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Abstract 

Metabolomics involves the large scale analysis of metabolites and thus, provides 

information regarding cellular processes in a biological sample. Independently of the 

analytical technique used, a vast amount of data is always acquired when carrying out 

metabolomics studies; this results in complex datasets with large amounts of variables. This 

type of data requires multivariate statistical analysis for its proper biological interpretation. 

Prior to multivariate analysis, preprocessing of the data must be carried out to remove 

unwanted variation such as instrumental or experimental artifacts. This review aims to outline 

the steps in the preprocessing of NMR metabolomics data and describe some of the methods 

to perform these. Since using different preprocessing methods may produce different results, 

it is important that an appropriate pipeline exists for the selection of the optimal combination 

of methods in the preprocessing workflow.  
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Introduction 

Metabolism is the set of enzymatic biochemical reactions necessary for life processes to 

take place in living organisms[1]. Metabolomics involves the large scale analysis of 

metabolites, which are the products and/or intermediates of metabolism[2]. They include 

substances like carbohydrates, amino acids, nucleotides and vitamins[3]. Most metabolites are 

molecules of 1000 Da or lower in size; however, some large molecules, like lipoproteins and 

albumin, may fall into this group of substances[2].  

Metabolites can be classified into different groups according to the field of study. In plant 

metabolomics, a metabolite can be either primary or secondary. Primary metabolites are 

involved in life-preserving functions related to growth, development and reproduction[4]. 

Although secondary metabolites are not directly crucial for short-term survival, they play a 

significant ecological role, usually related to plant defense[4]. Human metabolomics divides 

metabolites into endogenous and exogenous, the former being synthetized by the host 

organism while the latter originate from external substances like food or drugs. This review 

focuses on endogenous human metabolomics of biofluids and tissue. The collection of small-

molecule metabolites present in a biological organism makes up its metabolome, which is a 

term parallel to the genome, transcriptome and proteome[5]. The metabolome gives insight on 

the physiological state of a cell or organism at a particular moment, under given conditions. It 

is dynamic: constantly changing due to the influence of extragenomic factors like 

environment, diet, toxins, disease processes, etc.  

Daviss defines metabolomics as “the study of the unique chemical fingerprints that 

specific cellular processes leave behind”[6]. It is a relatively new field that can be considered 

the final step in the omics cascade, after genomics, transcriptomics and proteomics[7] (Figure 

1). The omics cascade illustrates the biochemical information exchange between the different 

molecular levels in an organism, starting with the level of genes to the last level of 



 

 

metabolites. Because the metabolome is affected by post transcriptional and post translational 

events, such as environmental factors, when compared to these top three levels, metabolomic 

profiles provide information at a level that is closer to the phenotype[8]. Furthermore, these 

profiles can be useful in the early detection of a normal, healthy state becoming 

dysfunctional[9, 10]. The types and quantities of metabolites that make up these profiles 

depend on the condition of the living organism or cell they belong to, which makes it possible 

to establish metabolic differences between different states, gain insight on the biochemical 

pathways behind diseases and identify metabolites as potential biomarkers and targets for 

therapy.  

The most common analytical techniques used to acquire metabolomics data are nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS)[7, 11]. In NMR, a 

sample is submitted to a magnetic field and a radio frequency (RF) pulse is applied, causing 

the atomic nuclei to resonate at a specific frequency[12]. Some atomic nuclei, e.g. protons 

(
1
H), possess a property called spin. When such nuclei are exposed to a strong magnetic field 

(B0), their magnetic moments will align either parallel or anti-parallel of B0, yielding a lower 

or higher energy spin state, respectively. The energies from nuclei in different states cancel 

each other out; however, more protons will exist in the lower energy state, causing a residual 

component of the magnetic moment. By applying an excitation radio frequency (RF) pulse, 

nuclei can be brought to a higher energy state of resonance. Following the excitation, the 

nuclei recover to the equilibrium state and the absorbed energies are released, emitting RF 

signals. Receiver coils detect the RF signals originating from the excited nuclei, and small 

differences in resonant frequencies can yield detailed information about the sample’s 

molecular structure. The result of the analysis is an NMR spectrum, which is a plot of the 

intensity of absorption or emission as a function of the resonance frequency, which 

corresponds to the energy difference between the proton’s two spin states (Figure 2). The 



 

 

chemical shift scale expresses the resonance frequency as a deviation from a reference signal 

in parts per million (ppm) and is thus independent of the magnetic field strength. 

In MS, an ion source transforms the sample into volatile ions e.g. by bombarding it 

with electrons, photons, ions, molecules or thermal or electric energy[13]. The ions produced 

are then accelerated into a mass analyzer. Here, the energetically charged ions are continuosly 

detected and sorted according to their mass-to-charge ratio (m/z). Finally, the beam of ions is 

converted into an electric signal by a transducer to be processed and displayed at a further 

stage. The mass spectrometer’s response is represented in a plot of relative intensity over m/z. 

Both of the abovementioned analytical techniques have different strengths and 

weaknesses. Thus, although they can be used individually depending on the objectives of the 

metabolomics study, they complement each other. NMR provides more information on the 

chemical structure of metabolites making it easier to elucidate it[14]. Preparation of biofluid 

and tissue samples for NMR is simple and does not require time-consuming procedures as in 

MS. NMR sample preparation is also nondestructive, which enables further analyses of the 

same sample. When compared to MS, NMR is highly quantitative and reproducible[11, 15]. 

A drawback of NMR is its low sensitivity which does not make it possible to detect 

metabolites that are present in low abundance in a sample[11, 14, 15]. Limits of detection are   

in the micro- to millimolar range, while MS can detect compounds present as low as 

nanomolar or even picomolar and femtomolar concentrations depending on the method 

used[16, 17].  MS is usually combined with a chromatographic technique for prior separation 

of compounds in a sample. It provides high sensitivity and specificity, but is less useful for 

the elucidation  of chemical structure, generating information only on the elemental 

composition and some structural fragments. In addition, sample preparation usually includes 

time-consuming pretreatment such as extraction or, when separating non-volatile compounds 

using gas chromatography, derivatization.  



 

 

Whatever the method used to acquire metabolomics data, they all generate complex, 

high-dimensional data. In statistical terms, matrices consisting of much more variables 

(organized in columns) in relation to samples (organized in rows) will be produced. Many of 

the variables in these matrices are highly collinear, which means there will be an approximate 

linear relationship between at least some of them[18]. Classical multiple linear regression and 

similar techniques use the least squares approach (Equation 1) to fit models represented as 

y=Xβ+E, where β is a vector containing a regression coefficient for each variable in the 

matrix X, y is a vector containing a response or category for each sample and E is a residual 

matrix. Coefficients from collinear variables can compete and cancel each other out, making 

the inverse of X
T
X in Equation 1 difficult to calculate or ill-conditioned[19]. In these cases, 

dimension reduction multivariate methods, such as principle component analysis (PCA) and 

partial least squares (PLS) – discriminant analysis (DA) should be used for modelling of the 

data.  

                                                                𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑦                                                     (1) 

Prior to multivariate analysis, preprocessing of the data must be carried out to remove any 

variance not related to the property of interest. Several preprocessing procedures and methods 

exist that vary according to the characteristics of the data to be dealt with. Those 

characteristics are a result, to some extent, of the analytical technique used. This review 

outlines the main preprocessing steps focusing on NMR metabolomics datasets, particularly 

on those obtained from biofluids and tissue samples. A description of some of the methods 

available to carry out these procedures is also provided.  

 

Preprocessing of NMR metabolomics data 

Preprocessing is the transformationof raw data to make it apt for subsequent data analysis 

by adjusting the variability of each variable as well as that of the relationships between 



 

 

them[20]. It involves different procedures, each one directed to correct for different artifacts 

present in the data. Furthermore, different methods are available to carry out these procedures. 

The main steps necessary in the preprocessing of NMR data are described below. 

 

Baseline correction 

The baseline in NMR spectra consists of broad regions between peaks that do not contain 

signal of interest. Due to noise, i.e. the constant, random variation of positive and negative 

signals assumed to average to zero, the baseline will never be completely flat, but attempts 

should be made to make it as straight as possible. However, most NMR spectra display 

baseline distortion which can originate from different sources. This may be macromolecules 

that decay much faster in the time domain than those arising from the low molecular weight 

metabolites [21]. At short echo time [12] these signals from macromolecules are broad in the 

frequency domain and may alter the baseline. Other sources of baseline distortion include 

alterations in the free induction decay (FID), particularly of the first few data points[22], and 

instability in the instrument[23]. A distorted baseline alters the real intensity values in the 

spectra, resulting in less accurate peak assignment and integration. Furthermore, because most 

multivariate techniques cannot separate baselines and real signals[24], statistical results are 

affected when the baseline is not flat. Thus, appropriate baseline correction is an important 

step for removing unwanted variation. 

Baseline correction of NMR-acquired data can be carried out in either the frequency or 

time domains[22, 25]. Frequency domain baseline correction is the typical approach and it 

involves baseline estimation and its subsequent subtraction directly from the measured 

spectrum[20] (Figure 3). Alternatively, the distorted points at the beginning of the FID in the 

time domain can be reconstructed by extrapolation[26], oversampling[25] or proper data 



 

 

acquisition timing to remove dead time[27] (Figure 4), for example. A combination of both 

methods can also be used. Frequency domain baseline correction is easier to adapt for specific 

purposes and spectra, such as metabolomics spectra[22]. We will discuss three baseline 

estimation methods and a strategy to select an optimal one for a given study. Some of the 

methods described below make use of a prior or combined step of noise removal, or 

smoothing, when modelling the baseline.[28] 

Iterative polynomial fitting[29] aims to eliminate the true signal or peaks of interest 

from the spectrum to estimate the baseline. The total spectrum, which will be referred to as 

the measured signal (y), is fitted with a low order polynomial. The signal is considered a 

function whose equation of polynomial fitting in the concise matrix form is shown in 

Equation 2, where X is a matrix of size m ×(n+1)  whose rows are each of the j= 1, 2,…, m 

spectral points elevated from the zero to the nth power: [1 xj xj
2
 … xj

n
]. The column vector a 

represents the coefficients to be determined: a0, a1, …, an . The polynomial fitting is obtained 

through Equation 3. 

                                                                     𝑦 = 𝑋𝑎                                                               (2) 

                                                          𝑏 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇𝑦                                                     (3) 

A comparison between corresponding spectral points in the original (y0) and estimated 

signal (bk) is carried out, where k is the iteration number. Spectral points that have a higher 

value in y0 are replaced by those in bk, to obtain a new signal (yk). The process is repeated 

taking yk as the new signal until the criterion ρ (Equation 4) is met, resolving with bk as the 

estimated baseline. There is no straightforward approach to determine the optimal polynomial 

order, and so the procedure may need to be repeated with different values for the power 

parameter n before a baseline that matches the original signal well is estimated. Another 

disadvantage is that fitting a different polynomial to each spectrum may result in variance in 



 

 

the dataset not related to the metabolic states under study[30]. Furthermore, in theory, the 

shape of NMR drifts is not that of polynomial functions[31]. 

 

                                          𝜌 =
‖𝑏𝑘−𝑏𝑘−1‖

𝑏𝑘−1
< 0.001                                                     (4) 

 

 

Asymmetric least squares smoothing (AsLS)[32] uses the least squares algorithm to fit 

the baseline by minimizing the residuals through a vector of weights while adding a penalty to 

smooth the estimated baseline (Equation 5). The method is asymmetric as negative residuals 

are given more weight than positive ones. 

 

𝑆 = ∑ 𝑤𝑖𝑖 (𝑥𝑖 − 𝑧𝑖)
2

𝑖
+ 𝜆 ∑ (Δ2𝑧𝑖)

2
𝑖                                         (5) 

 

The first term in Equation 5 measures the fit to the original spectrum, where w is a 

vector of prior weights, x is the original spectrum and z is the estimation of the baseline in the 

current iteration (i). The second term is the smoothing penalty on z, where λ is a parameter 

that tunes the smoothing and Δ^2 zi is calculated according to Equation 6.  

 

𝛥2𝑧𝑖 = (𝑧𝑖 − 𝑧𝑖−1) − (𝑧𝑖−1 − 𝑧𝑖−2) = 𝑧𝑖 − 2𝑧𝑖−1 + 𝑧𝑖−2                            (6) 

 

A parameter p tunes the asymmetry as it is used to compute the weights according to 

whether the residuals are positive or negative as shown in Equations 7 and 8, respectively.  

     𝑤𝑖 = 1 − 𝑝                                                              (7) 

𝑤𝑖 = 𝑝                                                                 (8) 

Residuals calculated at each iteration can have different signs, leading to different 

weights (Equations 7 and 8). The process is iterated until the signs, and hence the weights, are 



 

 

unchanged. Using a vector of all ones for w as a starting point leads to a solution in about 10 

iterations[33]. 

Advantages of AsLS include fast computation even for large signals and the tuning of 

the flexibility and position of the baseline with the abovementioned parameters, whose use 

make results completely reproducible. However, there is no automatic way to select these 

parameters and thus it must be done subjectively based on human judgment. 

Dietrich et al. [34] introduced a derivative method involving automatic peak 

recognition followed by fitting a fifth degree polynomial to the remaining baseline and its 

subsequent subtraction from the spectrum. The noise is reduced prior to derivatization using a 

moving average filter of width k which replaces every spectral point (xj) with the average of 

the interval including xj-k to xj+k. A first derivative of the spectrum is built by replacing each 

spectral data point with the difference between its value and the value of the next point. This 

allows us to distinguish the peaks from the baseline, as differences between their neighboring 

points are generally higher than those of the baseline[35]. The power spectrum is calculated 

and accentuates the peaks from the baseline. Anything below the threshold calculated as the 

sum of the mean of the entire power spectrum and three times the standard deviation is 

considered the baseline while the rest are peaks and are discarded. The threshold is calculated 

again until all data points are below it. For all points considered peaks, if both of its neighbors 

do not exceed the final threshold, it is put back into the baseline. Similarly, baseline points 

having both neighbors above the threshold are considered peaks. The final step is the 

polynomial fitting and subtraction of the baseline. This method is fast and easily automized 

but can be unstable when the spectrum has overlapping or broad peaks [35]. 

 Liland et al. have proposed a procedure for the optimal selection of spectral baseline 

correction methods and parameters[36]. They apply this procedure on two different types of 

spectra: Raman and matrix-assisted laser desorption/ionization (MALDI)-Time of flight 



 

 

(TOF). The procedure is said to be applicable for multivariate spectra regardless of the 

analytical technique used for acquisition. They recommend four steps: 1) selection of a 

limited number of parameter values to test; 2) baseline correction employing different 

methods and combinations of parameter values, statistical analysis and quality assessment; 3) 

visual inspection of the baseline resulting from the combination of parameter values achieving 

the best quality measure; 4) selection of the best performing method based on the quality 

measure and its subsequent application on spectra not used for modelling. A prediction is 

made for these corrected spectra using the statistical models obtained in step 2 to validate the 

performance of the selected baseline correction method. 

 

Peak Alignment  

During spectral acquisition using NMR, peaks can shift left or right from their expected 

chemical shift due to changes in pH, temperature, inhomogeneous magnetic field and 

molecular interactions[37, 38]. This will create a variation in ppm values between spectra 

from different samples. For each spectrum included in a dataset, the signal for every 

metabolite should be aligned to the exact chemical shift to make the data comparable in 

multivariate analysis. If this is not the case, information corresponding to the same metabolite 

will be positioned in different columns of the data matrix hindering a true comparison.  

Alignment methods are used to correct differences in chemical shift. Most of these 

methods position the signals in a spectrum to fit the corresponding chemical shift in a 

reference spectrum. A type of alignment methods known as warping does this by shifting, 

compressing or stretching the data until every signal matches the location, or chemical shift, 

of the same signal in the reference without changing the order of peaks[39].  

Alignment can be carried out in two ways. The first is a global alignment in which the 

entire spectrum is corrected at once. Another approach is to divide the data into segments and 



 

 

align each segment separately. This is a more local approach and is more applicable to NMR 

spectra because peaks in a spectrum may not shift uniformly in direction or magnitude[20]. 

Different regions in a spectrum may exhibit peaks shifting in opposite directions or to 

different extents. However, misalignment can result if peaks are assigned into a wrong 

segment or are divided into two segments[24]. 

An example of global alignment methods is parametric time warping (PTW)[33]. PTW 

proposes a polynomial model for the warping function which is easy to interpret. The term of 

zero order, or the constant in the function, represents a shift. The first order term represents a 

compression or stretch, and higher order terms represent compression or stretches that depend 

on the variation of the spectra variable [39]. 

Correlation optimized warping (COW) was introduced by Nielsen et al.[40] for 

chromatographic data. This method uses two parameters to align spectra to match the 

reference: segment size and flexibility or slack[24, 37]. Based on the segment size, the 

spectrum is divided into local sections which will be aligned individually by compression or 

stretching. The flexibility indicates the maximum amount of data points that the segment can 

be stretched or compressed via interpolation. This process is carried out to maximize the 

overall correlation between sample and reference. 

Another local approach which segments spectra is icoshift, which was developed by 

Savorani et al.[41] for the alignment of NMR acquired metabolomics data. This method 

employs fast Fourier transforms to maximize the correlation between a spectrum and a 

reference, and here correlation is optimized for each segment as opposed to overall correlation 

as in COW. Another difference is that the segments can be user defined and do not have to be 

equal in size (Figure 5). In addition, icoshift only shifts the segments and hence does not 

affect integration for quantification purposes by variation caused by stretching or compressing 

the spectra. This algorithm has shown to be faster than COW[24, 38, 41] because it aligns all 



 

 

spectra simultaneously. Giskeødegård et al.[42] showed that icoshift and COW performed 

better when comparing five different alignment methods for high resolution (HR) magic angle 

spinning (MAS) MR spectra based on similarity measures between spectra and reference, 

quantification of change due to alignment and performance of PLS- DA classification models 

resulting from aligned data. Only a few of the existing alignment algorithms have been 

presented here. A more extensive list of methods has been described by Bloemberg et al[39].  

All of the abovementioned methods require a reference spectrum to align the rest of the 

spectra towards. Choosing or constructing an appropriate reference is therefore a critical step, 

and may affect the subsequent data analysis results. The reference should be the best possible 

representation of the group of spectra in the dataset in terms of number of peaks[37]. It can be 

either selected from the dataset of interest or an entirely new spectrum built by calculating a 

measure of spread of the whole dataset. Different criteria exist to select an individual 

spectrum from a dataset as a reference. It can be selected randomly as done by Pierce et al. for 

chromatographic data[43]. In cases where the spectrum that contains the most metabolite 

signals is known, it can be used as a reference.  Another approach is to use the spectrum 

which is most similar to the rest by calculating for each spectrum, its correlation with the rest 

and then averaging to obtain a single score in the way of a mean correlation per spectra[44].  

A reference as a measure of spread of an entire dataset can also be created in different 

ways. The mean spectrum usually includes all peaks appearing throughout the entire group of 

spectra. However, using this as a reference may also introduce atypical artifacts that may 

cause peak distortion after alignment[45], in addition to the mean spectrum having broad 

peaks. To avoid this, median or trimmed mean spectra can be used. 

An alternative approach typically used for NMR data to correct small misalignments is 

binning, also known as bucketing. Spectra are segmented into a desired number of bins and 

all measurements inside each bin are summed by means of the integral of the signal or area 



 

 

under the curve [20, 24, 45]. This method makes the data less complex and more manageable 

by reducing the number of variables, which may facilitate data analysis.  Moreover, the 

spectra are implicitly smoothed with this procedure. However, resolution will be reduced and, 

as is the case for local alignment methods, care must be taken to correctly place bins so as to 

not have peaks fall into the wrong bin or to split peaks in two (Figure 6). This can lead to loss 

of information or generation of artifacts. 

 

Normalization 

Metabolomic responses are reflected in differences in concentration of specific 

metabolites. Biological samples from which datasets are acquired regularly exhibit 

differences in overall metabolite concentrations. In the case of biofluids, dilution factors will 

not be exactly the same for each sample. For instance, the concentration of the constituents in 

urine differs according to the amount of water ingested or urinary volume excreted. In the 

same way, when analyzing tissue, the weight of prepared material may not be constant for all 

samples.  This creates variations in signal intensities attributed to amount of material analyzed 

and dilution rather than changes in metabolic responses. Normalization methods aim to 

remove this effect to make spectra comparable. Different normalization approaches include 

area normalization, probabilistic quotient normalization (PQN), range normalization and 

normalization to a reference metabolite. 

Area or integral normalization can be considered the standard for NMR-acquired 

metabolomics data[46]. The algorithm divides each data point by an equal total area, integral 

or mean of the spectrum.  Figure 7 shows a hypothetical case in which three different sets of 

spectral data points were acquired from different amounts of the same tissue sample. For two 

spectra in which one was acquired from double the amount of sample, the signal intensity 

would be expected to be double for each data point. Similarly, three times the amount of 



 

 

sample will yield three times the intensity. Figure 7 shows how these tissue size differences 

are eliminated when using area normalization by dividing by the sum of intensities. However, 

this method has been reported to have limitations in robustness and accuracy when extreme 

quantities of single metabolites exist in samples[46, 47]. 

PQN[46] was developed to address the issues of area normalization in NMR-acquired 

metabolomics data of urine. It assumes that changes in overall metabolite concentrations 

affect the whole spectrum, while concentration differences in individual metabolites are 

reflected in only parts of the spectrum. Those individual metabolite peak differences do not 

depend on dilution only, as assumed for all peak differences by area normalization.   The 

method follows four steps: 1) select or calculate a reference spectrum; 2) calculate the 

quotient between each of the data points of the spectrum to be normalized and the 

corresponding points in the reference spectrum; 3) find the median of these quotients and 

divide all points in the spectrum by this median; 4) repeat steps 2 and 3 for all spectra.  Care 

must be taken in using a representative reference spectrum without a large portion of specific 

metabolite concentration changes in the total signal; it may be necessary to calculate it from 

control samples.  

Min-max or range normalization[48] rescales the spectral data points to a new range, 

usually from zero to one or from one to minus one[49]. Equation 9 shows the linear 

transformation through which each of the i number of data points x in the spectrum, with 

values that range from xmin to xmax, is changed to range from newmax to newmin.  

𝑥𝑖 ≡
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
× (𝑛𝑒𝑤𝑚𝑎𝑥 − 𝑛𝑒𝑤𝑚𝑖𝑛) +  𝑛𝑒𝑤𝑚𝑖𝑛                             (9) 

A fourth method used for urine spectra is to express the intensity of all signals relative to  

the peak areas of the normally-occurring reference metabolite creatinine.[20]. . The rationale 

for the use of creatinine is that its excretion rate or clearance is considered to remain constant 

[50]. However, creatinine excretion may be affected by metabolic changes caused by certain 



 

 

diseases or in children and the elderly due to muscle mass differences [47]. Other drawbacks 

include possible interference of overlapping peaks and the pH dependence of the intensity of 

the creatinine signal[46].  

Before any normalization is attempted, it is important to consider the removal of spectral 

signals that are known to be unrelated with biological effects of interest, such as the residual 

water signal and lipid peaks arising from adipose tissue, whose intensities may interfere with 

this procedure. 

 

Scaling 

Metabolites that are more abundant will usually display larger differences among samples 

that can mask smaller, yet biologically important changes in metabolites of low abundance. 

Scaling aims to balance signal intensity variances that originate from difference in average 

abundance of metabolites. While normalization is a sample/row-wise operation, scaling is 

performed column-wise on the variables[47, 51]. Unlike normalization operations, which are 

performed independently on each sample, scaling operations depend on all samples in the 

dataset.  Typically used scaling methods include autoscaling, pareto scaling and vast 

scaling[15, 47, 52]. 

Mean centering is a column-wise centering method typically used prior to scaling. Mean 

centering transforms all values so that they vary around zero instead of around the mean 

value[15]. This corrects for the displacement between metabolites existing in high and low 

concentrations, resulting in the simplest model possible[47] (Figure 8). Mean centering is 

carried out by subtracting the column mean intensity from each individual intensity value.  

Autoscaling or standardization is a method which converts all metabolites or spectral data 

points to have unit variance. It is therefore also known as unit variance scaling. The algorithm 

divides each value in a column by the standard deviation after mean centering[20, 52]. 



 

 

However, variables containing only noise are given larger influence when applying this 

method[15, 20]. NMR spectra include many baseline regions with random noise, which 

makes autoscaling less suited for this type of data. 

Pareto  scaling  is  an approach which is similar to autoscaling except it uses the square 

root of the standard deviation as a scaling factor instead of the standard deviation alone[15]. 

The resulting values are more similar to the original, raw measurement. Pareto scaling is an 

intermediate between the extremes of no scaling and autoscaling; however, large biologically 

relevant variations in the data are decreased more than small variations, and so the influence 

of the former is reduced significantly when compared to the unprocessed data.  

Variable stability, or Vast scaling, is a third method that accentuates relatively stable 

metabolites that do not show large fluctuations. It is an extension of autoscaling: after mean 

centering, the data is divided by both the column standard deviation and the coefficient of 

variation (cv). A group specific cv can be calculated if a priori knowledge about sample 

groups is available. This method is not suitable for data having large induced variation and 

lacking group structure[52]. 

 

Variable selection 

Typically, when conducting metabolomics studies, previous knowledge exists about the 

origin of the analyzed samples and supervised methods are used to build models for the 

classification of samples into biological categories based on the acquired metabolic profiles. 

The biological category each sample falls into are represented using dummy variables[53]. 

For example, the code 1 can be assigned to one category and -1 to another. These codes are 

arranged in the form of a response variable (y) with rows corresponding to each sample 

(Figure 9). In most cases, not all of the chemical shift regions are informative or related to 



 

 

biological variances of interest. Variables that are uninformative may add noise to the model 

and if included may produce misleading results and interpretations[54]. 

Variable selection is the process of reducing the original number of variables or columns 

in the dataset by discriminating informative variables from the ones that are not related to the 

response y. Because each spectral data point region represents a metabolite, selecting 

informative variables in metabolomics datasets can be considered as selecting informative 

metabolites that are relevant to the property of interest, and can lead to the identification of 

potential biomarkers[55, 56].  

Variable selection is not a preprocessing procedure per se, as it involves statistical 

modelling in order to determine the best subset of variables. It is described here because it 

may be carried out prior to the construction of the final statistical models. However, it is 

important to keep in mind that this procedure should be regarded as being part of statistical 

analyses rather than preprocessing and requires proper validation to avoid biased results.   

The minimum redundancy-maximum relevance method uses a quantity called mutual 

information as a measure of variable importance[57]. If the values of a given variable are 

random or uniformly distributed between categories, the information that is mutual between 

the variable and the response y is zero. However, if the variable accounts for large differences 

between classes, then there is large amount of mutual information between the variable and 

the response. First developed for gene expression data, this method not only selects the 

variables most relevant to the property of interest, but it also excludes variables that provide 

the same information as others that have been selected, in this way minimizing redundancy. 

This is useful for dimensionality reduction of NMR spectra in which nearby data points are 

highly correlated. The risk in this is that different highly correlated metabolites could be 

discarded while still being involved in the pathway of a disease being studied.  



 

 

Variable significance can also be evaluated using permutation tests. For a given variable j, 

two different models are built: one with permuted values of j and one without. The 

performance of both models is evaluated. To do so, the models are tested on data not used for 

training, or building, the model. The model built with the training set is used to predict the 

response of each  spectrum in the test set with and without permuted j. A model quality 

measure is calculated based on the predicted value and the true value of the response for each 

spectrum. The entire process is repeated for each of the defined number of permutations. A 

mean of performance quality measures is obtained for both normal prediction and prediction 

with permuted j, which can then be compared. This method requires high computational 

power and can be very time-consuming.     

A third approach involves the calculation of a selectivity ratio for each variable based on a 

target projection model[58]. While other statistical methods produce models consisting of 

many components, target projection models are composed by a single predictive component, 

which makes them easier to interpret. From the target projection model built, explained (vexpl) 

and residual (vres) variances can be calculated for each of the p variables in the dataset. The 

selectivity ratio for each variable will then be the relationship between these variances 

(Equation 10) The higher the selectivity ratio, the more informative the variable is. However, 

a suitable threshold must be established to determine at what selectivity ratio a variable 

should be selected as important or informative. 

𝑆𝑅𝑗 =
𝑣𝑒𝑥𝑝𝑙,𝑗

𝑣𝑟𝑒𝑠,𝑗
, 𝑗 = 1,2,3, … , 𝑝                                                 (10) 

When selecting a subset of variables and building statistical models, a proper validation 

scheme should be implemented to ensure the reliability of  model performance and unbiased 

results[59, 60]. It is highly important that the scaling factors are calculated from training data 

and applied to test set data to avoid overfitting. Anderssen et al. have proposed a double-layer 

validation to avoid over-optimistic model performance [61]. 



 

 

 

Concluding remarks 

Metabolomics data, whether acquired by MS or NMR, is high dimensional and complex 

and requires multivariate statistical techniques for interpretation. Prior to data analysis, 

preprocessing must be carried out to remove artifacts and biologically irrelevant variance. 

Preprocessing of NMR metabolomics data includes several procedures; the optimal method to 

carry out may vary depending on the type of samples analyzed. Here, we have described some 

of the methods that have been applied for the preprocessing of NMR metabolomics data. 

Using different methods for the same preprocessing procedure may produce different results, 

and the group that works most appropriately together when applied to the dataset in question 

should be selected. It may be useful for each laboratory to establish a pipeline to choose the 

combination of preprocessing procedures and methods that will optimize NMR metabolomics 

data analysis results based on the aim of the analysis.  

The result of appropriate data preprocessing is the elimination of spectral artifacts and 

removal of irrelevant variation, making NMR spectra more comparable. It is then possible to 

proceed to analyze the data using multivariate statistical methods. The description of such 

methods are beyond the scope of this paper, and the authors refer to [24] for further 

descriptions of multivariate methods for analysis of NMR data. 
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Figures 

 

Figure 1. The Omics Cascade depicting the different molecular levels in an organism. The 

arrows represent biochemical processes through which information is transferred from one 

level to the next. Metabolomics, as the final step in the cascade, studies molecules that are 

closer to the phenotype. 

 

 

 



 

 

 

Figure 2. Proton high resolution (HR) magic angle spinning (MAS) magnetic resonance 

(MR) spectrum of a breast tumor biopsy.  Metabolite peaks observed include 1) β-glucose, 2) 

ascorbate, 3) lactate, 4) tyrosine, 5) creatine, 6) glutamate, 7) glycine, 8) taurine, 9) 

glycerophosphocholine, 10) phosphocholine, 11) choline, 12) methionine, 13) glutamine and 

14) alanine.   

 

 

 

 

 

Figure 3. Baseline estimation of an NMR spectrum. Reprinted from Trends in Analytical 

Chemistry, Vol 30, Liland, KH. Multivariate methods in metabolomics – from pre-processing 

to dimension reduction and statistical analysis, 827-841, Copyright 2011, with permission 

from Elsevier. 



 

 

 

Figure 4. Baseline correction in the time domain based on proper data acquisition timing. (a) 

Absence of dead time leads to no baseline distortion. (b) Phase errors are observed with both 

dead time and signal detection starting at time zero. (c) Baseline distortion observed when 

signal detection starts after a dead time of t0. 

 

 

 

 

Figure 5. NMR data (a) before and (b) after alignment using the icoshift algorithm. Two 

intervals of different sizes defined by the user are shown here. 



 

 

Reprinted from: Journal of Magnetic Resonance, Vol 202, Savorani F, Tomasi G, Engelsen 

SB. icoshift: A versatile tool for the rapid alignment of 1D NMR spectra, 190-202, Copyright 

2010 with permission from Elsevier. 

 

 

 

Figure 6. Hypothetical examples of how binning addresses peak shifts. (a) A good binning: 

each peak corresponding between the red and the blue spectra fall into the same bin. (b) 

Multiple peaks fall into the same bin. (c) The first peak of the red spectrum falls in the same 

bin of the second peak of the blue spectrum. (d) Peak shifts across the boundaries of bins. 

Reprinted from: Metabolites, Vol 3,  Vu TN, Laukens K. Getting Your Peaks in Line: A 

Review of Alignment Methods for NMR Spectral Data, 259-276, Copyright 2013 (Open 

Access). 

 

 

Figure 7. Hypothetical area normalization to eliminate variance related to the amount of 

sample analyzed. The signal intensity of three sets of spectral data points acquired using 

different amount of the same tissue sample are divided by the sum of the intensity in each set 

to make each spectrum comparable. 

 

 

 



 

 

 

Figure 8. Depiction of data mean centering in two dimensions. Original data (black axis) vary 

around the mean. Mean centering shifts data left and down so that zero becomes the new 

centroid (red axis).  

 

 

Figure 9. Representation of a dataset consisting of 20 samples or spectra and 10 variables or 

spectral data points. The response variable y contains dummy variables where 1 represents a 

particular category and -1 another, for example presence and absence of a certain disease, 

respectively. 


