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Spin injection and spin relaxation in odd-frequency superconductors
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The spin transport inside an odd-frequency spin-triplet superconductor differs from that of a conventional su-
perconductor due to its distinct symmetry properties. We study spin transport inside an emergent odd-frequency
superconductor by replacing the spin-singlet gap matrix in the Usadel equation with a matrix representing
spin-triplet pairing that is odd under inversion of energy. We show that the peculiar nature of the density of
states allows for an even larger spin injection than in the normal state. Moreover, when the odd-frequency
pairing inherits its temperature dependence from a conventional superconductor through the proximity effect,
the density of states can transition from gapless to gapped as the temperature decreases. At the transition point,
the spin accumulation inside the odd-frequency superconductor is peaked and larger than in the normal state.
While the spin-flip scattering time is known to decrease below the superconducting transition temperature in
conventional superconductors, we find that the same is true for the spin-orbit scattering time in odd-frequency
superconductors. This renormalization is particularly large for energies close to the gap edge, if such a gap is
present.
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Odd-frequency superconductivity possesses the same ro-
bustness against disorder as conventional superconductivity,
while allowing for the existence of Cooper pairs that can
carry a net spin. These properties are inherited from the
s-wave spin-triplet symmetry of the Cooper pairs [1], and
makes odd-frequency superconductors interesting candidates
for dissipationless spin transport [2–5]. Subsequent to the first
proposal of odd-frequency pairing as an allowed symmetry
of the superconducting state [6], a number of structures have
been suggested for realizing odd-frequency superconductivity
[7]. Among these are superconductor/ferromagnet hybrids
where conventional Cooper pairs are transformed into odd-
frequency spin triplets in the presence of the ferromagnetic
exchange field [8]. These can penetrate deep into the fer-
romagnet when, e.g., noncollinear magnetization alignment
[9–14], inhomogeneous magnetization [15–18], or spin-orbit
coupling [19–21] is used to form equal-spin-triplet pairs un-
affected by the Zeeman spin splitting. By now, signatures of
odd-frequency triplets have been observed in many different
structures, e.g., through modulation of the superconducting
critical temperature [22–24], density of states (DOS) [25,26],
and magnetic anisotropy [27,28], and through observation
of long-range supercurrents in Josephson junctions [11–14,
16–18], and the paramagnetic Meissner effect [29,30].

From a symmetry point of view, the odd-frequency super-
conducting pairing differs from the conventional one by its
spin-triplet symmetry leaving it invariant under exchange of
spin coordinates, and an odd parity with respect to exchange
of time coordinates for the electrons in the Cooper pair.
While the s-wave symmetry ensures robustness under regular
impurity scattering for both conventional and odd-frequency
superconductors, the former is expected to be less robust
to magnetic impurities and the latter to spin-orbit scattering
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[2,32,33]. As was first discussed in the context of the prox-
imity effect in superconductor/ferromagnet structures [34],
another characteristic of odd-frequency pairing is that it alters
the local DOS. In an odd-frequency superconductor, the DOS
can follow an energy dependence similar to that of the con-
ventional superconductor with a gap around the Fermi energy.
However, another possibility is that the DOS is gapless and
peaked at zero energy [35,36]. These properties are essential
for describing the spin transport inside the odd-frequency
superconductor.

In conventional superconductors, Cooper pairs are spin-
less and quasiparticles are responsible for the spin transport
[37,38]. Therefore, spin injection is blocked at energies below
the gap edge. The onset of superconductivity also causes the
spin-flip scattering length to become energy dependent. For
energies close to the gap edge, there is a giant renormalization
of the spin-flip scattering length causing a rapid decrease in
the spin accumulation inside the superconductor [39]. Addi-
tionally, the magnetic impurities causes a weakening of the
superconducting gap [40]. The spin-orbit scattering time is not
renormalized by conventional superconductivity and remains
equal to its normal state value [39].

In this work we instead consider the nonequilibrium spin
accumulation in an emergent odd-frequency superconductor
in the presence of spin-flip and spin-orbit scattering. We com-
pare our results to the conventional case. Our approach is to
consider the Usadel equation for a conventional superconduc-
tor, and then to replace the conventional gap matrix with a
contribution with a spin-triplet symmetry and odd parity under
inversion of energy. We study the system shown in Fig. 1(a),
where spin is injected into the odd-frequency or conventional
superconductor from a normal-metal contact under an applied
spin voltage. The polarization axis of the injected spin is
chosen so that the spin transport is carried by quasiparticles
only. Although odd-frequency superconductivity has not been
found to exist intrinsically in materials, it can be induced
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FIG. 1. (a) We study the nonequilibrium spin accumulation in a
conventional spin-singlet (↑↓ − ↓↑)z and odd-frequency spin-triplet
(↑↓ + ↓↑)z superconductor (SC) upon applying a spin-dependent
voltage |e|V to an adjacent normal metal (NM). The spin-dependent
voltage has opposite sign for spin-up and spin-down electrons, and
can be induced from an electric voltage |e|Vch applied between two
oppositely oriented ferromagnets (FM). The applied electric voltage
|e|Vch is in general not equal to the induced spin-dependent voltage
|e|V in the NM contact. The FMs are polarized along the z axis so that
the spins injected into the SC cannot be carried by the Cooper pairs.
The injected spins are relaxed by spin-flip and spin-orbit scattering
until equilibrium is reached a distance L from the NM contact. (b) We
suggest inducing odd-frequency superconductivity through proxim-
ity to a conventional superconductor. Spin-singlet Cooper pairs are
partially converted into triplets as they leak from a conventional
superconductor into a ferromagnet. Upon leaking through a second
sufficiently thick ferromagnet magnetized perpendicularly to the first
one, only spin triplets survive [22,23,31]. In the highly disordered
materials considered here, only s-wave pairing can be present [1,8].
The remaining triplet pairing then transforms the adjacent normal
metal into an emergent odd-frequency superconductor.

by the proximity effect. One way of doing this is presented
in Fig. 1(b), where leakage of Cooper pairs through two
misaligned ferromagnets effectively converts a normal metal
into an emergent odd-frequency spin-triplet superconductor.
Therefore, our predictions can be tested experimentally in a
hybrid structure.

The odd-frequency superconductivity does not renormalize
the spin-flip scattering time caused by magnetic impurities
compared to the normal state [2,32,33]. Instead, the spin-orbit
scattering length decreases below the superconducting critical
temperature. We find that when a gap is present in the DOS,
there is a giant renormalization of the spin-orbit scattering
length at the gap edge, similar to the renormalization of the
spin-flip scattering length in conventional superconductors.
Moreover, we find that the distinct features of the DOS [36]
causes the temperature dependence of the nonequilibrium
spin accumulation to behave qualitatively different from what
is expected for a conventional superconductor. It presents a
peak when the DOS transitions from peaked to gapped as the
temperature decreases. The possibility of a high DOS at low
energies also opens the possibility of a higher spin injection
than in the normal state.

I. THEORETICAL FRAMEWORK

A. Quasiclassical theory for conventional diffusive
superconductors

Our approach will be to generalize the quasiclassical the-
ory for a diffusive conventional superconductor [41,42] in
order to describe odd-frequency spin-triplet pairing [35,36].

The motivation behind using this approach is that writing
down a microscopic Hamiltonian for the odd-frequency pair-
ing would require adding a time dependence to the electron
creation and annihilation operators, which greatly adds to the
complexity of the problem. However, we know that the odd-
frequency pairing has an even parity under spin inversion and
an odd parity under inversion of energy. We can then gener-
alize the result for the conventional pairing so that the pairing
satisfies the desired symmetry relations. This comes at the
cost of not knowing the gap equation for the odd-frequency
pairing.

The impurity-averaged quasiclassical Green’s function
ǧs

av(R, ε) of a diffusive conventional superconductor can be
described by the Usadel equation

∇R · Ǐ(R, ε) = i[σ̌ (R, ε), ǧs
av(R, ε)]. (1)

Its underlying assumptions and derivation starting from a
continuum model is described in Appendix. The Green’s
function is defined in Keldysh space and has the matrix
structure

ǧs
av(R, ε) =

(
[ĝs

av(R, ε)]R [ĝs
av(R, ε)]K

0 [ĝs
av(R, ε)]A

)
, (2)

where [ĝs
av(R, ε)]R, [ĝs

av(R, ε)]A, and [ĝs
av(R, ε)]K are the

impurity-averaged quasiclassical retarded, advanced, and
Keldysh Green’s functions, respectively. The check denotes
8 × 8 matrices in Keldysh space, where ρ̌0 is the unit matrix,
while the hat denotes 4 × 4 matrices in Nambu ⊗ spin space.
We have defined a matrix current

Ǐ(R, ε) = −Dǧs
av(R, ε)∇Rǧs

av(R, ε), (3)

where D = τv2
F /3 is the diffusion coefficient. The diffusion

coefficient is determined by the Fermi velocity vF = pF /m,
and the scattering time associated with scattering on nonmag-
netic impurities τ = [2πnN0〈|u(epF − eqF )|2〉pF ,qF

]
−1

. Here n
is the density of nonmagnetic impurities, N0 is the DOS at
the Fermi level, and u(epF − eqF ) is the scattering potential
of a single nonmagnetic impurity. The scattering potential
is averaged over the all possible directions of the momenta
pF = pF epF and qF = qF eqF , where eqF and epF are unit vec-
tors. The self-energy matrix σ̌ (R, ε) = σ̂0(ε) + σ̌sf(R, ε) +
σ̌so(R, ε) + σ̂ S

sc(R) contains the contributions

σ̂0(ε) = ερ̂3, (4)

σ̌sf(R, ε) = (i/8τsf )σ̂ · ǧs
av(R, ε)σ̂, (5)

σ̌so(R, ε) = (i/8τso)ρ̂3σ̂ · ǧs
av(R, ε)ρ̂3σ̂, (6)

σ̂ S
sc(R) = �̂S(R). (7)

Above, ε is the quasiparticle energy, R is the center-
of-mass coordinate associated with the Green’s function,
ρ̂3 = diag(1, 1,−1,−1), and σ̂ = diag(σ, σ∗), where σ is
the vector of Pauli matrices. The self-energies σ̌sf(R, ε)
and σ̌so(R, ε) describe the spin-flip scattering on magnetic
impurities and the spin-orbit scattering on nonmagnetic impu-
rities, respectively. The respective scattering times are given
by τsf = [8πnmN0〈|um(epF − eqF )|2〉pF ,qF

S(S + 1)/3]
−1

and
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τso = 9τ/(8α2 p4
F ). Here nm is the density of the magnetic im-

purities, um(epF − eqF ) and S are the scattering potential and
the spin of a single magnetic impurity, and α is the Rashba pa-
rameter. We have assumed that τso, τsf 	 τ so that scattering
on nonmagnetic impurities dominates over the spin-orbit and
spin-flip scattering. The spin-singlet superconducting pairing
is described by the gap matrix

�̂S = antidiag{�S,−�S, [�S]∗,−[�S]∗}. (8)

In this work we will assume the spin-singlet superconducting
gap �S to be spatially independent and follow a standard
Bardeen-Cooper-Schrieffer temperature dependence given by
�S(T ) = �0 f (T ), where

�0 = 1.76Tc, (9)

f (T ) = tanh

(
1.74

√
Tc

T
− 1

)
(10)

are the zero-temperature gap and the temperature dependence
of the gap, respectively. Above, Tc is the superconducting
critical temperature. The assumption that the superconducting
gap, and in particular its phase, is spatially independent holds
as long as we only consider spin transport. This is because
spin can only be carried by the quasiparticles. Charge can on
the other hand be carried by both quasiparticles and Cooper
pairs. This causes a conversion between quasiparticle and
Cooper pair transport that leads to a renormalization of the gap
and makes a spatially dependent phase of the order parameter
necessary.

B. Model for odd-frequency superconductivity

In order to describe an odd-frequency spin-triplet super-
conductor, we replace the spin-singlet contribution to the
Usadel equation σ̂ S by an energy-dependent contribution
σ̂ T(ε) = �̂T(ε) which has an odd parity with respect to
inversion of energy. Providing the order parameter with a
dependence on ε in this way produces the correct relation be-
tween the retarded and advanced Green function required for
odd-frequency pairing, f R

αβ (ε) = − f A
αβ (−ε), corresponding to

an odd parity with respect to exchange of time coordinates [5].
We also alter the structure of the gap matrix

�̂T(ε) = antidiag{�T(ε),�T(ε),−[�T(ε)]∗,−[�T(ε)]∗}
(11)

in order to describe spin-triplet pairing. We model the spin-
triplet pairing by two different plausible models [36]:

�T(ε, T ) = C f (T )ε

1 + (
Cε

2�max

)2 , (12)

�T(ε, T ) = C f (T )ε√
1 + (

Cε
�∞

)2
, (13)

giving rise to similar results. Equation (12) describes a pairing
that has a linear form C f (T )ε for small energies, reaches
it maximum �max, and then decays as ∼1/ε for large en-
ergies. Equation (13) describes a pairing that has the same
linear form for small energies, and that approaches a con-
stant value �∞ for large energies. We set the maximum

pairing �max and �∞ of the above models equal to the zero-
temperature singlet gap �0. As can be seen from the above
equations, we have assumed the temperature dependence to
be the same as for the singlet pairing. This is because when
the odd-frequency triplet paring is produced by the proximity
effect as described in Fig. 1(b), the temperature dependence
is inherited from the original singlet pairing. Both of the
above models produce a gapped DOS similar to that of a
spin-singlet superconductor for C f (T ) > 1. The gap is of
magnitude (2�max/C)

√
C f (T ) − 1 for the pairing in Eq. (12)

and (�∞/C)
√

[C f (T )]2 − 1 for the pairing in Eq. (13). For
0 < C f (T ) � 1, the DOS is instead gapless and peaked
around ε = 0 [35,36]. Note that the assumption that the pair-
ing is spatially independent also holds for the odd-frequency
pairing considered here. The triplet pairs considered (Sz = 0)
cannot carry any spin supercurrent polarized in the z direction,
and thus we may consider a spatially homogeneous order
parameter.

C. The kinetic equations and the nonequilibrium
spin accumulation

The Usadel equation is subject to a normalization condition

ǧs
av(R, ε)ǧs

av(R, ε) = ρ̌0 (14)

for the quasiclassical Green’s function. It follows from
the normalization condition that the quasiclassical Keldysh
Green’s function can be written it terms of the retarded and
advanced Green’s functions as

[ĝs
av(R, ε)]K =[

ĝs
av(R, ε)

]R
ĥ(R, ε) − ĥ(R, ε)

[
ĝs

av(R, ε)
]A

,

(15)

where ĥ(R, ε) is the distribution matrix. Moreover, it fol-
lows from the definitions of the retarded and advanced
Green’s functions that these are related by [ĝs

av(R, ε)]A =
−{ρ̂3[ĝs

av(R, ε)]Rρ̂3}†. In order to solve the Usadel equa-
tion for our system, we therefore only need expressions
for the distribution matrix and the retarded Green’s func-
tion. We assume that the distribution matrix is diagonal, and
write it as

ĥ(R, ε) = ρ̂0hL(R, ε) + ρ̂3hT(R, ε)

+
∑

i

(σ̂)ih
i
LS(R, ε) +

∑
i

ρ̂3(σ̂)ih
i
TS(R, ε), (16)

where i ∈ {x, y, z} refers to the spin projection axis. Above,
hL(R, ε), hT(R, ε), hi

LS(R, ε), and hi
TS(R, ε) are the energy,

charge, spin-energy, and spin distribution functions, respec-
tively. We define corresponding current densities

jL(R, ε) = Tr{ÎK
(R, ε)}/4, (17)

jT(R, ε) = Tr{ρ̂3Î
K

(R, ε)}/4, (18)

ji
LS(R, ε) = Tr{(σ̂)i Î

K
(R, ε)}/4, (19)

ji
TS(R, ε) = Tr{ρ̂3(σ̂)i Î

K
(R, ε)}/4 (20)
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in terms of the Keldysh part of the current matrix. We set
the retarded Green’s function for the spin-singlet (spin-triplet)
superconductor equal to its equilibrium solution,

{[
ĝs

av(ε)
]R}S(T) = [ρ̂3ε + �̂S(T)(ε)]IS(T)(ε), (21)

IS(T)(ε) = sgn(ε)
(ε2 − |�S(T)(ε)|2)√
ε2 − |�S(T)(ε)|2

− i
(|�S(T)(ε)|2 − ε2)√
|�S(T)(ε)|2 − ε2

, (22)

throughout the superconducting region. Above, 
(ε) is the
Heaviside step function. We have neglected the influence of
magnetic and spin-orbit impurity scattering on the retarded
Green’s function and instead study how the impurity scat-
tering affects the spin distribution function. A study of how
the above-mentioned scattering changes the Green’s function
would require a self-consistent solution for the supercon-
ducting pairing and would reveal a renormalization of the
superconducting gap. A self-consistent solution is not pos-
sible for the spin-triplet superconductor for which the gap
equation is unknown. Although a self-consistent solution
would not reveal a mixing between conventional and odd-
frequency paring in the present framework, it has been shown
to occur close to single magnetic impurities in clean supercon-
ductors [43,44]. If such a mixing were present, there would
be a contribution from both types of pairing to the nonequilib-
rium spin accumulation.

Focusing now on the spin transport, we insert the equi-
librium retarded Green’s function and the definition of the
distribution functions into the Keldysh component of the
Usadel equation. For the spin-singlet (spin-triplet) supercon-
ducting pairing we find a relation

∇R · [
jz
TS(R, ε)

]S(T) = −2α
S(T)
TSTS(ε)

[
hz

TS(R, ε)
]S(T)

, (23)

αS
TSTS(ε) =

(
1

τso
+ 1

τsf

ε2 + |�|2
ε2 − |�|2

)

(ε2 − |�|2), (24)

αT
TSTS(ε) =

(
1

τsf
+ 1

τso

ε2 + |�(ε)|2
ε2 − |�(ε)|2

)

(ε2 − |�(ε)|2)

(25)

between the spin current density jz
TS(R, ε) and the spin

distribution function hz
TS(R, ε). Notice that while spin-

singlet superconductivity renormalizes the spin-flip scattering
time, the odd-frequency spin-triplet superconductivity instead
renormalizes the spin-orbit scattering time. For a gapped
triplet superconductor [C f (T ) > 1], we see from the above
expression that there occurs a giant renormalization at the gap
edge ε → �(ε) causing rapid spin-orbit relaxation. From the
definition of the spin current density, we find that[

jz
TS(R, ε)

]S(T) = −2DS(T)
L (ε)∇R

[
hz

TS(R, ε)
]S(T)

, (26)

DS
L(ε) = D
(ε2 − |�|2), (27)

DT
L(ε) = D
(ε2 − |�(ε)|2). (28)

In order to study the spin distribution [hz
TS(R, ε)]S(T) inside a

singlet (triplet) superconductor under spin injection, we intro-
duce for simplicity transparent boundaries to a normal metal
with a spin voltage V↑ = −V↓ = V/2 at position x = −L/2.
Using more realistic tunneling boundary conditions simply
diminishes the magnitude of the spin injection, regardless
of whether we consider a conventional superconductor or
an odd-frequency superconductor, and does not change any of
our conclusions. We assume the spin injected into the singlet
or triplet superconductor from the normal metal to have re-
laxed completely at x = L/2. This corresponds to the system
introduced in Fig. 1(a). This situation can be described by the
boundary conditions

hz
TS(−L/2, ε) = 1

2

[
tanh

(ε + eV↑
2T

)
− tanh

(ε + eV↓
2T

)]
,

(29)

hz
TS(L/2, ε) =0, (30)

where the temperature T is constant throughout the material.
Solving Eqs. (23) and (26) with these boundary conditions, we
find that the spin distribution function for the singlet (triplet)
superconductor is given by

[
hz

TS(x, ε)
]S(T) = 1

2
hz

TS(−L/2, ε)
[
Hz

TS(x, ε)
]S(T)



(
ε2 − |�S(T)(ε)|2), (31)

[
Hz

TS(x, ε)
]S =

⎧⎨
⎩

cosh
(√

1
l2
so

+ 1
l2
sf

ε2+|�S|2
ε2−|�S|2 x

)

cosh
(√

1
l2
so

+ 1
l2
sf

ε2+|�S|2
ε2−|�S|2

L
2

) −
sinh

(√
1
l2
so

+ 1
l2
sf

ε2+|�S|2
ε2−|�S|2 x

)

sinh
(√

1
l2
so

+ 1
l2
sf

ε2+|�S|2
ε2−|�S|2

L
2

)
⎫⎬
⎭, (32)

[
Hz

TS(x, ε)
]T =

⎧⎨
⎩

cosh
(√

1
l2
sf

+ 1
l2
so

ε2+|�T(ε)|2
ε2−|�T(ε)|2 x

)

cosh
(√

1
l2
sf

+ 1
l2
so

ε2+|�T(ε)|2
ε2−|�T(ε)|2

L
2

) −
sinh

(√
1
l2
sf

+ 1
l2
so

ε2+|�T(ε)|2
ε2−|�T(ε)|2 x

)

sinh
(√

1
l2
sf

+ 1
l2
so

ε2+|�T(ε)|2
ε2−|�T(ε)|2

L
2

)
⎫⎬
⎭. (33)

We have defined the normal-state spin-flip and spin-orbit relaxation lengths lsf = √
Dτsf and lso = √

Dτso. The nonequilibrium
spin accumulation

[μz(x)]S(T) = − 1

N0

∫ ∞

−∞
dε NS(T)(ε)

[
hz

TS(x, ε)
]S(T)

(34)
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FIG. 2. While the DOS for a singlet superconductor (a) is
gapped, the DOS of an odd-frequency superconductor (b) can either
be peaked at zero temperature (blue) or gapped (purple and red). The
nonequilibrium spin accumulation corresponding to the DOS in (b) is
shown for spin-flip scattering with lsf = 0.15L (c) and for spin-orbit
scattering with lso = 0.15L (d). All plots correspond to a spin voltage
of |e|V = 0.5�0 and temperature T = 0.5Tc. The above corresponds
to the pairing type described in Eq. (12). The second pairing type
described in Eq. (13) gives similar results.

is determined by the spin distribution function given above
and the DOS NS(T)(ε) = N0Re({[gs

av(R, ε)]R}S(T)), where
{[gs

av(R, ε)]R}S(T) = εIS(T)(ε).

II. THE NONEQUILIBRIUM SPIN ACCUMULATION

A. The density of states

We first discuss how the density of states affects the
nonequilibrium spin accumulation inside the superconductor.
As shown in Figs. 2(a) and 2(b), the DOS of an odd-frequency
superconductor can either be gapped as in the conventional
superconductor, or it can be gapless and peaked at zero energy.
When the DOS is gapped, the situation is similar to that of
a conventional superconductor. There are no available states
below the gap edge, and spin is blocked from entering the su-
perconductor. At the gap edge, the DOS is large thus allowing

for a large spin injection. The conventional superconductor
always allows for a spin injection that is less than or equal
to the spin injection into a normal metal. This is because
the total number of states is conserved. For energies up to a
given spin voltage just above the gap edge, there will be fewer
available quasiparticle states as the available states have been
pushed out of the gap region towards higher energies. For the
gapped odd-frequency superconductor, the gap is smaller and
the peaks at the gap edge broader than in the conventional
superconductor. Although this causes the conservation of the
total number of states to be broken in our simple model, it has
been shown numerically that this problem can be resolved by
flanking the peak at the gap edge by a local minimum [36].
Spin voltages that do not allow for spin injection at such high
energies can then give rise to a spin injection that is higher
than than the spin injection in the normal state. For a gapless
odd-frequency superconductor, the spin injection can be even
larger, since the DOS is always larger than in the normal state,
except for at the minima appearing at higher energies [36].

Since the spin injection into an odd-frequency super-
conductor can be larger than than in the normal state, the
nonequilibrium spin accumulation close to the normal-metal
contact can also be larger. This is demonstrated in Figs. 2(c)
and 2(d) for positions close to x = −0.5L. Note that although
the additional minima in the DOS are not included in our
analytical model, the error is negligible as long as the temper-
ature and spin voltage is sufficiently low. This is because the
distribution function of the normal-metal contact [Eq. (29)]
becomes negligibly small at the high energies where the min-
imum appears. For the temperature and spin voltage used in
Fig. 2 the spin distribution function of the normal metal is ten
(hundred) times smaller than its maximum value at ε = 1.8�0

(ε = 1.1�0).
Another important observation is that since the temperature

dependence of the triplet pairing is inherited from the original
singlet condensate via the proximity effect [Fig. 1(b)], the
coefficient C f (T ) determining whether the DOS is gapped or
gapless is also temperature dependent. The coefficient f (T ) is
equal to one at zero temperature and zero at the superconduct-
ing critical temperature. This means that if the DOS start out
as gapped at T = 0 [C f (0) > 1] it must transition to a peaked
DOS as C f (T ) drops below one for higher temperatures.
Moreover, the DOS diverges as C f (T ) approaches one. This
results in a spin injection that is larger than in the normal state
due to the high number of available states at zero energy, as
we will demonstrate below.

B. Spin-flip and spin-orbit impurity scattering

While a conventional superconductor has a giant spin-flip
relaxation for energies close to the gap edge [39], odd-
frequency superconductivity does not renormalize the average
spin-flip scattering length. In fact, we find that the roles of
the spin-flip and spin-orbit scattering are opposite compared
to the spin-singlet case as can be seen from Eqs. (32) and
(33). Qualitatively this is reasonable since spin-flip caused
by magnetic impurities does not leave the spin part (↑↓ −
↓↑) of a conventional singlet superconductor invariant. Such
spin flip does, however, leave the spin part (↑↓ + ↓↑) of
an Sz = 0 triplet superconductor invariant. The spin-orbit
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FIG. 3. The nonequilibrium spin accumulation is plotted as a
function of temperature in the presence of spin-flip scattering for
lsf = 0.15L. (a) A gapless DOS where 0 � C f (T ) � 0.90 for all
temperatures. (b) A DOS that is gapped at low temperatures [1.05 >

C f (T ) > 1], and gapless at higher temperatures [0 � C f (T ) � 1].
Both are measured at a distance 0.25L away from the normal-metal
contact and correspond to an applied spin voltage of |e|V = 0.1�0.
The triplet pairing follows the model described by Eq. (12), however
the model described by Eq. (13) gives similar results.

relaxation length increases at the onset of the odd-frequency
superconductivity, and if a gap is present there is a giant
renormalization of the spin-orbit relaxation length for energies
close to the gap edge. This is demonstrated in Figs. 2(c) and
2(d). In Fig. 2(c) only spin-flip relaxation is present, and
the nonequilibrium spin accumulation in the odd-frequency
superconductor relaxes at the same rate as in the normal
metal. In the conventional superconductor, the spins relax
more rapidly. In Fig. 2(d) only spin-orbit relaxation is present,
and the nonequilibrium spin accumulation relaxes rapidly in-
side the odd-frequency superconductor. It relaxes at the same
rate for the normal metal and inside the conventional super-
conductor. In this case, the nonequilibrium spin accumulation
crosses from above to below that of the normal state, meaning
that the spin accumulation will behave qualitatively different
depending on at which position it is measured.

C. Temperature dependence

Finally, we study the temperature dependence of the
nonequilibrium spin accumulation. In Fig. 3 we consider
the nonequilibrium spin accumulation for C f (0) = 0.90
[Fig. 3(a)] and C f (0) = 1.05 [Fig. 3(b)] in the presence
of spin-flip scattering. When C f (T ) < 1 at zero tempera-
ture, the DOS is gapless for all temperatures up to Tc. The
high number of available states causes the spin injection at
the normal-metal contact to be higher than in the normal
state, and the spin-flip scattering rate is the same. Therefore,
the nonequilibrium spin accumulation will stay larger than
in the normal state for all temperatures regardless of at which
position we choose to measure it. This is demonstrated in
Fig. 3(a). In comparison, the spin accumulation in a conven-
tional superconductor relaxes quickly as the temperature is
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FIG. 4. The nonequilibrium spin accumulation is plotted as a
function of temperature in the presence of spin-orbit scattering for
lso = 0.15L. (a) and (b) A gapless DOS where 0 � C f (T ) � 0.90
for all temperatures. (c) and (d) A DOS that is gapped at low tem-
peratures [1 < C f (T ) < 1.05], and gapless at higher temperatures
[0 � C f (T ) � 1]. (a) and (c) Measured at a distance 0.05L away
from the normal-metal contact, while (b) and (d) are measured at a
distance 0.25L away from the normal-metal contact. The applied spin
voltage is |e|V = 0.1�0 for all panels. The triplet pairing follows
the model described by Eq. (12), however the model described by
Eq. (13) gives similar results.

decreased [39]. When C f (T ) > 1 at T = 0, the DOS goes
through a transition from gapped to gapless as the temperature
increases. In the absence of spin-orbit relaxation, this causes a
sharp peak in the spin accumulation at the temperature where
this transition happens, as shown in Fig. 3(b). For lower tem-
peratures, the spin accumulation decreases as the gap widens,
leaving fewer available states.

In Fig. 4 we consider the nonequilibrium spin accumula-
tion for the same values of C f (T ) in the presence of spin-orbit
scattering. In this case, the spins relax quickly inside the odd-
frequency superconductor. Thus, when the superconductor is
gapless for all temperatures [C f (T ) = 0.90], the spin accu-
mulation can either be larger than in the normal state as shown
in Fig. 4(a) or smaller as shown in Fig. 4(b) depending on how
close to the normal-metal contact it is measured. In the case
where the superconductor transitions from gapped to gapless
as the temperature increases, remnants of the peak seen in the
absence of spin-orbit scattering [Fig. 3(b)] only appear close
to the normal-metal contact as can be seen in Fig. 4(c). Further
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away, spin-orbit relaxation causes the spin accumulation to be
even smaller than for conventional superconductors.

Note that in Figs. 3 and 4 we have chosen a small spin
voltage in order to minimize the error from leaving out the
local minimum in the DOS (see Sec. II A). However, close
to Tc this will inevitably cause an overestimation in the spin
injection from the normal-metal contact. This should however
not cause any qualitative changes, since the spin accumulation
μz has to reach its normal-state value at Tc. It would rather
cause a small reduction in the spin accumulation for tempera-
tures close to Tc, and some smoothing of the peak in Fig. 3(b).

III. OUTLOOK AND CONCLUDING REMARKS

In this work we have shown how the nonequilibrium
spin accumulation in an odd-frequency superconductor differs
qualitatively in several ways from that of a conventional su-
perconductor. First, the density of states of the odd-frequency
superconductor allows for a spin injection that is larger than
in the normal state. Moreover, it can transition from gapless
to gapped as the temperature is decreased, causing a peak
in the spin injection at a certain transition temperature below
the critical temperature Tc of the superconductor. Second, the
roles of the spin-flip and spin-orbit impurity scattering are
interchanged compared to what is the case for conventional
superconductors. This causes a rapid spin-orbit relaxation,
and robustness in the presence of magnetic impurities.

There are several additional interesting effects which can
be implemented by adjusting the setup presented in Fig. 1.
First, when injecting a spin-polarized charge current directly
into a superconductor, it has been shown that the spin injection
increases compared to the normal state since the opening
of the gap causes a large spin splitting as spins accumu-
late at the interface [45–47]. At low temperatures, where
the density of states is gapped, this should also occur for
the odd-frequency superconductors considered here. Second,
we have considered the injected spin to be carried entirely
by quasiparticles. By allowing the Cooper pairs to be spin
polarized with respect to the polarization axis of the injected
spins, we open for the possibility that Cooper pairs contribute
to the spin transport. Spins can then be injected at energies
below the gap edge. However, this can only be described
by allowing the retarded Green’s function to deviate from
its equilibrium value and calls for a self-consistent solution
for the superconducting pairing. Third, we have considered
an effective odd-frequency superconductor in the absence of
spin-splitting fields. Externally applied magnetic fields are
known to enhance the spin accumulation inside conventional
superconductors [48–51]. In the absence of spin splitting, spin
accumulation is a direct consequence of imbalance in the spin
distribution function, while in the presence of spin splitting
the imbalance in the energy distribution function gives an
additional contribution due to coupling between the different
modes [52]. A similar coupling is expected to take place for
odd-frequency superconductors. Finally, we have considered
transparent boundaries between the metallic contact and the
superconductor. In reality, there would be some contact re-
sistance restricting the spin injection through the interface.
However, a comparison of the spin accumulation above and
below the superconducting critical temperature should yield

qualitatively the same result although the overall signal is
weaker. In experiments, the advantage of using a tunnel barrier
rather than a metallic contact is that it minimizes the proximity
effect between the contact and the superconductor, which
leads to a suppression in the superconducting gap close to the
interface.
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APPENDIX: DERIVATION OF THE USADEL EQUATION

We here give some more details about the underlying
assumptions of the Usadel equation given in Eq. (1). Our start-
ing point for deriving the Usadel equation is the continuum
Hamiltonian

H (r, t ) =
∫

dr
∑

σ

ψ†
σ (r, t )

(
− 1

2m
∇2

r − μ
)
ψσ (r, t )

+ 1

2

∫
dr [�(r)ψ†

↑(r, t )ψ†
↓(r, t ) + H.c.]

+
∫

dr
∑
σ,σ ′

ψ†
σ (r, t )U tot

σ,σ ′ (r)ψσ ′ (r, t ), (A1)

where ψ (†)
σ (r, t ) is a field operator annihilating (creating)

a spin-σ electron at position r and time t . The first term
introduces the kinetic energy for electrons of mass m,
and the chemical potential μ. The second term describes
superconducting attractive interaction in the mean field ap-
proximation. The superconducting gap is defined as �(r) =
V 〈ψ↑(r)ψ↓(r)〉. The last term introduces the total scattering
potential from the impurities.

We define a four-vector field operator in Nambu ⊗ spin
space as

ψ̂ (r, t ) = [ψ↑(r, t ) ψ↓(r, t ) ψ
†
↑(r, t ) ψ

†
↓(r, t )]T . (A2)

We also define the retarded, advanced, and Keldysh Green’s
functions in Nambu ⊗ spin space as

[ĜR(1, 2)]i, j = −i
(t1 − t2)

×
∑

k

(ρ̂3)ik〈{[ψ (1)]k, [ψ̂†(2)] j}〉, (A3)

[ĜA(1, 2)]i, j = i
(t2 − t1)

×
∑

k

(ρ̂3)ik〈{[ψ̂ (1)]k, [ψ̂†(2)] j}〉, (A4)

[ĜK (1, 2)]i, j = − i
∑

k

(ρ̂3)ik〈[[ψ̂ (1)]k, [ψ̂†(2)] j]〉, (A5)

respectively, where (1,2) is shorthand notation for
(r1, t1, r2, t2). These are elements of the Green’s function
Ǧ(1, 2) in Keldysh space as defined for the quasiclassical
Green’s function in Eq. (2). From the Heisenberg equations
of motion for the field operators, we find that the equations
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of motion for the Keldysh space Green’s function can be
written as

[i∂t1 ρ̂3 − Ĥ (r1)]Ǧ(1, 2) = δ(1 − 2)ρ̌0, (A6)

Ǧ(1, 2)[i∂t2 ρ̂3 − ρ̂3Ĥ (r2)ρ̂3]† = δ(1 − 2)ρ̌0. (A7)

where

Ĥ (r) =
(

− 1

2m
∇2

r − μ

)
ρ̂0 − �̂S(r) + Ûtot(r). (A8)

The scattering potential matrix Ûtot(r) = U (r) + Ûso(r) +
Ûsf(r) describe scattering on nonmagnetic impurities, spin-
orbit impurity scattering, and scattering on magnetic impu-
rities, respectively. The scattering potentials are given by

U (r) =
∑

i

u(r − ri ), (A9)

Ûso(r) =
∑

i

iα[ρ̂3σ̂ × ∇ru(r − ri )] · ∇r, (A10)

Ûsf(r) =
∑

i

um(r − ri )σ̂ · Si, (A11)

where u(r − ri ) and um(r − ri ) are the scattering potentials of
a single nonmagnetic and magnetic impurity, and Si is the spin
of the magnetic impurity at position ri.

In order to solve Eqs. (A6) and (A7), we must replace the
impurity potentials by self-energies. To do this, we split the
Hamiltonian up into two parts, Ĥ (r) = Ĥ0(r) + Ûtot(r), where
Ĥ0(r) describes the system in the absence of impurity scatter-
ing. We introduce self-energies through the Dyson equations

Ǧ(1, 2) = Ǧ0(1, 2) + Ǧ0 • �̂ • Ǧ(1, 2), (A12)

Ǧ(1, 2) = Ǧ0(1, 2) + Ǧ • �̂† • Ǧ0(1, 2), (A13)

where the self-energies are defined as �̂(1, 2) =
δ(1 − 2)Ûtot(r2). Above, Ǧ0(1, 2) is the Green’s function
in the absence of impurity scattering, and we have introduced
the bullet product

A • B(1, 2) =
∫

d3 A(1, 3)B(3, 2). (A14)

We solve the Dyson equations iteratively within the self-
consistent Born approximation by neglecting terms above the
second order in �̂ • Ǧ and Ǧ • �̂†. Since we are not interested
in one specific impurity configuration, we take the average
over all impurities,

〈· · · 〉av =
N∏

n=1

(
1

V

∫
drn

)
· · · , (A15)

where V is the volume of the system. We assume that
the Green’s function is approximately equal to its impurity-
averaged value. By acting with [i∂t1 ρ̂3 − Ĥ0(r1)] and [i∂t2 ρ̂3 −
ρ̂3Ĥ0(r2)ρ̂3] on the resulting equations, we obtain expressions
on a similar form as Eqs. (A6) and (A7) where the impurity
potentials are replaced by expressions involving self-energies
and impurity averaged Green’s functions. Subtracting the two

equations, we find that

[i∂t1 ρ̂3 − Ĥ0(r1)]Ǧav(1, 2) − Ǧav(1, 2)[i∂t2 ρ̂3 − ρ̂3Ĥ0(r2)ρ̂3]†

− [〈�̂ • Ǧav • �̂〉av • Ǧav](1, 2) = 0. (A16)

In order to arrive at Eq. (1) we now need to introduce sev-
eral approximations to the above equation. We first introduce
center-of-mass and relative coordinates R = (r1 + r2)/2 and
r = r1 − r2, as well as absolute and relative time coordinates
T = (t1 + t2)/2 and t = t1 − t2. We assume that the Green’s
function is independent of the absolute time coordinate, and
that all quantities varies slowly in space compared to the
Fermi wavelength. This allows us to keep only the first order
gradients in the center of mass coordinate. We introduce the
Fourier transform and its inverse,

Ǧav(R, p, ε) =
∫

dr
∫

dt e−ip·r+iεt Ǧav(R, r, t ), (A17)

Ǧav(R, r, t ) =
∫

d p
(2π )3

∫
dε

2π
eip·r−iεt Ǧav(R, p, ε). (A18)

Under these assumptions, the Fourier transform of the bullet
product between two functions A(R, p, ε) and B(R, p, ε) is
given by

A • B(R, p, ε) = A(R, p, ε)B(R, p, ε)

+ i

2
[∇RA(R, p, ε) · ∇pB(R, p, ε)

− ∇pA(R, p, ε) · ∇RB(R, p, ε)]. (A19)

Next, we assume that the absolute value of the momentum
p is approximately equal to the Fermi momentum pF . This
allows us to apply the quasiclassical approximation∫

d p
(2π )3

Ǧav(R, p, ε) ≈ N0

∫
dξpF

∫
depF

4π
Ǧav(R, pF , ε).

(A20)

Above, N0 is the DOS at the Fermi level, ξpF = p2
F /2m, and

epF = pF /pF describes the direction of the momentum. We
will use the shorthand notation 〈· · · 〉pF = ∫

(depF /4π ) for the
average over all directions of the momentum. Moreover, we
introduce the quasiclassical Green’s function

ǧav(R, pF , ε) = i

π

∫
dξpF Ǧav(R, pF , ε). (A21)

In the diffusive limit, the quasiclassical Green’s function can
be approximated as

ǧav(R, pF , ε) ≈ ǧs
av(R, ε) + epF · ǧp

av(R, ε). (A22)

We assume that |ǧp
av(R, ε)| � ǧs

av(R, ε) and neglect terms of
second order in ǧp

av(R, ε).
After applying all these approximations to Eq. (A16), we

separate out the even contributions in epF by averaging over
all epF . We next separate out the odd contributions in epF by
multiplying the equation by epF before doing the averaging. In
the odd equation, we assume that the scattering on nonmag-
netic impurities dominates over all other terms, and use the
normalization condition

ǧav(R, pF , ε)ǧav(R, pF , ε) = ρ̌0 (A23)
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to express ǧp
av(R, ε) in terms of ǧs

av(R, ε) as

ǧp
av(R, ε) = −τvF ǧs

av(R, ε)∇Rǧs
av(R, ε). (A24)

This leaves us with contributions only from second order
terms in each of the three scattering potentials. Cross terms
including two different types of scattering potential either

disappear when we neglect terms from the odd equation, or
they are neglected due to averaging over all directions of
the spins of the magnetic impurities. In treating second order
terms in the magnetic impurity potential, the same averaging
over spin directions causes cross terms between two different
magnetic impurities to give zero contribution. We can then
write SiS j = S(S + 1)δi, j . Inserting Eq. (A24) into the even
equation results in the Usadel equation given in Eq. (1).
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