϕ1, ϕ2 ∈ S (Rd), so Theorem 4.2 implies that (iii) holds. �
Remark 9. One may easily calculate that

VΦ(f −A)(x, ω) = VΦf(x, ω) −A · e−2πix·ωF̂ (Φ)(ω).

Condition (iii) therefore says that for any R > 0, if fixed x is picked with |x| sufficiently 
large, then VΦf(x, ω) should uniformly approximate A · e−2πix·ωF̂ (Φ)(ω) for |ω| ≤ R.

Theorem 4.2 is a theorem concerning compactness of operators – its proof in [27]
relies on results on relatively compact subsets of K. However, Theorem 4.1 along with 
Proposition 4.3 allows us to translate the result to functions on R2d. In fact, it leads to 
a characterization in terms of the short-time Fourier transform of those f ∈ L∞(R2d)
satisfying the assumptions of Wiener’s classical Tauberian theorem. To our knowledge 
this result is new, so we formulate it as a separate statement.

Theorem 4.4. Let A ∈ C and f ∈ L∞(R2d) be given. The following are equivalent.
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• There is some non-zero Φ ∈ S (R2d) such that for every R > 0

lim
|x|→∞

sup
|ω|≤R

|VΦ(f −A)(x, ω)| = 0.

• There is a ∈ W (R2d) and h ∈ C0(R2d) such that

f ∗ a = A ·
∫

R2d

a(z) dz + h.

• For any g ∈ L1(R2d) there is hg ∈ C0(R2d) such that

f ∗ g = A ·
∫

R2d

g(z) dz + hg.

Remark 10. One might naturally ask if this result holds for Rd for any d ≥ 1, and not 
just for even d. Our proof exploits Theorem 4.2, which has no analogue for odd d. We 
can therefore not extend the proof to the general case.

4.2. A closer look at the two assumptions of Theorem 4.1

By Remark 3 and Lemma 2.4, f ∈ L∞(R2d) trivially satisfies the assumptions (and 
conclusions) in Theorem 4.1 if f = A +h for some A ∈ C and h ∈ Lp(R2d) for 1 ≤ p < ∞
or p = 0. We will now see examples that do not satisfy these conditions.

Example 4.1.

(1) In [28, Prop. 4.1], Galbis and Fernández show that the function f(x, ω) = eiπ|z|
2

satisfies condition (iii) from Proposition 4.3, hence it satisfies (i) and (ii) in Theo-
rem 4.1. Clearly f /∈ Lp(R2d) for p = 0 or 1 ≤ p < ∞.

(2) Given τ ∈ (0, 1) \ {1/2}, the function aτ (x, ω) = 2d

|2τ−1|d · e2πi 2
2τ−1x·ω satisfies as-

sumption (i) in Theorem 4.1 with A = 0, as we prove in Proposition 6.3. Again, we 
see that aτ /∈ Lp(R2d) for p = 0 or 1 ≤ p < ∞.

(3) If f ∈ L∞(R2d) is a so-called pseudomeasure, meaning that Fσ(f) ∈ L∞(R2d), then 
f satisfies (ii) with A = 0. To see this, let a(z) = e−π|z|2 . Then Fσ(a) = a has no 
zeros, and

f ∗ a = FσFσ(f ∗ a) = Fσ(Fσ(f) · a),

and since Fσ(f) ∈ L∞(R2d) we have Fσ(f) · a ∈ L1(R2d). Hence f ∗ a ∈ C0(R2d) by 
the Riemann-Lebesgue lemma.
Rather surprisingly, we may prove (1) directly in this case by considering the operator 
side of our setup. For any T ∈ S1, we obtain that FW (T ) ∈ L2(R2d) since S1 ⊂ S2
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and FW : S2 → L2(R2d) is a unitary operator. By our assumption on f , it follows 
that FW (f � T ) = Fσ(f)FW (T ) ∈ L2(R2d), hence f � T ∈ S2 ⊂ K. The key to 
this calculation is the inclusion L∞(R2d) · FW (S1) ⊂ L2(R2d) – the corresponding 
function result L∞ · Fσ(L1) ⊂ L2 is not true by the results in [18].

The examples above show that it is not necessary to have lim|z|→∞ f(z) = 0 in order 
to satisfy assumptions (i) and (ii) with A = 0. A well-known result in the Tauberian 
theory of functions due to Pitt [52] says that if we assume that f is slowly oscillating, 
then lim|z|→∞ f(z) = 0 is necessary for f to satisfy (ii).

Recall that f is slowly oscillating on R2d if for every ε > 0 there is δ > 0 and K > 0
such that |f(z) − f(z − z′)| < ε for |z′| < δ and |z| > K. We refer to [31, Thm. 4.74] for 
a formulation of Pitt’s result that applies to R2d.

Theorem 4.5 (Pitt). If f ∈ L∞(R2d) is slowly oscillating and satisfies either assumption 
(i) or (ii) in Theorem 4.1 or (iii) from Proposition 4.3 with A = 0, then f ∈ L0(R2d).

Remark 11. Any uniformly continuous f ∈ L∞(R2d) is slowly oscillating, hence if such f
satisfies (i) with A = 0, then f ∈ C0(R2d). This weaker statement actually follows from 
the correspondence theory introduced by Werner in [57], more precisely by [57, Thm. 
4.1 (3)]. In Werner’s terminology C0(R2d) and K are corresponding subspaces, since 
convolutions with trace class operators interchange these two spaces by Lemma 2.3. We 
will see the operator-analogue of this result in Section 5.1

4.2.1. Consequences for Toeplitz operators
We now formulate a version of the Tauberian theorem for (polyanalytic) Bargmann-

Fock Toeplitz operators. As a preliminary observation, let H1, H2 be two Hilbert spaces. 
If S ∈ L(H1) and T ∈ L(H2) are unitarily equivalent, i.e. there is unitary U : H1 → H2

such that S = U∗TU , then one easily checks that S = A · IH1 + K1 for A ∈ C and 
compact K1 ∈ L(H1) if and only if T = A · IH2 + K2 for compact K2 ∈ L(H2).

Proposition 4.6. Let F ∈ L∞(Cd) and A ∈ C. Define f ∈ L∞(R2d) by f(x, ω) = F (x −
iω). The following are equivalent:

(i) TF2

F = A · IF2 + K̃0 for some compact operator K̃0 on F2(Cd).
(ii) There is some a ∈ W (R2d) such that

f ∗ a = A ·
∫

R2d

a(z) dz + ha

for some ha ∈ C0(R2d).
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(iii) There is some non-zero Φ ∈ S (R2d) such that for every R > 0

lim
|x|→∞

sup
|ω|≤R

|VΦ(f −A)(x, ω)| = 0.

Furthermore, if any of the equivalent conditions above holds, then for any n ∈ Nd the 

polyanalytic Toeplitz operator TF2
n

F is of the form

T
F2

n

F = A · IF2
n

+ K̃n,

where K̃n is a compact operator on F2
n(Cd).

Proof. By Proposition 3.5, TF2

F is unitarily equivalent to Aϕ0,ϕ0
f = f � (ϕ0 ⊗ϕ0). By the 

remark above, part (i) holds if and only if f � (ϕ0 ⊗ϕ0) = A · IL2 +K0 for some compact 
operator K0 on L2(Rd). Since ϕ0 ⊗ ϕ0 ∈ W by (2), the fact that (i), (ii) and (iii) are 
equivalent follows from Proposition 4.3.

As we have seen that (i) implies that f �(ϕ0⊗ϕ0) = A ·IL2 +K0 and that ϕ0⊗ϕ0 ∈ W, 
Theorem 4.1 implies that for every n there is a compact Kn with

f � (ϕn ⊗ ϕn) = A · IL2 · tr(ϕn ⊗ ϕn) + Kn = A · IL2 + Kn.

The last statement then follows as TF2
n

F is unitarily equivalent to Aϕn,ϕn

f = f � (ϕn⊗ϕn)
by Proposition 3.7. �
Remark 12. The equivalence of (i) and (ii) when a is fixed to be the Gaussian a(x, ω) =
e−π(x2+ω2) is due to Engliš, see the equivalence of (a) and (c) in [24, Thm. B]. Note that 
Engliš also considers products of Toeplitz operators, which is a setting we will return to 
in Section 5.1.

The same reasoning gives the following Tauberian theorem for Toeplitz operators on 
Gabor spaces using Proposition 3.1.

Proposition 4.7. Let f ∈ L∞(R2d) and A ∈ C. The following are equivalent.

(i) There is some ϕ ∈ L2(Rd) such that Vϕϕ has no zeros and Tϕ
f = A · IVϕ(L2) + K

for some compact operator K ∈ L(Vϕ(L2)).
(ii) There is some a ∈ W (R2d) such that f ∗ a = A ·

∫
R2d a(z) dz + h for some h ∈

C0(R2d).
(iii) There is some non-zero Φ ∈ S (R2d) such that for every R > 0

lim
|x|→∞

sup |VΦ(f −A)(x, ω)| = 0.

|ω|≤R
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Furthermore, if any of the equivalent conditions above holds, then for every normalized 
ϕ′ ∈ L2(Rd) we have that Tϕ′

f is of the form A ·IVϕ′ (L2) +Kϕ′ for some compact operator 
Kϕ′ ∈ L(Vϕ′(L2)).

4.3. Injectivity of localization operators and Riesz theory of compact operators

We will now let the kind of operators appearing in Theorem 4.1 inspire a slight detour 
that does not explicitly build on the Tauberian theorems. Theorem 4.1 gives conditions 
to ensure that a localization operator Aϕ,ϕ

f is a compact perturbation of a scaling of the 
identity, i.e. of the form A · IL2 + K for 0 �= A ∈ C and K ∈ K. The theory of such 
operators, sometimes referred to as Riesz theory due to the seminal work of F. Riesz 
[53], contains several powerful results similar to those that hold for matrices. We will use 
the following result, see [17, Lem. 6.30 & Thm. 6.33] for proofs.

Proposition 4.8. Assume that T ∈ L(L2) is of the form A · IL2 + K for A �= 0 and 
K ∈ K. Then T has closed range and dim(kerT ) = dim(coker(T )) < ∞. In particular, 
T is injective if and only if T is surjective.

As an obvious consequence, we note that if Aϕ,ϕ
f = A · IL2 +K for A �= 0 and K ∈ K

and Aϕ,ϕ
f is injective, then Aϕ,ϕ

f is an isomorphism on L2(Rd). Inspired by this, we 
investigate conditions ensuring that localization operators are injective. The proof of the 
next result is similar to that of [16, Lem. 1.4].

Lemma 4.9. Assume that f ∈ L∞(R2d) such that f(z) ≥ 0 for a.e. z ∈ R2d.

(1) If 0 �= ϕ ∈ L2(R2d) and there is Δ ⊂ R2d of finite Lebesgue measure with

f(z) > 0 for a.e. z /∈ Δ,

then the localization operator Aϕ,ϕ
f is injective.

(2) If there is some open subset Ω ⊂ R2d such that

f(z) > 0 for a.e. z ∈ Ω,

then the localization operator Aϕ0,ϕ0
f is injective.

Proof. We first prove (1). Assume that Aϕ,ϕ
f (ψ) = 0. This implies by (4) that

〈
Aϕ,ϕ

f (ψ), ψ
〉
L2

=
∫

R2d

f(z)|Vϕψ(z)|2 dz = 0.

Since we assume that f is non-negative for a.e. z, this further implies that
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∫
R2d\Δ

f(z)|Vϕψ(z)|2 dz = 0.

This implies that Vϕψ(z) = 0 for a.e. z /∈ Δ. Hence ψ = 0, as the main result of [45]
says that Vϕψ(z) cannot be supported on a set of finite Lebesgue measure unless ψ = 0
or ϕ = 0.

To prove (2), a similar argument as above shows that Aϕ0,ϕ0
f (ψ) = 0 implies that 

Vϕ0ψ(z) = 0 for a.e. z ∈ Ω. Continuity gives that Vϕ0ψ(z) = 0 for all z ∈ Ω. The 
analytic function B(ψ)(x + iω) = e−πix·ωe−

π
2 (x2+ω2)Vϕ0ψ(x, −ω) therefore vanishes on 

an open subset of Cd, hence B(ψ) = 0 by uniqueness of analytic continuation. Thus 
ψ = 0 as B is injective. �

We deduce sufficient conditions for localization operators to be isomorphisms.

Proposition 4.10. Let 0 �= M ∈ R, a ∈ L∞(R2d) and Δ ⊂ R2d a set of finite Lebesgue 
measure. Assume that the following assumptions hold:

(i) a(z) ≥ −M for a.e. z ∈ R2d,
(ii) a(z) > −M for z /∈ Δ,
(iii) a satisfies assumption (i) or (ii) in Theorem 4.1 with A = 0.

Let f = M + a. Then Aϕ,ϕ
f is an isomorphism on L2(Rd) for any 0 �= ϕ ∈ L2(Rd).

Proof. By Lemma 4.9 part (1), Aϕ,ϕ
f is injective. By assumption (iii), Theorem 4.1 gives 

that a � (ϕ ⊗ ϕ) ∈ K, so that

Aϕ,ϕ
f = (M + a) � (ϕ⊗ ϕ) = M · ‖ϕ‖2

L2 · IL2 + a � (ϕ⊗ ϕ)

is a compact perturbation of a scaling of the identity. Hence Proposition 4.8 implies that 
Aϕ,ϕ

f is also surjective. �
Remark 13.

(1) Finding specific examples of a satisfying the assumptions above is not difficult, 
but it is worth noting that a need not vanish at infinity. For instance, a stan-
dard construction gives continuous a ∈ L1(R2d) ∩ L∞(R2d) such that 0 ≤ a ≤ 1, 
lim sup|z|→∞ |a(z)| = 1 and lim inf |z|→∞ |a(z)| = 0. Then a satisfies all three condi-
tions above for M > 0, even though f = M + a has no limit as |z| → ∞. Of course, 
if we add the condition that a is slowly oscillating, then a must vanish at infinity by 
Theorem 4.5.

(2) Other isomorphism theorems for localization operators may be found in [16,38,39].
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We state a special case of Proposition 4.10 as a theorem, namely the case where 
f = χΩ such that Ωc has finite measure. We find that as long as Ωc has finite measure, 
the values of Vϕψ(z) for z ∈ Ωc are not needed to reconstruct ψ – independently of the 
geometry of Ω and the window ϕ.

Theorem 4.11. Assume that Ω ⊂ R2d satisfies that Ωc has finite Lebesgue measure, and 
that 0 �= ϕ ∈ L2(Rd). Then the localization operator Aϕ,ϕ

χΩ
is an isomorphism on L2(Rd). 

In particular, any 0 �= ψ ∈ L2(Rd) is uniquely determined by the values of Vϕψ(z) for 
z ∈ Ω and there exist constants C, D > 0 independent of ψ such that

C · ‖ψ‖L2 ≤

∥∥∥∥∥∥
∫
Ω

Vϕψ(z)π(z)ϕ dz

∥∥∥∥∥∥
L2

≤ D · ‖ψ‖L2 .

Proof. This is a special case of Proposition 4.10 with M = 1 and a = −χΩc . Then 
f = 1 − χΩc = χΩ, and one easily checks that the conditions in the proposition are 
satisfied with Δ = Ωc, in particular (iii) follows as χΩc ∈ L1(R2d). �
Remark 14.

(1) After submitting this paper for publication, we were made aware that stronger 
versions of this result by different approaches exist in the literature, see [29] and 
references therein. To our knowledge the strongest of these results is [29], where it is 
shown that Theorem 4.11 holds if χΩc satisfies assumption (i) or (ii) of Theorem 4.1. 
It follows that this assumption is sufficient in part (1) of Proposition 4.12 as well.

(2) Theorem 4.11 is an example of turning uncertainty principles into signal recovery 
results, as proposed by Donoho and Stark [23]. An alternative proof more in line 
with the methods of [23] could be obtained by showing that ‖Aϕ,ϕ

χΩc‖L(L2) < 1 using 
[45], and using a Neumann series argument to deduce the invertibility of Aϕ,ϕ

χΩ
=

IL2 −Aϕ,ϕ
χΩc .

(3) If ϕ belongs to Feichtinger’s algebra M1(Rd) [26,35], then invertibility of Aϕ,ϕ
f on 

L2(Rd) implies that Aϕ,ϕ
f is also invertible on all modulation spaces Mp,q(Rd) for 

1 ≤ p, q ≤ ∞ (see [35] for an introduction to modulation spaces). This follows by 
combining [20, Thm. 3.2] and [36, Cor. 4.7].

4.3.1. Isomorphism results for F2
n(Cd)

Any Toeplitz operator TF2
n

F on polyanalytic Bargmann-Fock space is unitarily equiv-
alent to a localization operator Aϕn,ϕn

f by Proposition 3.7, where f ∈ L∞(R2d) and 
F ∈ L∞(Cd) are related by

F (x + iω) = f(x,−ω).
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Hence the results of this section may be translated into results for Toeplitz operators on 
F2

n(Cd). We include a couple of such results in the next statement. One may of course 
obtain isomorphism results for Gabor spaces in the same way by using Proposition 3.1.

Proposition 4.12.

(1) If Ω ⊂ Cd satisfies that Ωc has finite Lebesgue measure, then TF2
n

χΩ is an isomorphism 
on F2

n(Cd).
(2) There is a real-valued, continuous F ∈ L∞(Cd) such that lim|z|→∞ |F (z)| does not 

exist, yet TF2
n

F is an isomorphism on F2
n(Cd).

Proof. In light of Proposition 3.7, the first part follows from Theorem 4.11 and the 
second from Remark 13. �
5. A Tauberian theorem for bounded operators

A guiding principle in the theory of quantum harmonic analysis is that the role of 
functions and operators may often be interchanged in theorems. It should therefore come 
as no surprise that we can prove a Tauberian theorem where the bounded function f
from Theorem 4.1 is replaced by a bounded operator R, with just a few modifications of 
the proof.

Theorem 5.1 (Tauberian theorem for bounded operators). Let R ∈ L(L2), and assume 
that one of the following equivalent statements holds for some A ∈ C:

(i) There is some S ∈ W such that

R � S = A · tr(S) + h

for some h ∈ C0(R2d).
(ii) There is some a ∈ W (R2d) such that

R � a = A ·
∫

R2d

a(z) dz · IL2 + K

for some compact operator K ∈ K.

Then both of the following statements hold:

(1) For any T ∈ S1, R � T = A · tr(T ) + hT for some hT ∈ C0(R2d).
(2) For any g ∈ L1(R2d), R � g = A ·

∫
R2d g(z) dz · IL2 +Kg for some compact operator 

Kg ∈ K.
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Proof. The equivalence of the assumptions is proved in a similar way as for Theorem 4.1: 
for (i) =⇒ (ii) pick a = S � S, and for (ii) =⇒ (i) pick S = a � T for any T ∈ W.

Then assume that (i) holds with A = 0, the extension to A �= 0 is done as in the 
proof of Theorem 4.1. To show (1), one proceeds as in the proof of Theorem 4.1 by first 
showing that S �T ∈ C0(R2d) if T = r �S for some r ∈ L1(R2d). Using Theorem 2.5 one 
has that any T ∈ S1 is the limit in the norm of S1 of a sequence rn�S with rn ∈ L1(R2d). 
The proof is completed by showing that the sequence R � (rn � S) – which is a sequence 
of functions in C0(R2d) – converges uniformly to R � T . Since C0(R2d) is closed under 
uniform limits, this implies (1).

The proof that (i) implies (2) follows the same pattern. First show it for g = T � S

for some T ∈ S1, then extend to all g by density, since Theorem 2.5 implies that any 
g ∈ L1(R2d) is the limit of a sequence Tn � S for Tn ∈ S1. �
Remark 15. The conditions on the Fourier transforms of S and a in (i) and (ii) are 
necessary to imply (1) and (2), as can be shown by picking R = π(z0) for z0 = (x0, ω0) ∈
R2d. A calculation from the definitions (6) and (8) shows that

[π(z0) � S] (z) = e2πiσ(z0,z)eπix0·ω0FW (S)(z0).

So if FW (S)(z0) = 0, we get that π(z0) � S = 0 ∈ C0(R2d). On the other hand we may 
consider ϕ0 ⊗ ϕ0. By Example 2.2, we get that

[π(z0) � (ϕ0 ⊗ ϕ)] (z) = e2πiσ(z0,z)eπix0·ω0e−πz2
0 /∈ C0(R2d).

Hence the condition in (i) is necessary. To show that the condition on a in (ii) is necessary 
one uses a similar argument and the fact that

π(z0) � a = Fσ(a)(z0)π(z0),

as a calculation shows.

From Lemmas 2.3 and 2.4 it is clear that (i) and (ii) are satisfied if R = A · IL2 + K

for some compact operator K. However, these are not the only examples.

Example 5.1. If R ∈ L(L2) satisfies that FW (R) ∈ L∞(R2d), then R satisfies assump-
tion (ii) of Theorem 5.1 with A = 0 – such R are the operator-analogues of the 
pseudomeasures considered in Example 4.1. To prove this, let S = ϕ0 ⊗ ϕ0. Then 
FW (S)(z) = e−π|z|2 , so S ∈ W, and

Fσ(R � S) = FW (R) · FW (S) ∈ L1(R2d).

By Fourier inversion we have
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R � S = Fσ(FW (R) · FW (S)),

which belongs to C0(R2d) by the Riemann-Lebesgue lemma.
An example of such R is R = P , the parity operator. One can show that FW (P )(z) =

2d for any z ∈ R2d, hence P is a non-compact operator satisfying assumption (ii) of 
Theorem 5.1 with A = 0. We will return to this and other examples below.

5.1. Pitt improvements and characterizing compactness using Berezin transforms

As we saw in Theorem 4.5, Pitt’s classical theorem gives a condition on f ∈ L∞(R2d)
that ensures that

f ∗ g ∈ C0(R2d) for g ∈ W (R2d) =⇒ f ∈ C0(R2d).

In particular, we noted that this is true if f is uniformly continuous. To generalize this 
statement to operators R ∈ L(L2), recall that f ∈ L∞(R2d) is uniformly continuous if 
and only if z �→ Tz(f) is continuous map from R2d to L∞(R2d). Hence a natural analogue 
of the uniformly continuous functions is the set

C1 := {R ∈ L(L2) : z �→ αz(R) is continuous from R2d to L(L2)};

this heuristic was also followed by Werner [57] and Bekka [12]. With this in mind, the 
following result from [57] is an analogue of Pitt’s theorem for operators.

Theorem 5.2. Let R ∈ C1. The following are equivalent.

• R ∈ K.
• R � S ∈ C0(R2d) for some S ∈ W.
• R � f ∈ K for some f ∈ W (R2d).

Proof. That the first statement implies the other two is Lemma 2.3. That the other 
statements imply the first follows from the theory of corresponding subspaces developed 
by Werner in [57], more precisely from [57, Thm. 4.1 (3)]. In the notation of [57] we have 
picked D0 = C0(R2d) and D1 = K. �

We then try to gain a better understanding of the elements of C1.

Lemma 5.3. The following set inclusion and equality hold:

L∞(R2d) � S1 ⊂ L1(R2d) � L(L2) = C1. (23)

Proof. The equality C1 = L1(R2d) �L(L2) is [50, Prop. 4.5]. Then assume R = f � S for 
f ∈ L∞(R2d) and S ∈ S1. By [50, Prop. 7.4] there must exist g ∈ L1(R2d) and T ∈ S1
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such that S = g � T . It follows by associativity and commutativity of convolutions that 
we have R = f � (g � T ) = g � (f � T ). Since f � T ∈ L(L2) by Proposition 2.2, it follows 
that R ∈ L1(R2d) � L(L2). �

Furthermore, it is not difficult to see that C1 equipped with the operator norm is a 
Banach algebra. Hence it must contain the Banach algebra generated by elements of the 
form f �T for f ∈ L∞(R2d) and T ∈ S1, and Proposition 5.2 applies to operators in this 
Banach algebra.

This allows us to apply the results above to characterizing compactness of Toeplitz 
operators by their Berezin transform, a much-studied question going back to results of 
Axler and Zheng [8] for the so-called Bergman space, and soon after Engliš [24] for the 
Bargmann-Fock space F2(Cd). The central question is whether a Toeplitz operator on 
a reproducing kernel Hilbert space must be compact if its Berezin transform vanishes at 
infinity – see Section 4 of [10] for an overview over results of this nature in the literature. 
We will use Proposition 5.2 to reprove the main result of [11] for F2(Cd) and extend it to 
a class of Gabor spaces, but we hasten to add that the method of proving the results of 
[11] using the results of [57] was already noted recently by Fulsche [32]. Before the proof, 
recall the linear and multiplicative isometric isomorphism Θϕ : L(Vϕ(L2)) → L(L2) from 
(15), which satisfies that Θϕ(Tϕ

f ) = Aϕ,ϕ
f and BϕT̃ = Θϕ(T̃ ) � (ϕ̌⊗ ϕ̌).

Theorem 5.4. Let ϕ ∈ L2(Rd) with ‖ϕ‖L2 = 1 satisfy that Vϕϕ has no zeros, and let T ϕ

be the Banach algebra generated by Toeplitz operators Tϕ
f ⊂ L(Vϕ(L2)) for f ∈ L∞(R2d). 

Then the following are equivalent for T̃ ∈ T ϕ.

• T̃ is a compact operator on Vϕ(L2).
• BϕT̃ ∈ C0(R2d).

Furthermore, if T̃ = Tϕ
f for some slowly oscillating f ∈ L∞(R2d), then the conditions 

above are equivalent to lim|z|→∞ |f(z)| = 0.

Proof. First note that the assumption on Vϕϕ means that ϕ ⊗ ϕ ∈ W by Lemma 2.6, 
and as a simple calculation shows that FW (ϕ̌ ⊗ ϕ̌)(z) = FW (ϕ ⊗ ϕ)(−z) it also means 
that ϕ̌⊗ ϕ̌ ∈ W. To see that the first statement implies the second, note that Θϕ(T̃ ) is 
compact if and only if T̃ is, so

BϕT̃ = Θϕ(T̃ ) � (ϕ̌⊗ ϕ̌) ∈ C0(R2d)

by Lemma 2.3. For the other direction, it is clear by the properties of Θϕ that it maps 
T ϕ into the Banach algebra generated by localization operators Aϕ,ϕ

f = f � (ϕ ⊗ ϕ) for 
f ∈ L∞(R2d). In particular, Θϕ(T ϕ) ⊂ C1 by (23) as C1 is a Banach algebra containing 
Aϕ,ϕ

f for all f ∈ L∞(R2d). Since BϕT̃ = Θϕ(T̃ ) � (ϕ̌⊗ ϕ̌) ∈ C0(R2d) and ϕ̌⊗ ϕ̌ ∈ W by 
assumption, Proposition 5.2 gives that Θϕ(T̃ ) is compact, hence T̃ is compact as Θϕ is 
a unitary equivalence by definition.
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The last statement follows from Theorem 4.5, as Tϕ
f is compact if and only if Θϕ(Tϕ

f ) =
Aϕ,ϕ

f = f � (ϕ ⊗ ϕ) is compact, and ϕ ⊗ ϕ ∈ W. �
Remark 16. Similar techniques have also recently been used by Hagger [40] to give a 
characterization of some generalizations of T ϕ.

There are several examples of ϕ satisfying that Vϕϕ has no zeros, which by the propo-
sition gives examples of reproducing kernel Hilbert spaces Vϕ(L2) such that Toeplitz 
operators are compact if and only if their Berezin transform vanishes at infinity. One 
example is the one-sided exponential ϕ(t) = χ[0,∞)(t)e−t for t ∈ R considered by Janssen 
[43], and new examples were recently explored in [37].

Essentially the same argument as for Theorem 5.4, only replacing Θϕ by the map 
ΘF2 : L(F2(Cd)) → L(L2) defined by ΘF2(T̃ ) = B∗T̃B, gives a Bargmann-Fock space 
result from [11]. For this to work, it is important that ϕ0⊗ϕ0 ∈ W, since Proposition 3.5
and Lemma 3.6 relate the Bargmann-Fock setting to convolutions with ϕ0 ⊗ ϕ0. The 
definition of slowly oscillating functions on R2d given after that theorem is adapted to 
Cd in an obvious way.

Theorem 5.5 (Bauer, Isralowitz). Let T F2 be the Banach algebra generated by the Toeplitz 
operators TF2

F for F ∈ L∞(Cd). The following are equivalent for T̃ ∈ T F2 .

• T̃ is a compact operator on F2(Cd).
• BF2

T̃ ∈ C0(Cd).

If T̃ = TF2

F for a slowly oscillating F ∈ L∞(Cd), then the conditions above are equivalent 
to lim|z|→∞ F (z) = 0.

Remark 17. The last remark on slowly oscillating functions is, to our knowledge, a new 
contribution, and follows from Theorem 4.5. However, we mention that there exist other 
results relating the behaviour of F and BF2

TF2

F to the essential spectrum and Fred-
holmness of TF2

F , also for classes of F defined in terms of the oscillation [6,13,33,56]. 
For instance, [33, Thm. 33] implies that slow oscillation could be replaced by vanishing 
oscillation (see [33] for the definition) in the theorem above, which is weaker as functions 
of vanishing oscillation are bounded and uniformly continuous.

By Lemma 3.6 we immediately obtain the following compactness criterion.

Corollary 5.5.1. A Toeplitz operator TF2

F for F ∈ L∞(Cd) is a compact operator on 
F2(Cd) if and only if

f ∗ |Vϕ0ϕ0|2 ∈ C0(R2d),

where f(x, ω) = F (x − iω) for x, ω ∈ Rd and |Vϕ0ϕ0(z)|2 = e−π|z|2 .
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Remark 18. One could also define the Berezin transform for Toeplitz operators on poly-
analytic Bargmann-Fock spaces and relate it to convolutions with ϕn⊗ϕn. However, we 
would not be able to apply Proposition 5.2 to this case, as Vϕn

ϕn always has zeros for 
n �= 0.

Finally, we note that Theorem 5.2 gives a simple condition for compactness of local-
ization operators in terms of the Gaussian ϕ0.

Proposition 5.6. Let f ∈ L∞(R2d) and ψ1, ψ2 ∈ L2(Rd). The localization operator Aψ1,ψ2
f

is compact if and only if

f ∗ (Vϕ0ψ2Vϕ0ψ1) ∈ C0(R2d).

Proof. Recall that Aψ1,ψ2
f = f � (ψ2 ⊗ ψ1), so Aψ1,ψ2

f ∈ C1 by (23). Since ϕ0 ⊗ ϕ0 ∈ W
by Example 2.2, Proposition 5.2 gives that f � (ψ2 ⊗ ψ1) is compact if and only if 
[f � (ψ2 ⊗ ψ1)] � (ϕ0 ⊗ ϕ0) ∈ C0(R2d). The result therefore follows by

[f � (ψ2 ⊗ ψ1)] � (ϕ0 ⊗ ϕ0) = f ∗ [(ψ2 ⊗ ψ1) � (ϕ0 ⊗ ϕ0)] by associativity

= f ∗ (Vϕ0ψ2Vϕ0ψ1) by Lemma 2.6 as ϕ̌0 = ϕ0. �
In a sense, this result complements Theorem 4.2. Theorem 4.2 characterized those f

such that Aϕ1,ϕ2
f = f � (ϕ2 ⊗ ϕ1) is compact for all non-zero windows ϕ1, ϕ2 ∈ L2(Rd). 

Proposition 5.6 gives a characterization of compactness of Aψ1,ψ2
f for a particular pair 

of windows ψ1, ψ2. Of course, when

FW (ψ2 ⊗ ψ1)(x, ω) = eiπx·ωVψ1ψ2(x, ω)

has no zeros, compactness of Aψ1,ψ2
f implies compactness of Aϕ1,ϕ2

f for all windows ϕ1, ϕ2
by picking S = ψ2 ⊗ ψ1 and A = 0 in Theorem 4.1.

6. Quantization schemes and Cohen’s class

The perspective of [51] is that any R ∈ L(L2) defines both a quantization scheme and 
a time-frequency distribution. The quantization scheme associated with R – by which 
we simply mean a map sending functions on phase space R2d to operators on L2(Rd) – 
is given by

f �→ f � R for f ∈ L1(R2d).

The time-frequency distribution QR associated with R is given by sending ψ ∈ L2(Rd)
to its time-frequency distribution

QR(ψ)(z) = [(ψ ⊗ ψ) � Ř](z) for z ∈ R2d.
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Recall that a quadratic time-frequency distribution Q is said to be of Cohen’s class if 
there is some a ∈ S ′(R2d) such that

Q(ψ) = a ∗W (ψ,ψ) for all ψ ∈ S (Rd). (24)

The distribution QR is of Cohen’s class as (7) implies that

QR(ψ) = aŘ ∗W (ψ,ψ), (25)

where aŘ is the Weyl symbol of Ř. Using Theorem 5.1, we deduce the following result 
relating compactness of the quantization scheme of R to C0(R2d) membership of QR.

Proposition 6.1. Let R ∈ L(L2). The following are equivalent.

(i) QR(ϕ) ∈ C0(R2d) for some ϕ ∈ L2(Rd) such that Vϕϕ has no zeros.
(ii) g � R ∈ K for some g ∈ W (R2d).
(iii) QR(ψ) ∈ C0(R2d) for all ψ ∈ L2(Rd).
(iv) f � R ∈ K for all f ∈ L1(R2d).

Proof. Since QR(ψ)(z) = Ř � (ψ⊗ψ) and FW (ϕ ⊗ϕ)(x, ω) = eiπx·ωVϕϕ(x, ω), it follows 
from Theorem 5.1 with A = 0 that (i) ⇐⇒ (iii) and (ii) ⇐⇒ (iv). A short calculation 
shows that R� (ψ⊗ψ)(z) = QR(ψ̌)(−z). Since ψ �→ ψ̌ is a bijection on L2(Rd), it follows 
that (iii) is equivalent to

(iii′) R � (ψ ⊗ ψ) ∈ C0(R2d) for all ψ ∈ L2(Rd).

By Theorem 5.1, (iii′) ⇐⇒ (iv), which finishes the proof. �
Remark 19.

(1) By the remark following Theorem 5.1, the conditions on ϕ in (i) and g in (ii) are 
also necessary to imply (iii) and (iv).

(2) One advantage of using the operator convolutions to describe Cohen’s class is that 
ψ ⊗ ψ ∈ S1 for any ψ ∈ L2(Rd), so as long as R is a bounded operator we 
may exploit results on L(L2) � S1 to study QR(ψ) = Ř � (ψ ⊗ ψ). If we had 
used the description of Cohen’s class using functions in (24), one could similarly 
hope that W (ψ, ψ) ∈ L1(R2d), so that picking a ∈ L∞(R2d) allows us to study 
Q(ψ) = a ∗W (ψ, ψ) as convolutions of bounded and integrable functions. Unfortu-
nately, W (ψ, ψ) ∈ L1(R2d) if and only if ψ belongs to a proper subspace of L2(Rd)
called Feichtinger’s algebra [26]. Hence this approach fails in general.

The gist of the above proposition is that (i) provides a simple test for checking whether 
(iii) and (iv) hold. A typical choice for ϕ in (i) would be the Gaussian ϕ = ϕ0, then 
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QR(ϕ0) is the so-called Husimi function of R. Hence the quantization f � R of any 
f ∈ L1(R2d) is compact and QR(ψ) ∈ C0(R2d) for any ψ ∈ L2(Rd) if and only if the 
Husimi function of R belongs to C0(R2d).

6.0.1. τ -Wigner distributions
For τ ∈ [0, 1], define

aτ (x, ω) =
{

2d

|2τ−1|d · e2πi 2
2τ−1x·ω if τ �= 1

2 ,

δ0 if τ = 1
2 ,

where δ0 is Dirac’s delta distribution. A slightly tedious calculation using the definition 
(3) shows that the Weyl transform Sτ of aτ is given for ψ ∈ S (Rd) by

Sτ (ψ)(t) =

⎧⎪⎪⎨⎪⎪⎩
1

(1−τ)dψ
(

τ
τ−1 · t

)
if τ ∈ (0, 1),

ψ(0) if τ = 0,∫
Rd ψ(t) dt · δ0 if τ = 1,

as already noted for d = 1 in [48, Thm. 7.2]. If τ ∈ (0, 1), it is easy to check that Sτ is 
bounded on L2(Rd) with ‖Sτ‖L(L2) = 1

(1−τ)d/2τd/2 , that S∗
τ = S1−τ , Šτ = Sτ and the 

inverse of Sτ is τd(1 − τ)dS1−τ . In particular, Sτ is not compact.
In light of (25), [15, Prop. 5.6] states that QSτ

(ψ) is the τ -Wigner distribution Wτ (ψ)
introduced in [15], given explicitly by

QSτ
(ψ)(z) = Wτ (ψ)(z) :=

∫
Rd

e−2πit·ωψ(x + τt)ψ(x− (1 − τ)t)dt.

On the other hand, we easily find for f ∈ L1(R2d) and ψ ∈ S (Rd) that

〈(f � S1−τ )ψ,ψ〉L2 = [(f � S1−τ ) � (ψ ⊗ ψ)] (0)

= [f ∗ (S1−τ � (ψ ⊗ ψ))] (0)

=
∫

R2d

f(z)S1−τ � (ψ ⊗ ψ) dz

=
∫

R2d

f(z)W1−τ (ψ)(z) dz

= 〈f,Wτ (ψ)〉L2(R2d) .

In the last line we use that QS(ψ) = QS∗(ψ) for S ∈ L(L2), and S∗
τ = S1−τ . This shows 

precisely that f �S1−τ satisfies the definition of the τ -Weyl quantization of f introduced 
by Shubin [55] – in the notation of [15] we have that
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f � S1−τ = W f
τ .

The case τ = 1/2 is of particular interest, as S1/2 = S1−1/2 = 2dP – a scalar multiple 
of the parity operator. This case corresponds to the Weyl calculus, in the sense that 
Q2dP (ψ) = W (ψ, ψ) for ψ ∈ L2(Rd) and f � (2dP ) is the Weyl transform of f for 
f ∈ L1(R2d).

We can now show that the τ -Wigner theory and the non-compact operators Sτ give a 
family of non-trivial examples to Theorem 5.1. The compactness part of the next result 
was also noted using different methods in [15, Thm. 6.9].

Proposition 6.2. Let τ ∈ (0, 1). Then Sτ satisfies condition (i) of Proposition 6.1, hence

(1) Wτ (ψ) = QSτ
(ψ) ∈ C0(R2d) for any ψ ∈ L2(Rd).

(2) W f
τ = f � S1−τ is a compact operator on L2(Rd) for any f ∈ L1(R2d).

Proof. Recall from Example 2.2 that Vϕ0ϕ0 has no zeros. By [15, Prop. 4.4],

QSτ
(ϕ0) = Wτ (ϕ0) ∈ C0(R2d)

for any τ ∈ [0, 1]. Hence (i) in Proposition 6.1 is satisfied, and the result follows by (iii)
and (iv) of the same proposition. �

In fact, the same proof shows that the functions aτ ∈ L∞(R2d) for τ �= 1/2 are non-
trivial examples of Theorem 4.1, where non-trivial refers to the fact aτ /∈ Lp(R2d) for 
p = 0 or 1 ≤ p < ∞.

Proposition 6.3. For τ ∈ [0, 1] \
{ 1

2
}
, aτ satisfies the assumptions of Theorem 4.1 with 

A = 0.

Proof. Recall that Wτ (ϕ0) = Sτ � (ϕ0 ⊗ ϕ0) = aτ ∗ W (ϕ0, ϕ0) by (25). As a special 
case of (11) one gets that Fσ(W (ϕ0, ϕ0)) = FW (ϕ0 ⊗ ϕ0), hence W (ϕ0, ϕ0) ∈ W (R2d)
by Example 2.2. The previous proof showed that Wτ (ϕ0) ∈ C0(R2d), so f satisfies 
assumption (ii) of Theorem 4.1. �
Remark 20. The operators S0 and S1 are clearly not bounded on L2(Rd), even though 
a0, a1 ∈ L∞(R2d). Hence a0 and a1 are examples of bounded functions with unbounded 
Weyl transform. Similarly, S1/2 is a bounded operator with unbounded Weyl symbol.

We end by considering the example of Born-Jordan quantization.

Example 6.1 (Born-Jordan quantization). The Born-Jordan distribution QBJ(ψ) of ψ ∈
L2(Rd) is given by
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QBJ(ψ)(z) =
1∫

0

Wτ (ψ)(z) dτ =
1∫

0

QSτ
(ψ)(z) dτ,

see [15,22]. It is well-known that QBJ is of Cohen’s class, and from [15, Prop. 5.8] it 
follows that QBJ = QSBJ

where SBJ ∈ L(S (Rd), S ′(Rd)) is defined by

FW (SBJ)(x, ω) = sinc(πx · ω). (26)

The associated quantization scheme f �→ f � SBJ is then the Born-Jordan quantization
[22].

For d = 1 it was shown in [48, Prop. 2] that SBJ ∈ L(L2). Since (26) shows that 
FW (SBJ) ∈ L∞(R2d), combining Example 5.1 and Proposition 6.1 we may conclude 
that the Born-Jordan quantization of any f ∈ L1(R2) is compact, and that the Born-
Jordan distribution of any ψ ∈ L2(R) belongs to C0(R2).

6.1. Counterexample to a Schatten class version of Theorem 5.1

For the special case A = 0, Theorem 5.1 states that if R�a ∈ K for some a ∈ W (R2d), 
then R � g ∈ K for all g ∈ L1(R2d). An obvious generalization is to replace K by a 
Schatten class Sp for some 1 ≤ p < ∞. Is it true that R�a ∈ Sp for a ∈ W (R2d) implies 
that R � g ∈ Sp for all g ∈ L1(R2d)? A simple counterexample is provided by the Weyl 
calculus.

Example 6.2. Recall that S1/2 � f is the Weyl transform of f ∈ L1(R2d). If we let 
a(z) = 2de−π|z|2 , then a ∈ W (R2d) and it is well-known that the Weyl transform a �S1/2
of a is the rank-one operator ϕ0⊗ϕ0. In particular, a �S1/2 ∈ S1 ⊂ Sp for any 1 ≤ p ≤ ∞. 
However, if we pick f ∈ L1(R2d) \L2(R2d), then f �S1/2 /∈ Sp for any 1 ≤ p ≤ 2, since the 
Weyl transform is a unitary mapping from L2(R2d) to S2, and Sp ⊂ S2 for 1 ≤ p ≤ 2. 
Hence we cannot conclude from a � S1/2 ∈ Sp for a ∈ W (R2d) that f � S1/2 ∈ Sp for all 
f ∈ L1(R2d), at least for 1 ≤ p ≤ 2.
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