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The bridge aerodynamics research community is currently discussing several nonlinear wind load models for
bridge decks, but no definite conclusion on which model is superior to the others is currently available. In this
paper, we use experimental data for a double-deck section model tested in an advanced forced vibration rig to
study the observed nonlinearities and to gain insight into what characteristics the nonlinear load model should be
capable of modelling. Single harmonic horizontal, vertical and pitching motion; combined motion; and stochastic
motion are considered. This approach allows the investigation of a more extensive range of nonlinear behaviours
than regular wind tunnel testing. The typical nonlinear characteristics observed are mean drift, deviation from
superposition and harmonic distortion. Further, we introduce a simple response-surface model for force prediction
using polynomial combinations of the inputs and its derivatives. The model helps to gain further insight into the
nonlinearity of the problem at hand and to select which refined modelling approach can be used in future work.
1. Introduction

The Norwegian Public Roads Administration (NPRA) plans to build a
ferry free road on the west coast of Norway that will stretch from Kris-
tiansand in the south to Trondheim in the north. The plans include
several long-span bridges, since there are many wide and deep fjords
along the route. The Sulaford is one of the significant challenges, and the
plans include a suspension bridge with a 2800 m main span as one of the
alternatives to cross the fjord (Multiconsult and Brancaleoni, 2015).

Multiple authors have suggested multi-deck cross-sections for long-
span suspension bridges due to their superior aerodynamic perfor-
mance. (Ogawa et al., 2002; Sato et al., 2000, 2002). (G. Diana, Fiam-
menghi, et al., 2013) states that for bridge spans longer than 2000 m,
double or triple bridge deck sections are necessary (Larsen, 2008). re-
ported that twin-decks outperform single deck cross-sections in terms of
flutter, but exhibit more energetic vortex-induced vibrations, which is
also supported by (W. L. Chen et al., 2014; Kwok et al., 2012). Closed box
single deck girders have been the subjects of extensive research over the
last three decades, leading to well-established linear load models (C.G
Bucher, 1987; Caracoglia and Jones, 2003; Costa and Borri, 2006;
Nowicki and Flaga, 2011; Øiseth et al., 2010; Sarkar et al., 1992, 2009).
For the aeroelasticity, the state-of-the-art linear model is the
consult AS, Vestfjordgaten 4, San
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aerodynamic derivatives model. The development of the theory stems
from Theodorsen’s model for an ideal flat plate in a potential flow
abiding the Kutta condition (Theodorsen, 1934). (Scanland and Tomko,
1971) generalized the idea to include bluff bodies. Other relevant models
that are widely accepted are the linearised quasi-steady theory, and the
full quasi-steady theory (Kovacs et al., 1990; Miyata and Sato, 1995).
Scanlan’s model has been tested for multi-box girders (Andersen et al.,
2016; G. Diana et al., 2004; Yang et al., 2015), but both CFD simulations
and wind tunnel tests show that the multi-deck is prone to nonlinear
aerodynamic behaviour (G. Diana et al., 2004; Skyvulstad et al., 2017;
Zhang et al., 2017; Zhou et al., 2019; Zhou et al., 2018). Double-deck
sections can also be more prone to exhibit nonlinear behaviour than
single-deck sections (Skyvulstad et al., 2017). The nonlinearities of the
multi-deck cross-sections might stem from the complex fluid flow due to
the flow separation on the upstream deck and the highly turbulent flow
hitting the downstream deck and its interaction, giving higher-order fluid
memory in the system. (Argentini et al., 2012; Kwok et al., 2012; Xiang
and Ge, 2002).

Identification of nonlinear self-excited forces for single-deck cross-
sections has been experimentally investigated in (Guangzhong Gao et al.,
2018) for single degree torsional flutter, utilizing a free-vibration rig. The
centre part of the sectional model was a force balance allowing extracting
dvika, Norway.
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accurate self-excited forces during free vibration (Guangzhong Gao, Zhu,
Wang, et al., 2020). further tested another single deck cross-section that
was susceptible to two-degree of freedom flutter with post flutter limit
cycle oscillations (Zeng shun Chen et al., 2017, 2018). used a forced vi-
bration rig to identify nonlinear unsteady galloping forces on prisms and
rectangular cylinders.

There exist several nonlinear wind load models for bridge decks. The
choice of model depends on the problem at hand, what types of nonlinear
properties the system exhibits, whether or not fluid memory is included,
which parameters are important, what type of experimental data exists,
how much experimental data is needed, and more. The ease of use for
bridge engineers and the physical interpretations of the model parame-
ters are also relevant. Multiple nonlinear load models for self-excited and
buffeting forces have been suggested in the bridge aerodynamics
research community.

(Giorgio Diana et al., 1993) proposed a corrected quasi-steady theory
that implements the fluid memory effect into a nonlinear framework of
the quasi-steady theory (G. Diana et al., 2008). suggest modelling
nonlinear aerodynamic loads as a function of the effective angle of attack,
which depends on the structural motion and the turbulence. The re-
searchers used rheological models to model nonlinearities. In later
research (G. Diana et al., 2010), used a polynomial together with the
rheological model to model the nonlinearities (G. Diana, Rocchi, et al.,
2013). stated that merging all the contributions into one unique variable
was not possible for the multi-deck cross-section considered. Not strictly
relying on the angle of attack adds flexibility to the model, but more
coefficients need to be determined.

Some models separate the high- and low-frequency part of the tur-
bulence. Linear models are often used for the high-frequency component
while considering the low-frequency component as a slowly varying
change of the mean angle of attack. The superposition of the two parts
provides the total load. These models follow the findings from (Boccio-
lone et al., 1992), which show that there is low-frequency turbulence at
the bridge site that creates a slow but considerable variation in the
effective angle of attack (Fenerci and Øiseth, 2018). also reports such an
effect. Several contributions suggest using nonlinear quasi-steady models
without memory for the low-frequency part and using standard linear
models based on rational or indicial functions for the high-frequency part
(X. Chen and Kareem, 2001; G. Diana et al., 1995). There are also hybrid
(X. Chen and Kareem, 2003), modified hybrid (Wu and Kareem, 2013b),
and improved band superposition (G. Diana, Rocchi, et al., 2013) models
that utilize similar principles of high- and low-frequency separation.

The Volterra series is another more general nonlinear model that
utilizes the summation of higher-order convolutions to include the
higher-order memory of the system (Schetzen, 1980; Volterra, 1959). In
the frequency domain, the Volterra series is expressed as generalized
frequency response functions. Some authors have used the loadmodel for
bridge aerodynamics in the frequency domain (Carassale et al., 2014;
Carassale and Kareem, 2010) and time-domain (Deno€el and Carassale,
2015; Wu & Kareem, 2013a, 2013c, 2014, 2015a, 2015b). In the con-
tributions mentioned above, the data for calibrating and validating the
models mainly come from CFD and analytical expressions, while the use
of experimental data is limited.

(Wu and Kareem, 2011) suggests using artificial neural networks
(ANN) to model nonlinear aerodynamic forces. They used variables
related to motions and turbulence as independent inputs into the
network without combining them into an effective angle of attack.

(Zhou et al., 2018; Zhou et al., 2019; Zhou et al., 2019) suggested the
nonlinear aerodynamic force model (NAFM) and the general nonlinear
aerodynamic force model (GNAFM). The models were calibrated using
data from CFD simulations of bridge decks in harmonic motion. Data
from free vibration tests and full aeroelastic model tests were used to
validate the models. The model consists of a system of nonlinear differ-
ential equations that take static, motion-induced, buffeting, and unsteady
effects into account.

(Guang zhong Gao and Zhu, 2017; Guangzhong Gao and Zhu, 2015)
2

Developed a nonlinear self-excited force model utilizing a polynomial
combination of the inputs and an energy equivalent principle on the
specific problem to reduce the number of necessary polynomial terms.

This paper presents a detailed investigation of the nonlinear aero-
dynamic characteristics of a double-deck section with curved undersides.
The section exhibits nonlinear aerodynamic behaviour at relatively small
motion amplitudes, which makes it an interesting case study for
nonlinear force modelling. As outlined above, there are many nonlinear
aerodynamic load models for bridge decks. However, experimental data
for validating the models for general motion are rare and experimental
data from combined vertical and pitching motions are also very scarce.
CFD simulations, analytical expressions of idealized models, or wind
tunnel tests that apply single harmonic motion are thus the basis for the
presented modelling approaches. To gain further knowledge based on
experimental data, we have used a single harmonic motion as well as
stochastic combined vertical and pitching motions. The experimental
campaign gives insight into the nonlinear characteristics that are
important for the advanced models to capture and also sheds some light
on which effects need to be included in the modelling. A simple response
surface model for modelling of nonlinear aerodynamic forces is also
proposed and validated against the experimental data, giving more
insight into the nonlinearity at hand.

2. Nonlinear models

In this chapter, some nonlinear models are reviewed. These models
typically have no/weak memory with fairly basic input parameter com-
binations. For a more in-depth overview of nonlinear models, refer to the
cited paper in the introduction.

2.1. Quasi-steady theory and linearised quasi-steady theory

It is common to use the quasi-steady theory for nonlinear modelling of
aerodynamic forces for bridge decks. Fig. 1 illustrates the central concept
and also shows the variables involved. Here, Vis mean wind speed, u, and
w represent the horizontal and vertical turbulence components.
Vrelrepresents the relative wind speed; βis the wind angle of attack; while
B and D symbolize the width and height of the cross-section, respectively.
Configuration (a) in the figure is the static equilibrium condition.
Configuration (b) is the instantaneous displaced configuration defined by
rn, where n 2 fx; z; θg denotes displacements in the horizontal and ver-
tical direction, as well as the pitching rotation. The overbar denotes the
mean value, and the dot indicates the derivative with respect to time. Fn,
where n 2 fx;z;θ;L;D;Mg, denotes the forces in the global directions x, z,
and θ and the local relative wind directions L, D, andM. The quasi-steady
theory assumes that the unsteady effects are negligible. This assumption
means that the forces acting on the cross-section are only dependent on
the instantaneous angle of attack and the relative velocity and that it is,
thus, not necessary to consider the motion history. These assumptions are
fulfilled for cases when the time it takes for a parcel of air to pass the
section is short compared to the oscillation period of the motion. One can
then use the static coefficients as a function of the angle of attack to
determine the wind load. A much-used linearisation of the quasi-steady
theory is deducted by linearising the static coefficients around a mean
angle of attack and neglecting the higher-order terms of turbulence and
motion as follows:
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Fig. 1. A cross-section in motion. The figure illustrates the positive directions of the forces and motion.
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where α and αf denote the mean and fluctuating part of the angle of
incidence, respectively. The full quasi-steady theory is a nonlinear
description without memory that utilizes the static coefficients as the
basis for the nonlinearity. The formulation also includes cross-terms
because the expanded expressions include terms such as rzrθ,u _rx and
similar terms. The force coefficients are also functions of the angle of
attack α, which enhance the nonlinear modelling capabilities.

2.2. Hysteretic load models

The quasi-steady theory does not include the time derivative of the
pitching motion, which is a severe weakness since aerodynamic damping
for the pitching motion is essential. It is possible to include this effect by
using another point as a reference point. This has, for instance, been done
by (G. Diana et al., 2008), where the following definition of the angle of
attack is used.

ψ ¼ rθ � B* _rθ
2V

� _rz
V
þ w
V

(5)

Here, ψ is the dynamic angle of attack, and B* is a constant that may
be different for each force component, but which often is taken as the
width of the section. Using the dynamic angle of attack simplifies the
relationship between the motion, turbulence, and load, as follows:

Fn ¼Fn

�
_rz; rθ; _rθ;w;V

�
⇒ Fn ¼ Fnðψ ; _ψ ;VÞ (6)

Different nonlinear functions are applied to map the effective angle of
attack to the wind-induced forces (G. Diana et al., 2008). suggests using a
rheological model (Wu and Kareem, 2013b), used a polynomial, and (G.
Diana et al., 2010) applies a combination of the polynomial and rheo-
logical models. The equation below presents a polynomial model.

FnV ¼ 1
V

�
a0 þ a1ψ þ a2 _ψ þ a3ψ2 þ a4ψ _ψ þ a5 _ψ

2 þ a6ψ3 þ a7ψ2 _ψ :::
�

(7)

The hysteretic load model with polynomial mapping is a nonlinear
load model with a weak memory since both the input variables and their
first and sometimes the second derivatives with respect to time are
included in the modelling. This provides the opportunity to model a
phase lag between the inputs and forces and nonlinear hysteresis loops.
3

The formulation also includes higher-order cross-terms since expanding
the expression above reveals products of the inputs, such as _rz _rθ, _rz _r

2
θ and

similar products.

2.3. Artificial neural network

(Wu and Kareem, 2011) use an artificial neural network as a
nonlinear mapping of the inputs to the wind forces. The authors included
a 2DOF dynamic system into the neural network, which makes the
network predict the acceleration at tnþ1. They applied a bipolar sigmoidal
network up to the third-order, including all cross-terms. The acceleration
of the vertical motion can be written as follows:
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where ℚL is the nonlinear function described by the neural network that
maps the inputs to the forces. The neural network model also has some
memory since the variables and their time derivatives are used as inputs.
The cross-terms are directly implemented in the model up to the order of
the neural network.

The summary presented above, together with the nonlinear load
models presented in the introduction illustrates that there are a vast
number of nonlinear models available in the literature and that the
models have somewhat different modelling capabilities. The linear
models for bridge aerodynamics are well established, and there are
standardized procedures for wind tunnel testing and the modelling of the
forces. Nonlinear modelling is, however, a much more challenging field
since deciding which models to use and what type of nonlinear function
one should use to model the forces are not straightforward decisions. This
paper, therefore, provides experimental results that might shed some
light on which terms are important to include in the modelling and which
might be disregarded.

2.4. Nonlinear self-excited force model

(Guang zhong Gao and Zhu, 2017; Guangzhong Gao and Zhu, 2015)
Developed an energy equivalent principle (EEP) for identifying the
nonlinear self-excited forces. The general form of the force model is a
polynomial combination of the inputs, similar to the polynomial function
shown in equation (7), but with motion/velocity input and not the dy-
namic angle of attack. The model is used in several works, and often
specialized to handle a single type of limit cycle oscillation event such as
VIV-Galloping(Guangzhong Gao, Zhu, Li, et al., 2020), galloping insta-
bility (Zengshun Chen et al., 2020) and torsional flutter (Guangzhong



Fig. 3. The picture shows how the section model is fixed to a transverse beam
made of plywood that is again fixed to a gamma load cell from ATI Indus-
trial Automation.

Fig. 4. Illustration of the test rig. Two actuators, one at each side of the wind
tunnel, can force the section model to move in the horizontal, vertical and
pitching directions.
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Gao et al., 2018). The specialization utilizes the energy equivalent
principle to find the elements of the model who contribute to the
important energy balance of the system, disregarding the other elements
that only contribute to the direct force or stiffness. This approach sim-
plifies the identification problem significantly. An example of the
specialized model for nonlinear self-excited pitching moment of torsional
flutter LCO is given as (Guangzhong Gao et al., 2018):

Fθðθ; _θÞ¼ 1
2
ρV2

�
2B2

�2h
A1ðKÞ

�
1þA2ðKÞ _θ2

�
_θþA3ðKÞ

�
1þA4ðKÞθ2

�
θ
i

(9)

Where, the A’s, are unknown reduced frequency-dependent coefficients.
The NSEF-model, in its full form, is a general model with weak memory
due to inclusion of velocity and displacement terms. In the reduced form
shown, memory is also included.

3. Experimental setup

The wind tunnel experiments were carried out in the Fluid Mechanics
Laboratory at the Norwegian University of Science and Technology
(NTNU). The wind tunnel is a closed-circuit, single fan wind tunnel with
a maximumwind speed of 30 m/s. The test section is approximately 11 m
long, 2 m high, and 2.7 m wide, and the flow is nearly laminar with a
uniform velocity profile at the inlet and with a turbulence intensity of
approximately 0.2% (Adaramola, M. S. Krogstad, 2009). A pitot probe 4
m upstream of the cross-section measures the mean wind speed. Forced
vibration tests or free vibrations tests are commonly used to characterize
the aerodynamic properties of bridge decks. A particular advantage with
the forced vibration tests is that it is straightforward to directly measure
the forces that act on the section model for any applied motion. It is,
however, a disadvantage that there is no proper fluid-structure interac-
tion since the movement is prescribed and not affected by the aero-
dynamic forces. Free vibration tests capture the fluid-structure
interaction effect, but it is more difficult to determine the aerodynamic
forces. Forced vibration tests are used to obtain the results presented in
this paper.

The forced vibration rig consists of two 3DOF actuators on each side
of the wind tunnel. The actuators consist of two linear motion slides
driven by ball screws that move the section model both vertically and
horizontally. Torsional motion is ensured by zero-backlash shafts cou-
plings connected to the ball screw and a servo motor with a planetary
gear. The 6 servo motors are controlled by a multi-axis modular control
system (MC4U from ASC Motion Control) support the section model. The
vertical and horizontal axes can travel�10 cm, and the torsional axes can
travel �90�. In-between the motors and the cross-section are two 6DOF
Gamma load cells from ATI Industrial Automation, which enable the high
precision force and torque measurements. A full description of the setup
is given in (Siedziako, 2018; Siedziako et al., 2017). Fig. 2, Fig. 3 and
Fig. 4 shows photos/illustrations of the rig. The rig can force the section
model to move in an arbitrary direction in 3 degrees of freedom, with
high precision. This makes the rig well suited for investigating the
nonlinear properties of the bridge cross-section by applying an advanced
bridge motion.

Fig. 2 shows a drawing of a 1:50 scale section model of the cross-
section suggested for the Sulafjorden crossing. The section is
Fig. 2. A 1:50 section model of one of the suggested cross-sections for the Sulafj

4

unsymmetrical and has curved undersides. The shape of the section
model is milled from Divinycell H60 material, while two aluminium
pipes with diameters of 40 mm and wall thicknesses of 1 mm provide the
stiffness. The surface is foliated for a smooth finish. All tests are per-
formed with the smallest deck upstream, without details such as hand-
rails and windscreens. A total of four types of wind tunnel tests were
carried out, as follows: (i) a slowly varying pitching motion is used to
obtain the static force coefficients at two mean wind velocities; (ii) single
harmonic motions tests are performed at two mean wind velocities, and
several frequencies are considered; (iii) stochastic broad-banded motions
are used to test the performances of the models for a more complicated
motion pattern, and these tests are also performed at two mean wind
velocities; and (iv) finally, the performance of the section concerning
ord Bridge. All dimensions are in mm (Multiconsult and Brancaleoni, 2015).
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vortex shedding is tested by keeping the section still while slowly
increasing the mean wind velocity. Table 1 provides a summary of the
tests.

4. Wind tunnel results

This chapter presents the experimental results from the wind tunnel
tests. First, the static coefficients are presented together with a detailed
discussion of their nonlinear characteristics. Further, tests at varying
mean wind velocities are presented to investigate if the aerodynamic
characteristics depends on the Reynolds number. Then, the experimental
results considering single harmonic motions are given to obtain aero-
dynamic hysteresis and aerodynamic derivatives. Finally, the stochastic
motion is considered to gain further insight into the observed non-
linearities and to study the importance of cross-terms of the input mo-
tions in the modelling.

4.1. Static force coefficients

Fig. 5 shows the static force coefficients obtained for the mean wind
velocities of 6 and 10 m/s. The results for the two velocities are slightly
different, which indicates that the forces are sensitive to the Reynolds
number. The drag coefficient is, as expected, nonlinear since either
pitching up or down gives higher drag and should result in a quadratic
nonlinearity. The plot also shows that a higher-order nonlinearity is
present since there is a bump in the curve at approximately 2�, which
cannot be modelled by a quadratic polynomial. It is also interesting to
observe that the bump at approximately 2� is present for both wind
speeds. Still, the nonlinear characteristics are a bit different since the
curves have different trends. The results for the lift coefficient are more
consistent in the sense that the curves have an almost linear trend and
that they are similar for both the velocities. The results do, however,
show some discrepancies in the range of þ - 2�, where the curves are
slightly different and also show some indications of nonlinear behaviour.
The results for the pitching moment coefficient are more interesting since
apparent differences are present for the two velocities and nonlinearities
are present. It is interesting to observe that the aerodynamic character-
istics change significantly at þ1.5� at 10 m/s and that this change is not
visible at 6 m/s.

It is a well-known fact that the flow structure around a curved body is
highly dependent on the Reynolds number. This dependency is prob-
lematic in wind tunnel testing since it is impossible to achieve the same
Reynolds number in the model- and full-scale, which introduces un-
certainties in the modelling of the wind loads (Kwok et al., 2012). re-
ported that the aerodynamic properties of the cross-section of the Stone
Cutters Bridge are sensitive to changes in the Reynolds number. This
Table 1
Wind tunnel test matrix. Note that the stochastic motions have different upper
cut-off limit for the frequency content.

Type of test Static
coefficient

Vortex
vibration

Single
harmonic

Stochastic
motion, 6
m/s

Stochastic
motion, 10
m/s

Amplitude,
vert [m]

0 0 0.02–0.95 max 0.03 max 0.03

Amplitude,
pitch [�]

�5 to þ5 0 2 max 3 max 3

Number of
tests

2 2 36 9 3

Duration 10 s 15 min 20 full
cycles

320 s 320 s

Wind speed
[m/s]

6 and 10 Sweep 0-
12

6 and 10 6 10

Degree of
freedom

T N/A T, V, H T, V, TV T, V, TV

Frequency
[Hz]

N/A N/A 0.25, 0.5,
1.1, 1.4,
1.7, 2.5

0–2.5 0–3.5

5

problem was avoided by performing all comparable wind tunnel tests at
one representative wind velocity to ensure that the results corresponded
to each other.

Fig. 6 shows static coefficients as a function of wind speed. The
overall shapes of the curves are similar to other curved cross-sections in
the sense that the curves are relatively constant in the beginning and drop
as the Reynolds number increases. Parts of the curve is not shown since
significant vibrations of the section model due to vortex shedding were
observed in the areas with slightly darker backgrounds. The first, second
and third natural frequencies of the section model are 10.5 Hz, 42 Hz and
73 Hz, respectively. A lowpass filter with a 5 Hz cut off frequency is
applied for the static test results to remove high-frequency noise.

4.2. Single harmonic motion

Measuring the aerodynamic forces when the section model is in single
harmonic motion is standard procedure when investigating the aero-
dynamic properties of bridge decks. The experimental setup measures
forces on each end of the section model with load cells. The measure-
ments consist of self-excited forces, inertia forces due to the mass of the
section model and also inertia and small damping forces due to the sur-
rounding air. The contribution from the inertia forces thus needs to be
removed to obtain the self-exited forces. Removing the inertia forces is a
challenging task. The method suggested by (Han et al., 2014) where one
perform the same test in-wind and in still-air and assume that the
self-excited forces can be obtained as the difference of the measured time
series have been used in this paper. This approach is an approximation
since the still-air tests are not done in a vacuum and will thus be affected
by the surrounding air. This procedure is, however, the most robust way
of removing the inertia forces and the inaccuracies introduced are not
significant.

Fig. 7 shows the force coefficients as functions of the dynamic angle of
attack defined in Eq. (5), where B*is chosen as B ¼ 0.74 m. The results
from low-frequency motion should collapse onto the static coefficient, as
stated in the full quasi-steady theory. Furthermore, linear aerodynamic
models such as, for instance, aerodynamic derivatives give an inclined
elliptical-shaped hysteresis. A hysteresis that deviates from this indicates
nonlinear behaviour. The centre of the hysteresis does not correspond to
the static coefficients for some of the cases. This can be caused by a
quadratic (even order) nonlinearity and is discussed later in the paper.
Studying the aerodynamic hysteresis plotted against displacement or
rotation is a good method for analyzing the energy transfer in a system
since the area inside the hysteresis is proportional to the energy gener-
ated or absorbed in each cycle. The direction of the cycle indicates if
energy is absorbed (clockwise) or dissipated (counterclockwise). This is
generally not the case for a hysteresis plotted against the dynamic angle
of attack since the dynamic angle of attack includes the pitching motion,
the derivative of the pitching motion and possibly the vertical velocity of
the section. This will change the overall shape of the hysteresis. This is
illustrated later in the paper.

Moment: Fig. 7f) shows that the moment coefficient obtained from
the vertical motion tests at 6 m/s follows a slightly nonlinear static co-
efficient for the 0.25 Hz motion, while it is changes to a more elliptical
shape as the frequency increases. This shows the interchange between
the quasi-steady (nonlinear memoryless) and unsteady (linear with
memory) regions, which are well documented in the literature, and is
also one of the basic premises of the band superposition and hybrid
models. It seems that the pitchingmoment at 6 m/s is well behaved for all
the tests considered. The same conclusion for the pitching motion at 6 m/
s can also be drawn but is not shown here.

On the other hand, the data at 10 m/s in Fig. 7d) and e) show explicit
nonlinear behaviour for both the low- and high-frequency motion. The
shapes of the hysteresis are considerably different for the vertical motion
and the pitching motion. A similar observation is made in (G. Diana,
Rocchi, et al., 2013). The experimental results for this particular section
illustrate that it is not possible to model the forces as a function of the



Fig. 5. Force coefficients obtained from wind tunnel tests at 6 m/s and 10 m/s mean wind velocity. The static coefficients are normalized according to Eq. (1), with B
¼ 0.74 m and D ¼ 0.053 m according to Fig. 1.

Fig. 6. Force coefficients plotted against the mean wind velocity. The data in the shaded area are considered unreliable since vortex-induced vibrations at the natural
frequencies of the model are visible. The angle of attack, α, is 0�.
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angle of attack in a straightforward manner. The nonlinearities observed
in the wind tunnel tests at 10 m/s compared with the tests at 6 m/s show
that the nonlinearities in the static coefficients are a clear indication of
what can be expected in the dynamic tests.

Drag: Fig. 7a shows that the drag coefficient is nonlinear and that the
drag hysteresis twists, which are also observed in the literature (G. Diana
et al., 2010; Zhou et al., 2018). It is also observed that the hysteresis
curve does not evolve around the static coefficients and deviates quite a
bit from them. This is discussed further later in the paper, but it is
important to note that the self-excited drag forces are, in general, small
compared to the mean drag force and the inertia forces that need to be
removed. This makes the experimental results for the self-excited drag
forces slightly more uncertain than the others.

Lift: Fig. 7c shows the lift coefficient obtained at the mean wind ve-
locity of 6 m/s. The hysteresis rotates and becomes larger when the
frequency is increasing, which is similar to the curve for the pitching
moment. The static lift coefficient is nearly linear, and the low-frequency
motion is also nearly linear, indicating that the static coefficient is a good
indicator of whether nonlinear characteristics can be expected.

Fig. 8 shows the drag, lift and pitching moment coefficient hysteresis
loops for the vertical motion at 6 and 10 m/s. The frequency of the single
6

harmonic motion at 6 m/s is 1.1 Hz, while the frequency at 10 m/s is 1.7
Hz, making the reduced velocity for both cases close to 5.5. It is a general
hypothesis that the aerodynamic forces can be modelled using reduced
velocity and, thus, reduced frequency. The results presented illustrate
that this is not the case for the particular section considered. The results
in Fig. 6 shows that the static force coefficients are sensitive to changes in
the Reynolds number. This dependency is probably the main reason that
the two hysteresis phenomena are so different. In conclusion, the
Reynolds-dependency also seems to affect the dynamic flow around the
cross-section and the associated forces.

The aerodynamic derivatives are also functions of the reduced ve-
locity. It is, thus, interesting to study the aerodynamic derivatives of the
section and see if any differences can be observed. Fig. 9 presents the
aerodynamic derivatives from the standard forced vibration tests
extracted using the Han method (Han et al., 2014). The results are shown
in the Zasso convention (Zasso, 1996). The blue circles are 10 m/s tests,
while the red circles are the 6 m/s tests. It is clear that for some of the
aerodynamic derivatives, the results cannot be characterized by the
reduced velocity alone since different trends for the tests at 6 and 10 m/s
are observed. It should be noted that modelling self-excited forces using
aerodynamic derivatives yields inaccurate results for the sections that



Fig. 7. Hysteresis loops of dynamic coefficients plotted as a function of the dynamic angle of attack, according to equation (5). Single harmonic motion histories,
where Vert ¼ vertical motion, Pit ¼ pitching motion. The dashed lines are the static coefficients. The B* value is set to 0.74 m. The lowpass filtering is set to 4x the
forcing frequency but is always less than 9 Hz.

Fig. 8. Hysteresis loops at nearly similar reduced
velocities. The blue lines shows the results at Vred ¼
V/fB ¼ 7.4 (6 m/s, vertical motion, 1.1 Hz) and Vred

¼ 7.9(10 m/s, vertical motion, 1.7 Hz) but with
different Reynolds numbers, 2.1e4(6 m/s) and
3.5e4(10 m/s). Mean hyst denotes the mean over the
entire hysteresis, and Static indicates the static value
at an angle of attack equal 0�. (For interpretation of
the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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exhibit nonlinear aerodynamic behaviour. The observations made are,
nevertheless, a clear indication of that Reynolds number dependency is
an issue in this setting also.

Fig. 8 also shows that the mean forces for a dynamic motion are
different from the static values at a zero angle of attack. Fig. 10 shows a
time series of the measured motion-induced pitching moment at 10 m/s.
The figure shows the results for four single harmonic motions with
different frequencies. The force measured between the harmonic motions
is the static force, and it is observable that the mean value of the motion-
induces forces does not coincide with the static forces. This difference is a
7

nonlinear effect that is not taken into account in a linear framework such
as, for instance, modelling motion-induced forces using aerodynamic
derivatives. Fig. 10 also shows the same force time series for drag and lift.
It is observed that the effects are considerably less for the more linear lift
force but are very prominent for the drag force. If quadratic non-
linearities are present, a mean drift is expected.

Fig. 11 shows the change in themean value for all the forces for all the
harmonic tests performed. Two mean wind velocities, i.e., 10 m/s, and 6
m/s, and a frequency range between 0.25 Hz and 2.5 Hz are given. The
figure unveils a more complicated situation than in Fig. 10, where it



Fig. 9. Aerodynamic derivatives, from vertical and pitching motion, 20 mm and 2� amplitude. Note that the mean drift effects have been removed from the
experimental data.

Fig. 10. Force time-series for pitching motion with 4 different frequencies. The dashed lines show the static force coefficients. A mean drift is clearly present when the
section model is moving.
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seems that the mean drift is constant. Some general comments can be
made. The mean drift for the 6 m/s tests tends to trend towards the 10m/
s static coefficient, and vice versa. The effect of a rotation of 2� seems to
be more frequency-independent than vertical motion, and this could be
due to an effective angle of attack dependence. The drift is, in general,
larger for higher wind velocities. Note that the static coefficient is not the
same for a different test at the same wind-speed because the static co-
efficients are found from the start of that actual test to minimize the
uncertainties in the experiment. The differences in the moment and lift
8

are small but are more significant for drag. This could be due to the small
angular offset of the mean angle of attack in the incoming flow and/or
the section model alignment, slightly different wind velocity or other
sources. Nevertheless, the errors are rather small and do not alter the
conclusion regarding the mean drift.

Fig. 12 shows an in-depth view of the force coefficients measured at
10 m/s for a single harmonic pitching motion at 2 Hz, with an amplitude
of 2�. Fig. 12a) shows the time series of all 16 cycles in light grey and the
mean of the cycles in solid red, and it is observed that the drag coefficient



Fig. 11. Mean value of the static part and the harmonic part of the consecutive harmonic motion series. Vert ¼ vertical motion, Pit ¼ pitching motion. The X-axis
names indicate the amplitude, varamp denotes amplitudes equal {95,80,50,35,28,23,20,16 mm} for the 0.5–2.5 Hz harmonics.
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shows less repeatability compared to the lift and moment coefficients.
The hysteresis shows that there are higher-order components and, thus,
significant nonlinearities in all tree load components since the hysteresis
do not have elliptical shapes. The dynamic coefficients are plotted as
functions of the dynamic angle of attack. Fig. 12d) shows the same
experimental results, but here the dynamic coefficient is plotted against
the pitching motion. Comparing Fig. 12a and d, it is observed that even
though it is the same experiment that is shown, the two hysteresis have
different shapes. This is obviously because one set of hysteresis is plotted
as function of the angle of attack while the other is plotted as a function of
the pitching motion. To be able to evaluate the energy transfer in the
system, it is most convenient to plot the hysteresis as a function of the
motion and not the angle of attack since the area of the hysteresis is then
equal to the work done. Energy dissipation is seen for drag and moment
(counterclockwise direction of the plot, not shown), and an interplay
between generation and dissipation of energy is seen for the lift force.

The Fourier amplitudes in Fig. 12c) also show the higher-order har-
monics clearly. The higher-order harmonics unveil the integer multiples
of the fundamental motion frequencies. Fig. 12b) shows time-domain
measurements of the motion-induced forces, and the deviation from
the sinusoidal shape of the motion-induced forces indicates non-
linearities. In conclusion, all three load components show clear signs of
nonlinearities.

4.3. Stochastic motion

Wind-induced vibrations range from near harmonic motion due to
9

ViV lock-in to stochastic motion due to buffeting response in highly
turbulent wind. Traditional wind tunnel testing is based on single har-
monic motions. In the linear range, superposition of single harmonic
motions is satisfactory for considering all types of motion, but in the
nonlinear range, the superposition principle does not hold. Therefore, it
is relevant to test the cross-section in stochastic motion rather than only
doing simple single harmonic tests.

The Cholesky decomposition approach (Shinozuka, 1971) is used to
simulate vertical and pitching motion, with the assumption that the
spectral densities are constant between 0 and 2.5/3.5 Hz and zero else-
where for both the vertical and pitching motion and that the vertical and
pitching motion are uncorrelated.

Identifying nonlinearities in a stochastic time-series can be chal-
lenging, but numerous approaches and tools exist. One of them is to
examine the Fourier spectrum of the input and the output and search for
harmonic distortion. Fig. 13 shows the Fourier amplitudes of the input
and outputs. The testing rig is precise enough that the cut off frequency of
3.5 Hz is strictly held. All energy over this limit comes from harmonic
distortion. It is, however, difficult to say much about possible harmonic
distortion in the frequency range of the stochastic broad-banded input
motion. Higher-order spectra can be used for this purpose (Hosseini et al.,
2011); the higher-order spectrum is the Fourier transforms of the
higher-order cumulants (Kim and Powers, 1979; Udea and Dowell,
1984). The higher-order spectrum can detect higher-order nonlinearities
through the inclusion of phase information (Nikias and Raghuveer,
1987), the bispectrum can detect quadratic nonlinearities, the trispec-
trum can detect cubic nonlinearities, and so on. We chose to use the



Fig. 12. Measured force coefficients for a 2 Hz single harmonic pitch. a) Dynamic derivatives as a function of the dynamic angle of attack. Mean value in red, all 16
cycles in light grey. b) Time series for 16 cycles of harmonic motion. c) Fourier amplitudes of the force series. d) Dynamic derivatives as a function of the angle of
attack. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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cross-bicoherence between the input and output to detect nonlinearities
(Hagihira et al., 2001; Hayashi et al., 2007):
10
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N

��� PN
k¼1

bðkÞT ½f1 þ f2�a*ðkÞT ½f1�a*ðkÞT ½f2�
���
bbbaa½f1; f2� ¼
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N
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k¼1

��bðkÞT ½f1 þ f2�a*ðkÞT ½f1�a*ðkÞT ½f2�
�� (10)

where N is the number of samples. bðkÞT ½f � and aðkÞT ½f � are the Fourier



Fig. 13. Spectral density of the stochastic motion series: a)6 m/s b)10 m/s.
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transform of the kth window of signal b and a, respectively. * denotes a
complex conjugate, and |x| denotes the absolute value. The cross-
bicoherence is always between 0 and 1.

Fig. 14 and Fig. 15 show the cross-bicoherence spectrum between the
motion and the forces at 6 and 10 m/s, respectively. The bicoherence is
set to zero if the bispectrum is less than 0.1% of its maximum value to
make the figures easier to interpret. Table 2 gives the maximum value
and the mean value of the bicoherence. The quadratic distortion of the
pitching moment at 10 m/s is considerable. The drag force has a
considerable amount of energy that comes from the quadratic coupling.
The lift force has less quadratic distortion for the considered motions,
which indicates a more linear behaviour. The spectral density in Fig. 13
confirms this observation since there is considerably less frequency
content above 2.5 Hz for the drag force compared to the others.

Some articles discuss whether it is necessary to include cross-terms,
Fig. 14. Cross-Bicoherence between the motion and force, 6
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such as rzrθ and rzr2θ , or if it is sufficient to only consider direct terms,
such as r2z and r3z , in the modelling (Wu et al., 2013; Wu and Kareem,
2011). It is generally necessary to include cross-terms for a nonlinear
system since the principle of superposition is not valid. The validity of the
assumption of superposition can be investigated experimentally. If we,
for instance, assume that we can model the lift force due to vertical and
pitching motion separately, the following expression applies.

FzðtÞ¼ fzθðrz; rθÞ � fzðrzÞ þ fθðrθÞ (11)

where FzðtÞ is the lift force and f ð⋯Þ symbolizes a nonlinear function with
or without memory. The stochastic motion is used to test whether Eq.
(11) is a fair approximation. A total of three stochastic motions involving
both the vertical and pitchingmotion are first generated. Each realization
is tested in the wind tunnel three times. Only the vertical motion is
applied in the first test, only the pitching motion is applied in the second
m/s tests. The motion region is between 0 and 2.5 Hz.



Fig. 15. Cross-Bicoherence between the motion and force, 10 m/s tests. The motion region is between 0 and 3.5 Hz.

Table 2
Maximum and mean cross-bicoherence values between the motion input and
force component.

Force
component

Mean wind
(m/s)

Freq region
(Hz)

Motion
dir.

Max
Bic2

Mean
(10�4)

CL 6 0–2.5 T 0.27 1.07
CL 6 0–2.5 V 0.35 1.14
CL 10 0–3.5 T 0.65 2.76
CL 10 0–3.5 V 0.81 1.06

CD 6 0–2.5 T 0.77 2.55
CD 6 0–2.5 V 0.71 1.89
CD 10 0–3.5 T 0.57 4.09
CD 10 0–3.5 V 0.74 3.00

CM 6 0–2.5 T 0.29 1.13
CM 6 0–2.5 V 0.36 1.40
CM 10 0–3.5 T 0.73 3.16
CM 10 0–3.5 V 0.86 3.64
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test, while the third test is the sum of the vertical and pitching motion
from the first and second test. Fig. 16 shows a 20 s window of one of the
realizations tested at 10 m/s in the wind tunnel. The top subplot shows
the motions while the other subfigures show the drag, lift, and pitching
moment coefficients. The blue lines are the measured self-excited forces
for the combined motion FzðtÞ ¼ fzθðrz;rθÞ, while the red lines are the self-
excited forces obtained by adding the contribution from only the vertical
motion and only the pitching motion FzðtÞ ¼ fzðrzÞþ fθðrθÞ. It is observed
that the approximation suggested by Eq. (11) is almost perfect for lift, is
acceptable for the pitching moment, while it is a bit poorer for the drag
coefficient. Note that the drag forces have a much lower signal to noise
ratio than the other force components since the self-excited drag is small.
Table 3 shows the normalized mean square error for all the combinations
tested. The normalized mean square error is 1 if the time series are equal,
while it is � ∞if the time series do not match. It should be noted, as
indicated in the table, the samemotion has been used for the tests at 6 m/
s, and 10 m/s. In other words, the changes in the performance when
considering the same stochastic motion are caused by different wind
velocities. The bicoherence, static coefficients and hysteresis loops pre-
sented earlier show that the pitching moment exhibits more nonlinear
behaviour at 10 m/s compared to at 6 m/s. The results also show that the
lift force exhibit a fairly linear behaviour at both wind velocities and that
the drag force measured at 6 m/s seems more nonlinear than the one
obtained at 10 m/s. Table 3 supports these observations and gives a clear
indication that the deviation from the superposed results is a distinct
feature for the cases where nonlinear behaviours were observed earlier. If
the forces generated by vertical and pitching motion cannot be super-
posed, it means that the nonlinear model needs to include the products of
the input motions, such as _rzr2θ . Fig. 16 shows a plot of the force co-
efficients obtained for the combined vertical and pitching motions and
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the superposed results from vertical and pitching movements tested
separately. The figure also shows the individual motions. Considering the
pitching moment coefficient, we see that the deviation is most significant
at the peaks of the time series. The results also show that the error is at its
largest when both motions are large.

This observation is a clear sign of the interaction between the two
motions and can only be modelled by the cross-terms in the model. For
drag, the peaks of the combined motion are almost always higher than
from the superposed results. This finding makes sense due to the
quadratic nature of the drag force. The superposition principle is clearly a
better approximation for the lift force; however, deviations in the peaks
are visible and are most significant when both the vertical and pitching
motions are large at the same time.

It is also interesting to note that the NMSE results from Table 3 are
similar for the different motions tested at 6 m/s, which indicates that the
duration of the stochastic motion is sufficient and that the results are
consistent.

5. Computational results

Predicting self-excited forces using several of the models presented is
considered to be out of the scope of this paper. A rather simple response-
surface model is instead proposed and used to model the self-excited
forces. The simplicity of the model makes it a good candidate for eval-
uating the necessary characteristics of nonlinear load models because the
model can easily be expanded, and the contribution of the different
components can be deducted.

5.1. Response surface

The response surface proposed is a polynomial combination of vari-
ables describing the motion-induced forces in laminar flow, as follows:

x1 ¼ rθ; x2 ¼ _rθ
2V

; x3 ¼ � _rz
V

; x4 ¼ �rz; x5 ¼ €rθ
2V

; x6 ¼ �€rz
V

(12)

Note that in this description, all the displacement, velocity and ac-
celeration terms are included, and no terms that might be of less
importance are disregarded. Since the velocity and acceleration depend
on the motion history, the memory effect is partly taken into account. It
is, however, clear that this approach is not capable of modelling fluid
memory as accurate as by using convolution integrals.

The self-excited force FiðxÞ expressed in terms of a response surface
reads as follows:

FiðxÞ ¼ β0 þ β1x1 þ β2x2 þ β3x3 þ β4x4 þ :::

β11x
2
1 þ β12x1x2 þ β13x1x3 þ :::

β111x
3
1 þ β112x1x1x2 þ β113x1x1x3 þ :::

:::þ

(13)



Fig. 16. Comparison between the 2 DOF and 1 þ 1 DOF stochastic motion tests with equal single degree motion. 10 m/s tests, with 0–3.5 Hz white noise stochastic
motion time-series with a maximum amplitude of {3 mm,3�}. a) plot of the vertical and pitching motions.

Table 3
NMSE values of the superposition tests, 1 þ 1 dof tested against 2 dof motion.

Force component Wind speed [m/s] Motion NMSE

CM 10 1 0.939
CM 6 1 0.955
CM 6 2 0.957
CM 6 3 0.955

CL 10 1 0.973
CL 6 1 0.962
CL 6 2 0.963
CL 6 3 0.966

CD 10 1 0.722
CD 6 1 0.488
CD 6 2 0.486
CD 6 3 0.463
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where βn are coefficients that can be obtained by fitting the model to the
experimental data. For response surface models with low orders, a
physical interpretation of the parameters is possible. Still, it may become
difficult to consider the higher-order terms as physical quantities since
several combinations of parameters may provide an almost equally good
fit to the experimental data. Since the model is a part of a class of
response-surface models, standardized methods and software for identi-
fication of the model coefficients are readily available. The model is also
13
linear in its coefficients, making it possible to use linear regression. The
authors used the MATLAB function fitlm to obtain the results presented
in this paper.

Both pitching and vertical motions are used as inputs in Eq (13).
Simpler models can be developed for galloping, vortex-induced vibration
and torsional flutter since only vertical or torsional motions are relevant.
Simplifications can also be introduced when considering limit cycle os-
cillations where the vertical and torsional motions are related (Guang
zhong Gao and Zhu, 2017). presents a model for transverse instabilities of
slender rectangular prisms where such assumptions have been success-
fully introduced.

Due to the strong Reynolds number dependency seen in Fig. 6, the
coefficient of the response surface model will be calibrated on single
wind speeds, and therefore in effect become Reynolds number depen-
dent. At a given Reynolds number the coefficients do not change, and the
model can be used with any arbitrary motions as long as the motion is
within the range of the training data.

5.2. Force predictions

The response surface presented above can be challenging to use since
there are many unknown coefficients when applying a high-order model.
It is also an open question if it is necessary to include all the terms in the
modelling. It is recommended that one starts with a low order model and
adds terms gradually. It is also vital that the performance of the model is
investigated considering a different dataset than the one used to obtain
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the coefficients.
Fig. 17 shows the normalized mean square errors (NMSE) of different

response-surface models when considering the stochastic motions dis-
cussed earlier in the paper. The results for the pure vertical (V) and
pitching (P) motions, as well as the combined vertical and pitching (PV)
motions are presented for the mean wind velocity values of 6 and 10 m/s.
The acceleration terms in Eq. (12) have been omitted for the drag and lift
forces, while they are included when predicting the pitching moment.

The results for the lift coefficient correspond very well with the
validation data, and the higher-order models perform only marginally
better.

The bicoherence, hysteresis loops and static coefficients presented
earlier clearly show that the self-exited drag is nonlinear. Fig. 17 also
support this observation since the second-order model fits significantly
better than the linear model for all cases except for the drag force caused
by the vertical motion at 10 m/s. It seems that the full second-order
model, including cross-terms, is the best model when balancing low
order and high performance. For the combined pitching and vertical
motions, the same conclusion can be drawn since the full second-order
model performs the best.

The results for the pitching moment coefficients in Fig. 17 are pre-
sented both with and without the acceleration terms. The models with
acceleration include the x5 and x6-terms in Eq. (12), while these, as
Fig. 17. NMSE values considering various response surface models. Lin ¼ linear direc
linear model plus products of inputs. Full 2nd, 3rd and 5th represents full second thir
¼ vertical and pitching motion, WA ¼ with acceleration, and WOA ¼ without accel
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pointed out earlier, have been disregarder for all the other models pre-
sented since they had a very minor influence on the results for the drag
and lift. The terms are, however, of crucial importance for the modelling
of the pitching moment, and it is likely that this is because the memory
effect is more important for the pitching moment and that the accelera-
tion terms try to compensate for this. The coefficient b5 corresponds to an
added mass moment of inertia and it is, therefore, interesting to study its
magnitude. If we consider the section as two ideal flat plates next to each
other with no aerodynamic interference, it is possible to obtain an added
mass moment of inertia based on the theoretical values for the ideal flat
plate. This is clearly an oversimplification, but the added mass corre-
sponding to the b5 coefficient is approximately 10 times larger, which
indicates that the obtained coefficient is slightly too high to have a
physical meaning. This observation may indicate that the model is trying
to compensate for effects that are not included in the model, for instance,
proper fluid memory. It is also interesting to note that the theoretical and
calculated added mass for the lift were approximately equal for the first
order model when the acceleration terms are included in the modelling.
If the importance is that the acceleration terms where due to higher-order
nonlinearity in the system, the fit would be better for higher-order
models, but this is not observed in the results. Nevertheless, it is
concluded that the acceleration terms are essential for the prediction of
the pitching moment coefficient. In the following, only the models
t terms. Lin þ diag ¼ linear model plus second-order direct terms. Lin þ cross ¼
d and fifth order response surfaces. T ¼ pitching motion, V ¼ vertical motion, PV
eration.
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including the acceleration terms are considered. The results for the
pitching moment coefficient at 6 m/s indicate linear behaviour because
no higher-order model performs significantly better than the linear one.
The earlier presented data also support this observation. For the 10 m/s
tests, the full second-order model seems to be the model with the lowest
order and good performance for both the vertical and pitchingmotions. It
seems that the pitching moment due to the pitching motion is more
nonlinear then the pitching moment due to vertical motion. It is inter-
esting to observe that a model with full 2nd-order fits better than 1st-
order with second order direct or first-order cross-terms for the test at
10 m/s with the combined pitching and vertical motions (PV).

Fig. 18 shows a comparison of the measured pitching moment coef-
ficient and predictions using different response surfaces. The linear
model without acceleration has less amplitude than the measured one,
and it lags a bit behind. The lag is hardly visible in the plot but can be
important for motion-induced damping of the final structure. The second-
order model with acceleration fits best but still struggles to capture the
peaks in the experimental data.

Nonlinear models are, in general, more difficult to identify than linear
models since the principle of superposition is not valid, which in turn,
makes the type of motion used for training more important. It is, there-
fore, interesting to study how the model performs for types of motion
other than those used in the identification process. Fig. 19 shows the
hysteresis loop predicted using the full second and third-order response
surfaces presented above. The single harmonic motion is a pitching
motion at 1.1 Hz with 2� amplitude, and the mean wind velocity is 6 m/s.
The models predict the measured self-excited forces with decent accu-
racy, but some discrepancies are clearly present. The results are best for
the lift force and pitching moment, which is probably explained by their
close to linear behaviour. The prediction for the drag coefficient is
slightly inaccurate, and it is, therefore, interesting to observe if better
accuracy can be obtained if a stochastic motion that is closer to a single
harmonic motion is applied. Amotion corresponding to a single degree of
freedom system with a damping ratio of 1.66 (overdamped) driven by
white noise is therefore applied to identify an alternative response sur-
face to investigate if the results are sensitive to the motion applied. The
predictions obtained using the resulting response surface are also shown
in Fig. 19. The results show that the performances are very similar for the
lift and the moment coefficients and that the response surface obtained
when using a narrow-banded motion actually gives results that are closer
to the predictions of the other response surfaces than the measured data.
A significant difference is observed in the prediction of the drag coeffi-
cient, but the results did not improve significantly.
Fig. 18. Timeseries plot of the measured and predicted pitching moments for a 10 m/
1st-order model without acceleration lags 0.12 s behind. The plot is part of a 600 s
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6. Concluding remarks

A series of experimental tests have been conducted to gain further
insight into the nonlinear characteristics of a double-deck section with
curved undersides. A simple response surface model has been proposed
and validated against experimental data. The following observations are
made.

� Cross-sections having aerodynamic characteristics that are sensitive
to changes in the Reynolds number can exhibit nonlinear aero-
dynamic behaviour for some wind speeds and exhibit linear behav-
iour for others. A significant change in the nonlinear characteristics as
a function of the mean wind speed is difficult to include in any model
based on scaled model tests and pose a significant challenge for the
research community.

� One of the main challenges in nonlinear modelling is to select a
nonlinear function that is capable of modelling the nonlinear char-
acteristics and at the same time ensuring that a robust identification
of the model coefficients can be carried out. It is, therefore, important
to know which effects must be included in the modelling and which
can be disregarded.

� It is generally necessary to include cross-terms, such as _rzr2θ , for a
nonlinear system. Designated wind tunnel tests were carried out to
investigate the importance of the cross-terms. It can be concluded that
the cross-terms are essential when the force components exhibit sig-
nificant nonlinear behaviour. This implies that it is, in general, not
possible to model the force component separately by applying the
superposition principle. This makes both the wind tunnel testing and
model identification more complicated.

� The simple response surface model proposed is capable of partly
modelling a memory effect when including displacement, velocity
and acceleration terms as inputs. This memory effect was essential to
include in the modelling of the pitching moment for the particular
section tested.

� The Volterra series is the natural extension of the response surface
model applied in this paper since many of the same terms can be used
as inputs. It is then sufficient to use only displacements as inputs since
the convolutions model the memory effect. Multiple input single
output second-order Volterra models seem to be attractive alterna-
tives since good performance was achieved using a quadratic
response surface, including cross-terms, in this paper.

The response surface model shows promise in the modelling of
weakly nonlinear self-excited forces for low amplitude stochastic random
s, pitching stochastic motion with a frequency content between 0 and 3.5 Hz. The
test. WA ¼ with acceleration and WOA ¼ without acceleration.



Fig. 19. Measured vs predicted dynamic coefficients from single harmonic motion. 6 m/s, 1.1 Hz single harmonic pitching motion. Predicted forces are from the
response surface models calibrated on 6 m/s pitching stochastic and narrow motion and data. The hysteresis loops are plotted against the dynamic angle of attack in
accordance with Fig. 7. WA ¼ with acceleration.
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motions. The model is validated using time histories of measured forces
for motons that were not used to obtain the model coefficients. Random
motions corresponding to rectangular auto- and cross-spectral densities
and as well as small-amplitude single harmonic motion data was applied.
The performance of the model concerning aeroelastic phenomenon
resulting in limit cycle oscillations remains an open question and should
be studied in detail in future work. Since it might be possible to disregard
some of the terms in the model, it is also recommended that the model is
carefully reviewed before it is used to model nonlinear aeroelastic peh-
nomena that results in limit cycle oscilations.
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