
High-Performance Asynchronous Byzantine Fault
Tolerance Consensus Protocol

1st Henrik Knudsen
Bouvet

Bergen, Norway
henrik.knudsen@bouvet.no

2nd Jingyue Li
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

0000-0002-7958-391X

3rd Jakob Svennevik Notland
Department of Computer Science

Norwegian University of Science and Technology
Trondheim, Norway

jakob.notland@ntnu.no

4th Peter Halland Haro
Sintef Nord

Tromsø, Norway
peter.haro@sintef.no

5th Truls Bakkejord Ræder
Sintef Nord

Tromsø, Norway
truls.rader@sintef.no

Abstract—In response to new and innovating blockchain-
based systems with Internet of Things (IoT), there is a need
for consensus mechanisms that can provide high transaction
throughput and security, despite varying network quality. Hon-
eybadger was the first practical, asynchronous Byzantine Fault
Tolerance (BFT) consensus protocol, achieving high scalability
and robustness without making any timing assumptions regard-
ing the network. To improve the current asynchronous consensus
protocols, we designed Asynchronous Byzantine Fault Tolerance
(ABFT) consensus protocol through integrating threshold Elliptic
Curve Digital Signature Algorithm (ECDSA) signatures and
optimization of erasure coding parameters, as well as additional
implementation-level optimizations. We implement a prototype
of ABFT, and evaluate its performance at scale in a global
WAN network and a network affected by asymmetric network
degradation. Our results show that ABFT provides considerably
higher performance, significantly lower computational overhead,
and greater scalability than its predecessors. ABFT can reach up
to 38.700 transactions per second in throughput. Furthermore,
we empirically show that ABFT is unaffected by asymmetric
network degradation within the fault threshold.

Index Terms—Blockchain, consensus protocol, high-
performance, asynchronous, Byzantine fault tolerance

I. INTRODUCTION

The consensus algorithm of blockchain systems enables
participants to reach an agreement in a decentralized fashion.
Most blockchain technologies assume an environment with a
fast and stable network to achieve consensus. For example,
Practical Byzantine Fault Tolerance (PBFT) [1] and Raft
[2] require eventual synchrony in order to provide forward
progress. If these timing assumptions cannot be satisfied, the
blockchain systems’ transaction throughput halts. Additionally,
the protocols are vulnerable towards Denial of Service (DoS)
and timing attacks [3], [4].

However, in some blockchain-based systems, e.g., supply
chain management (SCM) systems, some IoT nodes can
only rely on the low-quality network sometimes to achieve
consensus. As an answer to such challenges, an asynchronous
BFT consensus protocol is warranted, providing robustness

against such attacks. [5] showed that such protocols might
be constructed using Asynchronous Common Subset (ACS)
[6], i.e., a set of peers may asynchronously agree upon a set
of transactions. A practical problem of this particular con-
struction, however, was its O(n3) communication complexity,
caused by the expensive usage of the Multi-valued Validated
Byzantine Agreement (MVBA) [5] primitive, making the
protocol unable to scale.

Honeybadger BFT [3] was a major breakthrough in the
endeavor to create a practical asynchronous BFT algorithm.
By using a novel construction of ACS, the communication
complexity of the algorithm could be brought down to O(n2),
similar to that of PBFT. [3] further showed that Honeybadger
was competitive with PBFT in a realistic deployment, in which
it outperformed PBFT in terms of transaction throughput
for networks scaling past 16 nodes. However, a challenge
of the original Honeybadger BFT protocol was its runtime
complexity. The specific construction of ACS Honeybadger
BFT used, while it is more efficient in communication com-
plexity, incurred a O(log n) runtime complexity. [7] presented
an alternative construction of ACS, which carefully utilizes
MVBA, allowing a reduction of runtime complexity down to
O(1). A more efficient construction of MVBA [8] reduced the
protocol’s communication complexity from O(n3) to O(n2).
Other contributions, e.g. [4], have been dedicated to optimizing
the initialization of Honeybadger BFT.

In an endeavor towards improving the state-of-the-art asyn-
chronous consensus protocols, we intended to consolidate
these individual improvements into a single consensus proto-
col, denoted ABFT. Furthermore, we seek to lower the compu-
tational overhead and increase its scalability. We additionally
want to investigate the consensus protocol’s performance in a
truly asynchronous network affected by asymmetric network
degradation. Our study answered the following research ques-
tions:

RQ1: How to integrate state-of-the-art technologies to
achieve high-performance ABFT consensus protocol?



RQ2: To what degree is ABFT’s performance impacted
by an asynchronous network, with asymmetric, high network
delay and packet loss?

We consolidated the aforementioned improvements of [4]
and [7]. We provided additional innovation of introducing
threshold Elliptic Curve Digital Signature Algorithm (ECDSA)
signatures for use within the context of ABFT. Furthermore,
we show the importance of optimizing erasure coding pa-
rameters has for the protocol’s performance and provide a
framework for empirically precomputing these parameters,
enabling dynamic, optimal choice during runtime. Finally, we
provide additional implementation-level optimizations in the
form of optimistic verification of signatures, and precomputing
cryptographic material, providing additional performance ben-
efits. We implement a prototype of ABFT using the Rust pro-
gramming language and evaluate it in a global WAN network.
In addition, we evaluate its performance in an asynchronous
network, with asymmetric, high network delay and packet
loss, emulating network degradation using Network Emulator
(NetEm) [9], [10]. Our evaluation shows:

• ABFT has a smaller computational overhead than its
predecessors but provides several times lower transaction
latency than previous implementations [3], [4], [7].

• ABFT scales well, with transaction throughput reaching
up to 38.700 transactions per second for larger batch sizes
while keeping transaction latency within a minute.

• ABFT is unaffected by asymmetric, high network delay
and packet loss, given that the number of affected nodes
stays within the fault threshold. If it exceeds the fault
threshold, the consensus protocol still terminates, without
the need for countermeasures or additional configurations.

The rest of this paper is organized as follows. Section 2
presents the design and implementation of ABFT. Section
3 shows the evaluation results. Section 4 presents a brief
overview of related work. Section 5 discusses the results, and
Section 6 concludes and gives our future work.

II. ABFT DESIGN AND IMPLEMENTATION

Starting with the Honeybadger construction [3], we utilize
the asymptotically more efficient ACS construction of [7]. We
instantiate ACS using the communication optimized MVBA
construction of [8], and the bandwidth optimized Reliable
Broadcast (RBC) construction of [11]. For the protocol’s cryp-
tosystems, we adopt the TDH2 threshold encryption scheme
of [12], and threshold coin flipping scheme of [13], motivated
by the experimental results of [4]. We use the threshold
ECDSA signature scheme of [14] to improve the pairing-based
signature scheme originally used by Honeybadger. We use the
ristretto255 group [15] for each of the cryptosystems to yield
128 bits of security. Additionally, we use precomputation to
increase the performance of encryption and signature opera-
tions. For erasure coding, we adopt the Cauchy Reed-Solomon
(CRS) code implementation of Jerasure [16], inspired by [4]
and the performance evaluation of [17]. We go on to optimize
its parameters for use within ABFT.

In the following sections, improvements over the related
work [3], [4], [7] are presented. In particular, we describe how
performant threshold ECDSA signatures can be used within
ABFT, the optimization of word and packet sizes for CRS
codes, and how precomputing of cryptographic material may
yield additional performance benefits during runtime.

A. Threshold ECDSA signatures

The original Honeybadger construction [3] utilizes the
threshold Boneh–Lynn–Shacham (BLS) [18] signature scheme
provided by [19]. Threshold BLS signature schemes have the
advantage of non-interactive, short signatures, and interesting
properties like signature aggregation [20], but suffer from
several efficiency and security issues. In particular, BLS signa-
ture schemes require the use of pairing-friendly curves, which
require larger key sizes than conventional curves [21]. Fur-
thermore, BLS signature schemes rely on relatively expensive
pairing operations [22], yielding poor performance compared
to alternatives like ECDSA [23], [24]. Concerning ECDSA and
Curve25519, we specifically refer to the Ristretto255 group
[15], built on top of Curve25519.

In the context of ABFT, we deem that the following qualities
are desired from its threshold signature scheme:

• Efficiency: Parties should be able to produce and verify
signatures with minimal cost.

• Non-interactive: Sub-protocols within ABFT expect a
one-round signing procedure. Additional rounds of com-
munication would severely degrade performance, espe-
cially in a global network. Thus, the threshold signature
scheme should be non-interactive in terms of producing
a threshold signature share.

• Fault attributability: Honest parties must be able to
detect and identify corrupt parties which produces invalid
threshold signature shares to take appropriate actions.

While previous threshold ECDSA schemes have required
a significant amount of communication rounds (i.e., interac-
tivity) [25]–[27], multiple recent works have yielded non-
interactive threshold signature schemes [14], [28], [29], uti-
lizing precomputation of signing material to reduce com-
munication during the actual signing process. Additionally,
some of the recent threshold signature schemes also support
identifiable abort [14]. If the threshold signature scheme
produces an invalid signature, parties can unanimously identify
the corrupted party that offers fault attributability. We provide
a deterministic mapping of signature operations within ABFT.
Additionally, we show how we can use optimistic signature
verification to increase ABFT performance.

1) Deterministic mapping of signature operations within
ABFT: A caveat related to the use of precomputed signing
material is their restriction to one-time use. In particular,
reusing the same signing material for multiple signatures is
deemed insecure, as it can enable an adversary to extract
information about the party’s secret key share [14]. In a more
traditional setting, the latter is seldom a problem. If a group
of parties wants to generate signatures for multiple messages,
selecting corresponding signing material is trivial as long as



there is a mutual agreement on the ordering of the messages.
However, in the context of ABFT, this poses a challenge,
given that we cannot guarantee the ordering in which messages
arrive at different parties. Our proposal for a deterministic
mapping of signature operations within ABFT enables parties
to agree upon what signing material to use for a particular
signature without assuming any particular order of messages.
The variables related to the proposal are explained in table I.

TABLE I
DETERMINISTIC MAPPING VARIABLES

Variable Note
N The number of parties participating in the ABFT consen-

sus protocol.
f The number of faulty parties participating in the consen-

sus protocol, assuming N ≥ 3f + 1.
i The unique identifier of a particular party, having N >

i ≥ 0.
r The current round number of ABFT.
k The current round number of MVBA.
K The total number of rounds required to terminate an

instance of MVBA.
s The current step of a proposal promotion sub-protocol

within MVBA, having s ∈ {1, 2, 3, 4}, in which 4 steps
of proposal promotion guarantees that at least f + 1
honest parties commit a party’s proposal [8].

The following signing operations may take place during a
single round of ABFT:

• Provable Reliable Broadcast (PRBC): Each party gen-
erates a signature to certify that it has broadcasted its
value using the Reliable Broadcast (RBC) sub-protocol.

• MVBA (Proposal promotion): During each step of
proposal promotion, each party generates a signature for
its proposal to certify that it has promoted the signature
to sufficiently many parties.

• MVBA (Promotion completion): After completing pro-
posal promotion, parties generate a signature for the cur-
rent round k and certify that enough proposals have been
promoted, in order to progress to the election process.

For each round of ABFT, we thus have up to:
• N signing operations, one for each instance of PRBC.
• K × 4N signing operations, 4 per call to proposal

promotion and per round of running MVBA.
• K signing operations, one per round of running MVBA.
This equates to a maximum of N +K × (4N + 1) signing

operations in total.
Given N parties participating in the sub-protocol MVBA,

the minimum probability that the protocol terminates for a
given round is at least 1/2 [8]. For a given K, the cumulative
probability that MVBA terminates within the K’th round is
therefore at least 1− 2−K . Choosing an appropriate value for
K, parties can precompute S = N + K × (4N + 1) signing
material to be used in a round of ABFT, with a negligible
probability that the number of signing operations will exceed
S. Given the non-determinism of MVBA, should the sub-
protocol terminate in some smaller round number K ′, the
unspent signing materials can be reused in a future round

of ABFT. We deem that the aforementioned deterministic
mapping enables usage of threshold signature schemes using
precomputing of signature material within the context of
ABFT, despite its asynchronous and non-deterministic nature.

2) Optimistic verification of signatures: Within MVBA and
PRBC, a common use case of the threshold signature API is:

• Party Pi waits to receive t signature shares for a particular
message M .

• For each unique signature share σj received from Party
Pj , Party Pi verifies that σj is a valid share from Pj for
the message M .

• When Party Pi has successfully received t signature
shares, they combine them into a proper signature σ.

If parties act honestly (at least for the current round), veri-
fying each share adds unnecessary overhead to the consensus
protocol at N scales. Given the context of ABFT, we assume
that appropriate actions are taken towards identified parties,
and corrupted parties and behavior are rare. Thus, we can
optimistically neglect verifying shares as they are received.
Rather, after constructing the proper signature σ, we rely on
the verification of the signature instead, performing identifiable
abort if it fails. This yields the following altered use case:

• Party Pi waits to receive t signature shares for a particular
message M .

• When Party Pi has successfully received t signature
shares, they combine them into a proper signature σ.

• Party Pi verifies the validity of the signature σ:
– If it succeeds, we continue the protocol as normal.
– If it fails, we know that at least one of the shares

included in the signature combination operation was
corrupted. Then, we perform an identifiable abort,
verify the validity of each signature share, and decide
which parties are corrupted.

Should the verification operation fail, we can quickly re-
sume running ABFT with little to no additional delay com-
pared to the original API of MVBA and PRBC. By discarding
the identified, corrupted shares, we can continue receiving
shares from non-corrupted parties until we have sufficiently
many shares to re-combine them into a signature. Given a
signature scheme with threshold t, we verify at most t + f
shares, irrespective of the number of identifiable aborts, in
which f is the fault tolerance. We also perform at most a+1
signature combination and verification operations, where a is
the number of aborts performed. Thus, in the worst case, where
an honest party receives t − 1 honest shares, followed by f
corrupted shares, we have a = f , and thus incur a total of
t+ f share verifications and f +1 signature combination and
verifications. Given the assumption that aborts are rare, the
potential cost of additional operations is considered negligible.

3) Illustration of performance increase: To illustrate the
potential gains of incorporating the threshold ECDSA scheme,
we conduct a performance benchmark of the signing opera-
tions used within ABFT. We compared our implementation of
the threshold ECDSA scheme of [14] with the implementation
of the [19] threshold BLS scheme using threshold crypto [30].



We set the number of participants N as 100 and threshold T
as N/4. The results of the comparison are shown in Table II.
The comparison was implemented using criterion.rs [31] and
ran on an Intel i7-3770K CPU @ 3.50GHz, with 16 GB of
RAM. We utilize the curve25519 dalek cryptographic library
[32] for implementing the threshold ECDSA signature scheme.
The results indicate improvements in performance , especially
for the Share-Sign and Verify-Signature operations.

TABLE II
SIGNING PERFORMANCE OF ECDSA AND BLS SIGNATURE SCHEMES.

Operation ECDSA BLS Relative Improvement
Share-Sign 7.0043 us 3.8290 ms 54366.4 %

Combine-Shares 10.902 ms 14.189 ms 30.2 %
Verify-Signature 58.528 us 7.8209 ms 13262.7 %

We furthermore conduct a performance benchmark of the
ABFT consensus protocol itself. We set N as 8, f as 2, and B
as 10.000, and run 10 iterations of each of the protocols locally
using the different threshold signature schemes. We calculated
the average required runtime for the protocol to terminate. The
results are in Table III and show significant improvements.

TABLE III
RESULTS OF COMPARING ABFT RUNTIME PERFORMANCE, UTILIZING

THRESHOLD ECDSA AND THRESHOLD BLS SIGNATURE SCHEMES,
RESPECTIVELY.

ECDSA BLS Relative Improvement
ABFT Runtime 238.28 ms 3.41 s 1331 %

B. Optimal choice of word size and packet size for erasure
coding

An important step of ABFT is the dispersion of the parties’
input value into the protocol (e.g., the transaction set). This
is done using the RBC sub-protocol, originally proposed in
[33], which once terminated ensures that sufficiently amount
of parties have received the input value. Since the input value
may grow very large as the batch size B grows, the con-
sensus protocol utilizes the bandwidth optimized construction
presented in [11], which incorporates erasure coding to reduce
the amount of data broadcasted. Regarding the performance
of erasure coding operations, the following parameters are
relevant:

• Number of blocks: The number of data and coding
blocks, denoted k and m in the context of ABFT. These
are constrained to be N − 2f and 2f , respectively.

• Input size: The amount of data to be coded. In the context
of ABFT, this scales linearly with the batch size B.

• Block size: The size of each data and coding block. For
CRS erasure codes, this is often described as the product
of word size w and packet size p [16]. Furthermore, there
is a constraint that k +m = N > 2w.

While N and B fix the number of blocks and the input size,
the block size may be altered as one sees fit. In particular,
the choice of w and p may have a significant impact on the
performance of erasure coding operations [17]. Furthermore,

the applicability of different values for w and p may vary for
different configurations of N and B. There seems to be no
universal, optimal choice for w and p, irrespective of N and B.
The choice of w and p may additionally have complex effects
on the performance of the erasure coding scheme. What data
structures are used internally and how these relate to platform-
specific instructions (e.g., Single instruction, Multiple Data
(SIMD)) and cache behavior [17] make an analytical choice
of w and p challenging. The Honeybadger implementation
utilizes Reed-Solomon (RS) erasure codes and uses the zfec
Python library [34]. The use of zfec brings with it several
efficiency and usability issues [4]: zfec does not allow fine-
tuning of erasure coding parameters because it uses a fixed
word size w = 8. This may be an inefficient choice for certain
configurations of N and B and putting an unnecessary limit on
N to be less than 28 = 256. Alternatively, [4] proposes using
Jerasure’s [16] CRS codes, allowing user-specified values for
w and p, and provides a highly optimized implementation [17].

We adopt the choice of using the CRS codes of [16] and
endeavor to find optimal choices for w and p within the
context of ABFT. For a given hardware environment and a
configuration of N and B, we can calculate optimal choices
for w and p empirically in the following manner:

• Define an evaluation function (i.e., a benchmark) to
accurately evaluate the performance of an erasure coding
scheme with the configuration N, B, w and p.

• Define a range of appropriate word sizes, W .
• Define a range of suitable packet sizes, P .
• For each w in W , execute a search algorithm (i.e.,

simulated annealing or hill climbing) over the packet sizes
in P , evaluate the corresponding erasure coding scheme
at each point, and record its performance.

• Choose the pair (w, p) with the highest performance for
each configuration of N and B.

The method builds upon the assumption that there is a
single (few) good choices for the word size w, and that for
each word size w, there exists a single, optimal choice for its
packet size (i.e., there exists some global maximum). Using
CRS codes, the performance peaks with the smallest possible
word size [17]. Given N , we can thus choose the smallest
w with N < 2w, as well as r of its successors, giving
W = {w,w+1, ..., w+ r}, for some small constant r. Larger
packet size allows for more efficient matrix operations, with
an inherent trade-off that larger block sizes have worse cache
utilization. We achieve optimal performance with maximum
utilization of L1 cache [17]. P should therefore at least be
extended to a value pcache, in which w × pcache is some
multiple of the host machine’s L1 cache storage capacity.

To demonstrate, we conducted a simplified version of the
aforementioned method for ABFT, constraining the packet
sizes P to powers of 2, up to and including 216. We evaluated
the erasure coding scheme’s proficiency for the operations
needed within ABFT using the following benchmark.

• Encoding a payload T of 250 bytes per transaction.
• Decoding an encoding of T , with up to f erasures.



• Decoding an encoding of T , with up to 2f erasures.
Knowing what hardware environment ABFT is going to

be deployed onto, we stored the aforementioned evaluation
results in a Nlen ×Blen matrix, where Nlen and Blen are the
number of different party and batch sizes one would want to
use during runtime, respectively. This can then be used as a
lookup table within the consensus protocol, allowing dynamic,
the optimal choice of w and p based on the input values N and
B. This might be especially useful if one wants to dynamically
change the batch size B between rounds of running ABFT,
allowing one to dynamically update w and p during runtime,
ensuring optimal erasure coding parameters are used at all
times, avoiding performance degradation.

To illustrate the performance difference between using op-
timal and sub-optimal parameters for w and p, we perform a
mini evaluation of the erasure coding operations used within
ABFT. We set N = 100, f = 25, and evaluate the performance
of erasure encoding 250 bytes per transaction, for batch
sizes B = 100, 100.000 and 2.000.000, respectively. Given
k + m = 100, we choose the smallest possible word size
w = 7, and compare performance using packet sizes of p = 1
and p = 8192. The results of the benchmarks are shown in
Table IV and indicate that the performance depends heavily
on the choice of the packet size p. Data in Table IV also show
that the optimal choices are dependent on the batch size B.

TABLE IV
BENCHMARK OF ERASURE ENCODING, WITH K = 50, M = 50, W = 7,

USING DIFFERENT PACKET SIZES.

Operation w = 7,
p = 1

w = 7,
p = 8192

Relative
difference

Encode, B = 100 206.00 us 30.877 ms 14988.8 %
Encode, B = 100.000 144.86 ms 27.805 ms 521 %

Encode, B = 2.000.000 2.9298 s 56.702 ms 5167 %

C. Precomputing of cryptographic material

An important aspect within most public-key cryptosystems
is to provide performant exponentiation within a given group,
usually of prime order. In the context of Elliptic Curve
Cryptography (ECC) systems, this involves multiplying some
point g on the curve by a scalar r. There exist efficient ways
of doing this for arbitrary g and r, namely variants of the
square-and-multiply method [35].

However, for a fixed base g, performance improvements
can be gained by precomputing tables of intermediate values
and storing them in-memory. By looking up these values
during runtime, the number of multiplications needed for
the exponentiation can be effectively reduced [36]–[38]. This
comes at the expense of storing the precomputed tables. In
order to achieve optimal efficiency, the lookup tables may need
to fit into the host’s cache. This is for instance true in the case
of Curve25519 [39]. For the concrete curve Curve25519, in
which scalars are represented as 256-bit integers, a reasonable
choice for most modern architectures is to write scalars in
radix 16 to yield a total lookup table size of 30 KB [39]. Within
the context of ABFT, we can improve performance by utilizing

precomputing for any fixed point g used in the protocol’s
threshold cryptosystems. This applies to the generator of the
curve, G, but also any other long-lived points. In particular, we
can precompute lookup tables for parties’ public keys during
the startup of the protocol.

To illustrate the potential gains of utilizing precomputing,
we implement the TDH2 threshold encryption scheme of [12],
with and without precomputing of public keys. We perform a
benchmark of the scheme’s operations with number of parties
N = 100 and threshold T = 25, and compare the performance
of the two implementations. The results of the benchmark can
be found in table V.

TABLE V
BENCHMARK OF THD2 THRESHOLD ENCRYPTION SCHEME, WITH AND

WITHOUT PRECOMPUTING OF PUBLIC KEYS.

Operation TDH2 TDH2
precomputed

Relative
improvement

Encrypt 415.35 us 128.28 us 223.8 %
Decrypt-Share 239.50 us 175.22 us 36.7 %
Verify-Share 301.17 us 199.89 us 50.7 %

Combine-Shares 18.500 ms 18.286 ms -

D. Prototype Implementation

The differences in the construction of ABFT compared
to the Honeybadger Python implementation [3] reduced the
benefit of code reuse. Thus, we opt to implement a prototype
of ABFT from scratch using the Rust programming language
Rust [40] allows for high performance and concurrency while
guarantees memory safety, which makes it a good fit for
an inherently asynchronous system because multi-threading
would be beneficial. We implement asynchronous network
communication among parties using Tokio, Hyper, and Tonic,
i.e., a performant network stack within the Rust ecosystem
[41]. All threshold cryptographic primitives are implemented
from scratch using the curve25519 dalek cryptographic library
[32], which provides group operations for ristretto255 [15] and
is built on top of Curve25519 [42]. The overall implementation
consists of 10600 lines of Rust code [43]

As a caveat for the threshold signature scheme, we do
not implement the full protocol. In particular, we do not
implement the zero-knowledge proofs required for precom-
puting signing material without a trusted dealer. This has no
impact on the performance of the consensus protocol, and
robust precomputation of signing material could be added later.
Furthermore, we evaluate the protocol under the honest setting
(e.g., no parties send faulty signature shares), i.e., aborting the
algorithm if an invalid signature is produced. Finally, to allow
the usage of Jerasure’s [16] CRS codes, we additionally write
a wrapper library to enable allocation of core data structures
as well as encoding and decoding operations from Jerasure.

III. EVALUATION RESULTS

To answer RQ1, we evaluated the performance of ABFT in
a stable network and compared it with the implementations
of [3], [4], [7], according to their experimental results as



seen in table VI. We answered RQ2 by evaluating how
asymmetric, high packet delay, and packet loss impact ABFT’s
performance. We did not compare ABFT’s RQ2 results with
related work because [3], [4], [7] did not present RQ2-related
results.

In the evaluation, parties executing the ABFT protocol were
deployed onto AWS EC2 t2.medium instances, each with 2
virtual CPUs and 4GB memory. Throughout our evaluation,
we utilized a fixed transaction size of mT = 250 bytes.

TABLE VI
HONEYBADGER IMPLEMENTATIONS EVALUATED

Name Runtime Complexity Crypto Scheme
Honeybadger [3] O(logn) BLS (80 bits)

BEAT0 [4] O(logn) Non-BLS (128 bits)
Dumbo1 [7] O(log k) BLS (80 bits)
Dumbo2 [7] O(1) BLS (80 bits)

ABFT O(1) ECDSA (128 bits)

A. Results of RQ1

We first evaluated ABFT in a LAN network, comparing its
bare latency to the implementation of [4]. Then, we evaluated
ABFT in a global WAN network, comparing its bare latency
to the implementation of [7]. Finally, we evaluated ABFT in
a global WAN network with batch sizes B ranging from 100
to 2×106. We evaluate ABFT in several separate experiments
in order to give consistent results because there are slight
differences in experimental setup between [3], [4], [7].

1) Bare latency - LAN: Evaluating results show that ABFT
can provide fast termination, in particular for configurations
up to and including 16 nodes. ABFT can have a transaction
latency at most 120 ms, when each node proposes a sin-
gle transaction. Comparing our results with the experimental
results of [4], this is deemed a significant improvement.
When N is 7, the Honeybadger implementation terminates
closer to 1.5 seconds, and BEAT0 terminates at around 0.5
seconds. Additionally, in ABFT, the transaction latency seems
to grow significantly slower as the number of nodes increases,
compared to Honeybadger and BEAT0.

2) Bare latency - WAN: Evaluating ABFT’s bare latency
in a global WAN network configuration show that ABFT
manages to terminate in less than 7 seconds, up to and
including 100 nodes. Figure 1 shows the comparison of our
results with the experimental results of [7]. This is deemed
a noteworthy improvement. When evaluating for N = 100,
ABFT provide a 70% reduction in transaction latency over
Dumbo2 [7], and a 99% reduction over Honeybadger [3].

3) Latency, Throughput, Scalability, Resource Utilization:
The results of evaluating ABFT in a WAN network config-
uration, using batch sizes B ranging from 100 to 2 × 106,
show that ABFT is able to terminate within a minute for all
configurations of N and B, up to and including N = 100 and
B = 2×106. Translated to transaction throughput, this equates
to a throughput of around 38.700 transactions per second at a
maximum.

N=32 N=64 N=100
Number of nodes

100

101

102

La
te

nc
y 

(S
ec

on
ds

) 70

240

491

19

49

90

7.5

14

24

2.05
2.83

6.55

Honeybadger
Dumbo1
Dumbo2
ABFT

Fig. 1. Bare latency of Honeybadger, Dumbo1, Dumbo2 and ABFT in a WAN
network configuration. The evaluation uses N = 4f , and includes results
for N = 32, 64, 100. Nodes are uniformly distributed across geographical
regions around the globe. Data for Honeybadger, Dumbo1, and Dumbo2 are
based on experimental results of [7].

In an endeavor to compare our results with the experimental
results of [7], Figure 2 presents a comparison of transaction
throughput for Honeybadger, Dumbo1, Dumbo2, and ABFT,
for various values of N , with a fixed, maximum batch size of
B = 2× 106. In particular, for N = 32, ABFT provides a 2.5
times increase in transaction throughput over Dumbo2.

In addition, ABFT is evaluated at a security level of 128 bits,
while the implementations evaluated by [7] were evaluated
at a lower security level of 80 bits. A higher security level
usually leads to more expensive cryptographic operations,
which reduces performance.

N=8 N=32 N=64 N=100
Number of nodes

0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
 (T

x 
pe

r s
ec

on
d)

8430

4453
1934

11313 12111
8814

15121

18692 17767

38106 38733

34486

28591

Honeybadger
Dumbo1
Dumbo2
ABFT

Fig. 2. Transaction throughput of Honeybadger, Dumbo1, Dumbo2 and ABFT
in a WAN network configuration, with a batch size B = 2 × 106. Data for
Honeybadger, Dumbo1, and Dumbo2 are based on experimental results of
[7].

ABFT’s network utilization grows sharply as the batch
size B increases, which reaches a maximum of around 1



GB outbound traffic for B = 2 × 106 irrespective of N .
Furthermore, network utilization also depends on the number
of parties N , in which the minimum required network usage
grows with an increase in N . This is as expected. As we
include more parties in our system and increase the number
of the transaction being agreed upon, the amount of data
being transmitted correspondingly increases. It is worth noting
that when evaluating the ABFT consensus protocol for larger
batch sizes, the protocol is clearly I/O bound. In particular,
at the start of the protocol, in which the input value (i.e.,
the transaction set) is dispersed using the RBC sub-protocol,
system logs indicate that there is often a several seconds
long idle time in which the protocol has not received any
messages yet, and simply has to wait. In the context of
asynchronous consensus protocols like ABFT, it is, therefore,
deemed prudent to utilize infrastructure with sufficiently large
network capacity to strike a better balance in terms of resource
utilization. This could allow for additional performance gains
without significantly increasing costs.

B. Results of RQ2

Our evaluation results show that ABFT is not affected
by asymmetric network degradation if the number of nodes
affected, M , is less than the fault tolerance f . In particular,
during our evaluation, using N = 8, f = 2, M = 2,
B = 10.000, have no significant impact on the performance as
the network degrades. Considering the construction of ABFT,
this is to be expected. Since ABFT does not require the
collaboration of more than N − f parties at any point.

ABFT’s performance degrades as M grows larger than the
fault tolerance f . In particular, during our evaluation, using
N = 8, f = 2, M = 4, the latency grow steadily, with
performance decreasing harshly as the network degrades. At
the maximum, the protocol’s transaction latency is over 17
times higher, when imposed by additional packet delay of
5000 ms. However, ABFT still guarantees both termination
and security, without the need for ad-hoc changes to the
protocol nor additional configuration. We expect there to be
a performance degradation, given several message thresholds
requiring N − f to achieve progress. In all of these instances,
the remaining parties must wait upon at least some of the
affected parties.

Due to space limitation, more detailed data and charts
related to RQ1 and RQ2 are in [44].

IV. RELATED WORK

Although many consensus protocols have been proposed,
few of them provide high-performance and good security in the
context of asynchronous and low-quality network environment
[45]. The work of [3] proposed a practical, asynchronous BFT
protocol. Since then, there has been renewed interest within
the space of asynchronous BFT, such as [7] [8].

Our work differentiates from the related work by introduc-
ing threshold ECDSA signatures, providing a deterministic
mapping of signature operations, and allowing transition from
the previously used BLS signatures. Furthermore, we provide

a framework for optimizing erasure coding parameters based
on the number of parties N and the transaction batch size B.
As additional optimizations, we introduce optimistic signature
verification and use precomputing for cryptographic material
to enable higher performance for cryptographic operations. We
have conducted extensive performance comparisons of ABFT
and existing consensus protocols. In addition, we evaluated
ABFT in an asynchronous network affected by asymmetric,
high network delay, and packet loss. Based on this, we deem
the implementation of ABFT as a significant step forward
within the context of practical, asynchronous consensus proto-
cols and a natural point of extension for future improvements.

V. DISCUSSIONS

A. Limitations of ABFT

One potential limitation of ABFT is that we do not imple-
ment the full threshold ECDSA scheme. The precomputing of
the signing material is done using a trusted dealer. Related to
this, we do not evaluate the cost of running the precomputing
protocol for the threshold ECDSA scheme in the context of
ABFT. There seems to be a significant performance benefit
of using threshold ECDSA signatures within ABFT, but this
might be somewhat diminished by the cost of running the
precomputing protocol. It is, however, important to note that
the precomputing protocol can be delegated to other machines.
Thus, the concern is related to the amount of additional com-
putational resources needed to maintain enough precomputed
signing material for each round of ABFT and how the cost of
this compares to the performance benefit of threshold ECDSA
signatures over the previously used threshold BLS signatures.

B. Threats to Validity

We adopt the experimental setup of our related work [3],
[4], [7]. In particular, we adopt their choice of independent
variables, their experiments, and their choice of the testing
infrastructure. While we believe that these are sensible choices
and that it is necessary for us to adopt these choices to
have comparable results to their work, it limits the scope
of the experimental evaluation. In particular, most of our
experimental evaluation bases itself on a global WAN network,
spanning multiple geographic regions, in which parties have a
reasonable amount of computational, memory, and network
resources. As the related work was conducted some years
back, there might be a concern about the instrumental change.

The ABFT prototype is built using a different programming
language than the other implementations. This leads to the
use of different networking and cryptography libraries. Fur-
thermore, we use different serialization schemes. This might
be a minor external validity concern to what extent our
improvements can be generalized to other systems.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we improved the Asynchronous Byzantine
Fault Tolerance consensus protocol and designed a high-
performance one. The evaluation results show that our con-
sensus protocol is faster and more reliable than state-of-the-art



protocols. Our planned work is to pursue further improvement
of ABFT’s performance for unstable network conditions.

ACKNOWLEDGMENT

This work is jointly supported by the National Key Research
and Development Program of China (No. 2019YFE0105500)
and the Research Council of Norway (No. 309494 and
274816).

REFERENCES

[1] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
vol. 99, pp. 173–186.

[2] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in 2014 USENIX Annual Technical Conference (USENIX-
ATC 14), pp. 305–319.

[3] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey
badger of bft protocols,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, p.
31–42. [Online]. Available: https://doi.org/10.1145/2976749.2978399

[4] S. Duan, M. K. Reiter, and H. Zhang, “Beat: Asynchronous bft
made practical,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, p. 2028–2041.
[Online]. Available: https://doi.org/10.1145/3243734.3243812

[5] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and effi-
cient asynchronous broadcast protocols,” in Advances in Cryptology —
CRYPTO 2001, J. Kilian, Ed. Springer Berlin Heidelberg, pp. 524–541.

[6] M. Ben-Or, B. Kelmer, and T. Rabin, “Asynchronous secure
computations with optimal resilience (extended abstract),” in
Proceedings of the thirteenth annual ACM symposium on Principles
of distributed computing. ACM, p. 183–192. [Online]. Available:
https://doi.org/10.1145/197917.198088

[7] B. Guo, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo: Faster
asynchronous bft protocols,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. ACM, p.
803–818. [Online]. Available: https://doi.org/10.1145/3372297.3417262

[8] I. Abraham, D. Malkhi, and A. Spiegelman, “Asymptotically
optimal validated asynchronous byzantine agreement,” in
Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing. ACM, p. 337–346. [Online]. Available:
https://doi.org/10.1145/3293611.3331612

[9] F. Ludovici and H. P. Pfeifer, “Netem - network emulator at linux.org,”
2011. [Online]. Available: https://www.linux.org/docs/man8/tc-
netem.html

[10] S. Hemminger, “Network emulation with netem,” Linux Conf., 2005.
[11] C. Cachin and S. Tessaro, “Asynchronous verifiable information dis-

persal,” in 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), pp. 191–201.

[12] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” ser. Advances in Cryptology — EURO-
CRYPT’98. Springer Berlin Heidelberg, pp. 1–16.

[13] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in
constantinople: Practical asynchronous byzantine agreement using
cryptography,” Journal of Cryptology, vol. 18, no. 3, pp. 219–246,
2005. [Online]. Available: https://doi.org/10.1007/s00145-005-0318-0

[14] R. Gennaro and S. Goldfeder, “One round threshold ecdsa with identi-
fiable abort,” IACR Cryptol. ePrint Arch., vol. 2020, p. 540, 2020.

[15] H. d. Valence, “The ristretto group,” 2021. [Online]. Available:
https://ristretto.group/

[16] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
c/c++ facilitating erasure coding for storage applications-version 1.2,”
University of Tennessee, Tech. Rep. CS-08-627, vol. 23, 2008.

[17] J. Plank, J. Luo, C. Schuman, L. Xu, and Z. Wilcox-O’Hearn, A Per-
formance Evaluation and Examination of Open-Source Erasure Coding
Libraries For Storage, 2009.

[18] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” ser. Advances in Cryptology — ASIACRYPT 2001. Springer
Berlin Heidelberg, pp. 514–532.

[19] A. Boldyreva, “Efficient threshold signature, multisignature and blind
signature schemes based on the gap-diffie-hellman-group signature
scheme,” 2002.

[20] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” ser. Advances in
Cryptology — EUROCRYPT 2003. Springer Berlin Heidelberg, pp.
416–432.

[21] A. Menezes, P. Sarkar, and S. Singh, “Challenges with assessing the im-
pact of nfs advances on the security of pairing-based cryptography,” ser.
Paradigms in Cryptology – Mycrypt 2016. Malicious and Exploratory
Cryptology. Springer International Publishing, pp. 83–108.

[22] M. Scott, “Implementing cryptographic pairings,” Lecture Notes in
Computer Science, vol. 4575, p. 177, 2007.

[23] B. Lynn, “Pbc library - the pairing-based cryptography library,” 2013.
[Online]. Available: https://crypto.stanford.edu/pbc/

[24] D. Moody, R. Peralta, R. Perlner, A. Regenscheid, A. Roginsky, and
L. Chen, “Report on pairing-based cryptography,” Journal of research of
the National Institute of Standards and Technology, vol. 120, pp. 11–27,
2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26958435
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4730686/

[25] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ecdsa with fast
trustless setup,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, p. 1179–1194.
[Online]. Available: https://doi.org/10.1145/3243734.3243859

[26] Y. Lindell and A. Nof, “Fast secure multiparty ecdsa with practical
distributed key generation and applications to cryptocurrency custody,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. ACM, p. 1837–1854. [Online]. Available:
https://doi.org/10.1145/3243734.3243788

[27] J. Doerner, Y. Kondi, E. Lee, and A. Shelat, “Threshold ecdsa from
ecdsa assumptions: the multiparty case,” in 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, pp. 1051–1066.

[28] R. Canetti, N. Makriyannis, and U. Peled, “Uc non-interactive, proactive,
threshold ecdsa,” IACR Cryptol. ePrint Arch., vol. 2020, p. 492, 2020.

[29] A. Gagol and D. Straszak, “Threshold ecdsa for decentralized as-
set custody,” Cryptology ePrint Archive, Report 2020/498, 2020.
https://eprint.iacr.org/2020/498, Tech. Rep., 2020.

[30] Poanetwork, “threshold crypto,” 2021. [Online]. Available:
https://github.com/poanetwork/threshold crypto

[31] bheisler, “Criterion.rs,” 2021. [Online]. Available:
https://github.com/bheisler/criterion.rs

[32] dalek cryptography, “curve25519-dalek,” 2021. [Online]. Available:
https://github.com/dalek-cryptography/curve25519-dalek

[33] G. Bracha, “Asynchronous byzantine agreement protocols,” Information
and Computation, vol. 75, no. 2, pp. 130–143, 1987.

[34] Z. Wilcox-O’Hearn, “zfec 1.5.5,” 2013. [Online]. Available:
https://pypi.org/project/zfec/

[35] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC press, 2018.

[36] N. Pippenger, “On the evaluation of powers and related problems,”
in 17th Annual Symposium on Foundations of Computer Science (sfcs
1976), pp. 258–263.

[37] E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson, “Fast
exponentiation with precomputation,” ser. Advances in Cryptology —
EUROCRYPT’ 92. Springer Berlin Heidelberg, pp. 200–207.

[38] C. H. Lim and P. J. Lee, “More flexible exponentiation with precompu-
tation,” ser. Advances in Cryptology — CRYPTO ’94. Springer Berlin
Heidelberg, pp. 95–107.

[39] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of cryptographic engineering,
vol. 2, no. 2, pp. 77–89, 2012.

[40] Rust-lang, “Rust,” 2021. [Online]. Available: https://www.rust-lang.org/
[41] Tokio.rs, “Tokio,” 2021. [Online]. Available: https://tokio.rs/
[42] D. J. Bernstein, “Curve25519: new diffie-hellman speed records,” in

International Workshop on Public Key Cryptography. Springer, pp.
207–228.

[43] H. Knudsen, “Asynchronous byzantine fault tolerance,” 2021. [Online].
Available: https://github.com/Henriknu/consensus-unstable-throughput

[44] H. Knudsen, “High-performance asynchronous byzantine fault
tolerance consensus protocol,” 2021. [Online]. Available:
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2787249

[45] H. Knudsen, J. S. Notland, P. H. Haro, T. B. Raeder, and J. Li,
“Consensus in blockchain systems with low network throughput: A
systematic mapping study,” in 2021 3rd Blockchain and Internet of
Things Conference, ser. BIOTC 2021. ACM, 2021, p. 15–23. [Online].
Available: https://doi.org/10.1145/3475992.3475995


