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Abstract

Physics-based models can be applied to describe mechanisms in both health and disease, which has the potential to
accelerate the development of personalized medicine. The aim of this study was to investigate the feasibility of person-
alizing a model of systemic hemodynamics by estimating model parameters.

We investigated the feasibility of estimating model parameters for a closed-loop lumped parameter model of the
left heart and systemic circulation using the step-wise subset reduction method. This proceeded by first investigating
the structural identifiability of the model parameters. Secondly we performed sensitivity analysis to determine which
parameters were most influential on the most relevant model outputs. Finally, we constructed a sequence of progressively
smaller subsets including parameters based on their ranking by model output influence. The model was then optimized
to data for each set of parameters to evaluate how well the parameters could be estimated for each subset. The subse-
quent results allowed assessment of how different data sets, and noise affected the parameter estimates.

In the noiseless case, all parameters could be calibrated to less than 10−3% error using time series data, while er-
rors using clinical index data could reach over 100%. With 5% normally distributed noise the accuracy was limited to
be within 10% error for the five most sensitive parameters, while the four least sensitive parameters were unreliably
estimated for waveform data. The three least sensitive parameters were particularly challenging to estimate so these
should be prioritised for measurement. Cost functions based on time series such as pressure waveforms, were found to
give better parameter estimates than cost functions based on standard indices used in clinical assessment of the car-
diovascular system, for example stroke volume (SV) and pulse pressure (PP). Averaged parameter estimate errors were
reduced by several orders of magnitude by choosing waveforms for noiseless synthetic data. Also when measurement data
were noisy, the parameter estimation procedure based on continuous waveforms was more accurate than that based on
clinical indices. By application of the step-wise subset reduction method we demonstrated that by the addition of venous
pressure to the cost function, or conversely fixing the systemic venous compliance parameter at an accurate value im-
proved all parameter estimates, especially the diastolic filling parameters which have least influence on the aortic pressure.

1. Introduction

Mechanistic models have large potential within biomed-
ical applications to possibly explain physiology and patho-
physiology. Models which aim to describe physical systems
are typically dependent upon model parameters to give an
accurate description of reality. Parameters are primarily
calibrated by using numerical optimization schemes and
measured data. In biomedical applications it is desirable
to predict a personalized response to a problem specific
treatment or stimuli. Then using data measured for the
present and previous states of an individual, predictions
can be made about the future state of the personalized
model, which has numerous applications in medicine. In
the current literature there are many examples of cardio-

vascular models predicting different system states, medical
intervention outcomes or disease [1, 2, 3, 4, 5]. Finding a
model usable with minimal data from a typical clinical
visit and low computational requirements is highly desir-
able to enable use of such models in the general health
context. To investigate how well model parameters can be
personalized in this context we approach the problem by
using simple models.

In this manuscript we apply our analysis to a parsimo-
nious model of the systemic circulation and the left ven-
tricle to describe the cardiovascular state of an individual.
The investigations are based on data types that should
be available non-invasively and available outside extraor-
dinary situations such as visits to the intensive care unit



(ICU). Since changes in individuals correspond to changes
in model parameters it is important to find reliable meth-
ods to accurately and reliably estimate these parameters,
such that the models can be used to monitor changes in
response to for example therapy.

A large body of work has been done on model per-
sonalization within medical applications, but much of the
research has focused on complex models that draw from a
large set of measurements to personalize the model, and
animal studies are often conducted to collect intensive and
invasive measurement sets [6, 7]. Invasive data from hu-
man subjects has also been used as seen in work by Col-
unga et al. and Pant et al. [8, 9, 10]. For the individual
providing such data it is less additional burden and risk
if such measurements are non-invasive and limited to as
few locations on the anatomy as possible. Model person-
alization of the cardiovascular system has been realised
[8, 9, 10, 11, 12]. These studies often focus on the de-
tails of novel optimization approaches or the quality of
outputs produced by the personalized models, while this
manuscript focuses on the accuracy of the estimated pa-
rameters themselves. However, it remains a question just
how much the available data set can be limited to success-
fully identify the necessary model parameters. The model
must also be personalizable by the available data found
within the context for model application, otherwise clini-
cal application will likely be infeasible. The minimalistic
model presented in this manuscript may provide a simple
framework for monitoring changes in the systemic arterial
and left heart hemodynamics.

Both model complexity and data modalities differ, while
some studies use electronic data records from a large num-
ber of individuals, some efforts instead focus on intensive
data from just a few individuals. Pant et al. [9, 10], fit the
parameters of a lumped parameter model using an Un-
scented Kalman Filter (UKF) approach. The technique
was demonstrated to be able to reliably estimate param-
eters for a three element Windkessel (WK) using a single
cycle noisy synthetic waveform data. In a clinical envi-
ronment Pant et al. used MRI measurements, waveform
data from catheters, and doppler ultrasound to estimate
personalized parameters in two individuals. Meiburg et al.
apply a similar approach using a UKF to estimate param-
eters in a different model of the systemic circulation us-
ing synthetic waveform data which yields promising results
[11]. Hann et al. have developed a method for personaliza-
tion where parameters are continuously re-estimated based
on the forward model solution, which has been applied
to both synthetic and real waveform data in combination
with clinical indices measured in the ICU [12]. Colunga
et al., Marquis et al. and de Bournonville et al. take an
approach to personalizing closed-loop lumped parameter
models using invasive data sets to compute good nominal
values before model optimization [6, 7, 8]. This approach
usually relies on measurements from multiple vessel com-

partments or population data, and thorough parameter
identifiability analysis. Patient specific modelling would
likely benefit from more accurate measurement techniques,
which would improve estimated parameters and possibly
improve predictions based on these estimates. However,
not only improved accuracy but also novel measurement
techniques that would make data acquisition easier and
less burdensome for both the individual and society would
make patient specific modeling feasible where it would ear-
lier be stopped by lack of available data.

The question of how well and which personalized model
parameters can be identified is also model specific. Hann
et al. take a structured approach to reducing the available
data sets, while reducing the model complexity in the pro-
cess [12]. We take a different approach where the problem
complexity is reduced by sequentially fixing parameters,
but mainly examine the question of how well estimated
parameters correspond to parameters that are known to
describe a given set of data, which has not been inves-
tigated in many contexts. We refer to these known pa-
rameters as the ”true” parameters, throughout this study.
A method for assessing the accuracy of the estimated pa-
rameters with respect to the true parameters is introduced
in this manuscript. Further, we investigate how different
available data sets and cost functions affect the accuracy
and precision of parameter estimates, using standard opti-
mization methods. Guided by sensitivity analysis, we as-
sess the impact of reducing the estimated parameter subset
by a method which is applicable to any deterministic com-
puter model with continuous output ranges and constant
parameters. Effectively, a practical identifiability analy-
sis of the model is performed under different scenarios.
This investigation is motivated by the hypothesis that de-
termination of accurate personalized model parameters is
essential for predicting future states of the system, and for
using models as potential diagnosis support systems.

In order to be able to evaluate the accuracy of param-
eter estimates we focus on synthetic data generated from
the model, as the true value of parameters is in general
impossible to know for real data situations. For this inves-
tigation we use synthetic data with and without noise to
investigate the best possible cases for estimation of param-
eters while still approximating real data. We emphasize
that we wish to assess how different choices of parameter
subsets affect estimation of parameter values rather than
to identify the model configuration which best emulates
the data. Attempting to estimate the parameters for real
data belongs to future work, but will shed more light on
how model discrepancy influences the resulting parameter
estimates.
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2. Method

2.1. Model

The motivation of this work was to determine if hemo-
dynamic measurements could be applied to estimate per-
sonal mechanical parameters characterizing an individual’s
cardiovascular system. In general the parameters are de-
fined in terms of a mechanistic model of the cardiovas-
cular system. While various anatomically and physiologi-
cally detailed models have been developed to describe the
human cardiovascular system [13, 14, 15], in this study
we implemented a closed-loop lumped parameter model
of the systemic circulation and left ventricle as a realistic
candidate for routine clinical application. In contrast to
some more detailed models the model applied in this work
is suitable to real-time simulation. Perhaps more signif-
icantly, reducing the number of parameters required to
specify the model is expected to reduce the measurement
burden required to personalize the model. More detailed
models often require direct imposition of population av-
erage or nominal values for parameters which may limit
their potential for personalization.

The lumped parameter model in this work is similar to
that previously applied by Segers et al. [16], however, in-
stead of assuming a constant filling pressure for the left
ventricle, we included a venous compartment to repre-
sent the left ventricular filling pressure (See Figure 1 for
a graphical depiction of the model). This is a similar but
simplified version of the approaches of Smith et al. [17]
and Hann et al. [12]. Mathematically, the model consists
of a system of differential equations that describe the time
evolution of the state variables, which are the stressed vol-
umes of the ventricle, arteries and veins. The pressures
and flows are determined algebraically from the volumes.

dVsa
dt

= Csa
dPsa

dt
= Qlvao −Qsys

dVsv
dt

= Csv
dPsv

dt
= Qsys −Qsvlv

dVlv
dt

= Qsvlv −Qlvao

(1)

Vsa, Vsv and Vlv are the stressed blood volumes of the
systemic arteries, systemic veins and left ventricle respec-
tively. Csa and Csv are the volume compliance values of
the systemic arteries and veins, while Psa and Psv are the
corresponding pressures of these compartments. Qlvao de-
notes the volume blood flow from the left ventricle to the
systemic arteries, Qsys is the flow between the systemic
arteries and veins, and finally Qsvlv is the flow from the
veins to the left ventricle. The left ventricular pressure is
assumed to be a linear function of the volume of the left
ventricle, Plv = Elv(t)Vlv, where Elv(t) is the elastance
of the ventricle at time t. The elastance is modelled as
a periodic function, which mimics the periodic contrac-
tion of the ventricle and the associated pressure gradient

and ejection of blood into the arteries. The pressure in
the arteries and veins are also modeled as linear functions
of the corresponding volumes, CP = V , where C is the
compliance of the respective compartment and describes
aggregated stiffness of the arterial or venous walls. All
equations describing the model are given in Appendix A.

The compartments and their connections are charac-
terized by a set of mechanical parameters listed in Table 1
along with the symbols and selected reference values used
in this study. Segers et al. report reference values for most
of these parameters in both normotensive and hyperten-
sive populations [18]. In this work we use the reference
values for the normotensive population and manually ad-
justed the parameters not reported by Segers et al. The
parameters originate from the mathematical description of
each component. The lumped parameter approach repre-
sents the cardiovascular system as a set of compartments
that contain a volume of blood at a particular pressure,
and connections between these compartments which model
the flow of blood between these compartments.

The flows between compartments are modeled as a lin-
ear function of the pressure difference between the com-
partments, Q = ∆P/R, where R is a resistance and de-
termines the mechanical energy required to sustain flow
between compartments. The flows to and from the ven-
tricle are slightly more complicated as the heart valves
ensure these flows are always in the direction obeying the
cardiac cycle. The valves are modeled as diodes such that
the flow is linearly related to pressure for negative pres-
sure gradients, and 0 otherwise. Note that flow from the
the venous compartment, representing the systemic veins,
directly enters the left ventricle across the mitral valve,
which conceptually assumes the systemic venous pressure
is identical to the pulmonary venous pressure. We there-
fore assume the effects of atrial dynamics are negligible,
as previous works also have [12, 17], and that ventricular
interaction effects are negligible.

The model presented in Figure 1 produces very similar
arterial hemodynamics as the referenced model by Smith
et al., the latter is a four element WK (4WK) as the for-
mer is a three element WK (3WK). Studies show that
this version of the 4WK can be better optimized to data
than the 3WK, but introduces another personalizable pa-
rameter and often yields similar parameter values for aor-
tic characteristic impedance and resistance when fitted to
real data [19]. Vachiéry et al. highlight that pulmonary
arterial hypertension is challenging to diagnose and that
even this condition may not be reflected in the left heart
or systemic circulation [20]. In exercise, the pulmonary
circulation and right heart are recognized to be influen-
tial also on arterial hemodynamics through limitations on
cardiac output [21, 22]. The absence of the right heart
and pulmonary circuit may then cause limited expressions
of exercise hemodynamics and limit the applicability of
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the model, but confirmation of this statement requires fur-
ther investigation beyond the scope of this manuscript. By
redirecting the venous return directly into the left ventri-
cle, the cardiac preload is modeled by the venous pressure
and flow rather than fixing the preload and venous prop-
erties as in an open-loop model. By circumventing the
pulmonary circulation and right heart we also omit many
potentially personalizable parameters, which may further
complicate the process of personalizing the model with lim-
ited data. If the model is sufficiently simple so that it can
be run and personalized in real time it may be used to
monitor changes in resting hemodynamics. As discussed
by Huberts et al., model accuracy lessens as the model is
simplified [23], so an important question to be answered
in a different setting is whether a simplified model is able
resolve small changes in hemodynamics caused by a cho-
sen form of stimulus.

For the remainder of this article, it is convenient to
treat the model variables, e.g. Pao, Qao or Psv, as func-
tions of the parameters θ and time, y(t,θ), where y denotes
a particular variable. Thus the values at a particular time
point are denoted y(tk,θ). θ denotes the vector of all
model parameters. These functions are approximated nu-
merically using SciPy’s implementation of the 4th-order
Runge-Kutta (RK4) method to integrate the differential
equations [24]. The resulting system of equations may be
stiff, and therefore we also tested solving the system with
the backward differentiation formula (BDF), but it was
found to be much more computationally expensive than
RK4 while results were found to be comparable.

2.2. Data and measurements

A focus of this study was to determine how accurately
and precisely specific model parameters could be estimated
from various data sources. In order to quantify the per-
formance of the estimation procedure, the true values of
the parameters, θtrue, must be known. As this is not pos-
sible for real clinical data, we simulated realistic measure-
ment data based on the numerical solution of the model
for particular parameter values such that the true values
of the parameters are known. The data generated in this
way stimulates continuous waveform data for pressure and
flow in the aorta and large systemic veins of the cardio-
vascular system (Using the notation proposed previously,
Pao(tk,θtrue), Qao(tk,θtrue), and Psv(tk,θtrue). In addi-
tion, measurement of common clinical indices was simu-
lated by computing these from the waveform data, e.g.
Psys = maxk Pao(tk,θtrue). The time varying measure-
ments and clinical indices are depicted in Figure 2 and
described in the following section. The model equations
(Appendix A) were solved by the 4th order Runge-Kutta
scheme. Model outputs were solved until they reached a
steady periodic state, which was found to be reached by 10
heart cycles. We also tested the solution after more heart
cycles but model outputs did not change and parameter

Symbol Description True values Unit

Cao Systemic arterial 1.13 mL
mmHg

compliance
Csv Systemic venous 11.0 mL

mmHg

compliance

Emax Maximal left 1.5 mmHg
mL

ventricular elastance

Emin Minimal left 0.03 mmHg
mL

ventricular elastance

Rmv Mitral valve 0.006 mmHg s
mL

resistance

Rsys Total systemic 1.11 mmHg s
mL

vascular resistance
T Heart period 0.85 s
tpeak Time of peak 0.3 s

ventricular elastance
Vtot Total stressed 300 mL

blood volume

Zao Characteristic 0.033 mmHg s
mL

impedance of
the aorta

Table 1: The model parameters are listed with their corresponding
symbols and reference values. For most parameters the reference val-
ues were reported by Segers et al. [18]. The remaining parameters
have been manually tuned. We use these reference values as exper-
imental estimates, and in our wording as the ”true” parameters, to
generate the data used for the parameter estimation procedure.

estimates remained identical. In the following, we use the
notation ymk to denote a measured value of the quantity y
at time tk if appropriate (ym denotes a time independent
measurement).

We expressed the time series simply as a list of contin-
uous measurement points of pressure or flow. A series of
100 points per heart cycle were defined, corresponding in
this example to a measurement frequency of approximately
117.6 Hz with the chosen heart rate. Pressure catheters or
tonometry can be used to measure blood pressure wave-
forms [25], and doppler ultrasound is routinely applied to
record flow velocity waveforms in the heart and aorta.

In clinical practice blood pressure is assessed by sphyg-
manometry of brachial systolic and diastolic blood pres-
sure. These may be emulated as the maximum and min-
imum values of the simulated aortic pressure waveform,
respectively. The model does not explicitly describe the
brachial pressure, thus the simulated data may be thought
of the best case where central aortic pressure is measured.
Aortic pressure is typically comparable to brachial pres-
sure (especially in healthy, young to middle aged individ-
uals). The difference between systolic and diastolic pres-
sures is the pulse pressure, which is also a common clinical
measure often used to compute other hemodynamic quan-
tities [26].
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Figure 1: The closed-loop, lumped parameter model of the systemic
circulation and the left ventricle. The circuit equivalent formulation
of the model is depicted, with the pressures of each compartment,
as well as most of the mechanical parameters. The model describes
three compartments: the left ventricular, arterial and venous com-
partments. Pth is the intrathoracic pressure, Plv is the left ven-
tricular pressure and Elv(t) indicates the left ventricular elastance
function. For an explanation of the remaining parameters, see 1.

The stroke volume and maximal aortic flow are two
additional measures commonly used in clinical practice.
These may both be derived from ultrasound measurements
of the flow velocity and diameter of the left ventricular out-
flow tract [27]. The peak value corresponds to maximal
aortic flow, while the integral of the volumetric flow over
a single cardiac cycle gives the volume of blood ejected by
the ventricle, the stroke volume. Since the three volume
compartments of the model (Section 2.1) do not represent
any anatomical features these measurements are emulated
from the flow across the aortic valve.

The model generated data may be represented as

ymk = y(tk,θtrue) (2)

where the superscript m emphasizes this is the measured
value and subscript k denotes the time point, where rele-
vant. For the case where ymk is a scalar extracted from a
time series output the k index is without meaning.

Realistic clinical measurements will have some noise.
In this analysis, we investigate both the ideal case of per-
fect measurements and the more realistic case of noisy
measurements. Noisy measurements are simulated by adding
randomly sampled perturbations to the model outputs

ynoisyk = y(tk,θtrue)× ξk (3)

where ξk are independently and identically distributed nor-
mal random variables with mean 1 and standard deviation
0.05. In reality, the noise may be biased at least in parts

of the measured signal, but this may depend on the mea-
surement technique or equipment. To keep the case most
general and for simplicity we use normal distributed noise
even though more sophisticated noise distributions can be
constructed in theory.

2.3. Structural Identifiability Analysis

Before investigating whether model parameters can be
estimated in practice, a structural identifiability analysis
will reveal if there is at all any possibility for estimating
parameters from more realistic data. Structural identifia-
bility only considers the model structure and data under
perfect conditions.

Performing a global structural identifiability analysis
means proving that a model formulation gives a unique
model output for any given parameter vector θ. Alterna-
tively, a model is globally structurally identifiable if for two
distinct arbitrarily chosen vectors of parameters θ1 and θ2
from a parameter space Θ then y(tk,θ1) = y(tk,θ2) holds
if and only if θ1 = θ2 for all k [28, 29]. A model is locally
structurally identifiable if the condition y(tk,θ) 6= y(tk,θ

′)
is true for any θ in an open interval around θ′ in the pa-
rameter space Θ. Therefore, for strictly local structural
identifiability multiple but discretely different vectors of
θ can generate the same model outputs which causes ad-
ditional concerns for practical parameter estimation, as
there may be multiple parameter sets which recreates the
output. However, it is not a given that the system has
more than one solution within the domain for practical
implementation. Practical identifiability analysis needs to
be performed to assess this. Given that a model is locally
identifiable, it can still be globally identifiable unless it is
explicitly proven not to be.

Villaverde et al. have developed the STRIKE-GOLDD
software package which determines the local structural
identifiability of non-linear differential equation models by
a method involving Lie derivatives [30]. We applied the
MatLab implementation of STRIKE-GOLDD to our model
with different data combinations to investigate identifiabil-
ity. However, this software requires the right hand side of
the system of ODEs to be infinitely differentiable functions
with respect to both the state variables and parameters,
and the valve models are not differentiable in this context.
Therefore, we analyze the model in its ejection phase en-
forcing a closed mitral valve and open aortic valve using
left ventricular pressure and aortic flow as the aortic pres-
sure is equal to left ventricular pressure in the systolic
ejection phase according to the model. For the diastolic
phase systemic arterial pressure is given while the valves
are open and closed oppositely to the ejection phase. The
dynamic driver function for the model which is the left
ventricular elastance function is dependent upon a time
signal which is periodic with the length of the heart cycle.
The time signal controlling the elastance cycle is the time
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variable but defined as u(t) = τ = t mod T and is treated
as a known dynamic system input in this context. The full
specification of the elastance function is given in Appendix
A.

Pironet et al. perform a structural identifiability analy-
sis by demonstrating that a unique solution for the param-
eter set can be found by using the information from per-
fectly observed model outputs [31]. The model examined
by Pironet has a very similar formulation to our model,
but includes more chambers, yet with a certain set of out-
puts the model was found to be globally structurally iden-
tifiable. Information from both the systolic and diastolic
phases are used separately to identify parameters, as we
have done using STRIKE-GOLDD. Parameters which are
shown to be identifiable constant parameters are used to
prove the identifiability of other parameters. Parameters
identified during the model in the diastolic phase is used
in identifying parameters in the ejection phase, and hence
the reverse should also be valid. Some of the computations
relevant to the identifiability analysis which required high
amounts of memory were performed on the NTNU IDUN
computing cluster [32].

2.4. Sensitivity analysis

Sensitivity analysis of the model quantities of interest
can identify which parameters most influence the model’s
prediction of a quantity of interest. This method can sub-
sequently be applied to identify which parameters may be
estimated from given types of measurements, or conversely
may be applied to identify which measurements are nec-
essary to provide information about particular parameters
[23, 33, 34]. We analyzed the sensitivity of the model out-
puts in terms of Sobol indices which are commonly used as
a global measure of sensitivity [35]. Sobol indices quantify
sensitivity as the proportion of variance of the model out-
put attributable to variance of particular parameter val-
ues:

SM,i(y) =
Var(E(y|θi))

Var(y)
(4a)

ST,i(y) =
E(Var(y|θ∼i))

Var(y)
. (4b)

where SM,i and ST,i denote respectively the main and
total sensitivity to parameter θi, while y denotes the func-
tion sensitive to the parameters θ, or for this analysis a
model output.

To interpret these indices, we note that a quantity of in-
terest with high values of either index for given parameter
suggests that measurement of that quantity may provide
substantial information about that parameter. However,
if SM,i is low but ST,i is large then parameter θi impacts
the quantity of interest primarily through interactions with

other parameters and consequently may substantially af-
fect the quantity of interest. Unfortunately due to its in-
teractivity it may remain challenging to estimate due to
its dependence on the values of other parameters.

In general, parameter estimation becomes more chal-
lenging as more parameters are estimated. In addition,
strong interactions between parameters may impede effi-
cient numerical optimization. Prior works have employed a
number of subset selection methods to reduce the number
of parameters varied while fitting the model to data [36,
37]. Most such methods are based on analysis of sensi-
tivities and in general select subsets of parameters with
high sensitivity to estimate, as the data will provide the
most information about these. The complementary set of
parameters with lower sensitivity is then fixed at nominal
values, which is expected to have minimal impact on the
fitting of the model to the data.

Sobol indices have a clear interpretation in terms of the
behavior of individual variables, but the interpretation of
the Sobol indices for many variables or for a time varying
signal may not be as easily interpreted. For example sim-
ply averaging across variables or time will weight regions
of low variance equally to those of high variance. To rem-
edy this one may instead examine the variance weighted
averages

TASM,i(y) =

∑
k SM,i(y(tk)) Var(y(tk))∑

k Var(y(tk))
(5a)

TAST,i(y) =

∑
k ST,i(y(tk)) Var(y(tk))∑

k Var(y(tk))
. (5b)

Here we abbreviate time-averaged as (TA). We com-
puted the indices defined in (4) assuming all input param-
eters were independently and uniformly distributed over
the range of 90% to 110% of their nominal values. The
indices were estimated using a Monte-Carlo approach as
proposed by Saltelli et al. with 2500 samples per parame-
ter [35]. The weighted averages (5) were subsequently com-
puted from these estimates of the Sobol indices [33, 38].

2.5. Synthetic data generation and parameter estimation

For the purposes of fitting a model to data a typical
approach is to assume the data, ymk , are simply a pertur-
bation of the values predicted by the model for the true
parameter values:

ymk = y(tk,θtrue) + Ek. (6)

Given the data and the model, the objective is then to
determine the value of θ that produces model predictions
best matching the data, i.e. with minimal Ek. To quantify
how well a given value of parameters matches the data, a
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cost function must be defined, for example

J(θ) =
∑
k

(y(tk,θ)− ymk )2. (7)

To estimate the parameters a minimization problem is
solved

θ̂ = arg minJ(θ) (8)

which corresponds with ordinary least squares regression.
The minimization problem is typically solved using a nu-
merical optimization method, and the Trust Region Re-
flective algorithm (TRRA) was chosen for this study due
to accepting parameter bounds, and is available through
SciPy [24]. The constraint applied to the cost functions
used in this investigation are given in higher detail in Ap-
pendix B.

Four cost functions were considered in this work, cor-
responding to three sets of clinical measurements. The
first corresponds with fitting the model to standard clini-
cal measurements

J(θ) =

(
Psys(θ)− Pm

sys

Kpsys

)2

+

(
Pdia(θ)− Pm

dia

Kpdia

)2

+

(
PP (θ)− PPm

Kpp

)2

+

(
SV (θ)− SV m

KSV

)2

+

(
Qmax(θ)−Qm

max

Kqmax

)2

.

(9)

The Kj are scaling factors, where subscript j indicates
a type of measurement the parameter normalizes. These
were used to ensure that all quantities contributing to the
cost function were weighted approximately equally. See
Appendix B for the values used in our computations.

The second cost function corresponds to making use of
continuous pressure and flow waveform data which is not
typically measured in the clinic:

J(θ) =

N∑
k

(
Pao,k(θ)− Pm

ao,k

Kp

)2

+

N∑
k

(
Qao,k(θ)−Qm

ao,k

Kq

)2
(10)

where k indexes the sample times of the measurements for
a total N points per measurement type.

The third cost function requires measurement of the
venous systolic and diastolic pressure values:

J(θ) =

(
Psys(θ)− Pm

sys

Kpsys

)2

+

(
Pdia(θ)− Pm

dia

Kpdia

)2

+

(
PP (θ)− PPm

Kpp

)2

+

(
SV (θ)− SV m

KSV

)2

+

(
Qmax(θ)−Qm

max

Kqmax

)2

+

(
Psv,sys(θ)− Pm

sv,sys

Kpsvsys

)2

+

(
Psv,dia(θ)− Pm

sv,dia

Kpsvdia

)2

.

(11)

The fourth cost function requires measurement of the
venous pressure wave form in addition to the aortic pres-
sure and flow:

J(θ) =

N∑
k

(
Pao,k(θ)− Pm

ao,k

Kp

)2

+

N∑
k

(
Qao,k(θ)−Qm

ao,k

Kq

)2

+

N∑
k

(
Psv,k(θ)− Pm

sv,k

Kpsv

)2

.

(12)

As many optimization methods such as the Quasi-Newton
method used in this analysis may be attracted to local
minima, we attempted to mitigate this by performing the
numerical optimization with several initial parameter val-
ues randomly sampled according to the formula

θsampled,i = θref,i(1 + δi), (13)

where δi are stochastic values drawn independently from
a normal distribution with a zero mean and standard de-
viation of 0.3. θref was a set of reference parameters used
to sample initial guesses arbitrarily chosen within a phys-
iologically realistic combination of parameters. They are
not equal to θtrue, as to not center the distribution of the
sampled parameters at the desired cost function minimum.
See Appendix B for the list of reference values.

2.6. Quantities of interest

The main goal of fitting the model to personal data
is to accurately estimate θtrue, thus the measure of error
for this is θ̂ − θtrue, where θ̂ is the estimated parameter
vector. θtrue are the synthetic reference parameters, listed

7



SV

Figure 2: Most of the data types and measurements are depicted, as
well as their relations.

in Table 1. We evaluated how well local optimization al-
gorithms could calibrate the lumped parameter model by
recovering the “true” parameters when we used no prior
knowledge about the parameters aside from what was con-
sidered approximately physiologically realistic ranges for
the parameters. We generated the data sets used in this
study with the “true” parameter values, θtrue, set to the
values reported by Segers et al. for normotensive individ-
uals [18]. (The remaining parameters of the parameter
vector which are not reported by Segers et al. were chosen
by manual tuning and their values are reported in Table 1.)
Thus, the true parameters, θtrue, are mostly chosen to be
values used in the literature.

Specifically, to recover these parameters we optimized
the model outputs according to the measurements in Sec-
tion 2.2. Table 2 lists the relevant quantities, and Figure
2 depicts them.

Model output/ Derived clinical index
measurements
Aortic pressure waveform, - Aortic systolic and diastolic
Pao pressures, Psys and Pdia

- Pulse Pressure, PP
Aortic flow waveform, Qao - Maximal aortic flow,

Qao,max

- Stroke Volume, SV
Systemic venous pressure - Venous systolic and diastolic
waveform, Psv avgeraged pressures,

Psv,sys and Psv,dia

Table 2: The model waveform outputs are listed along with any
derived quantities that are or serve as approximations to clinical
indices. Abbreviations are also specified.

2.7. The stepwise subset reduction method
Based on the total Sobol indices in (4), and (5) we

ranked parameters with respect to aortic pressure, and
devised an approach to investigate how well adding ad-
ditional less sensitive parameters to the fitting procedure
affects parameter estimation. We named the method the
stepwise subset reduction method (SSRM).

The purpose of parameter estimation based on the model
presented here is to develop a method for identifying per-
sonal characteristics from clinically measured data. In this
context, the personal characteristics are the parameter val-
ues θtrue; however, simultaneous estimation of all parame-
ter values may be challenging, particularly when measure-
ments are noisy. We thus sought to investigate how this
approach performed for various subsets of parameters in
order to determine if any less influential model parameters
should be fixed in order to improve the robustness of this
approach. For similar models, calibration of stable param-
eters with low variability have been demonstrated [6, 12].

For each cost function and data set (to be described
later), we performed the numerical optimization procedure
outlined in the previous section for each subset of param-
eters (described in the following section) for Ns = 50 sets
of θsampled as initial guesses for the parameters. For each
set of initial guesses, the cost function at the termina-
tion of the optimization procedure was recorded. Subse-
quently the minimum cost function observed in the subset
was identified, and only the cases where the cost function
was less than 125% of the minimum observed cost function
were retained for evaluation of the subset.

The subsets of parameters were defined as follows. At
maximum all nine parameters (see Table 1) were estimated
at once as described in the previous paragraph. After fit-
ting all nine model parameters we repeated this step eight
times, while fixing one additional parameter at its true
value according to θtrue in ascending order of sensitivity
per repetition. In practice this means that the subset se-
lection was reduced by one additional parameter at each
iteration. See Table 3 for the full sequence of subsets in
the SSRM. All nine parameters are estimated Ns times,
then the eight most sensitive parameters are estimated Ns

times, and so on until only the most sensitive parameter
is estimated. From here on this method is referred to as
the stepwise subset reduction method (SSRM).

The SSRM was then performed for ten different esti-
mation scenarios. First, for standard clinical indices as
specified in equation (9) with (III) and without noise (I).
Subsequently, for aortic flow and pressure waveforms (10)
with (IV) and without noise (II). Another four scenarios
(V - VIII) were all based on noisy waveform data (3). Two
approaches (V and VI) included venous information as per
equations (11) and (12), respectively. Two additional sce-
narios focused on the impact of fixing either tpeak (VII) or
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Csv (VIII) at their true values by applying the SSRM for
estimating the remaining parameters based on noisy aortic
data (11).

The motivation for the investigations with fixed tpeak
(VII) or Csv (VIII) was the observation that by inclusion
or removal of certain parameters in the estimated subset,
the estimation error of the remaining parameters changed
by an order of magnitude. The addition of more data from
the venous compartment was motivated by the observation
that many of the least sensitive and hardest to estimate
parameters relate to ventricular filling, which in turn is
largely determined by venous pressure.

As stated, the SSRM was conducted by fixing the model
parameters not in the subset at their true values. To in-
vestigate the effect on parameter estimates by fixing the
parameters at wrong values, we repeated the SSRM with
the cost function in equation (10) but fixed the parame-
ters at 30% above their true value (X), and the effect on
parameter estimates was observed.

In the previous estimation cases (I) - (VIII) and (X),
the same sampled values of noise, ξk, were used in all op-
timization runs. To assess the general impact of noise,
we estimated parameters from Ns cases of normally dis-
tributed noise (3) applied to the data in equation (10) (IX).
For each sample of ξk, we estimated parameters from only
one initial parameter guess. The sampling values in Table
B.6 from Appendix B were used as initial guesses in this
exercise, which were confirmed to estimate all parameters
to negligible error without noise.

The performance of the parameter estimation proce-
dure was evaluated for each subset and cost function by
calculating the mean absolute percentage error (MAPE)
between estimated and true parameter values

MAPEi =
1

Ns

Ns∑
j=1

∣∣∣∣∣ θ̂i,j − θtrue,iθtrue,i

∣∣∣∣∣ · 100%. (14)

i indicates the i-th parameter of the vector θ, while j
indicates estimate number out of Ns estimates. The mean
percentage error (MPE) is defined nearly identically, but
without the modulus operation. The standard deviation
of the MAPE measurements was computed as

APEi STD = Std

(∣∣∣∣∣ θ̂i − θtrue,iθtrue,i

∣∣∣∣∣ · 100%

)

=

√√√√ 1

Ns

Ns∑
j=1

(APEi,j −MAPEi)
2

(15)

The workflow for calculating parameter estimation er-
ror for a selected cost function and number of fixed param-
eters is illustrated in Figure 3. For each such configuration

θtrue
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Figure 3: An illustration of SSRM for one chosen cost function is
described. (a) A ”true” parameter set (θtrue) is defined and used to
generate corresponding model output, which is illustrated by an aor-
tic pressure curve in this example. In (b) multiple sampled θsampled

initial parameter values are used to estimate Ns parameter sets θ̂.
The pipeline is repeated nine or eight times as the parameter subset
selection is reduced by one parameter for each repetition. For this
manuscript the entire SSRM is repeated in ten different estimation
scenarios.

the non-linear optimization was repeated Ns = 50 times
with a new initial parameter value θsampled from equation
(13) for each run. The features of all the applied cost func-
tions are organized in subsection 2.8.

The sequence of Subset parameters
subsets in SSRM
#1 Vtot, Emax, Cao, Rsys, tpeak, Csv, Emin, Zao, and Rmv

#2 Vtot, Emax, Cao, Rsys, tpeak, Csv, Emin, and Zao

#3 Vtot, Emax, Cao, Rsys, tpeak, Csv, and Emin

#4 Vtot, Emax, Cao, Rsys, tpeak, and Csv

#5 Vtot, Emax, Cao, Rsys, and tpeak
#6 Vtot, Emax, Cao, and Rsys

#7 Vtot, Emax, and Cao

#8 Vtot, and Cao

#9 Vtot

Table 3: A table representing the sequence of model parameter sub-
sets as estimated by the SSRM.

2.8. Summary

Parameter sensitivity was quantified by estimating vari-
ance weighted averages and total Sobol indices as per equa-
tions (5b) and (4), respectively. Based on the sensitivities
to the timeseries output for the aortic pressure, we ranked
the model parameters. To assess the impact of adding
parameters of varying sensitivity to the estimation pro-
cedure we developed the SSRM (stepwise subset reduc-
tion method). The SSRM was applied by ranking model
parameters by sensitivity, then estimating all model pa-
rameters in the first ”step”, and then reducing the esti-
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mated subset by the least sensitive parameter for the sec-
ond ”step” and making new parameter estimates. The
subset reduction continues stepwise until only the most
sensitive parameter is estimated. The SSRM was repeated
in 10 estimation scenarios:

I For a cost function using clinical indices

II For a cost function using waveform data

III For a cost function using clinical indices with noise

IV For a cost function using waveform data with noise

V For a cost function using clinical indices with noise
including systolic and diastolic venous pressure

VI For a cost function using waveform data with noise
including the venous pressure waveform.

VII For a cost function using waveforms with noise where
the tpeak is always fixed at its true value.

VIII For a cost function using waveforms with noise where
the Csv is always fixed at its true value.

IX For a cost function using waveforms where noise is
varied Ns times for each step in the SSRM.

X For a cost function using waveforms where parame-
ters are fixed at 30% above their true value as they
are left out of the estimated parameter subset.

After these steps were completed we computed and ex-
amined the MAPE and MPE for the estimated parameters
compared to the true parameters to assess accuracy, pre-
cision and bias.

3. Results

3.1. Structural Identifiability Analysis

Local structural identifiability was analyzed using the
STRIKE-GOLDD software. The measured aortic pressure
is defined as Pao = maxPlv, Psa in our model, which means
that during ejection the aortic pressure is equal to the left
ventricular pressure, but is equal to the systemic arterial
pressure in diastole. When given aortic flow and left ven-
tricular pressure during ejection all model parameters were
found to be locally structurally identifiable except Rmv as
it was eliminated from the model description by closing
the mitral valve. The filling phase model was analyzed us-
ing only systemic arterial pressure as aortic flow is zero at
this point in the heart cycle. The parameters Rsys, Cao,
Zao, and Csv were taken as parameters known to be struc-
turally identifiable upon the second analysis and the rest
of the parameters were also found to be locally structurally
identifiable in this analysis given waveform data.

3.2. Sensitivity analysis

The sensitivity analysis yielded a parameter ranking
based on the sensitivity of the parameters to model out-
puts. Table 5 shows the ranking according to Sobol in-
dices (4b) for systolic and diastolic pressure and variance
weighted sensitivity (5b) to dynamic output signals. Table

4 displays the parameter sensitivities, which for dynamic
signals are the total variance weighted average from equa-
tion (5b) over a heart cycle and for the clinical indices are
the total Sobol indices from equation (4b).

Model TAST,i(Pao) TAST,i(Vlv) TAST,i(Qlvao) Psys Pdia

output
Vtot 6.8 · 10−1 6.3 · 10−1 1.2 · 10−1 7.1 · 10−1 6.6 · 10−1

Emax 1.1 · 10−1 6.4 · 10−2 1.0 · 10−1 9.9 · 10−2 1.1 · 10−1

Cao 8.3 · 10−2 1.0 · 10−1 4.7 · 10−2 1.5 · 10−1 3.7 · 10−3

Rsys 6.5 · 10−2 1.7 · 10−2 1.8 · 10−1 1.5 · 10−2 2.1 · 10−1

tpeak 3.6 · 10−2 1.6 · 10−1 5.7 · 10−1 8.3 · 10−3 3.8 · 10−3

Csv 2.4 · 10−2 2.1 · 10−2 4.0 · 10−3 2.4 · 10−2 2.3 · 10−2

Emin 1.3 · 10−2 1.6 · 10−2 4.3 · 10−3 1.6 · 10−2 8.1 · 10−3

Zao 3.0 · 10−4 4.0 · 10−5 1.0 · 10−2 2.0 · 10−4 3.9 · 10−5

Rmv 2.0 · 10−4 1.7 · 10−3 2.0 · 10−4 3.0 · 10−4 3.8 · 10−5

Table 4: Sensitivity values for the parameters to different model
outputs. The values given for the time averaged outputs are the
total variance weighted averages, see (5), and the derived clinical
indices are given as the total Sobol indices (4).

Model TAST,i(Pao) TAST,i(Vlv) TAST,i(Qlvao) Psys Pdia

output
1st Vtot Vtot tpeak Vtot Vtot
2nd Emax tpeak Rsys Cao Rsys

3rd Cao Cao Vtot Emax Emax

4th Rsys Emax Emax Csv Csv

5th tpeak Csv Cao Emin Emin

6th Csv Rsys Zao Rsys tpeak
7th Emin Emin Emin tpeak Cao

8th Zao Rmv Csv Rmv Zao

9th Rmv Zao Rmv Zao Rmv

Table 5: Based on the sensitivity values calculated and presented in
Table 4, the following rankings of how sensitive the chosen outputs
are to each respective parameter have been compiled. The param-
eters at the 1st position are the most influential parameters to the
model output they are listed under.

3.3. Parameter estimation

Computation of the MAPE for all Ns = 50 model eval-
uations yielded substantial errors in some estimated pa-
rameters for most cost functions. The exception was the
noiseless case with the cost function in equation (10) (II)
where all parameters were estimated to an error of or-
der of magnitude 10−3 percent or less, see Figure 4. The
bar graphs presented from figures 4 - 12 present the pa-
rameter MAPE or MPE with standard deviations for all
parameter subsets in the SSRM, cases I - X. The bars
corresponding to n parameters are the errors of the esti-
mates for the n most sensitive parameters while the rest of
the less sensitive parameters are fixed at their true values.
Consequently, the figures allow the reader to assess how
increasing or decreasing the number of estimated parame-
ters affect the parameter estimation error.

For the cost functions using clinical indices (I), all er-
rors were considerably larger when compared to the wave-
form based error estimates (II). For the subsequent plots
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Figure 4: The plots display a comparison of the MAPE for the parameter estimates using cost functions (10) (left) and (9) (right). These
results correspond to scenarios (II) and (I). All Ns estimates are presented in this graph. The bottom row of figures illustrate how the
estimates change when you estimate all nine parameters at once and gradually fix one by one parameter at their ”true” or correct values.
The top row illustrates the same procedure when the five least sensitive parameters are always fixed. The number of parameters indicates
how many parameters are estimated while the rest are fixed.

only the parameter estimates with the smallest cost func-
tions, which were here defined to be less than 125% of the
smallest achieved cost function value, are included. Lim-
iting the selection of estimates to the best cost functions
is common practice when performing repeated estimates.
This filtering improved the clinical index based estimates
for the subsets containing up to four of the most sensitive
parameters when all other parameters were fixed at their
true value, and made these comparable to the waveform
estimates, see Figure 5. Small improvements were seen
for most subsets on the left hand side of the figure, but
for subsets with more than five parameters, there was no
clear trend that the parameter estimates improved.

All parameters of our model were estimated with good
accuracy when noise was omitted for the cost function
in equation 10. For clinical indices only the estimates of
the four most sensitive parameters were reasonably accu-
rate. The maximal MAPE for the waveform parameter
estimates was on the order of 10−3%, while for clinical in-
dices this was order 102%, as shown in Figure 5.

Figure 6 shows little noticeable bias for parameter es-
timates based on waveform data, though the estimates of
Csv and Rmv have minor negative and positive bias, re-
spectively. The estimates based on clinical indices are all
biased to a noticeable degree with especially large positive
biases for Emax, Cao, Csv, Emin and Zao.

For the cost function in equation (9), when more than

four parameters were estimated, the accuracy was reduced
and the worst cases yielded an average error of over 100%
for some of the least sensitive parameters. Estimates for
the four least sensitive parameters in the model: Csv,
Emin, Csv, and Zao, generally displayed larger errors, em-
phasizing that these parameters were challenging to esti-
mate.

Figure 7 shows the results of the SSRM for the same
cost functions as in Figure 5, but with noise (III and IV).
The noise reduced the accuracy of estimates, especially for
the waveform cost function.

Including either venous indices or waveform data as in
cost functions (11) (V) and (12) (VI) improved estimates
for at least the seven most sensitive parameters as seen in
Figure 8. The estimates of Emin and Csv, which largely
determine ventricular filling in the model, improved notice-
ably for both cost functions. However, the cost function
based on clinical indices still resulted in estimates with
substantially larger errors in the majority of cases.

Figures 9 displays the results found when tpeak was
fixed at its correct value and the subset selection method
was performed only on the remaining parameters (VII). A
comparison of Figure 9 and the left panel of Figure 7 re-
veals that the errors of the parameter estimates were not
substantially affected by fixing tpeak. The same analysis
was conducted for Csv (VIII), but in this case all estimates
were improved when estimating five or more parameters
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Figure 5: The plots display a comparison of the MAPE for the parameter estimates using cost functions (10) (left) and (9) (right). These
results correspond to scenarios (II) and (I). Only the estimates with a cost function value below 125% of the smallest cost function found for
each parameter subset were included. The bottom row of figures illustrate how the estimates change when you estimate all nine parameters
at once and gradually fix one by one parameter at their ”true” or correct value. The top row illustrates the same procedure when the five
least sensitive parameters are always fixed. The number of parameters indicates how many parameters are estimated while the rest are fixed.

Figure 6: The plots display a comparison of the MPE for the parameter estimates using cost functions (10) (left) and (9) (right). These
results correspond to scenarios (II) and (I). Only the estimates with a cost function value below 125% of the smallest cost function found for
each parameter subset were included. The MPE metric gives an indication of whether estimates are biased toward being higher or lower than
the true value. The bottom row of figures illustrate how the estimates change when you estimate all nine parameters at once and gradually
fix one by one parameter at their ”true” or correct value. The top row illustrates the same procedure when the five least sensitive parameters
are always fixed. The number of parameters indicates how many parameters are estimated while the rest are fixed.
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Figure 7: The plots display a comparison of the MAPE for the parameter estimates using cost functions (10) (left) and (9) (right) where 5%
normally distributed noise is added to the signals to which the model is fitted. These results correspond to scenarios (IV) and (III). Only the
estimates with a cost function value below 125% of the smallest cost function found for each parameter subset were included. The bottom
row of figures illustrate how the estimates change when you estimate all nine parameters at once and gradually fix one by one parameter
at their ”true” or correct value. The top row illustrates the same procedure when the five least sensitive parameters are always fixed. The
number of parameters indicates how many parameters are estimated while the rest are fixed.

Figure 8: The plots display the results of parameter the MAPE for the parameter estimates using cost function (10) (left) and and (9) (right)
for noisy data with added terms containing information from the systemic venous pressure waveform. These results correspond to scenarios
(VI) and (V). Only the estimates with a cost function value below 125% of the smallest cost function found for each parameter subset were
included. The bottom row of figures illustrate how the estimates change when you estimate all nine parameters at once and gradually fix one
by one parameter at their ”true” or correct value. The top row illustrates the same procedure when the five least sensitive parameters are
always fixed. The number of parameters indicates how many parameters are estimated while the rest are fixed.
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Figure 9: The plots display the MAPE for the parameter estimates
using cost function (10) with noise, while always keeping parameter
tpeak fixed at its true value. These results correspond to scenario
(VII). Only the estimates with a cost function value below 125%
of the smallest cost function found for each parameter subset were
included. The bottom row of figures illustrate how the estimates
change when you estimate all nine parameters at once and gradually
fix one by one parameter at their ”true” or correct value. The top
row illustrates the same procedure when the five least sensitive pa-
rameters are always fixed. The number of parameters indicates how
many parameters are estimated while the rest are fixed.

(compare Figure 10 and the left panel of Figure 7). Most
errors were reduced by an order of magnitude, with the
exceptions of Emin and Rmv for which the improvements
were between 14.9% and 88.4%.

One estimation case was performed where the noise
added to the data was varied for each estimation rather
than the initial parameter guesses (IX), see Figures 11 and 13.
Some negative biases were observed for Rsys and Csv,
while the least sensitive parameter Rmv exhibited a large
positive bias.

Figure 12 shows the results of applying the SSRM to
cost function (10), but where fixed parameters were set
at 30% above their true value (X). Estimated errors were
shown to increase as more parameters were left out of the
estimated subsets.

4. Discussion

We sought to evaluate the potential for estimation of
personal cardiovascular parameters for a lumped parame-
ter model that may serve as the basis for predicting long-
term changes of the resting systemic hemodynamics in an

Figure 10: The plots display the MAPE for parameter estimates us-
ing cost function (10) with noise, while always keeping parameter
Csv fixed at its true value. These results correspond to scenario
(VIII). Only the estimates with a cost function value below 125%
of the smallest cost function found for each parameter subset were
included. The bottom row of figures illustrate how the estimates
change when you estimate all nine parameters at once and gradually
fix one by one parameter at their ”true” or correct value. The top
row illustrates the same procedure when the five least sensitive pa-
rameters are always fixed. The number of parameters indicates how
many parameters are estimated while the rest are fixed.
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Figure 11: The plots display the MAPE for parameter estimates us-
ing cost function (10) with Ns = 50 different noise cases, but the
same initial parameter guess for each case. These results correspond
to scenario (IX). Only the estimates with a cost function value below
125% of the smallest cost function found for each parameter subset
were included. The bottom row of figures illustrate how the estimates
change when you estimate all nine parameters at once and gradually
fix one by one parameter at their ”true” or correct value. The top
row illustrates the same procedure when the five least sensitive pa-
rameters are always fixed. The number of parameters indicates how
many parameters are estimated while the rest are fixed.

Figure 12: The plots display model fits using cost function (10),
but where fixed parameters are fixed at 30% above their true value.
These results correspond to scenario (X). Only the estimates with a
cost function value below 125% of the smallest cost function found
for each parameter subset were included. The bottom row of figures
illustrate how the estimates change when you estimate all nine pa-
rameters at once and gradually fix one by one parameter at their
”true” or correct value. The top row illustrates the same proce-
dure when the five least sensitive parameters are always fixed. The
number of parameters indicates how many parameters are estimated
while the rest are fixed.
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Figure 13: The plots display the MPE for parameter estimates us-
ing cost function (10) with Ns different noise cases, but the same
initial parameter guess for each case. Only the estimates with a
cost function value below 125% of the smallest cost function found
for each parameter subset were included. The MPE metric gives an
indication of whether estimates are biased toward being higher or
lower than the true value. The bottom row of figures illustrate how
the estimates change when you estimate all nine parameters at once
and gradually fix one by one parameter at their ”true” or correct
value. The top row illustrates the same procedure when the five
least sensitive parameters are always fixed. The number of parame-
ters indicates how many parameters are estimated while the rest are
fixed.

individual. In order to know that it is theoretically pos-
sible to recover the model parameters at all we first per-
formed a structural identifiability analysis. The model was
found to be locally structurally identifiable, hence demon-
strating that it is possible to find at least one identifiable
parameter vector for a given model output. As the pos-
sibility of estimating the model parameters depends on
the data available, we compared an approach using only
commonly measured clinical quantities to more data rich
approaches using waveform data describing pressures and
flows. Both types of data sets were synthetically generated
from simulations of a computer model. In addition, we ex-
pected that attempting to estimate all parameters in the
model simultaneously might inhibit the quality of the pa-
rameter estimates, so we applied the SSRM to investigate
the benefits of fixing some of the parameters to generic
values, while estimating the remaining parameters. This
performance of the parameter estimation was evaluated by
the SSRM for ten distinct combinations of measurement
data and constraints.

The results indicate that it is possible to estimate the
most influential parameters to the aortic pressure output
signal within an accuracy of 10−5% using both cost func-
tions (9) and (10), if the rest of the parameters are set at
their correct value. Introducing noise on the other hand,
worsens the accuracy for all parameters as seen in Figure
7, yet the time series results are still most reliable despite
the added noise. These results are also only achieved in
one model realization, so how well this result generalizes
to other models is yet uncertain.

Gill et al. analyzed the appropriate step sizes for nu-
merical differentiation of functions with numerical errors
and showed that the step size should be larger than the
square root of the expected relative error [39]. As the
model is solved by a Runge-Kutta numerical integration
procedure with relative error tolerance set to 10−9, the
minimum step-size for numerical differentiation of the model
output is 10−4.5. Consequently, it should not be expected
to estimate parameters to greater accuracy than this when
using a numerical gradient based optimization method.
The results show the parameters are estimated to the ex-
pected accuracy, well below any physically significant error
level.

The addition of noise reduced accuracy in the param-
eter estimates based on waveform data, see the left hand
side of Figure 7. The four previously well estimated pa-
rameters became biased when the model was fitted to clini-
cal indices, although still with high precision when a subset
of four or fewer parameters were estimated, as seen on the
right hand side of Figure 7. When five or more parameters
were estimated, the noise did result in poorer estimates
compared to the noiseless case shown on the right hand
side of Figure 5. By further inspection, it emerged that
the waveform data estimates were more accurate than for
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clinical indices when using noisy data in terms of average
error, especially when estimating only the most sensitive
parameters.

Inclusion of venous information in both cost function
classes proved beneficial, especially for estimates concern-
ing parameters important pertaining to the filling phase of
the heart, in this case Csv and Emin. This was not unex-
pected as more data in a compartment which is the source
of inflow for the heart should provide more information to
these parameters.

Figure 7 shows that the average errors decreased sub-
stantially after Csv was removed from the estimated sub-
set. Csv was the first parameter to appear with errors
on the scale of 102 when added to the estimated subset.
The results of fixing Csv for all estimated subsets, can be
seen in Figure 10. A substantial improvement in most es-
timation errors was observed. Similarly to adding venous
information to the cost functions, estimation of the ven-
tricular filling parameters improved, but also estimation of
some more sensitive parameters, indicating that this pa-
rameter has a larger influence on the estimates of other
parameters. Therefore, making accurate estimates for the
central systemic venous compliance Csv can be an alterna-
tive to inconvenient pressure measurements in the central
veins.

An interesting observation can be made from Figure 8
for the waveform data parameter estimates: As soon as
5 or more parameters are selected in the estimated sub-
set, the estimation error for all parameters are practically
constant and unperturbed by estimation of additional pa-
rameters. This signifies that the deviation from true pa-
rameters is sufficiently small, which according to the figure
is 10% or less, such that the estimation error in the least
sensitive parameters does not influence the other estimates
in any way. It appears that the same minimum is found in
the cost function regardless of the additional lesser sensi-
tive parameters, and this must then mean the noise level
in the data limits more accurate optimization with respect
to parameters. For the large majority of parameters the
error is well below 5% which was the specified noise am-
plitude. Consequentially, if the venous pressure waveform
is available, all parameters should be obtainable to within
10% accuracy based on the noise sample used. Compared
to Figure 12 where parameters are fixed at 30% above
their true value, but without noise and venous data we
find errors of approximately 10% for most estimates when
less than 7 parameters are estimated, but some errors ap-
proach 100% as progressively fewer parameters are esti-
mated. Therefore, the estimation procedure seems more
sensitive to poor estimates for fixed parameters than to
noise in the data. This is even the case when the three
least sensitive parameters are fixed at their wrong values.

In Figure 13 we observe that for most parameters, the

estimation error is averaged out and shows little or no
bias for most parameters over a larger number of noisy
samples as one might expect for Gaussian noise. The four
least sensitive parameters do show some bias which empha-
sizes that estimates of these can not be trusted in general.
In Figure 11 presenting MAPE, the errors are maximally
15.4% for the five most sensitive parameters, and up to
88.1% for the next three most sensitive parameters, and
even over 103% for Rmv. Therefore, noise can have a large
impact on a single cycle of data. However the estimate
error variance is for the most part quite low, so based on
this it appears that it is not the details of the different
noise samples which mainly dictate the estimation error,
but rather the presence of normally distributed noise of
the given magnitude.

From our investigation it was also demonstrated that
fixing parameters at their wrong values will substantially
affect estimates. We observed that the estimation error fell
in a range of 0.1% - 100% for all parameters as seen in Fig-
ure 7. Adding 30% to the fixed parameter values was then
determined to be a suitable level for comparison on aver-
age. Figure 12 shows that the estimation errors then fell
in the range of 10−6% - 50% for most parameters in the
model, regardless of which estimated subset was consid-
ered. When all 9 parameters are estimated, none are fixed
at erroneous values. As more parameters were fixed, the
estimation error also grew rapidly. This was true even for a
noiseless case, implying that parameters set at wrong val-
ues may strongly influence the other parameter estimates.
To be able to personalize, or calibrate this model means
that the three or four least sensitive parameters should
be estimated or measured to high accuracy, before the
chosen least squares optimization methods can estimate
the rest to good accuracy, unless venous pressure data are
available. Some of three least sensitive parameters can
be estimated from pressure flow and/or volume measure-
ments, but most often require measurements in or around
the left ventricle [40, 41], which is costly and burdensome
for an individual. In the case of Emin one may perhaps
estimate this from the end-diastolic pressure-volume re-
lationship but there are not any known examples of this
being demonstrated.

The SSRM was performed in the sequence prescribed
by the parameter sensitivity ranking according to the aor-
tic pressure time series in Table 5, because this is among
the most easily observed outputs to predict and is there-
fore also used to constrain the cost function either as a
time series or as extrema values. The optimization ap-
proach presented relies solely on the local Quasi-Newton
optimization method TRRA, as opposed to more compu-
tationally expensive global optimization methods such as
for instance Markov Chain Monte Carlo methods, or ge-
netic algorithms [12]. Partial motivation for this work is to
develop methods where computational time is another pa-
rameter to be minimized and is the reason why computa-
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tionally cheaper algorithms are preferred in this investiga-
tion. Other notions of sensitivity could have been chosen
to rank the parameters, but the total variance weighted
averaged Sobol indices were chosen in this instance. For
the notions of sensitivity tested the least sensitive three
parameters were often the same. On the other hand there
were some variations among the more sensitive parame-
ters, but there were no dominating patterns.

Only for a limited subset of the most sensitive param-
eters is the local optimization by TRRA robust for pa-
rameter estimation given that all other parameters are
fixed at their true values. Robust means here that the
results are practically independent of the initial parame-
ter values, and that the estimates are made to low error.
The four least sensitive parameters Csv, Emin, Zao and
Rmv could not be reliably estimated in all cases as they
were estimated with large errors. The conclusion must
be that the inclusion of these parameters makes the cost
function very flat around the true minimum in parame-
ter space and causes difficulties for numerical optimiza-
tion method. Conclusions based on the estimates of these
parameters can therefore not be trusted in a majority of
cases. Counter intuitively, the second least influential pa-
rameter Zao could for cost functions using waveforms often
be better estimated compared to the other three least in-
fluential parameters. This may be explained by limited
resolution in the sensitivity analysis. For parameters of
sensitivities below 0.1 it is challenging to make an accurate
ranking, and hence Zao might actually be more influential
than the other three parameters since they were all esti-
mated to similar low values.

The data used in this analysis is purely synthetic, which
in contrast to real data exhibit no model discrepancy, and
has no structured noise or hidden bias. Still, in this per-
fect case it is not always possible to fit the model to its
own output data using the applied methods given ran-
domly sampled initial parameter guesses. This lends cre-
dence to the methods presented by Colunga et al., and de
Bournonville et al. which emphasize that using good nom-
inal values used as initial values for the optimization prob-
lem is necessary for accurate parameter estimation [8, 7].
To make the estimation scenario more realistic we applied
Gaussian noise to the output signals from the model. The
standard clinical method of measuring blood pressure is
to measure the systolic and diastolic blood pressure by
cuff plethysmography and the measurement uncertainty is
widely regarded to be ±5 mmHg. Using 100 mmHg as a
reference scale for blood pressure and adding noise from a
normal distribution with 5% standard deviation the error
should be comparable and even introduce larger deviations
at some points, making this a realistic measurement error.
During measurement of blood flow velocity a slight mis-
alignment of only 2 deg between measurement probe and
direction of blood flow may introduce large errors, so as a
general rule of thumb for Doppler velocity uncertainty is

±10%. As we have observed when comparing the results
from using noiseless to noisy data the results are majorly
affected by adding 5% normally distributed noise, and we
hypothesize that knowing personalized parameters accu-
rately is essential to make personalized predictions about
an individual. However, it would also be beneficial if mea-
surements could be made more readily available and less
burdensome to the patient such that more data can be
collected and make it easier to perform analysis for an in-
dividual at all, rather than be limited by not having any
data to attempt this.

This study can be described as a practical identifiabil-
ity study where we attempted to personalize a model to
a given set of data under both ideal and noiseless condi-
tions. The structural identifiability was demonstrated and
supported by the demonstration of practically recovering
the true parameters in the noiseless case using waveforms.
The other scenarios investigated in this paper showed that
the model was not practically identifiable by the given
set of measurements with noise. By application of the
STRIKE-GOLDD software tool we showed that the model
was locally structurally identifiable using aortic pressure
and flow waveforms. Local structural identifiability im-
plies that there may be an infinite set of solutions to the
problem, yet we seem to find the correct cost function
minimum in the noiseless case using waveforms which may
support that there is only one solution in the chosen do-
main of valid parameters.

The estimation results were chosen by picking the once
with the best cost function values, and therefore the limit
was set at a cost function value better than the 125% of the
best cost function value. Controlling the cost function by
picking the best results are common practice in optimiza-
tion problems. The result however is that in some cases
depending on the variation in the results all results are in-
cluded if all estimates yield an equally good cost function
value and the operation means nothing is done. In other
cases the limit may be too strict and only a few of the
results are used in the final average. This also means that
the standard deviation bars are calculated based on little
data and may be uncertain.

In most of the results we observed uneven improvement
in estimates as the subset size of estimated parameters de-
creased. Some of the uneven variation may be explained
by the addition of noise and finite points of the waveform
data. The minimum which the optimization algorithm
finds for noisy data may not correspond exactly to the so-
lution defined by θtrue. Therefore, as different parameter
subsets are optimized for the perturbed optimal solution
the estimates may unevenly approach more accurate es-
timates as the metric used can compare a cost function
minimum which differs slightly from the minimum defined
by the noiseless waveforms.
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The results of our study are somewhat in contrast to
prior works on parameter estimation and subset selection
for cardiovascular models [36, 42] which propose that fix-
ing insensitive and some strongly correlated parameters
may improve parameter estimates and model fits. Some
of these methodologies have been tested primarily on fit-
ting models to experimental or clinical data, and have not
been evaluated on synthetic data sets where the true values
of model parameters can be directly known. Many such
studies argue that parameter estimates show good conver-
gence to the estimated values (e.g. Pant et al. [10]) and
some have employed statistical approaches to quantify un-
certainty and variability of the parameter estimates such
as Colunga et al. and Marquis et al. [8, 6]. These stud-
ies have estimated lower uncertainties in parameter esti-
mates than have been found in our synthetic approach, but
use more sophisticated optimization methods. While the
models, measurements, and parameter estimation meth-
ods differ in numerous ways, the patterns in these results
may well be a general feature of lumped parameter circu-
latory models.

5. Conclusion

We have applied the step-wise subset reduction method
(SSRM) to a closed-loop lumped parameter model in or-
der to investigate how well this model can be calibrated
using limited, in this case synthetic, data. The envisioned
application of the presented model is to predict long term
changes in resting systemic hemodynamics. Consequen-
tially we have demonstrated a framework for assessing the
accuracy and precision of parameter estimation for dif-
ferent subsets of model parameters. We first performed a
structural identifiability analysis which revealed the model
to be structurally identifiable with waveform data from
the aorta. The local optimization methods applied in this
analysis were sensitive to initial parameter guesses, and
we investigated the effect on the precision and accuracy of
estimated parameters. We demonstrated, that using wave-
form data as opposed to scalar clinical indices improves the
accuracy of parameter estimates, and the waveform data
cost functions are far more robust in terms of providing
the best estimates despite the introduction of normally
distributed noise to the indices. Standard local optimiza-
tion methods can be used for model calibration of the five
most sensitive parameters in the presented simple-lumped
parameter model of the systemic circulation and left ven-
tricle. The most sensitive parameters are generally recov-
ered with errors less than 10% given that the other pa-
rameters are fixed at correct values, and noise is normally
distributed at 5%. We also showed that when parameters
were fixed at 30% above their true value, estimation er-
ror can be comparable to the error introduced by noise
even if only the three least sensitive parameters are fixed
at erroneous values. The four least sensitive parameters
could not be generally reliably estimated by this method

without more information, and no conclusions should be
based on estimates of these parameters. The three least
sensitive parameters especially should be considered for
measurements. The addition of venous information to the
cost function further improved parameter estimates, and
after analysis by the SSRM the central venous compliance
of the systemic circulation was found to be a positive in-
fluence on the less sensitive parameter estimates if it could
be measured and fixed at an accurate value.
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Appendices
Appendix A. Model Equations

The model is comprised as a system of nonlinear ODEs
describing the volume state variable of the three model
compartments. The dynamic elastance function of the
heart contributes a source term to the system of ODEs.

dVsa
dt

= Csa
dPsa

dt
= Qlvao −Qsys

dVsv
dt

= Csv
dPsv

dt
= Qsys −Qsvlv

dVlv
dt

= Qsvlv −Qlvao

(A.1)

Vsa, Vsv and Vlv are the stressed blood volumes of the
systemic arteries, systemic veins and left ventricle respec-
tively. Csa and Csv are the compliance values of the sys-
temic arteries and veins, while Psa and Psv are the corre-
sponding pressures of these compartments. Qlvao denotes
the volume blood flow from the left ventricle to the sys-
temic arteries, Qsys is the flow between the systemic arter-
ies and veins, and finally Qsvlv is the flow from the veins to
the left ventricle. The two remaining state variables, pres-
sure and flow, are mainly modelled by linear relationships
as expressed below

Vsa = CsaPsa

Vsv = CsvPsv

Plv = Elv(t)Vlv + Pth(t)

Elv(t) = (Emax − Emin)e(t) + Emin

Pao = max [Psa, Plv]

Qlvao = I(Plv > Psa)
Plv − Psa

Zao

Qsvlv = I(Psv > Plv)
Psv − Plv

Rmv

Qsys =
Psa − Psv

Rsys
.

(A.2)

Pao indicates aortic pressure, while Plv denotes left ven-
tricular pressure. Zao is the characteristic aortic impedance
while Rsys and Rmv are total systemic vascular and mi-
tral valve resistances. The indicator function I(x) has the
value 1 when the argument x is true and 0 when x is false.
The activation function e(τ) is defined as

e(τ) = α× (τ/a1)n1

1 + (τ/a1)n1
× 1

1 + (τ/a2)n2
(A.3)

where τ is position in the cardiac cycle between the end
of the last diastolic period and the end of the next diastolic
period τ = 1. The parameters a1 and n1 determine the
shape of contraction and a2 and n2 determine the shape

of relaxation of the elastance curve and the timing of peak
elastance. The choice of values for these parameters are
identical to those of Stergiopulos et al. [13]. We wrote
the parameter values for a1 and a2 in terms of the ratio
of

tpeak

T , and set α = 1.672, to ensure normalization of the
curve. tpeak describes the time of peak ventricular elas-
tance, and therefore determines when the left ventricular
elastance Elv(t) reaches Emax. The intrathoracic pres-
sure function Pth describes the external pressure effects
on the ventricular muscle aside from pressure gradients
inside the blood vessels and is here modeled as a constant
of Pth(t) = −4 mmHg. Otherwise the parameters are as
defined by Table 1.

The Vtot parameter describes total stressed volume and
is enforced by setting intial compartment volumes and
pressures such that the total stressed volume equals the
parameter value. The model was demonstrated to con-
serve the volume and hence the total blood volume will
not change. The inital volumes and pressures are set ac-
cording to the equations

Vao,0 = CaoPao,0, and

Psv,0 =
Vtot − Vao,0 − Vlv,0

Csv

(A.4)

where the initial aortic pressure is set to Pao,0 = 100
mmHg, and initial left ventricular volume is set to Vlv,0 =
100 mL. The initial venous pressure is denoted by Psv,0.

Appendix B. Algorithm specification

The algorithm applied for computations within this
study was chosen to be the Trust Reflective Region Al-
gorithm as implemented in SciPy version 1.4.1 [24].

The function scipy.optimize.least squares() function is
applied given the arguments listed below and a initial pa-
rameter guess. The reference parameters for the initial pa-
rameter guesses are listed in 1 and are sampled as vectors
with normally distributed noise with a standard deviation
of 30% as per equation (13). Each parameter is assigned its
own random perturbation, except T which is always fixed.
The parameters are also assigned upper and lower bounds,
which are set to the values given in Table B.6. The initial
parameter guesses are limited to fall within these bounds.

Scaling factors used to balance the different compo-
nents in the cost functions as specified in section 2 are
listed in Table B.7.

Otherwise some function specific parameters for the ac-
curacy of the method are set as xtol = 2.3 · 10−16, ftol =
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Parameter Upper Lower Sampling Units
bounds bounds value

Cao 10.0 0.5 1.0 mL
mmHg

Csv 30.0 0.5 10.0 mL
mmHg

Emax 5.0 0.9 2.0 mmHg
mL

Emin 1.0 0.0 0.06 mmHg
mL

Rmv 0.1 0.0 0.003 mmHg s
mL

Rsys 3.0 0.5 1.0 mmHg s
mL

T 0.85 0.85 0.85 s
tpeak 0.75 0.05 0.32 -
Vtot 2000. 50. 250. mL

Zao 1.0 0.0 0.1 mmHg s
mL

Table B.6: All model parameters that are assigned to be personal-
izable are listed along with their upper and lower bounds as chosen
for this study. The sampling value is the mean value of the normal
distribution from which initial parameter guesses are sampled.

Symbol Value Unit
Kp 100.0 mmHg
Kq 500.0 mL

s
KPP 40.0 mmHg
Kpsys 120.0 mmHg
Kpdia 80.0 mmHg
Kpsvsys 20.0 mmHg
Kpsvdia 20.0 mmHg
Kpsv 20.0 mmHg
KSV 100.0 mL
Kqmax 500.0 mL

Table B.7: The scaling factors K which are used to balance and
approximately normalize the terms in the specified cost functions.
Subscripts: p - Aortic pressue waveform, q - Aortic flow, PP - pulse
pressure, psys - Systolic aortic pressure, pdia - Diastolic aortic pres-
sure, psvsys - Systolic averaged venous pressure, psvdia - Diastolic
averaged venous pressure, psv - Averaged venous pressure waveform,
SV - stroke volume, and qmax - maximal aortic flow.

2.3 · 10−16, gtol = 2.3 · 10−16 and diff step = 1. · 10−3.

For sampling noise applied to time series signal accord-
ing to formula (3) the numpy seed, np.random.seed() func-
tion was initialized at the value 87654321. The seed was set
at 112233, for sampling initial parameter guesses, θsampled,
as prescribed by formula (13).
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