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ABSTRACT
We present a reinforcement learning-based (RL) model predictive control (MPC) method for trajec-
tory tracking of surface vessels. The proposedmethod uses anMPC controller in order to perform both
trajectory tracking and control allocation in real-time, while simultaneously learning to optimize the
closed loop performance by using RL and system identification (SYSID) in order to tune the controller
parameters. The efficiency of the method is evaluated by performing simulations on the unmanned
surface vehicle (USV) ReVolt, as well as simulations and sea trials on the autonomous urban passen-
gers ferry milliAmpere. Our results demonstrate that the proposed method is able to outperform other
state of the art methods both in tracking performance, as well as energy efficiency.

1. Introduction
In recent years we have seen a growing interest in devel-

oping methods for automatic and autonomous marine op-
erations, with applications such as surveying and mapping,
surveillance, and transportation, being of interest both for
commercial and government use. This has lead to the need
for robust high precision motion control systems, for per-
forming operations such as docking and berthing Martinsen
et al. (2020a), trajectory tracking Bitar et al. (2020), and col-
lision avoidance Eriksen (2019).

Efficient control system design for marine vessels poses
a number of challenges including the development of ac-
curate mathematical models to describe complex vessel dy-
namics, the estimation of hydrodynamic coefficients that can
vary significantly during operation, and the unpredictable
nature of the marine environment. Consequently, extensive
research has taken place in the past using ideas from almost
all branches of control engineering. Linear, nonlinear, stochas-
tic, optimal, intelligent, fuzzy, and adaptive control, to name
a few, approaches have been developed and tested via sim-
ulations and field trials (Fossen and Grovlen, 1998; Pettersen
andNijmeijer, 2001; Skjetne and Fossen, 2001; Lefeber et al.,
2003; Do et al., 2004; Aguiar and Pascoal, 2007; Caccia
et al., 2008; Bibuli et al., 2009; Ahmed andHasegawa, 2016).
In order to simplify the control design process, a common
approach is to choose control strategies based on operating
conditions. This has led to station keeping and dynamic
positioning (DP) controllers for low speed maneuvers, and
path following or trajectory tracking controllers for higher
speeds and transit. However, using this approach has the
drawback of requiring multiple controllers and/or models
with different properties. In order to achieve performance
diversity with conventional methods, the two most common
approaches are to design multiple controllers and switch be-
tween them, or to use adaptive control methods. To this end,
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research effort has been dedicated to developing methods
for learning the vessel model and model parameters by, for
instance, using parameter estimation, system identification
or adaptive control (Hwang, 1980; Burns, 1995; Aguiar and
Hespanha, 2007; Rajesh andBhattacharyya, 2008;Wang et al.,
2015; Ramirez et al., 2018; Martinsen et al., 2020b). In most
of these works, model-based approaches exploiting knowl-
edge on hydrodynamics and the laws of motion were consid-
ered.

Reinforcement learning (RL) is a subfield of machine
learning (ML) which tackles the problem of optimal sequen-
tial decision making under uncertainty. The roots of RL can
be traced back to the Artificial Intelligence (AI) community
in the 60’s (Sutton and Barto, 2018; Bertsekas, 2019). Since
then the field has come a long way, evolving in several di-
rections to become one of the most active research areas at
the intersection of machine learning, artificial intelligence,
neural network and control theory. Contrary to other ma-
chine learning methods, RL does not rely on prerecorded
datasets, but rather learns by following a trial and error pro-
cess, from which is receives evaluative feedback. Similarly
to optimal control, this feedback comes in the form of a hand-
engineered reward or cost function, which assigns a reward,
or penalty, to the actions that result in desired, or undesired,
outcomes, respectively. Given the reward or cost function,
the job of the RL algorithm is to find a state-action map-
ping, known as the policy (the analog of a controller, in con-
trol engineering terminology), that optimizes the reward or
cost given the problem constraints and uncertainties. To sum
up, RL algorithms learn through feedback from the reward
function, using trial and error in order to learn a policy that
optimizes the given reward. In recent years, RL has also
been shown to be a useful as an adaptive control approach
for marine vehicles (Kamalapurkar et al., 2018; Martinsen
and Lekkas, 2018a,b; Meyer et al., 2020; Wang et al., 2020).

Nonlinear model predictive control (MPC) is a popu-
lar approach for optimizing the closed loop performance of
complex systems subject to constraints, which includes tra-
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jectory tracking and control of surface vessels (Li and Sun,
2011; Zheng et al., 2014; Liu et al., 2015; Veksler et al.,
2016). MPC works by solving an optimal control problem
(OCP) at each control interval in order to find an optimal
policy. The optimal control problem seeks to minimize a
the sum of stage costs over a horizon, provided a model of
the system and the current observed state. While MPC is a
well-studied approach, and an extensive literature exists on
analysing its properties Mayne et al. (2000); Rawlings and
Amrit (2009), the closed loop performance heavily relies on
the accuracy of the underlying system model, which natu-
rally presents challenges when significant unmodeled uncer-
tainties are present.

In this work, we propose a model based RL approach for
trajectory tracking of surface vessels. The approach builds
on the work in Martinsen et al. (2020b), and extends it use
a nonlinear MPC (NMPC) in order to perform the trajec-
tory tracking in combination with control allocation. In or-
der to optimize performance, the NMPC and model param-
eters are updated using RL Gros and Zanon (2019) and sys-
tem identification (SYSID) Martinsen et al. (2020c). This
allows the proposed method to compensate for model mis-
match and environmental forces, with a focus on optimiz-
ing the closed loop performance of the trajectory tracking
controller, rather than simply fitting the MPC model to the
real system dynamics. In order to run the proposed con-
trol scheme in real-time, we implemented it using advanced-
step NMPC (asNMPC). Additionally, simulations as well as
sea trials were performed on the unmanned surface vehicle
(USV) ReVolt, and the autonomous urban passengers ferry
milliAmpere. The main contributions of this work are:

• A NMPC-based controller which combines trajectory
tracking and control allocation for surface vessels (Sec-
tion 2.2).

• The addition of RL and SYSID to the NMPC, in or-
der to update the controller on-line. Making the con-
troller able to compensate for model mismatch and en-
vironmental forces, and optimize the closed loop per-
formance (Section 2.3).

• An implementation of the method using asNMPC, al-
lowing for the controller to run in real-time (Section
3.1).

• Simulation study on two different vesselmodels, demon-
strating how the approach outperforms our previous
method from Martinsen et al. (2020b), and a tradi-
tional PID based controller (Section 4).

• Experimental results on an autonomous urban passen-
ger ferry, demonstrating that NMPC based tracking
control for surface vessels is real-time feasible, and is
able to outperform a traditional PID based controller
(Section 4).

The rest of the article is structured as follows. In Section
2 we show how reinforcement learning-based NMPC can
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Figure 1: 3-DOF vessel centered at (x, y) in the North-East-
Down (NED) reference frame, with surge velocity u, sway ve-
locity v and heading  .

be used for trajectory tracking for surface vessels. In Sec-
tion 3 we outline the implementation of the proposed control
scheme. Section 4 discuss the simulation and experimental
results, while Section 5 concludes the paper.

2. Reinforcement learning-based trajectory
tracking NMPC
In this section, wewill outline the proposed control scheme,

as well as providing background on modeling of surface ves-
sels, reinforcement learning-based NMPC and system iden-
tification.
2.1. Modeling of surface vessels

In order to accurately perform trajectory tracking, it is
important to have a good model of the system we want to
control. In this section we will provide background on how
to model a surface vessel, including kinematics, dynamics,
and thrusters. Wewill also show how themodel can bemade
parametric, in a way that keeps the parameters linear in the
model. This is useful, as it gives some nice properties when
learning the model parameters.
2.1.1. Kinematics and dynamics

For control purposes, it is beneficial to keep the vessel
model reasonably simple, this can be done by limiting the
degrees of freedom, to the planar position and orientation of
the vessel. Given ℝ as the set of real numbers, S = [0, 2�]
as the set of angles, and SO(n) = {R|R ∈ ℝn×n, R⊤R =
RR⊤ = I , det(R) = 1} as the special orthogonal group in
n dimensions, the motion of a surface vessel can be repre-
sented by the pose vector � = [x, y,  ]⊤ ∈ ℝ2 × S, and ve-
locity vector � = [u, v, r]⊤ ∈ ℝ3. Here, p = [x, y]⊤ describe
the Cartesian position in the Earth-fixed reference frame,  
is yaw angle, (u, v) is the body fixed linear velocities, and
r is the yaw rate, an illustration is given in Figure 1. Us-
ing the notation from Fossen (2011), a 3-DOF vessel can be
modeled as follows

�̇ = J (�)�,
M�̇ +D(�)� + C(�)� = �Thrust + �Env,

(1)
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where M ∈ ℝ3×3, D(�) ∈ ℝ3×3, C(�) ∈ ℝ3×3, �Thrust ∈
ℝ3, �Env ∈ ℝ3 and J (�) ∈ SO(3) are the inertia matrix,
damping matrix, Coriolis matrix, thruster forces, environ-
mental forces and transformation matrix respectively. The
transformation matrix J (�) ∈ SO(3) is given by

J (�) =
⎡

⎢

⎢

⎣

cos( ) − sin( ) 0
sin( ) cos( ) 0
0 0 1

⎤

⎥

⎥

⎦

(2)

and is the rotation from the body frame to the earth-fixed
North East Down (NED) reference frame. For notational
brevity, we can express the vessel dynamics in (1), in terms
of the implicit continuous time dynamics:

[

�̇ − J (�)�
M�̇ +D(�)� + C(�)� − �Thrust − �Env

]

= 0. (3)
2.1.2. Thrust configuration

In order to find the thrust vector �Thrust wemust consider
the mapping between the actuators present on the vessel, and
how they translate into the surge, sway and yaw forces and
moments acting on the vessel. This mapping can be repre-
sented by the thrust configuration matrix T (�) ∈ ℝ3×nthrusters
which maps the thrust f from each thruster into the surge,
sway and yaw forces and moments in the body frame of the
vessel given the thruster azimuth angles �.

�Thrust = T (�)f (4)
Each column T i(�i) in T (�) gives the configuration of the
forces and moments of a thruster i as follows:

Ti(�)fi =
⎡

⎢

⎢

⎣

Fx
Fy

Fylx − Fxly

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

fi cos(�i)
fi sin(�i)

fi(lx sin(�i) − ly cos(�i))

⎤

⎥

⎥

⎦

(5)
where �i is the orientation of the thruster in the body frame,
and fi is the force it produces. Selecting the orientation �
and force f of the thrusters in order to generate the desired
force � is called the thrust allocation problem. While there
are numerous ways of solving the thrust allocation problem
(Johansen and Fossen, 2013), for our purpose we want to
include the thrust allocation as part of the optimization for
performing path tracking. This allows us to take into ac-
count physical thruster constraints such as force saturation
and feasible azimuth sectors:

�i ≤ �i ≤ �i
f
i
≤ fi ≤ f i,

without limiting the trajectory tracking control scheme to
fully-actuated vessels. We may additionally take into ac-
count thruster dynamics, this is especially useful for azimuth
thrusters, where the rotation of the truster from one orienta-
tion to an other can be quite slow. Given a setpoint for the
azimuth angle �s and thrust force f s, we can express the
thruster dynamics as follows:

�̇ = f�(�,�s)
ḟ = ff (f ,f s)

(6)

Adding the thruster dynamics we get the following continu-
ous time implicit model dynamics.

⎡

⎢

⎢

⎢

⎣

�̇ − J (�)�
M�̇ +D(�)� + C(�)� − T (�)f − �Env

�̇ = f�(�,�s)
ḟ = ff (f ,f s)

⎤

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
f (ẋ,x,u)

= 0, (7)

where the state x consists of the pose �, velocity �, thruster
force f and azimuth angles �. And the control inputs u are
given in terms of the thrust forces setpoint f s and azimuth
angle setpoint �s.
2.1.3. Parametric model

While the model structure for a surface vessel is well
known, estimate the model parameters can be quite diffi-
cult. For our approach we try to make as few assumptions on
the parameters of the vessel model as possible, and use on-
line learning in order to model the vessel based on gathered
data. For this we assume that we know the model structure
as given in (7), but that the model parameters in the inertia
matrixM , coriolis matrix C and damping matrixD are un-
known. Assuming the vessel has port starboard symmetry,
from Fossen (2011) we get the following structure:

M =
⎡

⎢

⎢

⎣

m1,1 0 0
0 m2,2 m2,3
0 m2,3 m3,3

⎤

⎥

⎥

⎦

, (8)

C(�) =
⎡

⎢

⎢

⎣

0 0 −m2,2 ⋅ v − m2,3 ⋅ r
0 0 m1,1 ⋅ u

m2,2 ⋅ v + m2,3 ⋅ r m1,1 ⋅ u 0

⎤

⎥

⎥

⎦

, (9)

D(�) = ⎡

⎢

⎢

⎣

−Xu −X|u|u ⋅ |u| 0 0
0 −Yv − Y|v|v ⋅ |v| − Y|r|v ⋅ |r| −Yr − Y|v|r ⋅ |v| − Y|r|r ⋅ |r|
0 −Nv −N|v|v ⋅ |v| −N|r|v ⋅ |r| −Nr −N|v|r ⋅ |v| −N|r|r ⋅ |r|

⎤

⎥

⎥

⎦

, (10)

where m1,1, m2,2, m2,3, m2,3, m3,3 are the mass and added
mass in the inertia matrix and Xu, X|u|u, Yv, Y|v|v, Y|r|v, Yr,
Y
|v|r, Y|r|r, Nv, N|v|v, N|r|v, Nr, N|v|r, N|r|r are the linear

and nonlinear dampening terms. For the damping matrix
D(�), both linear and nonlinear terms are included. The
linear terms are important for low speed maneuvering and
station keeping, while ensuring the velocity converges expo-
nentially to zero. The nonlinear terms are required as they
dominate at higher velocities. This ensures that the model
is able to handle a wide range of velocities. To more accu-
rately capture the dynamics, it is possible to include higher
order terms, however this also increases the complexity of
the model, and may in some cases lead to overfitting of the
model.

In addition to learning the vessel dynamics, it is also use-
ful to compensate for environmental forces, such as wind
and current. This can be done by modeling the environmen-
tal forces as bias vector w ∈ ℝ3, which can be learned on-
line together with the model parameters. Assuming thatw is
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given in the the NED frame, the resulting force in the body
frame can then be modeled as follows:

�Env = W J⊤(�)w, (11)
where W is a weighting matrix representing how environ-
mental forces act on the different dimensions of the vessel.
In this approach, we choose a weighting based on the cross
sectional area of the vessel:

W = diag([w, l, 1]⊤)
where l andw are the length and width of the vessel respec-
tively, note that for better accuracy, a possibly state depen-
dantW based on the hull geometry may be used instead of
the length and width.

Choosing the parameters �model as the vector of model
parameters from themassmatrix (m1,1,m1,2,m2,2,m2,3,m3,3),dampening matrix (Xu, Yv, Yr, Nv, Nr, X|u|u, Y|v|v, Y|v|r,
Y
|r|v, Y|r|r,N|v|v,N|v|r,N|r|v,N|r|r) and environmental forces

(w1, w2, w3), we get a parametric continuous time model,
which is linear in the parameters, on the following form:

fc,�(ẋ,x, u) = 0. (12)
2.1.4. Parametric discrete time model

In order to use the vessel model for control, we discretize
the continuous time dynamics in (7). While many options
for discretizing the continuous time model exist, we chose
to use the forward Euler integration for two main reasons.

• Forward Euler results in a discretization that is com-
putationally cheap to evaluate. This is important when
used in a real time NMPC setting, where increased
model complexity results in increased evaluation time.

• Forward Euler preserves the linear in the parameters
model structure from the the continuous time model.
This is a highly desired property when performing pa-
rameter updates.

Given a sampling time Ts, the discretization resulting from
the forward Eulermethod is given by replacing the derivative
of the state ẋ with the approximation x+−x

Ts
, where x+ is the

state at the next timestep. Using this we can formulate an
implicit discrete time model on the form:

fd,�(x+,x, u) = fc,�(ẋ,x, u)
|

|

|ẋ= x
+−x
Ts

= 0. (13)

2.2. Trajectory tracking NMPC
For trajectory tracking control, the objective is to find

a control policy which is able to make the vessel converge
to a desired trajectory xd(t). For a vessel with the dynamics
given in (13), the control policy is the mapping from the ves-
sel position x(t) and desired trajectory xd(t), to the individ-
ual thruster force f d and azimuth �d setpoints. Formulating
this as an OCP, we get the following:

min
x,�,f

��(x0,xd,0) +
N−1
∑

i=0
 iL(xi,xd,i, ui)

+ NV f
� (xN ,xd,N ) (14a)

s.t. fd,�(xi+1,xi, ui) = 0, (14b)
f ≤ f s,i ≤ f , (14c)
� ≤ �s,i ≤ �, (14d)
x0 = s. (14e)

Due to the nonlinear nature of the kinematics and dynamics
of the vessel model, as well as the nonlinear cost function,
we should note that the above OCP is a nonlinear optimiza-
tion problem, and can be solved using a NMPC. The goal
is to minimize the objective function (14a), consisting of an
initial cost ��(⋅), a discounted stage cost L(⋅) over a hori-
zonN and a terminal cost V f

� (⋅), subject to vessel dynamics
(14b), force (14c) and azimuth (14d) bounds and vessel ini-
tial condition (14e). In this formulation we can note that the
initial cost ��(x0,xd,0) does not effect the solution of the
OCP, but is used when performing the reinforcement learn-
ing. We should also note that discounting the stage cost with
a discount factor  < 1, ensures that the cumulative cost con-
verges to a finite value over the infinite horizon, allowing us
to approximate it with the terminal cost.
2.2.1. Cost function

In order to perform trajectory tracking, we need to for-
mulate a cost function (14a) which ensures that the NMPC
performs the desired trajectory tracking behaviour. For the
stage cost the following cost function was chosen:

L(x,xd , u) = qx,y ⋅ cx,y(�, �d)
+ q ⋅ c (�, �d)

+
(

� − �d
)⊤Q

(

� − �d
)

+ �⊤R�� + f⊤Rff

(15)

The stage cost in (15) uses a quadratic penalty on velocity
and control actions with weight matrices Q, R� and Rf .The position cost cx,y(�, �d), weighted by qx,y, is chosen as
a pseudo-Huber function, penalizing the difference between
the vessel pose � and the desired pose �d , and is given as
follows:

cx,y(�, �d) = �2
⎛

⎜

⎜

⎝

√

1 +
(x − xd)2 + (y − yd)2

�2
− 1

⎞

⎟

⎟

⎠

. (16)

Using a pseudo-Huber cost, provides a quadratic penaltywhen
the quadrature position error is small and linear when the
position error is large. This helps with numerical stability,
as well as performance when large position errors are ob-
served Gros and Zanon (2017); Gros and Diehl (2013). For
the heading cost function c (�, �d), weighted by q , the fol-lowing was chosen:

c (�, �d) =
1 − cos( −  d)

2
, (17)

as it avoids the problem of heading wraparound.
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For the parametric initial cost ��(x0,xd,0), a simple bias
term was chosen, giving the following:

��(x0,xd,0) = ��.

Similarly, the parametric terminal cost approximation V f
� (⋅)was chosen as a quadratic cost as follows:

V f
� (xN ,xd,N ) = (xN − xd,N )

⊤diag(�V )(xN − xd,N ),
with the parameters �� and �V being learned through rein-
forcement learning.
2.3. Reinforcement Learning-based NMPC

Given the model parameters �model and cost function pa-rameters �� and �V the goal is to learn the the parameters �:
� = (�model, ��,�V ),

based on data gathered on line, in a way that optimizes the
closed loop performance of the NMPC given by (14). In
recent works, such as Gros and Zanon (2019); Zanon and
Gros (2020); Martinsen et al. (2020c), this has been done
by allowing RL to use a NMPC as a function approxima-
tor. This combines the benefits of data-driven optimization
from RLwith the tools available for analysing and certifying
the closed loop performance of NMPC. For our implemen-
tation, we will use the approach in Martinsen et al. (2020c),
where the RL-based NMPC is combined with system iden-
tification (SYSID) in a way that minimizes plant model mis-
match while optimizing the closed loop performance of the
NMPC. In the next subsections we will show how this ap-
proach can be applied to the trajectory tracking problem in
(14).
2.3.1. Value functions and policy

Given the parametric optimization problem (14), we de-
fine the parametric action-value function as:

Q�(s,a) = minx, u (14a) (18a)
s.t. (14b) - (14d), (18b)

x0 = s, (18c)
u0 = a. (18d)

This action-value function Q�(s,a) approximates the ex-
pected cumulative discounted cost when taking an action a
in a state s. Using the action-value function Q�(s,a), wecan express the state-value function V�(s) and policy ��(s)as follows:

V�(s) = mina Q�(s,a), (19a)
��(s) = argmin

a
Q�(s,a), (19b)

where the the policy ��(s) approximates the optimal action
for a state s, and the state-value function V�(s) approximates
the expected cumulative discounted cost under the policy.

2.3.2. Q-Learning
The goal of RL is to find the parameters � that maxi-

mize the closed loop performance under the policy ��(s).While a number of different approaches exist, we will focus
on the classical Q-Learning method Watkins (1989). In Q-
Learning the goal is to find the parameterization which best
fits the action-value function to the observed data. Given
an observed transition (xt, ut,xt+1) Q-Learning can be per-
formed by minimizing the temporal-difference error:

�t = yt −Q�(st,at), (20)
where yt = L(xt,xd,t, ut) + V�(xt+1) is the fixed target
value. Defining the squared temporal-difference error as the
minimization objective, and assuming that the target value
is independent of the parameterization �, we get the semi-
gradient update Sutton and Barto (2018):

�← � + �Q�∇�Q�(xt, ut), (21)
where �Q > 0 is the step-size or learning rate. For the classi-cal semi-gradient Q-learning scheme given in (21), a second
order method can be implemented by using quasi-Newton
steps instead of gradient steps. This results in the following
update law:

�← � + �Q �H−1
Q ∇�Q�(xt, ut)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=��Q

, (22)

where HQ = ∇2�(yt − Q�(xt, ut))
2 is the Hessian of the er-

ror between the targets and the action-value function. It is
also possible to further generalize this method for a batch
of transitions, resulting in a nonlinear least squares problem
Martinsen et al. (2020c).
2.3.3. System Identification

In addition to learning the parameters� fromQ-Learning,
it is also possible to learn the parameters associated to the
MPC model using SYSID. One such approach is the Predic-
tion Error Method (PEM) where the objective is to minimize
the difference between the observed state and the predicted
state given the observed transition (xt, ut,xt+1). For a para-metric model approximation of the form:

f�(x̂t+1,xt, ut) = 0

the prediction error et between the parametric model and the
observed state can then be expressed as follows:

et = f�(xt+1,xt, ut).

In the simplest case, where the state vector x is fully ob-
servable, PEM can be performed by minimizing the squared
error ‖

‖

et‖‖
2 between the observed state, and the predicted

state. This optimization problem can be tackled via gradient
descent, giving the following update law:

�← � − �f∇�e⊤t et,
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where �f is the learning rate. Similarly to the RL objective,
we can use Quasi newton steps:

�← � − �f H−1
f ∇�e

⊤
t et

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
∶=��f

, (23)

whereHf is the hessian of the squared prediction error. Thiscan be further generalized for a batch of transitions Martin-
sen et al. (2020c). We can also note that if the model is linear
in the parameters, which is the case for the vessel model in
(13), this becomes a linear least squares problem, for which
the global minimum can be found by taking the a full newton
step i.e. choosing �f = 1.
2.3.4. Parameter update law

When updating the parameters � it is possible to com-
bine both Q-Learnig and SYSID. The simplest approach is
to directly combine the steps from both the Q-Learning and
SYSID. Using the second order update laws in (22) and (23),
with the parameter updates Δ�Q and Δ�f respectively, we
get the following:

�← � + �Q��Q + �f��f . (24)
Here the step-lengths �Q and �f can be thought of as the
weighting between the Q-Learning and SYSID respectively.
However, the end goal is arguably to maximize the closed-
loop performance of the MPC scheme rather than minimiz-
ing the prediction error of the model, hence if the two objec-
tives are competing, the RL objective should be prioritized.
In order to prioritize the RL objective we use instead the fol-
lowing update law:

�← � + �Q��Q + �fP��f , (25)
where P is a projection matrix. As proposed in Martinsen
et al. (2020c), we can choose the projection matrix as the
direction in the parameter space for which the RL objective is
the least sensitive, i.e. direction of the smallest eigenvalues
of HQ. This allows for minimizing the prediction error of
the model with SYSID, while prioritizing the RL objective
of optimizing the closed loop performance of the MPC.

3. Implementation
In order to test the proposed RL base trajectory tracking

NMPC, we performed tests on two different vessels. In this
section we will introduce the two platforms, and discuss how
we implemented the proposed RL based trajectory tracking
control method in a way that allowed for it to be used in real
time.
3.1. Advanced-step Nonlinear Model Predictive

Control
While a number of NMPC schemes exist, that guaran-

tee closed loop stability Mayne et al. (2000), the necessary
on-line computation time is typically not taken into account.
Even though recent hardware and software developments have

lead to faster and more efficient numerical solution methods
for open-loop optimal control, the solution time is often sig-
nificant in the context of closed-loop control. The resulting
delay caused by solving the NMPC problem online can often
lead to degraded performance, or in some cases even insta-
bility of the closed loop system. In order to account for the
computational delay, a number of methods have been pro-
posed Chen et al. (2000); Findeisen and Allgöwer (2004);
Diehl et al. (2005); Zavala and Biegler (2009). One such ap-
proach is the advanced-step NMPC (asNMPC) Zavala and
Biegler (2009), where the idea is to first use the current state
measurement and control action to predict the state one step
into the future and then solve the correspondingNMPCprob-
lem in advance. Transcribing the OCP in (14) into standard
form nonlinear programming problem (NLP):

min
w
�(w,p)

s.t. g(w,p) = 0
h(w,p) ≤ 0,

(26)

wherew are the decision variables, and p are the parameters,
chosen to be the initial state s. This gives the First-Order
Necessary Conditions of a primal dual interior point method
as follows:

r(z,p) =
⎡

⎢

⎢

⎣

∇w� + ∇wg� + ∇wh�
g

diag(�)h + �
⎤

⎥

⎥

⎦

= 0 (27)

where z = [w,�,�] are the primal-dual variables, and �
is a constraint relaxation parameter. If the Linear Indepen-
dence Constraint Qualification (LICQ) and Second Order
Sufficient Conditions (SOSC) holdNocedal andWright (2006)
for the NLP in (26), then the Implicit Function Theorem
(IFT) guarantees that:

)r
)z
)z
)p

+ )r
)p

= 0. (28)

Solving the NLP in (26) for a parameterization p0, with the
solution of the primal-dual variables z0, we can construct
the following linear predictor.

z = z0 +
)z
)p
(p − p0) (29)

Using the first order predictor on the NLP resulting from an
NMPC problem, with the initial state x0 chosen as the pa-
rameter vector p = x0, the asNMPC can be summarized as
follows:

• In the background between time step t and t + 1:
– Predict the state x̂t+1 using forward simulation.
– Solve the NMPC problem with p0 = x̂t+1, to getthe primal dual variables z0.
– Compute the parameter sensitivity )z

)p using the
IFT (28).

• On-line at time step t + 1:
AB Martinsen et al.: Preprint submitted to Elsevier Page 6 of 14



Reinforcement Learning-based MPC for Tracking Control of ASVs: Theory and Experiments

Figure 2: The Revolt test platform is a 1 ∶ 20 scale model of
a autonomous concept vessel with two fully rotatable azimuth
thrusters in the stern and one fully rotatable azimuth thruster
in the bow.

– Obtain the true state of the systemxt+1 from sen-
sor measurements.

– Use the linear predictor (29) to find the approx-
imate solution z of the NLP.

– Extract the first control input ut+1 from the ap-
proximate solution z.

– Apply the control input ut+1 to the plant, and re-turn to the background step.
The above asNMPC algorithm will then yield an approxi-
mate control law with a minimal delay between the measure-
ment of the state and the application of the control input.
This allows us to approximately solve the NMPC problem
in (14) in real time, making the the proposed control scheme
feasible for use on physical platforms. It should however
be noted that this is still a computationally demanding con-
trol architecture, and requires that the OCP can be solved
within one time step. In general, this requirement will limit
the length of the prediction horizon of the asNMPC, and the
complexity of the parameterized model.
3.2. Experimental Platforms

In order to test the proposed method, simulations studies
were performed on two different platforms, with additional
full scale experiments carried out on one of them. In the next
sections we will introduce the two platforms, namely ReVolt
and milliAmpere, and discuss how the proposed RL based
trajectory tracking NMPC was implemented.
3.2.1. ReVolt platform

The ReVolt, shown in Figure 2, is a 1 ∶ 20 scale model of
a autonomous concept vessel developed and buildt by DNV
GL in collaboration with NTNU. The 3 meter long and 0.72
meter wide model, weighs approximately 257 kg, and has
three fully rotatable azimuth thrusters for propulsion. The
thrust configuration seen in Figure 2, consists of two identi-
cal stern thrusters, and one slightly less powerful bow thruster,
giving the vessel a total combined engine power of 360 W
and a top speed of 2 knots (approximatly 1 m/s).

For simulating the ReVolt an accurate Digital Twin, de-
veloped byDNVGL,was used. TheDigital Twin is based on
a full 6DOF model, with parameters identified through tow-
tank experiments, as well as frequency domain analysis of a
3D model of the vessel hull. The Digital Twin allowed for

Figure 3: The MilliAmpere test platform has two fully rotat-
able azimuth thrusters along the cenerline of the vessel.

rapidly testing how the proposed control scheme performed
under ideal conditions, as well as under different environ-
mental conditions, including disturbances from wind, waves
and ocean currents.

The trajectory tracking controller for the ReVolt was im-
plemented as an asNMPC, solving the OCP in (14) in each
sampling interval. Due to the vessel having three fullty ro-
tatable azimuth thrusters with relatively fast dynamics, the
thruster dynamics were not modeled, and an additional sin-
gularity avoidance penalty (30) was added to the cost func-
tion, in order to encourage nonsingular thrust configurations
Johansen et al. (2004).

�
� + det

(

T (�)T ⊤(�)
)

(30)

Using the solution of the advanced step prediction, the thrust
and azimuth angle commands were directly applied to the
vessel thrusters. The sampling time of the controller was
chosen as Ts = 0.2s (5Hz) giving enough time to solve the
NMPC, while still being fast enough to stabilize the system.
In order to learn the parameters � on-line, the update law in
(25) was used on a batch of M = 1 samples which were
recorded on-line. A list of parameter values used for the
NMPC implementation is given in Table 3.
3.2.2. milliAmpere platform

The milliAmpere, shown in Figure 3, is an experimental
autonomous urban passenger ferry which has been in devel-
opment at the Norwegian University of Science and Tech-
nology (NTNU) since 2017. milliAmpere has served as a
platform for testing and developing autonomous technology,
including software, sensor arrays, as well as hardware solu-
tions. The platform is 5 meters long and 2.8 meters wide,
with a symetric footprint. It has two fully rotatable azimuth
thrusters mounted along the center line of the vessel, giving
it a top speed of 5 knots (approximatly 2.5 m/s).

For simulating themilliAmpere, a nonlinear 3DOFmodel
of the vessel was used together with models of the thruster
and azimuth dynamics, with themodel parameters being iden-
tified through experiments.

The trajectory tracking controller for themilliAmperewas
implemented as an asNMPC, solving the OCP in (14). Due
to slow azimuth thruster rotation, the azimuth dynmaicswere
also included in the vessel model, allowing for the NMPC to
account for the the dynamics when planning the control ac-
tions. Similar to the ReVolt implementation, the sampling
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Figure 4: Illustration of the four corner DP test, used for
testing trajectory tracking performance in individual as well as
coupled degrees of freedom.

time for the milliAmpere controller was chosen as Ts = 0.2s(5Hz) giving enough time to solve the NMPC, while still
being fast enough to stabilize the system. The parameter up-
date law (25) was also used on the milliAmpere, on a batch
ofM = 10 samples recorded on-line. This allowed the con-
troller to continuously adapt to the changing conditions. A
list of parameter values used for the NMPC implementation
is given in Table 4.

4. Results
In this section we present the results from simulations

on the ReVolt test platform (Figure 2), as well as simulations
and sea trials on the milliAmpere test platform (Figure 3).
4.1. Four corner DP test

In order to evaluate the trajectory tracking capabilities
of the proposed control method, the four corner test seen in
Figure 4 is used. This test is used in order to evaluate the
trajectory tracking capabilities of the vessel for individual
degrees of freedom, as well as the coupled motion of all de-
grees of freedom. The four corner test starts with the vessel
pointing north 0◦, then performs the following commands:

1. Move l meters due north, this tests the the surge mo-
tion of the vessel.

2. Move l meters due east, this tests the the sway motion
of the vessel.

3. Rotate to a heading of 45◦ while keeping the same po-
sition, this tests the the yaw motion of the vessel.

4. Move lmeters due southwhile keeping the same head-
ing, this tests the the coupled surge and sway motion
of the vessel.

5. Move l meters due west while rotating to a heading of
0◦, this tests coupledmotion of all degrees of freedom.

Table 1
List test scenarios for ReVolt (only simulations).

Scenario Description
R1 Simulation of baseline Adaptive dynamic pro-

gramming (ADP) method from Martinsen et al.
(2020b)

R2 Simulation of RL-based NMPC without online
learning

R3 Simulation of RL-based NMPC with online
learning

R4 Simulation of RL-based NMPC with online
learning and 3m/s wind from the north

R5 Simulation of RL-based NMPC with online
learning and 0.1m/s current from the west

For the four corner test we chose the side length l to be 5
meters, for the ReVolt, and l to be 10 meters for the mil-
liAmpere. Each maneuver is given 60 seconds to complete,
and reference filter is used to generate a continuous trajec-
tory between the commanded maneuvers.

In order to evaluate the transient performance of the dy-
namic positioning, we use the Integral Absolute Error (IAE)
given in (31).

IAE(t) = ∫

t

0

√

(� − �d)⊤W −1
IAE(� − �d)dt (31)

Where W IAE is a weighting factor, which is chosen to nor-
malize the pose between ±5 meters in north and east direc-
tion, and ±50◦ in heading, giving the following.

W IAE =
⎡

⎢

⎢

⎣

52 0 0
0 52 0
0 0 502

⎤

⎥

⎥

⎦

4.2. Results ReVolt (Simulations Only)
For the ReVolt platform, validation of the proposed tra-

jectory tracking controller was performed in simulations for
the five different scenarios given in Table 1. Performing the
four corner test, we got the results seen in Figure 5, with the
IAE performance seen in Figure 6.

From the trajectory and tracking error for our method
(R3) seen in Figure 5, we can observe that the position-
ing error is less the 10cm in both the North and east direc-
tion, while the heading is within 5◦ of the desired heading.
Compared to the baseline Adaptive Dynamic Programming
(ADP) method (R1), our method does not have the same
spikes when transitioning between maneuvers. This is likely
due to the NMPC planning ahead for the maneuver changes,
while the the baseline approach is having to react to them
as they happen. The added prediction horizon of the NMPC
is a definite advantage of the proposed approach, however it
does come at the cost of computational complexity. While
the proposed control scheme is limited to a 5Hz update rate
due to the time it takes to solve the OCP, the ADP based
solution is easily able to run at 10Hz.

From the IEA performance in Figure 6, we see the how
the proposed controller performs in different conditions, with
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ỹ
[m

]

0 50 100 150 200 250 300
-5.0

0.0

5.0

Time [s]

 ̃
[d

eg
]

Figure 5: Simulation results for ReVolt with online learning (R3), and baseline (R1)
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Figure 6: Integral Absolute Error (IAE) for ReVolt, the white
and gray bands show the different phases of the four corner
test.

and without parameter updates, as well as the performance
compared to a baseline ADP approach. Looking at the per-
formance of our method without online learning (R2), com-
pared to our method with online learing (R3), we see a sig-
nificant difference in performance. This is due to model
mismatch between the initial model used in the OCP and
the Simulator. Using online parameter updates, allows the
model and performance of the NMPC to be improved based

on gathered data, and results in a significant performance
boost. It is also worth noting the performance difference be-
tween the baseline approach (R1), and our method with on-
line learning (R3). For the baseline approach (R1), we see
large increases in IAEwhen transitioning between the differ-
ent maneuvers, while for our approach (R3), these increases
are less prevalent. This is due to the RL-based NMPC being
able to take into account the trajectory over future time hori-
zon, as well as including the thrust allocation in the OCP,
allowing for more accurately planning and performing the
maneuvers. Looking at our method when subject to external
disturbances in terms of wind (R4) and current (R5), we see
an initial increase in the IAE before the performance starts
to stabilize, with a slope similar to that of trained RL-based
NMPC. This behaviour is expected, as the initial increase
happens since the controller is not aware of the disturbance,
and flattens out as the controller learns how to compensate
for the disturbance as a constant force and torque in the NED
frame (11).
4.3. Results milliAmpere (Simulations and Sea

Trials)
For the milliAmpere platform, validation of the proposed

trajectory tracking controller was performed for five differ-
ent scenarios, Table 2, including both simulations as well as
sea trials. Performing the four corner test, we got the simu-
lation results seen in Figure 7, the experimental results seen
in Figure 8 and 11. The performance in terms of the IAE
is given in Figure 9, and the performance in terms of power
consumption is shown in Figure 10.

Based on the results from our method in Figure 7 and 8,
we see good tracking performance, with similar results for
both the simulations (M4) and the sea trials (M5). From
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Figure 7: Simulation results for milliAmpere with online learning (M4), and baseline (M1).
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Figure 8: Sea trial results for milliAmpere with online learning (M5), and baseline (M2).

the tracking error we see that the trajectory is well within
one meter, with most of the major tracking errors happening
after command changes. This is mostly due to the vessel not
being able to accelerate fast enough to follow the reference
trajectory when switching between the different poses. For
the heading error, we see a maximum error of about 20◦.
This is a relatively large error, and is the largest contribu-
tor to the IAE as can be seen in Figure 9. By choosing the
weighting between the position error qx,y and the heading er-ror q it is possible to change the priority between heading

and position error, with our main focus being on the position
error when choosing the parameters.

In order to evaluate our proposed control scheme, we per-
formed the same simulations (M1) and sea trials (M2) us-
ing a standard Proportional Integral Derivative (PID) based
DP controller with an optimization based control allocation
scheme Torben et al. (2019). It should be noted that the
PID controller was not tuned to optimize any performance
measure, however it still provides a good benchmark. Com-
pared to our approach, the PID based method has slightly
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Figure 10: Power consumption for the Dynamic Positioning
performed on milliAmpere.

less heading error, while our approach has significantly lower
position error as can be seen in Figure 7 and 8, as well as in
the IAE in Figure 9. Our approach also has about half the
power consumption when performing the maneuver com-
pared with the PID based DP controller, as seen in Figure 10.
This is likely due to the PID based DP controller relying on
an aggressive control allocation method, while our approach
integrates the control allocation into the optimization prob-
lem, allowing it to consume less power while still being able

Table 2
List test scenarios for milliAmpere (simulations and sea trials).

Scenario Description
M1 Simulation of baseline PID based DP method

from Torben et al. (2019)
M2 Sea trials of baseline PID based DP method

from Torben et al. (2019)
M3 Simulation of RL-based NMPC without online

learning
M4 Simulation of RL-based NMPC with online

learning
M5 Sea trials of RL-based NMPC with online learn-

ing

to perform the desired maneuvers. The integration of con-
trol allocation and thruster dynamics into OCP is a definite
advantage of the proposed control scheme, as it significantly
reduces the mismatch between desired and actual thrust, al-
lowing for more accurate maneuvering. It should however
be noted that the addition of control allocation and thruster
dynamics does increase the model complexity, and hence the
computational complexity when solving the OCP.

During the experiments, an unexpected azimuth failure
occurred on one of the thrusters, but the proposed method
was able to compensate and still perform the desired ma-
neuver by learning a new model of the vessel which com-
pensated for the azimuth failure. These additional results
are shown in Appendix B.

5. Conclusion
We have presented a method for trajectory tracking con-

trol of surface vessels using a RL-based NMPC. The pro-
posed method performs optimal tracking control, as well as
control allocation by considering both the dynamics and kine-
matics of the vessel and the actuators. In order to account
for model mismatch, and external disturbances, the proposed
method uses RL and SYSID in order to update the model and
NMPC on line and improve the closed loop performance. In
order to run themethod in real time, asNMPCwas used. This
reduced the computational delay of solving the optimization
problem in each sampling interval, making the method real
time feasible. It should however be noted that the proposed
control architecture is still more computationally demand-
ing then more traditional methods, which can be considered
a drawback of the proposed method. This added complex-
ity does however come with a trade off in terms of optimal-
ity and the ability to include complex truster dynamics and
physical constraints into the OCP, resulting in better track-
ing performance then other traditional methods. This is fur-
ther improved by using RL and SYSID to learn and identify
disturbances and modelling errors in order to optimize the
closed loop performance.

Based on both simulations and sea trials on both the Re-
Volt andmilliAmpere platformswe have shown the flexibility
of the proposed method. The experimental results also show
how using aNMPC for handling both tracking and control al-

AB Martinsen et al.: Preprint submitted to Elsevier Page 11 of 14



Reinforcement Learning-based MPC for Tracking Control of ASVs: Theory and Experiments

location, allows the controller to account for the performance
of the vessel over a prediction horizon. This makes the con-
troller preemptive, leading to better tracking performance
and less power consumption compared with other methods.
The addition of an RL and SYSID update law allows for the
control scheme to adapt to the environmental disturbances,
and model mismatch in a way that optimizes the closed loop
performance of the proposed control scheme. These benefits
do however come with some drawbacks, including the com-
putational complexity of the solving OCP, and robustness of
the RL and SYSID update laws with respect to disturbances
and measurement noise.

For future work, we would like to look more into how
to perform more robust and safe RL and SYSID parameter
updates, as care must be taken in order to avoid problematic
parameter updates caused by for example noisy and inaccu-
rate measurements. This is mostly a problem when running
on a physical platform, and for us it was solved using batches
of transitions, and sufficiently small learning rate. For future
research it would also be interesting to look at different ves-
sel models, including under-actuated vessels. It would also
be interesting to look at other problems than tracking, such
as for example planning and docking, where the problems
have economic cost functions and additional constraints that
need to be taken into account. An additional area of poten-
tial research is to optimize the implementation of the con-
trol scheme in order to improve the computation time. With
dedicated hardware, and a dedicated real time NMPC imple-
mentations it should be possible to make to significantly im-
prove computation time, allowing for the proposed method
to be used on systems requiring faster update rates, more
complex models and with a longer prediction horizon.
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A. Controller parameters
The parameter values for the ReVolt and milliAmpere the

MPC implementation are given in Table 3 and 4 respectively.

B. Thruster failure results
During themilliAmpere sea trials, an unexpected azimuth

failure occurred during one of the tests, see Figure 11. The
proposed controller was however still able to perform the de-
sired maneuver, and learn how to compensate for the failure.
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