
Critical Understanding of Security Vulnerability
Detection Plugin Evaluation Reports

1st Sindre Beba
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

sindrbeb@alumni.ntnu.no

2nd Magnus Melseth Karlsen
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

magnumk@alumni.ntnu.no

3rd Jingyue Li
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway
jingyue.li@ntnu.no

4th Bing Zhang
School of Information Science and Engineering

Yanshan University
Qinhuangdao, China

bingzhang@ysu.edu.cn

Abstract—Integrated development environment (IDE) plugins
aimed at detecting web application security vulnerabilities can
help developers create secure applications in the first place. Most
of such IDE plugins use static source code analysis approaches.
Although several empirical studies evaluated the plugins and
compared their precision and recall of detecting web application
security, few follow-up studies tried to understand the evaluation
results. We analyzed more than 20,000 vulnerability reports based
on 7,215 distinct test cases spanning 11 categories of web applica-
tion vulnerabilities to understand the evaluation results of three
open-source IDE plugins, namely, SpotBugs, FindSecBugs, and
Early Security Vulnerability Detector (ESVD), which aimed at
detecting security vulnerabilities of Java-based web applications.
Our results identify many factors besides the source code analysis
approach that can dramatically bias the detection performance.
Based on our insights, we improved the studied plugins. In
addition, our study raises the alarm that, without solid root cause
analyses, the evaluation and comparisons of security vulnerability
detection approaches and tools could be misleading. Thus, we
proposed a guideline on reporting the evaluation results of the
security vulnerability detection approaches.

Index Terms—Software security, Source code analysis, Vulner-
ability detection, Empirical study, Root cause analysis

I. INTRODUCTION

As society grows more dependent on secure web applica-
tions, it is critical to reduce the number of security vulnerabili-
ties. Using plugins in an Integrated Development Environment
(IDE) to detect and inform developers about possible security
issues in the code they are writing could be an efficient
solution to help developers create secure code in the first
place. IDE plugins have been developed for this purpose.
Studies [1] [2] have empirically evaluated and compared how
accurately IDE plugins, such as Application Security in IDE
(ASIDE) [3]–[5], ESVD [6], LAPSE+ [7], [8], SpotBugs [9],
[10], and Find Security Bugs (FindSecBugs) [11], can identify
OWASP [12] vulnerabilities. [1] found that ESVD’s precision
in identifying SQL injection vulnerability is only 39%, and
FindSecBugs’ recall in identifying hard-coded passwords is

only 43%. A high false-negative rate among these plugins will
mislead the developers to interpret an insecure web application
as a secure one, and a high false-positive rate will discourage
developers from using the plugins [13]. Thus, it is critical
to identify the reasons for the plugins’ false negatives and
false positives and to improve them to detect vulnerabilities
precisely. We selected the three plugins evaluated in [1], i.e.,
ESVD, SpotBugs, and FindSecBugs, which are still actively
maintained and evolved by the community, and manually
examined each of their false-negative and false-positive results
to understand why the plugins perform as they did in [1]. We
performed the root cause analysis by first hypothesizing the
possible reasons for the false results. Based on the hypothesis,
we implemented fixes. If the fixes eliminated the false results,
our hypotheses of the root causes of the false results are
confirmed. The studies identified design and implementation
weaknesses of the plugins, such as missing sources and sinks
in taint analysis and incomplete data-flow and control-flow
analysis. More importantly, we found that many other factors,
which are not necessarily relevant to the detection approach
and algorithm, can significantly bias the recall and precision of
the evaluation. The factors include systematically biased test
cases, missing test cases, inconsistent confidence ranking of
the detected vulnerabilities, misclassification of the detected
vulnerabilities, and missing reports of the vulnerabilities in
the same line of code. To our knowledge, no similar studies
have analyzed the root causes of so many (i.e., more than
20,000) vulnerability reports of vulnerability detection tools.
The contributions of our study are threefold:

• First, we provide insights on issues and solutions of
implementing taint analysis-based security vulnerability
detection tools. Some of the insights can also be gener-
alized to other types of static source code analysis-based
vulnerability detectors.

• A more significant contribution is that our deep under-

standings of evaluation reports identified several novel
bias factors of evaluating vulnerability detectors. Thus,
we propose an evaluation guideline and encourage re-
searchers to perform and report more thorough empirical
evaluations of the vulnerability detectors. The guideline
can also help the industrial practitioners who want to
use these detectors to read and understand the evaluation
reports more wisely.

• In addition, we identified weaknesses of the studied plu-
gins and improved their precision and recall significantly.

The rest of the paper is organized as follows: We introduce
the study design in Section 2, and Section 3 presents the study
results. Section 4 presents the related work. We discuss our
results in Section 5 and conclude and propose future work in
Section 6.

II. STUDY DESIGN

Many studies use static code analysis [14] in general and
taint analysis [15] in particular to detect web application
vulnerabilities. IDE plugins, such as [16], use static code
analysis approaches to help developers identify vulnerabilities
when writing their code. Study [1] evaluated five open-source
IDE plugins, which use static source code analysis approaches
to detect vulnerabilities. The results of [1] show that the
plugins have much higher false-negative and false-positive
rates than the level (as explained in [17] [13] [18]) that
developers are willing to accept. Similar empirical studies,
e.g., [19], [20], and [2], also observe low recall and precision
of IDE plugins in detecting many vulnerabilities. Thus, it is
necessary to understand why those false negatives and false
positives happen to help improve the recall and precision of
the plugins to a satisfactory level. Our research question is:
what are the root causes of correct and false results of
plugin evaluations?

A. Our studied vulnerability detecting plugins and vulnerabil-
ities

Although ASIDE, LAPSE+, ESVD, SpotBugs, and Find-
SecBugs are evaluated in [1], in this study, we limited our
focuses to the plugins that are actively maintained. Thus, we
excluded LAPSE+ because it must run in an older release of
Eclipse from 2010, namely, Eclipse Helios. We also excluded
ASIDE because it has not been updated since 2013. Detailed
information about the selected plugins in this study can be
found in Table I.

The results of [1] show that different plugins focus on
detecting different categories of vulnerabilities. To get an
in-depth and generalizable understanding of approaches to
detect specific vulnerability categories, we decided to choose
vulnerabilities that allow us to compare the results and im-
plementations between multiple plugins. We chose to study
vulnerabilities that at least two of the plugins in [1] claim to
cover. The web security vulnerabilities we studied include OS
Command Injection, SQL injection, LDAP injection, HTTP
Response Splitting, XPath Injection, Hard-coded password,
Relative Path Traversal, Absolute Path Traversal, Cross-Site

Scripting (XSS), Script in Error Message, and Script in
Attributes. As shown in Table II, our studied vulnerabilities
cover categories A1 (Injection), A2 (Broken Authentication),
A5 (Broken Access Control) and A7 (XSS) in the OWASP top
10 2017 [12]. The Common Weakness Enumeration (CWE)
[21] IDs of the studied vulnerabilities are also listed in Table II.

TABLE I
INFORMATION ABOUT THE SELECTED PLUGINS.

Plugin Download From Version Version Date
ESVD [6] 0.4.2 Jul 2016

SpotBugs [10] 3.1.11 Jan 2019
FindSecBugs [11] 1.8.0 Jun 2018

B. Research methods

To understand the reasons for true positives, false positives,
and false negatives of the detection results of the plugins [1],
we first read the source code of the test cases, which are in
the Juliet Test Suite, and plugins to understand their imple-
mentations. Then, we hypothesized why the vulnerabilities are
detected correctly or incorrectly by each plugin. Based on our
hypotheses, we modified the plugins’ source code to eliminate
the false detection results. If our modifications successfully
improved plugins’ vulnerability detection precision and recall,
we knew that our hypotheses of the root causes of the false
results are correct. The precision, recall, and discrimination
rate of detecting the plugins before and after improvements
are shown in Table II. The discrimination rate [22] measures
how well a plugin reports true positive detection results
without also reporting false positives. The source code of our
improved plugins are available at https://github.com/Beba-and-
Karlsen/ide-plugins-modified.

We analyzed 11 types of vulnerabilities, which are related
to 7,215 distinct variations of test cases in the Juliet Test
Suites. The numbers of test cases of each vulnerability are
shown in Table II. Considering the fact that we are executing
three different plugins on these 7,215 test cases, this resulted
in 20,313 different vulnerability reports, excluding the 1,332
vulnerabilities which SpotBugs does not claim to cover.

III. RESEARCH RESULTS

Our studies first gave us insights into how the test cases
in the Juliet Test Suite and the plugins are designed and
implemented. The studies also gave critical understandings of
the reasons for the evaluation results of the plugins using the
Juliet Test Suite as the test bed.

A. Design and implementations of Juliet Test Suite

There are multiple test cases for each vulnerability in the
Juliet Test Suite, and each of these test cases has a unique
composition of which source is used and what control- and
data-flow complexity is added. These will be referred to
respectively as source variants and flow variants. A source
variant is a variant of a test case using a specific source.
The Juliet Test Suite consists of similar cases where the only
difference is what source is used. This way, it is possible to

TABLE II
RECALL (REC.), PRECISION (PRE.), AND DISCRIMINATION (DISC.) RATE BEFORE AND AFTER IMPROVEMENT. AFTER IMPROVEMENT NUMBERS ARE IN

PARENTHESES. GREEN INDICATES INCREASED PERFORMANCE AND RED INDICATES DECREASED PERFORMANCE.

Vulnerabilities Plugins
CWE ID Name (Number of test cases) SpotBugs FindSecBugs ESVD
OWASP A1: Injection Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.

78 OS Command Injection (444) - (-) - (-) - (-) 86% (89%) 86% (100%) 72% (86%) 11% (19%) 100% (100%) 11% (19%)
89 SQL Injection (2220) 100% (84%) 43% (70%) 0% (49%) 86% (89%) 86% (100%) 72% (86%) 65% (22%) 39% (100%) 0% (22%)
90 LDAP Injection (444) - (-) - (-) - (-) 86% (89%) 86% (100%) 72% (86%) 0% (19%) N/A (100%) N/A (19%)
113 HTTP Response Splitting (1332) 4% (47%) 100% (100%) 4% (47%) 74% (89%) 100% (100%) 74% (86%) 0% (0%) N/A (N/A) N/A (N/A)
643 XPath Injection (444) - (-) - (-) - (-) 86% (89%) 86% (100%) 72% (86%) 0% (0%) N/A (N/A) N/A (N/A)

OWASP A2: Broken Authentication Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
259 Hard-coded Password (111) 14% (14%) 100% (100%) 14% (14%) 43% (43%) 100% (100%) 43% (43%) 18% (18%) 87% (87%) 16% (16%)

OWASP A5: Broken Access Control Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
23 Relative Path Traversal (444) 4% (47%) 100% (100%) 4% (47%) 86% (100%) 86% (88%) 72% (86%) 11% (19%) 100% (100%) 11% (19%)
36 Absolute Path Traversal (444) 4% (40%) 100% (100%) 4% (40%) 86% (100%) 86% (88%) 72% (86%) 11% (19%) 100% (100%) 11% (19%)

OWASP A7: Cross-Site Scripting Rec. Pre. Disc. Rec. Pre. Disc. Rec. Pre. Disc.
80 Basic XSS (666) 3% (46%) 100% (100%) 3% (46%) 100% (89%) 88% (100%) 86% (86%) 11% (19%) 100% (100%) 11% (19%)
81 Script in Error Message (333) 6% (46%) 100% (100%) 6% (46%) 100% (89%) 88% (100%) 86% (86%) 11% (19%) 100% (100%) 11% (19%)
83 Script in Attributes (333) 6% (46%) 100% (100%) 6% (46%) 100% (89%) 88% (100%) 86% (86%) 11% (19%) 100% (100%) 11% (19%)

discover whether a static code analysis tool is unable to detect
a specific source. Figure 1 and Figure 2 are examples of the
source variants Connect TCP and File. These lines of code
retrieve potentially vulnerable input from a TCP connection
and a File, respectively.

1 socket = new
Socket("host.example.org", 39544);↪→

2 reader = new
InputStreamReader(socket.↪→

getInputStream(), "UTF-8");
3 readerBuffered = new

BufferedReader(reader);↪→

4 data = readerBuffered.readLine();

Fig. 1. Simplified Connect TCP source variant.

1 file = new File("C:\\data.txt");
2 stream = new FileInputStream(file);
3 reader = new

InputStreamReader(stream,
"UTF-8");

↪→

↪→

4 readerBuffered = new
BufferedReader(reader);↪→

5 data = readerBuffered.readLine();

Fig. 2. Simplified File source variant.

A flow variant of a test case includes specific control-
flow statements that add complexity to the test case. Every
vulnerability category includes the same 37 flow variants. The
first flow variant is called the baseline and includes no added
complexity. It is the easiest of the test cases. The next group of
flow variants is called control-flow cases. There are 18 control-
flow cases, and they hide the source or sink within control-
flow statements (e.g., if-then statements) to make them harder
to detect. The third group of flow variants is called data-flow

cases, e.g., vulnerable data are retrieved from the source in
one class and used in a sink in another class.

B. Design and implementations of the plugins

1) Design and implementation of SpotBugs: SpotBugs uti-
lizes bug patterns to discover vulnerabilities. A bug pattern is
defined as “a code idiom that is likely to be an error” [9].
SpotBugs analyzes the Java bytecode using the Byte Code
Engineering Library (BCEL). SpotBugs uses both control-flow
and data-flow analysis, which it implements as part of an
internal framework [9]. An advantage of analyzing bytecode
is that the compiler will optimize parts of the code. A relevant
example is that for if-statements that will always be true,
the compiler will exclude the if-statement in the bytecode.
However, if the if-statement can be either true or false, e.g.,
by using a variable, the if-statement remains in the bytecode.
In the Juliet Test Suite, a total of eight control-flow variants are
optimized by the Java compiler, which removes the control-
flow statement. This way, these test cases will be similar to
the baseline for SpotBugs, and it will detect the vulnerabilities
in these control-flow variants if it detects them in the baseline.
SpotBugs categorizes each vulnerability occurrence into a rank
category and a confidence category. The rank indicates how
severe the vulnerability is, and the default setting of SpotBugs
is to report on all rank categories. The confidence indicates
how confident SpotBugs is in the vulnerability’s authenticity
and can be low, normal, or high.

2) Design and implementation of FindSecBugs: Find-
SecBugs is similar to SpotBugs and consists of added vulner-
ability detectors based on the functionality provided by Spot-
Bugs. In addition to the many new detectors, FindSecBugs also
adds techniques for detecting new classes of vulnerabilities.
Taint analysis is one of these new techniques and is applied
by many detectors to find connections between sources and
sinks where tainted data are handled. Many of the detectors in
FindSecBugs use resource files to list their vulnerable sources
and sinks, which makes it possible to easily add or update the
detectors without changing a detector’s code itself. Possible
tainted data are given properties using tags. There are many
different reasons a tag can be assigned to a possible taint. For

example, for SQL injection taint detection, a tag is assigned
to data to say either the data have been adequately sanitized
or the data contain apostrophes which have been properly
encoded to not interfere with an SQL query’s apostrophes. The
encodeForSQL(Codec, String) method will sanitize
the data and make them safe from SQL injections, which
results in the sanitized data being tagged as safe from SQL
injections. In addition to tags, possible tainted data have a
state. The state can be tainted, unknown, safe, null, or invalid.
A hard-coded integer will automatically be given a safe state,
while the configuration file can be used to identify that data
from a list of specific methods are tainted. For example, the
output of Cookie.getName() will be automatically given
a tainted state, as a malicious user can change the name of a
cookie. When all invoked instructions have been compared to
the list of vulnerable sinks, and the tags and states have been
updated, the detector will rank the confidence as follows and
choose what to report:

• High confidence: If the state is set to tainted, set the
confidence to high;

• Normal confidence: If the state is set to unknown or
invalid, set the confidence to normal;

• Low confidence: If the state is set to safe, set the
confidence to low.

3) Design and implementation of ESVD: ESVD analyzes
Java code instead of bytecode. ESVD uses taint analysis and
context-sensitive data-flow analysis [23]. ESVD uses XML
files containing a list of sources, sanitization points [24],
and sinks. Sources and sanitization points are universal for
all kinds of vulnerabilities, while sinks are unique for each
type of vulnerability. The XML file lists include 75 sources,
141 sinks, and 52 sanitization points. In ESVD, a variable
receiving input from a vulnerable source is considered tainted.
By using what is called tainted propagation, every other
element in contact with this tainted element is also marked as
tainted. Elements flowing through containers, such as arrays
or lists, are automatically marked as tainted if one of the other
elements in the container is tainted.

C. Design and implementation weaknesses of the plugins

Although SpotBugs, FindSecBugs, and ESVD have slightly
different implementations, they have applied taint analyses
more or less. ESVD uses taint analysis for all of its detectors,
FindSecBugs uses taint analysis for many of its detectors, and
SpotBugs uses taint analysis in several detectors, such as SQL
injection, path traversal, and XSS. Our root cause analyses
revealed two common weaknesses of implementing the taint
analysis in these plugins. The weaknesses are explained below
using some examples from the studied plugins. The complete
root cause analysis results can be found in [25].

1) Missing sources and sinks: Taint analysis relies heavily
on correct and complete lists of sources and sinks. One of the
recurring fixes we carried out was adding missing sources and
sinks.

One major limitation of SpotBugs detector of HTTP Re-
sponse Splitting vulnerability is that the sources it can track

are few and cover few of the test cases in the Juliet Test
Suite, which leads to a recall of 4%. Only three sources
are defined in this detector, two of which exist in the Juliet
Test Suite. SpotBugs identifies vulnerabilities in one source,
namely getQueryString(), but not the other. Taint anal-
ysis fails to track the tainted value because it is immediately
broken down into substrings. The HTTP response splitting
detector does not understand that the data from the string
tokenization originate from the tainted string but rather sees
the data as originating from the tokenizer itself. We have
analyzed possible additional sources and added them to the
HTTP response splitting detector. The added sources result in
an increase in the recall and discrimination rates from 4% to
47%, as shown in Table II.

All the injection detectors suffer from FindSecBugs’
decision to exclude a set of vulnerable sources from
its taint analysis. The authors of FindSecBugs have
intentionally defined System.getenv(String) and
System.getProperty(String) as safe sources. These
two sources are used to retrieve tainted data from the
Juliet Test Suite’s source variants Environment and
Property. For the SQL injection category in the Juliet Test
Suite, this results in a 14% false-negative rate. Similar numbers
of false negatives are seen in FindSecBugs’ other injection
detectors because of the two missing vulnerable sources.
Both environment variables and system properties can be
tampered with by a user with access to the system, by another
application running on the same system, or by a different
vulnerability in the same application. Assuming environment
variables and system variables are safe is not very rational.
Through redefining the System.getenv(String) and
System.getProperty(String) as unsafe sources, the
recall of SQL injection detector of FindSecBugs is increased
from 86% to 89%. The recalls of other FindSecBugs’
injection detectors are also increased, as show in Table II.

Study [1] shows that ESVD can detect OS command in-
jection and SQL injection vulnerabilities. However, the LDAP
injection, HTTP response splitting, and XPath injection get
zero true and false positives. This is despite the fact that all
of the detectors in ESVD use the same underlying algorithm.
The reason for the low recall of the OS command injection
detector is that five source variants are not included in ESVD’s
resource list. As mentioned in section III-B3, ESVD has a
shared list of sources that every detector utilizes. If a source
is not included in the list, the source will not be detected by
any of the detectors. The LDAP injection detector and HTTP
response splitting detector of ESVD are unable to detect any
vulnerabilities in the Juliet Test Suite because the sink used
in the Juliet Test Suite is not included in ESVD’s resource
lists. When the missing sinks are added, the LDAP injection
detector is able to detect some vulnerabilities’ occurrences and
the recall is increase from 0% to 19%, as shown in Table II.

2) Incomplete control-flow and data-flow analysis: The
XSS detector in SpotBugs has recall and discrimination rates
of between 3% and 6% due to the small number of detected
sources and a taint analysis that struggles to follow data. The

taint analysis of the XSS detector for SpotBugs could not
follow data through the use of String.replaceAll().
Half, i.e., 333, of the XSS test cases in the Juliet Test
Suite executed a replaceAll() on the data before they
were sent to the sink. The data tracking capabilities of the
XSS detector are unable to understand that the output of the
replaceAll() method is tainted, resulting in half of the
test cases not being detected. We improved the taint analysis
so that it can track data through the replaceAll() method,
and this change results in 333 new true positives of XSS and
increased the recall rate of SpotBugs’ detectors to 46%, as
show in Table II.

SpotBugs only detects hard-coded
database passwords for the Java method
java.sql.DriverManager.getConnection().
If one method is found to invoke getConnection(),
the detector checks if the password argument of
getConnection() is hard-coded, i.e., a literal or a
constant instantiated as a literal. If it is indeed hard-coded,
the detector reports the vulnerability with normal confidence.
SpotBugs has only a 14% recall in detecting a hard-coded
password. The limitation of SpotBugs is that it does not
utilize control-flow analysis. Even though it reports more
than one true positive for the control-flow variants, most
true positives are not due to control-flow analysis, but rather
the Java compiler optimizing the code and removing the
control-flow statement, as explained in section III-B1. For
control-flow variants that the Java compiler cannot optimize,
the detectors could not identify the hard-coded password.
Another limitation of SpotBugs is its incomplete data-flow
analysis in this detector. The detector implements some data-
flow analysis and is able to detect the vulnerabilities on the
first method call even though the data travel through several
methods and classes. However, it only detects data-flow test
cases when the data are transferred as an argument, not when
a method returns a value. Nor does it detect the vulnerability
if the data are hidden in a data structure such as an array
or a Map.

A few false positives and false negatives that are produced
by the injection detectors in FindSecBugs are located in five
data-flow cases, where the taint analysis in FindSecBugs is
unable to track the data. Two of the five problematic data-flow
test cases pass the value between methods using a class field.
Another two of the five data-flow test cases process and wrap
the data into other data structures, such as a Java Container
or by serializing and deserializing the data. The taint analysis
framework in FindSecBugs loses track of all four of these
test cases, and the tainted data are given an “unknown” state.
The fifth test case in the Juliet Test Suite that is misidentified
is due to FindSecBugs’ taint analysis being unable to track
the data in class-based inheritance, and the data are therefore
given an “unknown” state. This results in five false positives
because FindSecBugs’ OS command, SQL, LDAP, and Xpath
injection detectors will report a vulnerability where data with
an unknown state reach a vulnerable sink. However, the HTTP
response splitting detector of FindSecBugs will not report

when data with unknown states reach a vulnerable sink, which
results in zero false positives in these five difficult data-flow
test cases. This leads to a total recall of 74% of HTTP response
splitting instead of the 86% recall that can be seen for the other
detectors of FindSecBugs, but also a higher precision of 100%
compared to 86% for the other detectors of FindSecBugs.

For ESVD, the control-flow variants detected by the OS
command injection detector use a while-loop and a for-
loop. It turns out that ESVD’s underlying algorithm is able to
track the data through these two control-flow statements but
struggles with if-statements and switch-statements, where
it detects nothing. Since most of the control-flow variants
in the Juliet Test Suite include if-statements, the detector
only detects 11% of the control-flow variants. In addition,
the ESVD OS command injection detector detects data-flow
variants where data are sent between methods within the same
class. However, when the data move between classes, i.e.,
when data-flow analysis is needed, the detector cannot detect
anything. This is especially surprising as utilizing context-
sensitive data-flow analysis was the biggest selling point of
ESVD [24].

Instead of reporting a vulnerability when tainted data from
a source reach a sink, the SQL injection detector of ESVD
reports all cases where a concatenated string is used in con-
junction with a sink. The only criterion to report a vulnerability
is that the concatenated string stems from string variables
and not literals, i.e., a string originating from user input. The
detector does not look at the content of the string variable
and whether it originates from a vulnerable source. Thus,
the detector does not actually utilize data-flow analysis and
is more similar to basic pattern matching. The discrimination
rate of 0% is an indication that the detector cannot differentiate
true positives from false positives and does not use data-flow
analysis. We have another observation that all of the false
positives are detected in test cases consisting of a safe source
and an exploitable sink. This is because all the detectors
in ESVD only report a vulnerability when they find an ex-
ploitable sink. A vulnerable source on its own triggers nothing.
After removing the unique detection method for SQL injection,
which is dependent on detecting concatenated strings, and let
the SQL injection detector use the underlying algorithm of
ESVD as other injection detectors, we got improved precision
and discrimination rates but worse recall, as shown in Table II.

ESVD’s hard-coded password detector has a unique detec-
tion algorithm. It is still partly based on ESVD’s underlying
algorithm. However, instead of tracking data from source to
sink, the detector reports a vulnerability when literals are used
as hard-coded passwords. This means the detector does not
use the resource list for sources, but it does use a unique
resource list for sinks. The only sink included is Driver
Manager. The other two sinks, namely, Kerberos Key
and Password Authentication, are not included in this
detector’s resource list. After we added the two missing sinks,
the hard-coded password detector still could not detect the
vulnerabilities. Both of the sinks use a char array as a
parameter, and the String input must be converted into a

char array before being injected into the sinks. We found
that the hard-coded password detector cannot track the input
through the conversion from String to char, which leads
to no vulnerabilities being detected. After we changed one of
the test cases for both sinks to use a hard-coded char array,
ESVD was able to detect it. This experiment confirms that it
is the String to char conversion that the detector is unable
to track that prevents ESVD from detecting the vulnerabilities.

D. Other factors that influenced plugin evaluation results

Besides the weaknesses of plugins’ design and implementa-
tion, a few other factors also influenced the true positives, false
positives, and false negatives of plugin evaluations. Without
considering these factors, the evaluation results can be very
misleading.

1) Systematically biased test cases: We found that the Juliet
Test Suite contains systematically biased test cases that could
lead to a misleading evaluation of the detection approaches.
Although the SQL injection detector of SpotBugs has a 100%
recall, it has a precision of 43% and a 0% discrimination
rate. SpotBugs calculates the confidence of vulnerability by
considering the content of the data used in the SQL injection
sink. When a possible SQL injection has been identified,
the confidence of the detected vulnerability is calculated as
follows.

• High confidence: If an unsafe string concatenation has
been used, the sink’s data are tainted, and both an opening
and a closing quotation mark is present in the SQL query.

• Normal confidence: If an unsafe string concatenation
has been used, the sink’s data are not tainted, and both
an opening and a closing quotation mark is present in the
SQL query.

• Normal confidence: If an unsafe string concatenation
has been used, the sink’s data are tainted, and a comma
is present in the SQL query.

• Low confidence: If an unsafe string concatenation has
been used, the sink’s data are not tainted, and a comma
is present in the SQL query.

• Low confidence: If string concatenation has not been
used.

The main limitation of SpotBugs’ approach is that the entire
detection algorithm is dependent on identifying string con-
catenations. For example, the following code will concatenate
three strings: "insert into ...", "foo", and "’". The
detector sees a string concatenation, and it sees the opening
and closing quotation marks. The detector will mark the string
concatenation as unsafe. However, this code does not have any
unsafe string concatenations.

1 String data = "foo";
2 Boolean result =

sqlStatement.execute("insert into
users (status) values ('updated')
where name='"+data+"'");

↪→

↪→

↪→

On the other hand, the example code below will allow a
malicious user to execute arbitrary commands in the SQL
database:

1 Socket socket = new
Socket("example.org", 8081);↪→

2
3 /* read input from socket */
4 InputStreamReader readerInputStream

= new InputStreamReader(socket.↪→

getInputStream(), "UTF-8");
5 BufferedReader readerBuffered = new

BufferedReader(readerInputStream);↪→

6
7 String data =

readerBuffered.readLine();↪→

8 Boolean result =
sqlStatement.execute(data);↪→

This code example is highly dangerous but is not reported
by SpotBugs. SpotBugs can correctly detect the data variable
as a tainted source. However, since no string concatenations
are carried out, the detection of tainted data will not affect
vulnerability confidence. The high recall shown in Table II can
be considered as misleading. All test cases in the Juliet Test
Suite contain string concatenations. Thus, SpotBugs produces
a 100% recall.

2) Missing test cases: To detect hard-coded password vul-
nerability, FindSecBugs has implemented five different detec-
tors for finding hard-coded passwords. However, the Juliet
Test Suite only has test cases to cover one out of the five
detectors. This means that the test cases of the Juliet Test Suite
do not reflect the full detection competence of FindSecBugs
with respect to finding hard-coded password vulnerabilities.

Another example is related to the XSS detectors of Find-
SecBugs. FindSecBugs contains three different XSS detectors.
Out of the three XSS detectors, only the detector aimed at Java
servlet XSS vulnerabilities is relevant to the vulnerabilities
present in the Juliet Test Suite. The other two detectors cannot
be evaluated on the Juliet Test Suite.

3) Inconsistent confidence ranking: No static analysis tool
is both sound and complete [23]. Most source code analysis
tools will have to apply prioritization to generate output that
prefers high recall or high precision. In the plugins, uncertain
detections are given a lower priority or confidence, while
certain detections are assigned higher confidence. The key
issue we have found in the plugins regarding prioritization
of output is inconsistency when deciding which ranking to
give to the detection result. For SpotBugs, it is possible to
change the code to adjust the confidence ranking approach
of the detectors to favor recall or precision. By reporting data
with an unknown state, recall is favored, and vice versa. While
missing developer guidelines is a limitation, the fact that the
detectors use a different confidence rating is also a limitation.
If the user adjusts the plugin settings to hide false positives
from the SQL injection detector, that is, to hide both low- and

normal-confidence detections, it will then hide every single
detection from the HTTP response splitting detector, as even
the certain detections are only given normal confidence.

Applying different confidence rankings can lead to different
detection results. We believed that many developers would
prefer low false positives [13], [17], [18]. Therefore, we
modified its confidence rating as follows.

• High confidence: If tainted data, unsafe append, and
opening and closing quotation marks have been seen.

• Normal confidence: If tainted data have been seen,
in addition to either an unsafe append or opening and
closing quotation marks.

• Low confidence: If an unsafe append and opening and
closing quotation marks have been seen, but no tainted
data.

This change of confidence rating led to 360 fewer true
positives, but 2,220 fewer false positives, an increase in
SpotBug’s SQL injection detection precision from 43% to
70%, and an increase in the discrimination rate from 0% to
49%. The results of the improved detector can be seen in
Table II, which shows only the vulnerabilities with normal
and high confidence.

4) Misclassification of vulnerability: Despite not stating it
anywhere in its documentation, ESVD is able to detect hard-
coded passwords. When analyzing the source code to identify
why it was not reported, we discovered that instead of being
labeled as a hard-coded password, it is labeled as a security
misconfiguration. In [1], the authors reported that ESVD could
not identify hard-coded passwords. After analyzing the root
cause of the weaknesses, we realized that this is due to ESVD’s
mislabeling of results. Hard-coding passwords into source
code is not a misconfiguration but rather an authentication
problem.

All three of our studied plugins have problems
with the classification of relative and absolute path
traversal. For SpotBugs, determination of whether the
vulnerability is an absolute or relative path traversal
is based on the source of the data. If the source is
HttpServletRequest.getParameter(String),
SpotBugs reports the vulnerability as an absolute path
traversal, and any other source is determined to be a relative
path traversal. One possible reason for SpotBugs to implement
the detector this way lies in the inability of its taint analysis to
track the data. In the case of relative path traversal, a common
way to combine the tainted user input “data” and the pre-
determined root path “root” is to concatenate the strings,
e.g., new File(root + data). The taint analysis is
unable to follow the data through string concatenations,
therefore losing track of the data source. The path traversal
detector in FindSecBugs is based on the same taint analysis
in the injection detectors, with the exception of different sinks
and a slightly different confidence ranking algorithm. The
detector does not detect whether the vulnerability is a relative
or absolute path traversal vulnerability, but rather reports all
vulnerabilities as simply path traversal vulnerabilities. For
FindSecBugs, when the taint analysis loses track of the data

source, but the data enter a vulnerable sink, a vulnerability is
reported with normal confidence. When the taint analysis is
able to track the data source and the data enter a vulnerable
sink without sanitization, a vulnerability is reported with
high confidence. The sinks for both types of path traversal
are the same, and trying to separate the two path traversal
types would not allow the detector to keep using the taint
analysis framework that is provided by FindSecBugs, as this
framework could not classify the path traversal type. The
relative and absolute path traversal vulnerabilities might have
somewhat different countermeasures. If they are misclassified,
it could be possible for developers to apply a countermeasure
that only works for one of the path traversal vulnerabilities
but still tricks the static analysis tool into thinking the data
have been sanitized for the other category.

5) Missing report of multiple vulnerabilities in the same
line of code: When executing the HTTP response splitting
detector with standard settings in ESVD, the detector will
only report one of the three sinks used in the Juliet Test
Suite. It reports on addCookie, but not on addHeader
or setHeader, even if all sinks have already been added.
By manually inspecting the test cases, we discovered that
ESVD reports XSS on addHeader and setHeader. When
we alter the settings and turn off the XSS detector, ESVD
reports HTTP response splitting on these instead. This exposes
a critical limitation in ESVD’s implementation, as it does not
report multiple vulnerabilities in a single line of code. If a
false positive is first reported, in this case XSS, then a true
positive, i.e., HTTP response splitting, may not be reported.

IV. RELATED WORK

Many studies used source code analysis methods to detect
security vulnerabilities. Some studies, e.g., [26]–[45], analyzed
the reasons for the false results. Most of these studies focused
on analyzing the weaknesses of their approaches and tools,
as our results showed in section III-C. For example, [29]
concludes that “Since our approach is mainly based on static
analysis (for determining attack conditions), it inherits one
of the intrinsic weaknesses of the latter: it cannot deal with
calls to system and library functions for which the source code
is not available.” Another example [36] states that “All false
positives are based on the fact that our prototype is not able
to detect path sensitive sanitization.”

Some studies identified other factors that could influence
the evaluation results. For example, [27] identifies that one
possible reason for false positives is that it does not include the
sanitation routines, such as htmlentities. [41] identifies similar
issues due to concatenation as we explained in section III-D1.
[34] indicates that configuration of the confidence of the tool
can potentially influence the precision. Few studies analyzed
false positives, false negatives, true positives, and the test
suites to determine if any incompleteness or bias in the test
suite can cause misleading conclusions. One exception is
[37], which states that “number of existing vulnerabilities in
software is unknown” and it is, therefore, difficult to measure
the false negatives. The Juliet Test Suite has been used in

many studies, e.g., [1] [2] [46] [47], to evaluate and benchmark
vulnerability detectors. Without thorough understandings of
the limitations of the test cases, results of the evaluation can
be misinterpreted.

Few studies analyzed root causes of true positives. For
example, the authors of [37] state “A true positive was
counted for every vulnerable line of code. This means that
a vulnerability inside a function was counted only once if
the function was called in an exploitable context and not
for every call. Sometimes, a valid report was counted even
if the vulnerability is not exploitable. For example, if the same
input is used in two differently constructed SQL queries, but
the application exits after a SQL query fails, and it is not
possible to craft an injection that fits both SQL queries, two
valid reports were counted nonetheless.” Insights from [37]
are in line with our observations that without understanding
the true positives, it is very likely that the positive evaluation
results are also misleading.

V. DISCUSSIONS

Our root cause analysis illustrates that many factors can
dramatically influence the evaluation results of security vul-
nerability detection tools. The results give insights to scientists
who propose new tools and to the industrial tool users.

A. Implication for scientists

A study proposing vulnerability detection approaches and
tools should report the following evaluation results.

• The version of the dataset or test suite the evaluation
is based on because different versions of the datasets
or test suite can include different types and numbers of
vulnerabilities.

• The configuration of the tool which implements the
possible approach. The impact of the configuration on the
detection results should also be explained. As we have
shown in section III-D3, different configurations of the
confidence ranking can lead to very different precision
and recall results.

• The list of the vulnerabilities identified, published as
an appendix or in an accessible URL. As we have
shown in section III-D4, security vulnerabilities can be
misclassified into the wrong category. For a new type
of vulnerabilities, the misclassification can be a more
frequent problem than the well-known ones.

• Explanations of the reasons for the true positives. If
a proposed approach can identify a particular security
vulnerability, there must be some reasons. Without ex-
plaining the reasons, true positives can be misleading. As
we have shown in section III-D1, the true positives can
be results of a combination of bad detection approach and
biased test cases. The true positives can also be results
of good detection approach but incomplete test cases.

• Explanations of the reasons for the false positives. As we
have shown in section III-D4, false positives can be re-
sults of different confidence ranking setups. Explanations

of the false positives can help users identify approaches
or setups to limit false positives.

• Explanations of the reasons for the false negatives, if the
false negatives can be identified. One main difficulty of
evaluating the security vulnerability detection approach is
that the numbers of vulnerabilities of benchmark datasets
or test suites can be unknown. It is, therefore, difficult to
report the false-negative rates precisely. We would recom-
mend that the security communities make a joint effort
to develop more benchmark applications and test suites
with a known number of vulnerabilities. For researchers
who focus on approaches to detect novel vulnerabilities,
a small application with studied vulnerabilities inserted
should be developed, used in the evaluation, and pub-
lished for investigation by others.

If a study also wants to compare its approaches and tools
with existing approaches, the study should also distinguish
whether the different results are caused by the pros and
cons of the approaches under comparison, or by the detailed
implementations of the approaches. As we have shown in
section III-C1, detailed implementation of an approach, rather
than the approach itself, can dramatically influence the results
of the detection. A good approach may not show better
detection results than a bad one if the good approach is not
implemented properly.

Our study also reveals critical weaknesses, e.g., missing and
systematically biased test cases, of the Juliet Test Suite. We
believe similar weaknesses may exist in many other security
vulnerability test suites. Thus, we encourage researchers to
work together to improve the quality of the test suites to avoid
misleading evaluation results.

B. Implication for industry practitioners

Developers like to use vulnerability detectors which report
high precision and recall [17] [13] [18]. Our results show that
precision and recall reported by the tool vendors can be mis-
leading without proper root cause analyses of the evaluation
result. Results of section III-D1 show that confidence ranking
can significantly influence false-positive rates. Thus, industry
practitioners must understand the impact of the configurations
of the vulnerability detection tool and the tool limitations
before using them.

C. Threats to validity

One possible threat to internal validity is that the root
cause analysis can be wrong. To address this threat, every
vulnerability report analysis was analyzed and cross-validated
by at least two researchers. One possible threat to external
validity is that our study is limited to only three plugins and
has studied only a limited number of vulnerability categories.
The results of the study may not be generalizable to other
tools and categories of vulnerabilities. However, we believe
that many of the insights we got from analyzing these three
plugins can be generalized to similar vulnerability detectors,
in particular those using taint analysis and static code analysis.

The evaluation bias issues we have identified from this study
are also generalizable.

VI. CONCLUSION AND FUTURE WORK

A vulnerability detection tool that claims to cover a specific
vulnerability has an inherited level of trust to fulfill. Our
study showed that it is critical to perform follow-up studies
to understand the evaluation results of approaches and tools.
Otherwise, the evaluation results can be wrong or biased.
Based on observations of this study, we recommended how
to evaluate the security detection approaches more thoroughly
and what to include in the evaluation report. In addition, our
study provides essential information for improving the three
plugins we studied and similar tools.

As discovered in this study, the Juliet Test Suite can still
give very misleading results, even if the test suite has been
developed for the purpose of evaluating security vulnerability
detection approaches. To help people evaluate their vulnera-
bility detection approach better, we plan to update or improve
the Juliet Test Suites, and similar test suites, and to empirically
assess their strengths and weaknesses.

REFERENCES

[1] J. Li, S. Beba, and M. M. Karlsen, “Evaluation of open-source IDE
plugins for detecting security vulnerabilities,” in Proc. of the Evaluation
and Assessment on Software Engineering Conference 2019, 2019, pp.
200–209. [Online]. Available: https://doi.org/10.1145/3319008.3319011

[2] T. D. Oyetoyan, B. Milosheska, M. Grini, and D. S. Cruzes, “Myths
and Facts About Static Application Security Testing Tools: An Action
Research at Telenor Digital,” in Agile Processes in Software Engineering
and Extreme Programming. Springer International Publishing, 2018,
pp. 86–103.

[3] OWASP, “OWASP ASIDE Project,” 2016. [Online]. Available:
https://www.owasp.org/index.php/OWASP ASIDE Project

[4] J. Xie, B. Chu, H. R. Lipford, and J. T. Melton, “ASIDE:
IDE Support for Web Application Security,” in Pro. of the
27th Annual Computer Security Applications Conference. New
York, NY, USA: ACM, 2011, pp. 267–276. [Online]. Available:
http://doi.acm.org/10.1145/2076732.2076770

[5] J. Zhu, “ASIDE-Education,” 2013. [Online]. Available: https://github.
com/JunZhuSecurity/ASIDE-Education

[6] L. Sampaio, “TCM Plugin,” 2016. [Online]. Available: https://github.
com/lsampaioweb/TCM Plugin

[7] B. J. Berger, “lapse-plus,” 2013. [Online]. Available: https://github.com/
bergerbd/lapse-plus/

[8] OWASP, “OWASP LAPSE Project,” 2017. [Online]. Available:
https://www.owasp.org/index.php/OWASP LAPSE Project

[9] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,” SIGPLAN
Not., vol. 39, no. 12, pp. 92–106, 2004. [Online]. Available:
http://doi.acm.org/10.1145/1052883.1052895

[10] SpotBugs, “SpotBugs Eclipse plugin,” 2019. [Online]. Available:
https://marketplace.eclipse.org/content/spotbugs-eclipse-plugin

[11] Find Security Bugs, “Find Security Bugs - The SpotBugs plugin for
security audits of Java web applications,” 2019. [Online]. Available:
https://find-sec-bugs.github.io/

[12] OWASP, “OWASP Top 10 - 2017 The Ten Most Critical Web Applica-
tion Security Risks,” Tech. Rep., 2017.

[13] M. Christakis and C. Bird, “What developers want and need from
program analysis: an empirical study,” in Proc. of the 31st IEEE/ACM
International Conference on Automated Software Engineering. New
York, New York, USA: ACM Press, 2016, pp. 332–343. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2970276.2970347

[14] A. Amira, A. Ouadjaout, A. Derhab, and N. Badache, “Sound and static
analysis of session fixation vulnerabilities in php web applications,”
in Proc. of the 7th ACM on Conference on Data and Application
Security and Privacy. New York, NY, USA: ACM, 2017, pp. 139–141.
[Online]. Available: http://doi.acm.org/10.1145/3029806.3029838

[15] X. Yan, H. Ma, and Q. Wang, “A static backward taint data analysis
method for detecting web application vulnerabilities,” in Proc. of the
IEEE 9th International Conference on Communication Software and
Networks, May 2017, pp. 1138–1141.

[16] FindBugs, “Find Bugs in Java Programs,” 2019. [Online]. Available:
http://findbugs.sourceforge.net/

[17] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why
don’t software developers use static analysis tools to find bugs?” in
Proc. of the 2013 International Conference on Software Engineering.
San Francisco, CA, USA: IEEE Press, 2013, pp. 672–681. [Online].
Available: https://dl.acm.org/citation.cfm?id=2486877

[18] E. B. Sørensen, E. K. Karlsen, and J. Li, “What norwegian developers
want and need from security-directed program analysis tools: A
survey,” in Proceedings of the Evaluation and Assessment in Software
Engineering, ser. EASE ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 505–511. [Online]. Available:
https://doi.org/10.1145/3383219.3383293

[19] T. Charest, N. Rodgers, and Y. Wu, “Comparison of Static Analysis
Tools for Java Using the Juliet Test Suite,” in Proc. of the 11th
International Conference on Cyber Warfare and Security, 2016, pp. 431–
438.

[20] A. Z. Baset and T. Denning, “IDE Plugins for Detecting Input-Validation
Vulnerabilities,” in 2017 IEEE Security and Privacy Workshops, 2017,
pp. 143–146.

[21] MITRE, “About CWE,” 2018. [Online]. Available: https://cwe.mitre.
org/about/index.html

[22] A. Delaitre, B. Stivalet, P. E. Black, V. Okun, A. Ribeiro, and T. S.
Cohen, “SATE V Report: Ten Years of Static Analysis Tool Expositions,”
National Institute of Standards and Technology, Tech. Rep., 2018.

[23] P. Emanuelsson and U. Nilsson, “A Comparative Study of Industrial
Static Analysis Tools,” Electronic Notes in Theoretical Computer Sci-
ence, vol. 217, no. C, pp. 5–21, 2008.

[24] L. Sampaio and A. Garcia, “Exploring context-sensitive data flow
analysis for early vulnerability detection,” Journal of Systems
and Software, vol. 113, pp. 337–361, 2016. [Online]. Available:
10.1016/j.jss.2015.12.021

[25] S. Beba and M. M. Karlsen, “Implementation analysis of open-source
static analysis tools for detecting security vulnerabilities,” 2019.
[Online]. Available: https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/
2624972

[26] A. Doupe, B. Boe, C. Kruegel, and G. Vigna, “Fear the ear: Discovering
and mitigating execution after redirect vulnerabilities,” in Proc. of the
18th ACM Conference on Computer Communications Security, 2011,
Conference Proceedings, pp. 251–261.

[27] X. X. Yan, H. T. Ma, and Q. X. Wang, “A static backward taint data
analysis method for detecting web application vulnerabilities,” in Proc.
of the IEEE 9th International Conference on Communication Software
and Networks, 2017, Conference Proceedings, pp. 1138–1141.

[28] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna, “Saner: Composing static and
dynamic analysis to validate sanitization in web applications,”
in Proc. of the 2008 IEEE Symposium on Security and
Privacy, 2008, Conference Proceedings, pp. 387–401. [Online].
Available: https://ieeexplore.ieee.org/ielx5/4531131/4531132/04531166.
pdf?tp=&arnumber=4531166&isnumber=4531132

[29] J. Thom, x00E, L. K. Shar, D. Bianculli, and L. Briand, “An
integrated approach for effective injection vulnerability analysis of
web applications through security slicing and hybrid constraint
solving,” IEEE Transactions on Software Engineering, pp. 1–1,
2018. [Online]. Available: https://ieeexplore.ieee.org/ielx7/32/4359463/
08373739.pdf?tp=&arnumber=8373739&isnumber=4359463&ref=

[30] S. Anil, S. G. Manoj, L. Vijay, and C. Mauro, “You click, i steal: ana-
lyzing and detecting click hijacking attacks in web pages,” International
Journal of Information Security, 2018.

[31] O. Olivo, I. Dillig, and C. Lin, “Detecting and exploiting second order
denial-of-service vulnerabilities in web applications,” in Proc. of the
22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, Conference Paper, pp. 616–628.

[32] I. Medeiros, N. Neves, and M. Correia, “Dekant: a static analysis tool
that learns to detect web application vulnerabilities,” in Proc. of the
25th International Symposium on Software Testing and Analysis. ACM,
2016, Conference Paper, pp. 1–11.

[33] T. Jensen, H. Pedersen, M. C. Olesen, and R. R. Hansen, “Thaps: Auto-
mated vulnerability scanning of php applications,” in Nordic Conference

https://doi.org/10.1145/3319008.3319011
https://www.owasp.org/index.php/OWASP_ASIDE_Project
http://doi.acm.org/10.1145/2076732.2076770
https://github.com/JunZhuSecurity/ASIDE-Education
https://github.com/JunZhuSecurity/ASIDE-Education
https://github.com/lsampaioweb/TCM_Plugin
https://github.com/lsampaioweb/TCM_Plugin
https://github.com/bergerbd/lapse-plus/
https://github.com/bergerbd/lapse-plus/
https://www.owasp.org/index.php/OWASP_LAPSE_Project
http://doi.acm.org/10.1145/1052883.1052895
https://marketplace.eclipse.org/content/spotbugs-eclipse-plugin
https://find-sec-bugs.github.io/
http://dl.acm.org/citation.cfm?doid=2970276.2970347
http://doi.acm.org/10.1145/3029806.3029838
http://findbugs.sourceforge.net/
https://dl.acm.org/citation.cfm?id=2486877
https://doi.org/10.1145/3383219.3383293
https://cwe.mitre.org/about/index.html
https://cwe.mitre.org/about/index.html
10.1016/j.jss.2015.12.021
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2624972
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2624972
https://ieeexplore.ieee.org/ielx5/4531131/4531132/04531166.pdf?tp=&arnumber=4531166&isnumber=4531132
https://ieeexplore.ieee.org/ielx5/4531131/4531132/04531166.pdf?tp=&arnumber=4531166&isnumber=4531132
https://ieeexplore.ieee.org/ielx7/32/4359463/08373739.pdf?tp=&arnumber=8373739&isnumber=4359463&ref=
https://ieeexplore.ieee.org/ielx7/32/4359463/08373739.pdf?tp=&arnumber=8373739&isnumber=4359463&ref=

on Secure IT Systems, A. Jøsang and B. Carlsson, Eds. Springer Berlin
Heidelberg, 2012, Conference Proceedings, pp. 31–46.

[34] G. Wassermann and Z. Su, “Static detection of cross-site scripting
vulnerabilities,” in Proc. of the ACM/IEEE 30th international conference
on Software engineering. ACM, 2008, Conference Paper, pp. 171–180.

[35] Y. H. Zheng and X. Y. Zhang, “Path sensitive static analysis of
web applications for remote code execution vulnerability detection,”
in Proc. of the 35th ACM/IEEE International Conference on Software
Engineering, 2013, Conference Proceedings, pp. 652–661.

[36] J. Dahse and R.-U. B. Thorsten Holz, “Static detection of second-
order vulnerabilities in web applications,” in Proc. of the 23rd USENIX
Security Symposium., 2014, Conference Proceedings.

[37] J. Dahse, “Simulation of built-in php features for precise static code
analysis,” in Annual Network and Distributed System Security Sympo-
sium (NDSS), 2014, Conference Paper.

[38] L. K. Shar and H. B. K. Tan, “Predicting sql injection and cross
site scripting vulnerabilities through mining input sanitization patterns,”
Information and Software Technology, vol. 55, no. 10, pp. 1767–1780,
2013.

[39] F. S. L. X. Z. Su, “Static detection of access control vulnerabilities in
web applications,” 20th USENIX Security Symposium, 2011.

[40] S. Son and V. Shmatikov, “Saferphp: Finding semantic vulnerabilities
in php applications,” in Proc. of the ACM SIGPLAN 6th Workshop
on Programming Languages and Analysis for Security. New York,
NY, USA: ACM, 2011. [Online]. Available: https://doi.org/10.1145/
2166956.2166964

[41] I. Medeiros, N. Neves, and M. Correia, “Detecting and removing
web application vulnerabilities with static analysis and data mining,”
IEEE Transactions on Reliability, vol. 65, no. 1, pp. 54–69,
2016. [Online]. Available: https://ieeexplore.ieee.org/ielx7/24/7422884/
07206620.pdf?tp=&arnumber=7206620&isnumber=7422884

[42] X. Li, W. Yan, and Y. Xue, “Sentinel: securing database from logic flaws
in web applications,” in Proc. of the 2nd ACM conference on Data and
Application Security and Privacy. ACM, 2012, Conference Paper, pp.
25–36.

[43] A. Møller and M. Schwarz, “Automated detection of client-
state manipulation vulnerabilities,” in Proc. of the 34th International
Conference on Software Engineering, 2012, Conference Proceedings, pp.
749–759. [Online]. Available: https://ieeexplore.ieee.org/ielx5/6218989/
6227015/06227143.pdf?tp=&arnumber=6227143&isnumber=6227015

[44] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna, “Toward auto-
mated detection of logic vulnerabilities in web applications,” in Proc.
of the 19th USENIX conference on Security. 1929834: USENIX
Association, 2010, Conference Paper, pp. 10–10.

[45] F. Spoto, E. Burato, M. D. Ernst, P. Ferrara, A. Lovato, D. Macedonio,
and C. Spiridon, “Static identification of injection attacks in java,” ACM
Trans. Program. Lang. Syst., vol. 41, no. 3, Jul. 2019.

[46] A. Wagner and J. Sametinger, “Using the juliet test suite to compare
static security scanners,” in 2014 11th International Conference on
Security and Cryptography (SECRYPT), 2014, pp. 1–9.

[47] T. Charest, N. Rodgers, and Y. Wu, “Comparison of static analysis tools
for java using the juliet test suite,” in International Conference on Cyber
Warfare and Security, 2016.

https://doi.org/10.1145/2166956.2166964
https://doi.org/10.1145/2166956.2166964
https://ieeexplore.ieee.org/ielx7/24/7422884/07206620.pdf?tp=&arnumber=7206620&isnumber=7422884
https://ieeexplore.ieee.org/ielx7/24/7422884/07206620.pdf?tp=&arnumber=7206620&isnumber=7422884
https://ieeexplore.ieee.org/ielx5/6218989/6227015/06227143.pdf?tp=&arnumber=6227143&isnumber=6227015
https://ieeexplore.ieee.org/ielx5/6218989/6227015/06227143.pdf?tp=&arnumber=6227143&isnumber=6227015

	Introduction
	Study design
	Our studied vulnerability detecting plugins and vulnerabilities
	Research methods

	Research results
	Design and implementations of Juliet Test Suite
	Design and implementations of the plugins
	Design and implementation of SpotBugs
	Design and implementation of FindSecBugs
	Design and implementation of ESVD

	Design and implementation weaknesses of the plugins
	Missing sources and sinks
	Incomplete control-flow and data-flow analysis

	Other factors that influenced plugin evaluation results
	Systematically biased test cases
	Missing test cases
	Inconsistent confidence ranking
	Misclassification of vulnerability
	Missing report of multiple vulnerabilities in the same line of code

	Related work
	Discussions
	Implication for scientists
	Implication for industry practitioners
	Threats to validity

	Conclusion and Future Work
	References

