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RKKY interaction in a spin-split superconductor
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We determine theoretically the interaction between two magnetic impurities embedded in a spin-split s-wave
superconductor. The spin-splitting in the superconductor gives rise to two different interaction types between
the impurity spins, depending on whether their spins lie in the plane perpendicular to the spin-splitting field
(Heisenberg) or not (Ising). For impurity separation distances exceeding ξS , we find that the magnitude of the
spin-splitting can determine whether an antiferromagnetic or ferromagnetic alignment of the impurity spins is
preferred by the RKKY interaction. Moreover, the Ising and Heisenberg terms of the RKKY interaction alternate
on being the dominant term and their magnitudes oscillate as a function of distance between the impurities.
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I. INTRODUCTION

Superconductors have been experimentally demonstrated
to exhibit strongly modified spin-dependent transport prop-
erties [1,2] with respect to normal metals, such as spin
relaxation times [3–6] and magnetoresistance effects [7]. Con-
sequently, superconductors have the potential to advance re-
search on spintronic devices, in which the spin of the electron
is utilized as the information carrier instead of the electronic
charge [8–10]. Intrinsically coexisting ferromagnetism and
superconductivity, proposed more than 60 years ago [11–13],
is only possible under rather strict conditions. On the other
hand, by creating hybrid structures of ferromagnetic and su-
perconducting materials, it is possible to study the interplay
between these orders by virtue of the proximity effect [14].

The Ruderman–Kittel–Kasuya–Yosida (RKKY) interac-
tion [15–17] between magnetic impurities is an exchange
interaction mediated by conduction electrons of the host ma-
terial that the impurities are embedded in. This interaction
has been vastly studied in different materials with spin-
degeneracy, including systems with Dirac fermion excitations
[18–20] and superconducting materials [21–26]. In a clean
metal, the RKKY interaction decays as R−D where R is the
distance between the impurities and D is the dimension of
the system. Likewise, the interaction decays faster in higher
dimensions also in superconducting systems.

In the presence of spin-degeneracy, the RKKY interaction
between magnetic impurities is isotropic in spin space and has
no preferred direction for the impurity magnetic moments.
On the other hand, it has been shown that in spin nonde-
generate systems, the interaction can have different terms of
the types Heisenberg, Ising, and Dzyaloshinskii-Moriya (DM)
[27], depending on the spin structure of the host material. For
instance, in a uniformly spin polarized system the Ising term
arises [28] whereas in systems with spin-orbit interactions a
DM interaction term can emerge [29–33]. In particular, the
interaction between magnetic impurities located on top of an
s-wave superconductor with Rashba spin-orbit coupling has

been found to feature an additional DM term due to the spin-
orbit coupling in the superconductor [34]. Similar results have
been obtained for the interaction between magnetic impurities
on top of a topological insulator with proximity-induced su-
perconductivity from an s-wave superconductor [35].

To the best of our knowledge, the RKKY interaction be-
tween magnetic impurities in a spin-split superconductor (see
Fig. 1) has not been studied. Such superconductors have in
recent years been demonstrated to give rise to interesting
spin-dependent thermoelectric effects and spin diffusion prop-
erties [36]. Due to the spin-splitting, the density of states in
the superconductor acquires a large spin-dependent particle-
hole asymmetry. Therefore, one might expect that the RKKY
interaction could be modified compared to both the purely
superconducting case and the case of a superconductor with
spin-orbit interaction.

In practice, a spin-split superconductor is achieved by ei-
ther exposing a thin-film superconductor to a strong in-plane
magnetic field or by growing a thin-film superconductor on
top of a ferromagnetic insulator. In this case, the thickness of
the superconductor has to be much smaller than the magnetic
penetration depth λ. When the superconductor has a thickness
smaller than the superconducting coherence length ξS , it can
be well approximated by a superconductor coexisting with a
homogeneous spin-splitting field.

In this paper, we will consider the RKKY interaction
between two magnetic impurity atoms embedded in a spin-
split conventional s-wave superconductor, contrasting it to the
interaction between magnetic impurities in a normal metal
subject to a spin-splitting field. While the RKKY interaction,
in the normal metal case, is mediated by electrons, the RKKY
in the superconducting case is mediated by quasiparticles that
are a mix of electron and hole excitations. However, in both
the superconducting and normal case a spin-splitting field in-
duced via proximity to a ferromagnetic insulator lifts the spin
degeneracy of the system. This causes the RKKY-interaction
to have two parts: a Heisenberg- and Ising-term. In the present
context, a Heisenberg term denotes the interaction energy
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FIG. 1. (a) Schematic illustration of a possible experimental real-
ization of the system. A thin-film superconductor is placed on top of
a ferromagnetic insulator. Quasiparticle reflection at the interface to
the ferromagnetic insulator induces an effective spin-splitting field
inside the superconductor. (b) Circular Fermi-surface with Fermi
vector magnitude of 0.3 Å−1 used in our calculations. (c) Super-
conducting gap as a function of external exchange field for different
temperature magnitudes.

obtained when the impurity spins lie in the plane perpendic-
ular to the spin-splitting field. The Ising term describes the
interaction for the case when the impurity spins are collinear
with the spin-splitting field.

We find that it is possible to switch between an AFM and
FM interaction between the magnetic impurities by adjusting
the magnitude of the spin-splitting field. While this effect is in
principle attainable even in the normal-state of the system, it is
considerably more robust in the superconducting state where
it occurs in a much larger regime of separation distances be-
tween the impurities compared to the normal state. We discuss
a possible experimental way to adjust the spin-splitting field
strength in order to see this effect. Moreover, we find that the
magnitudes of the Ising and Heisenberg terms of the RKKY
interaction oscillate as a function of distance between the im-
purities, causing them to take turns on which is the dominant
term.

This paper is structured as follows. We introduce the
methodology used to compute the RKKY interaction in
Sec. II. In Sec. III, we present a numerical evaluation of the
expression for the RKKY interaction and discuss the underly-
ing physics of its behavior. Finally, we summarize our findings
in Sec. IV.

II. MODEL AND METHODS

We consider a thin film s-wave superconductor in presence
of a spin-splitting field, which causes a spin-splitting in the

electron bands, as shown in Fig. 1. The superconductor is
modelled by a tight-binding Hamiltonian including an attrac-
tive interaction between the electrons

H0 = −
∑

〈i, j〉,σ
ti jc

†
i,σ c j,σ +

∑
i

V c†
i,↑c†

i,↓ci,↓ci,↑

−
∑
i,σ

(σhexc + μ)c†
i,σ ci,σ .

(1)

The first term represents the nearest-neighbor hopping term
with ti j = t being the hopping parameter. The second term is
the BCS on-site attractive interaction with V < 0 being the
pairing strength. In the third term, hexc is the spin-splitting
field. In our model, we consider this field to be oriented in
the z direction, which is assumed to lie in the film plane of the
superconductor. The Meissner response of the superconductor
is well known to be suppressed in a thin-film geometry when
the field is applied in plane and we may neglect orbital effects.

We consider the system having continuous boundary con-
ditions along both in-plane directions (x and z axes here).
Using a Fourier transformation ciα = 1√

N

∑
k e−ik·ri ck,α where

N is the total number of the lattice points, leads to the follow-
ing form of the Hamiltonian in the k space:

H0 =
∑
k,σ

(ζk − σhexc)c†
k,σ

ck,σ +
∑
kk′

V c†
k,↑c†

−k,↓c−k′,↓ck′,↑,

(2)

where ζk = −2t[ cos(kxax ) + cos(kzaz )] − μ and in it ax(az)
is the lattice constant along x(z) axis, also μ is the chemical
potential. Here, we have redefined V/N → V .

Performing a mean-field treatment, we introduce the super-
conducting gap

� = −V
∑

k′
〈c−k′,↓ck′,↑〉. (3)

We then obtain

H0 =
∑
k,σ

(ζk − σhexc)c†
k,σ

ck,σ −
∑
k,σ

�c†
k,↑c†

−k,↓

−
∑
k,σ

�∗c−k,↓ck,↑ − |�|2
V

.

(4)

Using the following transformation (see Appendix A for de-
tails), (

ck,σ

c†
−k,−σ

)
=

(
υk σνk

−σνk υk

)(
γk,σ

γ
†
−k,−σ

)
, (5)

where

υk = 1√
2

√√√√1 + ζk√
ζ 2

k + �2
, νk = 1√

2

√√√√1 − ζk√
ζ 2

k + �2
,

(6)

the diagonalized form of H0 will be

H0 = −|�|2
V

+
∑

k

ζk −
∑

k

Ek +
∑
k,σ

Ek,σ γ
†
k,σ

γk,σ . (7)
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Here, Ek =
√

ζ 2
k + �2 and Ek,σ = Ek − σhexc. Expressing

the electron operators in terms of the quasiparticle operators
Eq. (5), the gap equation takes the form

1 = −V

2

∑
k

1

2

1√
ζ 2

k + �2

[
tanh

(
β

2

(√
ζ 2

k + �2 − hexc
))

+ tanh
(

β

2

(√
ζ 2

k + �2 + hexc
))]

. (8)

In this paper, the gap equation is solved self-consistently.
Further, the free energy of the system is given by

F = −|�|2
V

+
∑

k

ζk −
∑

k

Ek − 1

β

∑
k,σ

ln(1 + e−βEk,σ ). (9)

An important characteristic length scale in the system is
the superconducting coherence length ξS , which is indicative
of the size of the Cooper pairs. In the BCS formalism, this
quantity for an isotropic s-wave superconductor is given by
ξS = h̄vF

π�0
, where h̄ is the reduced Plank constant, vF is the

Fermi velocity, and �0 is the superconducting gap at zero
temperature. The Fermi velocity is vF = 1

h̄
dζk

dk |k=kF .
The main purpose of this paper is to determine the indirect

exchange interaction between two magnetic impurity atoms
mediated by the quasiparticles inside a superconductor de-
scribed by the Hamiltonian in Eq. (1). The coupling between
the quasiparticle spins and the magnetic impurities will be
treated perturbatively. The total Hamiltonian can then be writ-
ten as

H = H0 + �H, (10)

in which the first part is the nonperturbative Hamiltonian
given by Eq. (1) and the second part is the perturbation
defined by

�H = J
2∑

j=1

S j · s j . (11)

Here, J is the strength of the interaction between the spin
of an impurity atom (S j) and an itinerant spin (s j) at lattice
site j. The impurity spin is treated classically like a normal
vector and itinerant spin is treated quantum mechanically and
represented by the operator s j = ∑

αβ σαβc†
jαc jβ . Here, σ =

(σx, σy, σz ) is the Pauli matrix vector. Performing a Fourier
transformation, the perturbation term in the Hamiltonian be-
comes

�H =
∑

k,k′
α,β

∑
j

J

N
ei(k−k′ )·r j (S j · σαβ )c†

k,α
ck′,β . (12)

By means of Eq. (5), we change the ck,α operators into
quasiparticle operators. Then, by means of a Schrieffer-Wolff
transformation (SWT), the effective interaction between the
magnetic impurity atoms is obtained to second order in the
coupling J . To obtain the effective interaction, we consider a
unitary matrix U of the form U = eiS . The unitary transfor-
mation of the total Hamiltonian H is then

H̃ = UHU † = eiSHe−iS. (13)

The above equation may be expanded as

H̃ = H0 + �H + i[S, H0] + i[S,�H] + O(J3), (14)

where we take S = JS′ and discard higher order terms in
J . This leads to the following effective Hamiltonian for the
system:

H̃ = H0 + �H + i[S, H0] + i[S,�H]. (15)

We now choose the unitary transformation S so that �H +
i[S, H0] = 0 and the effective Hamiltonian becomes H̃ =
H0 + i[S,�H]. In order to accomplish this, we consider the
following Ansatz for S:

S =
∑

k,k′
α,β

(A k,k′
α,β

γ
†
k,α

γk′,β + B k,k′
α,β

γ
†
k,α

γ
†
−k′,−β

+ C k,k′
α,β

γ−k,−αγk′,β + D k,k′
α,β

γ−k,−αγ
†
−k′,−β

).

(16)

Computing the commutator [S, H0], and requiring �H +
i[S, H0] = 0, the coefficients in S are found to be

A k,k′
α,β

= i
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

υ∗
k υk′

Ek′,β − Ek,α

,

B k,k′
α,β

= −βi
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

υ∗
k νk′

E−k′,−β + Ek,α

,

C k,k′
α,β

= αi
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

ν∗
kυk′

Ek′,β + E−k,−α

,

D k,k′
α,β

= αβi
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

ν∗
kνk′

−E−k′,−β + E−k,−α

.

(17)

The final form of the effective Hamiltonian H̃ is obtained
after calculating [S,�H]. In this Hamiltonian, we neglect
terms representing feedback from the impurity spin on the
superconductor. Feedback from the impurities would ideally
be included by self-consistently taking into account both the
effect of the presence of the superconductor on the impurity
spins and the effect of the impurity spins on the superconduct-
ing gap, giving rise to spatial variation of the superconducting
order parameter. As the density of impurities in the system
is very low, neglecting feedback from the impurities can be
justified.

Computing the expectation value of the effective Hamilto-
nian H̃ (given explicitly in Appendix B) leads to two different
terms in the interaction energy between the two magnetic
impurities: a 2D Heisenberg-like (EH ) and Ising-like (EI )
interaction

〈H̃〉 = E0 + 2EI
(
Sz

1Sz
2

) + 2EH
(
Sx

1Sx
2 + Sy

1Sy
2

)
, (18)

where E0 is a constant. In Sec. III, we will consider these EI

and EH terms in more detail analytically and then evaluate
them numerically to determine the nature of the RKKY inter-
action in a spin-split superconductor.
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III. RESULTS AND DISCUSSION

A. Analytical

The physical significance of the RKKY interaction terms
EI and EH is described as follows. The Ising term EI deter-
mines the strength of the interaction between the magnetic
impurities when they are oriented collinearly to the spin-
splitting field. For EI > 0, the interaction prefers an AFM
alignment of the impurity spins. For EI < 0, they prefer a FM

alignment. The Heisenberg term EH determines the strength
of the interaction between the magnetic impurities when they
lie in the plane perpendicular to the spin-splitting field. The
same considerations regarding the sign for EH hold as for the
Ising term.

The explicit expression for the RKKY Ising-like interac-
tion between the spin of impurity atom 1 and the spin of
impurity atom 2 is found to be

EI = −1

2

∑
k,k′

(
J

N

)2

ei(k′−k)·R21

[
(|υkυk′ |2 + |νkνk′ |2)

(
n(Ek,↑) − n(Ek′,↑)

Ek′,↑ − Ek,↑
+ n(Ek,↓) − n(Ek′,↓)

Ek′,↓ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

×
(

n(Ek′,↑) − n(Ek,↑)

Ek′,↑ − Ek,↑
+ n(Ek′,↓) − n(Ek,↓)

Ek′,↓ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

(
1 − n(Ek,↑) − n(Ek′,↓)

Ek′,↓ + Ek,↑
+ 1 − n(Ek,↓) − n(Ek′,↑)

Ek′,↑ + Ek,↓

)

+
(

1 − n(Ek,↑) − n(Ek′,↓)

Ek,↑ + Ek′,↓
+ 1 − n(Ek,↓) − n(Ek′,↑)

Ek,↓ + Ek′,↑

)
2υ∗

k υkν
∗
k′νk′

]
.

(19)

Here, R21 = r2 − r1 is the relative distance between the two impurity atoms and n(Ek,σ ) = (1 + eβEk,σ )−1 is the Fermi-Dirac
distribution function. The Heisenberg-like term in the RKKY interaction energy is

EH = −1

2

∑
k,k′

(
J

N

)2

ei(k′−k)·R21

[
(|υkυk′ |2 + |νk′νk|2)

(
n(Ek,↑) − n(Ek′,↓)

Ek′,↓ − Ek,↑
+ n(Ek,↓) − n(Ek′,↑)

Ek′,↑ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

×
(

n(Ek′,↓) − n(Ek,↑)

Ek′,↓ − Ek,↑
+ n(Ek′,↑) − n(Ek,↓)

Ek′,↑ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

(
1 − n(Ek,↑) − n(Ek′,↑)

Ek′,↑ + Ek,↑
+ 1 − n(Ek,↓) − n(Ek′,↓)

Ek′,↓ + Ek,↓

)

+
(

1 − n(Ek,↑) − n(Ek′,↑)

Ek,↑ + Ek′,↑
+ 1 − n(Ek,↓) − n(Ek′,↓)

Ek,↓ + Ek′,↓

)
2υ∗

k υkν
∗
k′νk′

]
.

(20)

In the limiting case of hexc = 0, the two above terms are
equal. The system then displays a normal 3D Heisenberg-like
interaction between the two impurity atoms hosted by an s-
wave superconductor, which is spin isotropic as it should.

B. Numerical

Proceeding to a numerical evaluation of EH and EI , we
consider a system of N = 800 × 800 lattice points in the
xz plane. We choose V so that the zero-temperature super-
conducting gap takes the value � ≈ 1.5 meV. The lattice
constants are set to ax = az = 3.5 Å. The hopping parameter
and chemical potential magnitudes are taken to be t = 0.2 eV
and μ = −0.6 eV, respectively. The chemical potential is
chosen to provide us with a circular Fermi surface as shown
in Fig. 1(b). The superconducting gap at T = 0K , the Fermi
velocity, the Fermi wave vector, and coherence length take the
values �0 = 1.49 meV, vF = 1.91 × 105 m

s , kF ≈ 0.3 Å, and
ξS = 269 Å, respectively.

Figure 1(c) illustrates the gap versus the spin-splitting field
for different temperatures. A nontrivial solution to the gap
equation does not guarantee that the superconducting phase
is the ground state of the system. For each temperature and
field strength, the ground state of the system (either � = 0 or
� �= 0) has therefore been determined by computing the free
energy of the system given in Eq. (9). At T ≈ 0 K the largest
spin-splitting, which allows for a superconducting phase as
the ground state is approximately hexc ≈ 0.7�0, which is

around 1.07 meV with our set of parameters. This is consistent
with the Clogston-Chandrasekhar limit. It is also seen from
the figure that increasing temperature reduces the gap until a
phase transition occurs at the critical temperature, which is
around TC = 9.829 K for hexc = 0. A superconductor with a
similar set of parameters as chosen above is niobium (Nb)
with a critical temperature TC ≈ 9.2 K [37].

1. Low temperatures T � Tc

We start by considering temperatures well within the super-
conducting phase T � Tc and here set T = 1 K. The strength
of the exchange interaction between the impurity spins and
the quasiparticle spins is taken to be J = 1 meV. For hexc = 0,
the RKKY energies Eq. (19) and Eq. (20) are presented as a
function of the distance between the two impurity atoms in
Fig. 2(a). The RKKY energy goes to zero as R21 increases as
seen in the inset of Fig. 2(a). The effect of the superconducting
gap is primarily to shift the RKKY energy above zero for
distances larger than coherence length ξS . Consequently, the
interaction prefers an AFM orientation of the impurity spins
at such distances. In the normal state of the system, the RKKY
signal changes sign between FM and AFM alignment, also
for large distances. These results are consistent with previous
literature.

Considering instead the case where the spin-splitting field
hexc is present, an interesting possibility with regard to the
tunability of the RKKY interaction opens up. Since the RKKY
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FIG. 2. (a) RKKY energy vs R21 when hexc = 0. The inset rep-
resents the energies for distances smaller than coherence length.
Furthermore, the energies as a function of exchange field for
(b) R21 = 374.7Å, (c) R21 = 376.18Å, (d) R21 = 377.59Å, and (e)
R21 = 379Å are computed. Here, NH (NI ) is the Heisenberg (Ising)
RKKY interaction energy for the normal state of the system while
SH (SI ) is Heisenberg (Ising) RKKY interaction energy for the super-
conducting phase. The temperature is fixed at 1 k.

interaction E is positive in the superconducting state at hexc =
0 for R21 > ξS whereas it oscillates in the normal-state, driving
the system through a phase transition by increasing hexc above
its critical value will change the sign of the RKKY interaction
whenever the oscillations in the normal state causes E < 0.
We illustrate this in Figs. 2(b)–2(e), which shows the RKKY
energies at four different separation distances taken from the
dashed oval region marked in Fig. 2(a).

It can be seen from Figs. 2(c)–2(e) that by increasing hexc

one can change the RKKY energy sign from AFM alignment
into FM alignment and vice versa. In contrast to the normal
state of the system where E varies significantly with hexc, the
RKKY interaction in the superconducting phase is practically
independent of hexc in comparison. This can be understood
from the fact that the superconducting gap changes very
slowly as a function of hexc for low temperatures, as seen in
Fig. 1(c). As a result, an abrupt change occurs once the phase
transition to the normal state takes place, which can cause
a sign change in the RKKY interaction. A sign change can
in principle also occur in the normal state of the system, as
shown in Fig. 2(c), but this effect is far less robust than the one
observed in the superconducting state. In the normal state of
the system, the sign change can only occur at carefully chosen
separation distances R21, whereas the sign change occurs in
the superconducting state for a much larger set of separa-
tion distances. More precisely, when the separation distance

FIG. 3. Difference between the Ising and Heisenberg energies for
three different values of the spin-splitting field at T = 1 K for the
superconducting state.

between the impurities is larger than the coherence length, the
sign change occurs in the superconducting state whenever the
normal-state RKKY oscillations cause E to be negative. In
principle, above the coherence length, this corresponds to half
of all separation distances.

It is also of interest to determine whether the interaction
between the magnetic impurities in the system favor their
spins being collinear with the spin-splitting field or lying in
the plane perpendicular to it. To this end, we compute the
difference between the magnitude of the Ising and Heisenberg
energies (|EI | − |EH |) as a function of distance between the
impurities for several different values of the spin-splitting
field in the superconducting phase (Fig. 3). The term, which
is largest in magnitude will dictate whether the interaction
prefers the impurity spins to orient in the plane normal to the
exchange field or collinearly with it. The sign of the largest
term thereafter determines whether the interaction prefers the
impurity spins to orient parallel or antiparallel. The difference
in magnitude between the Ising and Heisenberg interaction
energies oscillates as a function of separation distance, mak-
ing the two interaction terms take turns on being dominant.

2. High temperatures T � Tc

In order to show the effect of temperature on the results, we
consider in this section T = 4 K, taken to represent the regime
T � Tc. Similarly to the previous section, we first compute
the change in the RKKY energy as a function of R21 when
no spin-splitting field is present for both the normal state
and superconducting phase of the system in Fig. 4(a). The
results are qualitatively similar to the low-temperature case.
For R21 � ξS , the signal oscillates both in the normal and
superconducting state, while above ξS the interaction between
the magnetic impurities is AFM in the superconducting state.

When the spin-splitting field is present, as shown in
Figs. 4(b)–4(e), the RKKY interaction in the superconducting
state is more strongly affected by a change in hexc than in
the low-temperature case considered in the previous section.
This can be understood from the exchange field having a
larger effect on the superconducting order parameter at higher
temperatures, as displayed in Fig. 1(c). As a result, it becomes
easier to change the sign of the RKKY interaction energies
EI and EH by increasing hexc while still remaining in the
superconducting phase of the system. In fact, it can be seen
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FIG. 4. (a) RKKY energy vs R21 when hexc = 0. The RKKY
energies as a function of exchange field for (b) R21 = 386.561Å,
(c) R21 = 387.975Å, (d) R21 = 388.908Å, and (e) R21 = 390.803Å
are computed. Here, NH (NI ) is Heisenberg (Ising) RKKY interac-
tion energy for normal metal state and SH (SI ) is Heisenberg (Ising)
RKKY interaction energy for the superconducting phase. The tem-
perature is fixed at 4 K.

from Figs. 4(c)–4(e) that the sign change can occur for much
lower spin-splitting fields than in the low-temperature case.
We also find that a sign change of the RKKY interaction
becomes more difficult to achieve in the normal state of the
system and no such sign change is observed in any of the plots
in Fig. 4. In fact, the sign change now only occurs at highly
selective separation distances R21 in the normal state where
the RKKY oscillations cause the interaction to almost vanish.

Moreover, Fig. 5 shows that the interaction between the
two impurity spins still oscillates between Heisenberg and

FIG. 5. Difference between the Ising and Heisenberg energies for
three different external values of the spin-splitting field at T = 4 K
for the superconducting state.

FIG. 6. Possible experimental setup that can be used to test
the effect on the RKKY energies when changing the effective
Zeeman-splitting in the superconductor. By growing several super-
conducting layers on top of a ferromagnetic insulators and making
the thickness of each superconducting layer different, the effective
spin-splitting experienced by magnetic impurities placed on top of
the superconducting surfaces will be different. The thickness of the
superconducting layers should in all cases be much smaller than the
penetration depth λ and smaller than the superconducting coherence
length ξS in order to justify the approximation of a homogeneous
spin-splitting field.

Ising terms as a function of the distance between the two im-
purity spins even for the case of higher temperatures T � Tc.
The magnitude of the oscillations in Fig. 5 increases with hexc

in both cases. This is reasonable since the spin-rotational in-
variance becomes more strongly broken with increasing hexc,
making the Ising and Heisenberg configurations more distinct
in energy.

3. Discussion of experimental aspects

We close this section by discussing possible experimental
realizations of the proposed system. The magnitude of the
spin-splitting field hexc can be readily tuned by an external
magnetic field. Alternatively, the spin-splitting can be induced
by proximity coupling the superconductor to a ferromag-
netic insulator (FMI), as displayed in Fig. 6. An effective
spin-splitting field in the superconductor then arises from
quasiparticle reflections at the interface between the super-
conductor and the ferromagnet. The spin-splitting field can be
assumed to be uniform if the thickness of the superconductor
is much smaller than the coherence length. Also, the magni-
tude of the spin-splitting scales as one over the thickness of the
superconducting layer [36]. The effective exchange field in the
superconductor hexc can therefore be tuned through the thick-
ness of the superconducting layer. Figure 6 illustrates such a
set up where several superconducting samples with varying
thickness are grown on top of the same FMI layer. Magnetic
impurity spins placed on the top surface of the superconductor
will then couple via quasiparticles that experience different
values of the effective hexc, depending on the thickness of the
superconducting layer.

For RKKY interaction in spin-polarized systems [28], an
important point to note is that the preferred direction of the
impurity spins will not be solely determined by the RKKY
interaction. There are also local effective anisotropy terms of
the type Ez(Sz

j )
2 and Exy[(Sx

j )2 + (Sy
j )

2] for both impurities
j = 1, 2 that are contained in E0 in Eq. (18). Moreover, when
inducing a magnetization in the superconductor, there will
be a coupling between the induced magnetization and the
impurities, which is first order in the perturbation parameter
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J and therefore able to dominate over the RKKY interaction
for sufficiently large spin-splitting. As the interaction between
the impurity spins and the homogeneous magnetization of the
superconductor will be equal for both impurities, this interac-
tion will act to align the impurity spins. If the spin-splitting
arises from an external magnetic field, there will in addition
be a direct Zeeman coupling to the impurity spins. This direct
Zeeman coupling, which would otherwise typically be the
dominant interaction determining the impurity spin orienta-
tion, can be avoided by inducing the spin-splitting through
proximity to a ferromagnet.

We want to underline that, although there will be other
interactions influencing the magnetic impurity configuration,
the RKKY interaction is detectable in experiments as it is
the only interaction that depends on the relative orientation
of the impurity spins and the distance between them. A pos-
sible experiment probing the RKKY interaction could be as
follows. Consider the setup in Fig. 6. The impurity spins in the
superconductor will prefer to align due to the coupling to the
exchange field. Using, e.g., spin-polarized scanning tunneling
microscopy, the energy needed to flip one of the two spins can
be measured [38,39]. The energy necessary to flip this spin
at a given impurity separation distance will be decided by the
RKKY interaction as well as other present interactions. By
subtracting the energy necessary to flip a spin in the absence of
RKKY interaction (when there is no other impurity nearby),
the RKKY interaction can then be determined.

IV. SUMMARY

In conclusion, we have determined the RKKY interaction
between magnetic impurities in a spin-split superconductor, in
which case the interaction becomes anisotropic in spin space.
The magnitudes of the Ising and Heisenberg terms of the
RKKY interaction alternate on being the dominant term and
oscillate as a function of distance between the impurities, both
at low temperatures T � Tc and high temperatures T � Tc.

We also demonstrate that it is possible to change the
preferred orientation of the RKKY interaction from an an-
tiferromagnetic configuration of impurity spins to a parallel
configuration by adjusting the magnitude of the spin-splitting
field hexc. Such an effect is in principle also attainable in
the normal state of the system, but the effect is considerably
more robust in the superconducting state where it occurs for a
much larger set of separation distances between the impurities
compared to the normal state.
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APPENDIX A: BOGOLIUBOV-DE GENNES
TRANSFORMATION

In this section, we give a brief derivation of Bogoliubov-de
Gennes transformation in Eq. (5). We first rewrite Eq. (4) as
follows:

H0 = 1

2

∑
k,σ

(c†
k,σ

c−k,−σ )

(
ζk − σhexc −σ�

−σ� −ζk − σhexc

)

×
(

ck,σ

c†
−k,−σ

)
− |�|2

V
+

∑
k

ζk

= 1

2

∑
k,σ

ϕ
†
k,σ

Mϕk,σ − |�|2
V

+
∑

k

ζk.

(A1)

In order to diagonalize the Hamiltonian, we consider the uni-
tary matrix Pk,σ of the form

P†
k,σ

= (�+
k,σ

�−
k,σ

),

�+ =
(

υk

−σνk

)
,�− =

(
σνk

υk

)
,

(A2)

where �+ and �− are eigenvectors of M. The Hamiltonian
then takes the form

H0 = 1

2

∑
k,σ

ϕ̃
†
k,σ

M̃ϕ̃k,σ − |�|2
V

+
∑

k

ζk. (A3)

We have used

M̃ =
(

E+
k,σ

0
0 E−

k,σ

)
,

ϕ̃k,σ = Pk,σ ϕk,σ =
(

γk,σ

γ
†
−k,−σ

)
.

(A4)

Here, the quasiparticle energies are E±
k,σ

=
±

√
ζ 2

k + (−σ�)2 − σhexc. Using P†
k,σ

ϕ̃k,σ = ϕk,σ leads to
the transformation between normal creation and annihilation
operators and quasiparticle creation and annihilation operators
[Eq. (5)].

APPENDIX B: EFFECTIVE HAMILTONIAN

In order to obtain the Ising and Heisenberg terms of the RKKY interaction, we calculate the expectation value of the effective
Hamiltonian following the procedure outlined in Sec. II. We then obtain

〈H̃〉 =
∑
k,σ

Ek,σ n(Ek,σ ) − 1

2

∑
k,k′
α,β

∑
i, j

(
J

N
)2ei(k′−k)·(r j−ri )

[
|υkυk′ |2 n(Ek,α ) − n(Ek′,β )

Ek′,β − Ek,α

Sαβ
i Sβα

j + αβυ∗
k υk′ν∗

−kν−k′

× n(Ek′,β ) − n(Ek,α )

Ek′,β − Ek,α

Sαβ
i S−α,−β

j + (−αβ )υ∗
k υ−k′νk′ν∗

−k

n(Ek,α ) + n(E−k′,−β ) − 1

E−k′,−β + Ek,α

Sαβ
i S−α,−β

j

094527-7



ATOUSA GHANBARI AND JACOB LINDER PHYSICAL REVIEW B 104, 094527 (2021)

+ υ∗
k υkνk′ν∗

k′
−n(Ek,α ) − n(E−k′,−β ) + 1

Ek,α + E−k′,−β

Sαβ
i Sβα

j − υk′υ∗
k′ν∗

kνk
n(E−k,−α ) + n(Ek′,β ) − 1

Ek′,β + E−k,−α

Sαβ
i Sβα

j

− (−βα)υk′υ∗
−kν

∗
kν−k′

−n(E−k,−α ) − n(Ek′,β ) + 1

Ek′,β + E−k,−α

Sαβ
i S−α,−β

j + (βα)υ∗
−kυ−k′ν∗

kνk′
n(E−k,−α ) − n(E−k′,−β )

E−k,−α − E−k′,−β

Sαβ
i S−α,−β

j

+ |νkνk′ |2 n(E−k′,−β ) − n(E−k,−α )

E−k,−α − E−k′,−β

Sαβ
i Sβα

j

]
. (B1)

Here, we have defined Sαβ
i = Si · σαβ . The first term is a constant that is not relevant for the RKKY interaction. Performing the

Pauli matrix products, the second term in Eq. (B1) leads to the RKKY interaction presented in Eqs. (19) and (20).
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