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Abstract—Given a single-input, single-output (SISO) system
with a Chen-Fliess series representation whose generating series
has a well defined relative degree, it is shown that there is a
notion of universal zero dynamics that describes a set of dynamics
evolving on a locally convex (infinite dimensional) Lie group so
as to render the system’s output exactly zero. Minimum phase in
this setting is defined in terms of the boundedness of the applied
input which zeros the output. As an application, it is shown that
one can design a zero dynamics attack on cyber-infrastructure
using only an estimate of the plant’s generating series. That is,
detailed knowledge of the plant’s internal dynamics is not needed.
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I. INTRODUCTION

Geometric nonlinear control theory in its most basic form
rests on three fundamental concepts: relative degree, feedback
linearization, and zero dynamics. As described, for example,
in [17], [22], each of these notions assumes that the plant has a
smooth local state space realization of finite dimension which
is affine in the control. But beginning with [9] and further
developed in [10], [12], it has been shown that the notion
of relative degree can also be described in a purely input-
output setting assuming the input-output map can be realized
in terms of a Chen-Fliess series [4], [5]. Furthermore, it was
shown in [10] that feedback linearization can also be described
in this setting using concepts from combinatorial algebra to
calculate the feedback linearizing law. That is, the availability
of a finite dimensional state space realization is superfluous
to solving the input-output linearization problem. The goal of
this paper is to address in this setting the third element of
this trifecta, the zero dynamics [18]. The claim is that given
an input-output system having a (not necessarily convergent)
Chen-Fliess series representation whose generating series has
a well defined relative degree, there is a notion of universal
zero dynamics that describes a set of dynamics evolving on
a (infinite dimensional) locally convex Lie group so as to
render the system’s output exactly zero. This idea is inspired
in part by the notion of a universal control system proposed by
Kawski and Sussmann in [20], [26] and recently generalized
by the authors in [11] for networks of systems. In this setting
there is no a priori assumption that the input-output map has
a finite dimensional state space realization. This is in sharp
contrast to other algebraic methods such as those described in
[25], [29] that work exclusively in such a state space setting
using Gröbner bases and differential algebra, respectively.
It is not immediately evident at present how the universal

zero dynamics are related to the standard zero dynamics in
the finite dimensional case. This will be a topic for future
investigation. Nevertheless, from an input-output point of view,
these concepts are indistinguishable in that they lead to the
same nonlinear analogue of a transmission zero. As the title
indicates, the treatment here will be restricted to the single-
input, single-output (SISO) case mainly for brevity. There does
not appear to be any technical barrier to addressing the full
multivariable problem.

A potential application of universal zero dynamics is in
the area of cybersecurity. It has been known for some time
that when control systems are connected to the internet for
monitoring and service, there is also the potential for malicious
activity in the form of zero dynamics attacks [1], [19], [24].
The basic idea is to inject a specially designed input into
the system that can not be detected externally but excites the
internal zero dynamics. If the system is nonminimum phase,
this can be catastrophic. The general belief at present is that
such an attack requires detailed knowledge of a state space
model for the plant. Usually it is assumed that the linearized
dynamics are available. But it will be shown here that all that
is needed to design a zero dynamics attack is some estimate
of the plant’s generating series, linearized or otherwise. Min-
imum phase in this setting will be defined in terms of the
boundedness of the applied input which zeros the output. The
idea is illustrated using a simple example from process control.
While no algorithm is proposed in this paper to estimate the
generating series, it should be mentioned that some aspects
of this problem have appeared in the context of nonlinear
system identification [13]. Therefore, system operators with
sensitive assets connected to the internet should be aware of
this potential threat.

The paper is organized as follows. In the next section some
preliminaries are briefly reviewed to establish the terminology
and notation. In Section III, the notion of universal zero
dynamics is developed first from an algebraic point of view
and then in a geometric setting. In Section IV, some detailed
examples are presented. The conclusions are given in the final
section.

II. PRELIMINARIES

An alphabet X = {x0, x1, . . . , xm} is any nonempty and
finite set of noncommuting symbols referred to as letters. A
word η = xi1 · · ·xik is a finite sequence of letters from X .
The number of letters in a word η, written as |η|, is called
its length. The empty word, ∅, is taken to have length zero.
The collection of all words having length k is denoted by



Xk. Define X∗ =
⋃
k≥0X

k, which is a monoid under the
concatenation product. Any mapping c : X∗ → R` is called
a formal power series. Often c is written as the formal sum
c =

∑
η∈X∗〈c, η〉η, where the coefficient 〈c, η〉 ∈ R` is the

image of η ∈ X∗ under c. The support of c, supp(c), is the set
of all words having nonzero coefficients. A series c is called
proper if ∅6∈supp(c). The set of all noncommutative formal
power series over the alphabet X is denoted by R`〈〈X〉〉.
The subset of series with finite support, i.e., polynomials,
is represented by R`〈X〉. Each set is an associative R-
algebra under the concatenation product and an associative and
commutative R-algebra under the shuffle product, that is, the
bilinear product uniquely specified by the shuffle product of
two words (xiη) (xjξ) = xi(η (xjξ)) + xj((xiη) ξ),
where xi, xj ∈ X , η, ξ ∈ X∗ and with η ∅ = ∅ η = η
[4]. For any letter xi ∈ X , let x−1

i denote the R-linear left-
shift operator defined by x−1

i (η) = η′ when η = xiη
′ and

zero otherwise. Higher order shifts are defined inductively via
(xiξ)

−1(·) = ξ−1x−1
i (·), where ξ ∈ X∗. It acts as a derivation

on the shuffle product.

A. Chen-Fliess series and relative degree

Given any c ∈ R`〈〈X〉〉 one can associate a causal m-input,
`-output operator, Fc, in the following manner. Let p ≥ 1
and t0 < t1 be given. For a Lebesgue measurable function
u : [t0, t1] → Rm, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m},
where ‖ui‖p is the usual Lp-norm for a measurable real-valued
function, ui, defined on [t0, t1]. Let Lmp [t0, t1] denote the set
of all measurable functions defined on [t0, t1] having a finite
‖·‖p norm and Bmp (R)[t0, t1] := {u ∈ Lmp [t0, t1] : ‖u‖p ≤
R}. Assume C[t0, t1] is the subset of continuous functions in
Lm1 [t0, t1]. Define inductively for each word η = xiη̄ ∈ X∗
the map Eη : Lm1 [t0, t1]→ C[t0, t1] by setting E∅[u] = 1 and
letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X , η̄ ∈ X∗, and u0 = 1. The Chen-Fliess series
corresponding to c ∈ R`〈〈X〉〉 is

y(t) = Fc[u](t) =
∑
η∈X∗

〈c, η〉Eη[u](t, t0) (1)

[4]. If there exist real numbers Kc,Mc > 0 such that

|〈c, η〉| ≤ KcM
|η|
c |η|!, ∀η ∈ X∗, (2)

then Fc constitutes a well defined mapping from Bmp (R)[t0,
t0 + T ] into B`q(S)[t0, t0 + T ] for sufficiently small R, T >
0 and some S > 0, where the numbers p, q ∈ [1,∞]
are conjugate exponents, i.e., 1/p + 1/q = 1 [14]. (Here,
|z| := maxi |zi| when z ∈ R`.) Any series c satisfying (2)
is called locally convergent. The set of all locally convergent
series is denoted by R`LC〈〈X〉〉, and Fc is referred to as a
Fliess operator. Given Fliess operators Fc and Fd, where
c, d ∈ R`LC〈〈X〉〉, the parallel and product connections satisfy
Fc + Fd = Fc+d and FcFd = Fc d, respectively [4]. It is
also known that the composition of two Fliess operators Fc
and Fd with c ∈ R`LC〈〈X〉〉 and d ∈ RmLC〈〈X〉〉 always yields
another Fliess operator with generating series c◦d, where this
composition product is given by

c ◦ d =
∑
η∈X∗

〈c, η〉ψd(η)(1)

[3]. Here ψd is the continuous (in the ultrametric sense)
algebra homomorphism from R〈〈X〉〉 to the vector space
endomorphisms on R〈〈X〉〉, End(R〈〈X〉〉), uniquely specified
by ψd(xiη) = ψd(xi) ◦ ψd(η) with ψd(xi)(e) = x0(di e),
i = 0, 1, . . . ,m for any e ∈ R〈〈X〉〉, and where di is the i-th
component series of d (d0 := 1 := 1∅). By definition, ψd(∅)
is the identity map on R〈〈X〉〉. Finally, if c, d ∈ R〈〈X〉〉 with
d non proper, then their quotient is c/d := c d −1 so that
Fc/Fd = Fc/d [9].

Observe that c ∈ R〈〈X〉〉 can always be decomposed into
its natural and forced components, that is, c = cN +cF , where
cN :=

∑
k≥0(c, xk0)xk0 and cF := c− cN .

Definition 2.1: [9] Given c ∈ R〈〈X〉〉 with X = {x0, x1},
let r ≥ 1 be the largest integer such that supp(cF ) ⊆ xr−1

0 X∗.
Then c has relative degree r if the linear word xr−1

0 x1 ∈
supp(c), otherwise it is not well defined.

It is immediate that c has relative degree r if and only if
there exists some proper e ∈ R〈〈X〉〉 with x1 6∈ supp(e) such
that

c = cN + cF = cN +Kxr−1
0 x1 + xr−1

0 e

with K 6= 0. This notion of relative degree coincides with the
usual definition given in a state space setting [10].

B. Formal state space realizations

For any finite T > 0, u ∈ Lm1 [0, T ] and fixed t ∈ [0, T ],
one can associate the formal power series in R〈〈X〉〉

P [u](t) =
∑
η∈X∗

η Eη[u](t, 0),

which is usually called a Chen series. In general, P [u] is the
solution to the formal differential equation

d

dt
P [u] =

(
m∑
i=0

xiui

)
P [u], P [u](0) = 1, (3)

so that P [u] is always the exponential of some Lie element
over X . That is, if L(X) is the free Lie algebra generated by
X , then any d ∈ R〈〈X〉〉 is a Lie series if it can be written in
the form d =

∑
n≥1 pn, where each polynomial pn ∈ L(X)

has support residing in Xn. The set of all Lie series will be
denoted by L̂(X). An exponential Lie series is any series e =
exp(d) :=

∑∞
n=0 d

n/n!, where d is a Lie series. In general, (3)
has a solution of the form P [u] = exp(U) with U(t) ∈ L̂(X)
for fixed t ≥ 0. As a consequence of the Baker–Campbell–
Hausdorff formula, the set of all exponential Lie series forms
a group, G(X), under the Cauchy product with unit 1.

Following the approach of Kawski and Sussmann in [20],
[26], G(X) can be viewed as a formal Lie group with L̂(X) as
its corresponding Lie algebra. A commutative algebra of real-
valued functions on G(X) is defined using the shuffle algebra
on the R-vector space RLC〈〈X〉〉. Specifically, for any fixed
c ∈ RLC〈〈X〉〉 define fc : G(X)→ R by

z 7→ fc(z) =
∑
η∈X∗

〈c, η〉〈z, η〉 =: 〈c, z〉,

so that via Friedrich’s criterion

fc(z)fd(z) = 〈c, z〉〈d, z〉 = 〈c d, z〉 = fc d(z).



Convergence follows from the fact that the shuffle product
is known to preserve local convergence [28]. Often fc(z)
will be abbreviated as c(z). Analogous to standard Lie group
theory, the formal tangent space at the unit 1, T1G(X), is
identified with L̂(X). Thus, for any fixed p ∈ L̂(X), there
is a corresponding tangent vector at 1 written as the linear
functional Vp(1) : RLC〈〈X〉〉 → R, c 7→ Vp(1)(c) := 〈c, p1〉
and satisfying the Leibniz rule

Vp(1)(c d) = Vp(1)(c) d(1) + c(1)Vp(1)(d).

In turn, the tangent space at z ∈ G(X), denoted TzG(X), is
defined via right translation to be the vector space of linear
functionals Vp(z) : RLC〈〈X〉〉 → R, c 7→ Vp(z)(c) := 〈c, pz〉,
p ∈ L̂(X) satisfying

Vp(z)(c d) = 〈c d, pz〉 = 〈c, pz〉〈d, z〉+ 〈c, z〉〈d, pz〉
= Vp(z)(c) d(z) + c(z)Vp(z)(d).

For any p ∈ L̂(X), the mapping

Vp : G(X)→ TzG(X), z 7→ Vp(z) := pz

is a formal right-invariant vector field on G(X). Here X
will denote the set of all such right-invariant vector fields. In
addition, the formal Lie derivative is defined to be the mapping

Lp : RLC〈〈X〉〉 → RLC〈〈X〉〉, c 7→ Lpc := p−1c

so that Lpc(z) = 〈Lpc, z〉 = 〈p−1c, z〉 = 〈c, pz〉 = Vp(z)(c).
The following definition is used in the next section.

Definition 2.2: For any c ∈ R`LC〈〈X〉〉 and Vi ∈ X , i =
0, 1, . . . ,m the formal state space realization is

ż =

m∑
i=0

Vi(z)zui, z(0) = z0 (4a)

yk = 〈ck, z〉, k = 1, 2, . . . , `, (4b)

where ck denotes the k-th component of c and u0 = 1 .

Note that (1) can be written componentwise as yk(t) =
〈ck, z(t)〉, k = 1, 2, . . . , `, where z(t) = P [u](t). Thus, y =
Fc[u] has a formal realization of the form (4), where Vi(z) =
xi, i = 0, 1, . . . ,m. Further, observe that

Lxick(1) = x−1
i ck(1) = 〈x−1

i ck,1〉 = 〈ck, xi〉
LxjLxick(1) = x−1

j x−1
i ck(1) = 〈x−1

j x−1
i ck,1〉 = 〈ck, xixj〉,

so that the coefficients of ck can always be written in terms
of formal Lie derivatives as

〈ck, η〉 = 〈ck, xi1 · · ·xik〉 = Lxik · · ·Lxi1 ck(1) =: Lηck(1).

These particular realizations were called universal control
systems by Kawski and Sussmann in [20]. Also note in the
SISO case that if c ∈ R〈〈X〉〉 has relative degree r, then

〈c, xk0x1〉 = Lx1
Lkx0

c(1) = 0, k = 0, 1, . . . , r − 2,

〈c, xr−1
0 x1〉 = Lx1L

r−1
x0

c(1) 6= 0,

which is analogous to the usual definition of relative degree
for state space realizations [17], [22].

III. UNIVERSAL ZERO DYNAMICS FOR SISO SYSTEMS

A. Algebraic Approach

Assume henceforth that X = {x0, x1} and define X0 =
{x0}. Let c ∈ RLC〈〈X〉〉 with relative degree r. In light of
the identity ẏ = Fx−1

0 (c)[u] + uFx−1
1 (c)[u], it follows that

y = Fc[u]

y(1) = Fx−1
0 (c)[u]

...

y(r−1) = F(xr−1
0 )−1(c)[u]

y(r) = F(xr0)−1(c)[u] + uF(xr−1
0 x1)−1(c)[u],

where having well defined relative degree ensures that
F(xr−1

0 x1)−1(c)[u](0) = 〈c, xr−1
0 x1〉 6= 0 for any admissible u,

and furthermore F(xr−1
0 x1)−1(c)[u](t) 6= 0 over some interval

[0, T ), T > 0 [9].1 Setting y(r) = 0 it follows that the
corresponding u = u∗ satisfies the equation

0 = u+ F(xr0)−1(c)/(xr−1
0 x1)−1(c)[u].

It is shown in [8] that this equation can be solved for u∗
uniquely by computing the composition inverse of a generating
series d, denoted here by d◦−1, so that

u∗ = F((xr0)−1(c)/(xr−1
0 x1)−1(c))◦−1 [0].

Given the uniqueness of generating series and using the
definition of the formal Lie derivative gives

u∗(t) =

∞∑
k=0

〈cu∗ , xk0〉
tk

k!
, (6)

where

cu∗ =

(
Lrx0

c(1)

Lx1
Lr−1
x0 c(1)

)◦−1

N

. (7)

It is known in this case that u∗ is analytic at t = 0 [9], therefore
this series has a nonzero radius of convergence. It can be shown
directly that the zero output is in the range of Fc if supp(cN ) ⊆
xr0X

∗
0 . Recalling that y = Fc[u] has a formal realization (4)

with Vi(z) = xi, i = 0, 1 produces the following definition.

Definition 3.1: Suppose c ∈ RLC〈〈X〉〉 has relative degree
r and supp(cN ) ⊆ xr0X

∗
0 . Its universal zero dynamics are

defined as
ż = x0z + x1zu

∗, z(0) = 1, (8)

where u∗ is given by (6)-(7). If u∗ is entire, then (8) is called
minimum phase when u∗ is uniformly bounded.

The solution to (8) is the Chen series z∗ =
P [u∗] = exp(U∗), where U∗ = log(z∗). Therefore, y =
〈c, exp(U∗)〉 = 0 on [0, T ]. The bilinear structure of (8) gives
immediately a Volterra series representation of its solution

z∗(t) = ex0t1 +

∞∑
k=1

∫ t

0

∫ τk

0

· · ·
∫ τ2

0

ex0(t−τk)x1ex0(τk−τk−1)

(9)
· · ·x1ex0τ1 u∗(τk) · · ·u∗(τ1) dτ1 · · · dτk.

1In the SISO case, for brevity u0 = 1 and u1 = u.



(see, for example, [4], [17]). Equivalently,

z∗(t) = ex0t

[
1 +

∞∑
k=1

∫ t

0

∫ τk

0

· · ·
∫ τ2

0

Adx0τk(x1) · · ·

Adx0τ1(x1)u∗(τk) · · ·u∗(τ1) dτ1 · · · dτk
]
,

where Adx0τk(x1) := e−x0τkx1ex0τk .

In the event that c ∈ R〈〈X〉〉 is not locally convergent, and
thus the Chen-Fliess series may not converge in any sense,
it is still possible to characterize the universal zero dynamics
using formal Fliess operators [15]. Namely, u 7→ y = Fc[u] is
replaced with the always well defined mapping c◦ : R[[X0]]→
R[[X0]], cu 7→ c ◦ cu. In this context, u∗ is defined to be the
formal input whose generating series cu∗ satisfies

cy = c ◦ cu∗ = (cN + cF ) ◦ cu∗ = cN + cF ◦ cu∗ = 0. (10)

The solution cu∗ and the corresponding formal dynamics still
have the forms given in (7) and (8), respectively, but there is
no obvious notion of minimum phase in this context.

B. Geometric Approach

In this section, differentiable structures are constructed for
which the formal objects from the last section (tangent spaces,
Lie derivatives, etc.) become objects of a differential geometry.
To describe the evolution of the zero dynamics on an infinite
dimensional space, some essential definitions are needed in
this setting.

Recall that a topological vector space is locally convex if
every 0-neighborhood contains a convex 0-neighborhood. Lo-
cally convex spaces generalize normed spaces as their topology
can be described by a family of seminorms. For mappings
between open subsets of these spaces, differentiability can be
defined by requiring the existence and continuity of iterated
directional derivatives. Due to local convexity, the resulting
calculus, known as Bastiani calculus, behaves similarly to
finite dimensional calculus. It admits a chain rule, and thus,
manifolds, tangent spaces, and Lie derivatives can be defined
as in the finite dimensional case. Finally, a locally convex Lie
group is a group which is a manifold modelled on a locally
convex space such that the group operations are smooth in the
Bastiani sense [21].

Crucial to the approach is the concept of a continuous
inverse algebra (CIA). A unital algebra (A,m, 1A) is called
a CIA if A is a locally convex space, m is continuous, the
unit group A× ⊆ A is open, and inversion A× → A× is
continuous. This construction generalizes matrix and Banach
algebras. It is well known that the unit group of a CIA is an
analytic locally convex Lie group [6].

Proposition 3.1: The group G(X) is a locally convex,
infinite dimensional and analytic Lie group. Its Lie algebra
is L̂(X).

Proof: First note that R〈〈X〉〉 is a complete metrisable
locally convex space which becomes a continuous inverse
algebra (CIA) with respect to the concatenation product [16,
Lemma 2.4]. Using the grading by word length, one can show
that the exponential series is analytic on its domain. Indeed,
using the logarithm, the exponential gives rise to an analytic
diffeomorphism exp on the set I of all proper series [16,

Section 2.3]. Since L̂(X) ⊆ I is a closed Lie subalgebra of
R〈〈X〉〉, exp(L̂(X)) = G(X) is an analytic manifold and a
closed subgroup of R〈〈X〉〉×. Therefore, [21, Theorem IV.3.3.]
implies that G(X) is a locally convex (infinite dimensional) Lie
group with Lie algebra L̂(X).

The Volterra type series representation (9) for z∗ solves
the evolution equation (8) on G(X) with z∗(t) ∈ G(X) and
(z∗(t))−1ż∗(t) ∈ L̂(X) for all t ≥ 0. The regularity of the
Lie group G(X) ensures that this type of ordinary differential
equation has a unique solution (which is not automatic as
the usual ODE solution theory breaks down beyond Banach
spaces) [6], [21]. A potential advantage of the geometric
approach is that it may lead to a more global description of z∗
and u∗ than what the power series methods can provide given
their finite radius of convergence in most instances.

IV. EXAMPLES

Three examples are presented in this section. First, the
linear time-invariant case is presented as a point of reference.
The next example involves a linear system whose generating
series is not required to be convergent. Finally, a physical
nonlinear system is treated.

Example 4.1: Consider a linear, time-invariant system with
irreducible transfer function

H(s) = K
b(s)

a(s)
= K

b0 + b1s+ · · ·+ bn−r−1s
n−r−1 + sn−r

a0 + a1s+ · · ·+ an−1sn−1 + sn
,

where K 6= 0 and with relative degree 1 ≤ r < n.
This corresponds to having a generating series c = cF =∑
k≥r hkx

k−1
0 x1 ∈ RLC〈〈X〉〉, where H(s) =

∑
k≥r hks

−k

and hr = K. Divide b(s) into a(s) so that a(s) = b(s)p(s) +
r(s) with (r(s), b(s)) being a coprime pair of polynomials

p(s) = p0 + p1s+ · · ·+ pr−1s
r−1 + sr

r(s) = r0 + r1s+ · · ·+ rn−r−2s
n−r−2 + rn−r−1s

n−r−1

and deg(r(s)) < deg(b(s)). It is shown in [7] that there exists
a realization (A, b, c) with the Byrnes-Isidori normal form

ξ̇1 = ξ2, ξ̇2 = ξ3, . . . , ξ̇r−1 = ξr

ξ̇r = Pξ +Rη +Ku

η̇ = Sξ +Qη

y = ξ1,

where ξ = [ξ1 · · · ξr], η = [η1 · · · ηn−r], P = −[p0 · · · pr−1],
R = −[r0 · · · rn−r−1], S = en−r(n− r)eT1 (r), and

Q =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−r−1

 .
(Here ei(j) ∈ Rj has a one in the i-th position and zero
elsewhere. If j is understood then the notation is abbreviated
to ei.) In this case, the zero dynamics correspond to choosing
ξ(0) = 0 and ξ̇r = 0 so that ξ(t) = 0 for t ≥ 0, u∗ = −Rη/K,
and η̇ = Qη, η(0) = η0. Therefore,

u∗(t) =

∞∑
k=0

−R
K
Qkη0

tk

k!
. (11)



The system is clearly minimum phase in the sense of Defi-
nition 3.1 if and only if it minimum phase by the standard
definition, namely, the roots of b(s) = det(sI − Q) all have
strictly negative real parts. To compute u∗ directly from the
generating series c, apply (10), where cF ◦ cu∗ reduces in the
present context to series convolution

〈cF ◦ cu∗ , xk0〉 =

k−1∑
j=r−1

〈c, xj0x1〉〈cu∗ , xk−1−j
0 〉, k ≥ r.

Deconvolution can be done inductively using the fact that
〈c, xr−1

0 x1〉 = K 6= 0 to yield

〈cu∗ , xk0〉 = − 1

K

〈c, xk+r
0 〉+

k+r−1∑
j=r

〈c, xj0x1〉〈cu∗ , xk+r−1−j
0 〉


(12)

for k ≥ 0.

As a specific example, consider the minimum phase system

H(s) =
4 + 5s+ s2

1 + 2s+ 3s2 + s3

with relative degree r = 1. Since a(s) = 1 + 2s+ 3s2 + s3 =
(4 + 5s+ s2)(−2 + s) + (9 + 8s), its normal form is

ż =

[
2 −9 −8
0 0 1
1 −4 −5

]
z +

[
1
0
0

]
u

y = [ 1 0 0 ] z.

If z(0) = [0 1 −2]T , then the generating series is c = cN +cF ,
where

cN = 7x0 − 16x2
0 + 34x3

0 − 77x4
0 + 179x5

0 − 417x6
0 + · · ·

cF = x1 + 2x0x1 − 4x2
0x1 + 7x3

0x1 − 15x4
0x1 + 35x5

0x1 − · · ·

From either (11) or (12) it follows that

u∗(t) = −7 + 30t− 122
t2

2!
+ 490

t3

3!
− 1962

t4

4!
+ 7850

t5

5!
− · · ·

Example 4.2: Any series in R〈〈X〉〉 with relative degree r
is known to be affine feedback equivalent to a series of the
form c = cN +Kxr−1

0 x1, where K is a nonzero real number
[10]. Applying (12) gives

u∗(t) = − 1

K

∞∑
k=r

〈c, xk0〉
tk−r

(k − r)!

under the assumption that supp(cN ) ⊆ xr0X
∗
0 . As there is no

a priori state space model to compare against, one can instead
verify that z∗(t) as given in (9) has the desired property.
Observe

〈c, z∗(t)〉 = 〈cN +Kxr−1
0 x1, z

∗(t)〉

= 〈cN , ex0t1〉+K

〈
xr−1

0 x1,

∫ t

0

ex0(t−τ)x1 u
∗(τ) dτ

〉
= 〈c, ex0t1〉 −

〈
xr−1

0 x1,

∞∑
k=r

〈c, xk0〉

∞∑
n=0

∫ t

0

(t− τ)n

n!

τk−r

(k − r)!
dτ xn0x1

〉

=

∞∑
k=r

〈c, xk0〉
tk

k!
−
∞∑
k=r

〈c, xk0〉
∫ t

0

(t− τ)r−1

(r − 1)!

τk−r

(k − r)!
dτ

= 0,

using the identity for k ≥ r ≥ 1∫ t

0

(t− τ)r−1

(r − 1)!

τk−r

(k − r)!
dτ =

tk

k!
.

Example 4.3: Consider a first order, exothermic, irre-
versible reaction of a reactant in a product substance car-
ried out in a well mixed continuous stirred chemical reactor
(CSTR). The mass and energy balances give the dynamics (in
dimensionless form):

ż =

[
−z1 + α(1− z1)e

z2
1+z2/γ

−(β + 1)z2 + κα(1− z1)e
z2

1+z2/γ

]
+

[
0
β

]
u

(13a)
y = z2. (13b)

Here z1 is the reactant concentration, z2 is the reactor tem-
perature, and u is the cooling reactor jacket temperature [2],
[27]. The physical constants α, β, γ, and κ are all set to unity
for convenience. For z(0) = 0 the corresponding generating
series for the input-output map y = Fc[u], either computed
from (13) or determined by direct measurement, is

c = x0 + x1 − 2x2
0 − x0x1 − 2x2

0x1 − 2x0x1x0

− x0x
2
1 + 22x4

0 + 15x3
0x1 + 11x2

0x1x0 + 4x2
0x

2
1

+ 6x0x1x
2
0 + 2x0x1x0x1 + 2x0x

2
1x0 + x0x

3
1 + · · · ,

which has relative degree r = 1 and satisfies supp(cN ) ⊆
xr0X

∗
0 . A direct application of (6)-(7) (with the help of Math-

ematica package NonCommutative Formal Power Series [23])
gives

u∗(t) = −1+ t−2
t2

2!
+4

t3

3!
−8

t4

4!
+16

t5

5!
−32

t6

6!
+ · · · . (14)

This result can also be computed using the given local state
representation by noting that if y = z2 = 0 and ż2 = 0, then
the physical zero dynamics are

ż1 = −2z1 + 1, z1(0) = 0

with u∗ = −(1 − z1). As these dynamics are linear, solving
directly gives u∗ = −(1 + e−2t)/2, t ≥ 0, which is the
closed form of (14). The system is clearly minimum phase by
either the classical definition or that given here for universal
zero dynamics. The output and states of (13) when u = u∗

up to sixth order were computed via MatLab and shown in
Figure 1. Observe that the reactant level can be brought to
steady state using the approximated u∗ without tripping any
temperature sensing system, provided of course that this input
can be physically implemented. As the system is minimum
phase, there is no chance of unbounded behavior. But the
ability to run the reactor to steady-state while zeroing a key
monitoring variable could leave the system vulnerable to bad
actors with remote access to the system. In addition, this can be
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time
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Fig. 1. Approximate zero dynamics of the CSTR system in Example 4.3
using only knowledge of the plant’s generating series.

accomplished without using detailed knowledge of the plant’s
state space model, only its generating series.

V. CONCLUSIONS

Given a single-input, single-output system with a Chen-
Fliess series representation whose generating series has a well
defined relative degree, it was shown that there is a notion
of universal zero dynamics which describes a set of dynamics
evolving on a locally convex (infinite dimensional) Lie group
so as to render the system’s output exactly zero. The system
was said to be minimum phase when the applied input which
zeros the output is entire and uniformly bounded. The formal
case, i.e., where the plant’s generating series is not convergent,
was also treated. Here there is less analytic structure available,
but the algebraic definition of universal zero dynamics still
applies. As an application, it was shown that one can design
a zero dynamics attack on cyber-infrastructure using only an
estimate of the plant’s generating series. That is, detailed
knowledge of the plant’s internal dynamics is not needed.

ACKNOWLEDGMENTS

A.S. would like to thank the University of Bergen, Norway,
where he was employed while this work was conducted. KEF
is supported by the Research Council of Norway through
project 302831 “Computational Dynamics and Stochastics on
Manifolds” (CODYSMA).

REFERENCES

[1] L. Cao, X. Jiang, Y. Zhao, S. Wang, D. You, and X. Xu, A survey
of network attacks on cyber-physical systems, IEEE Access, 8 (2020)
44219–44227.

[2] F. J. Doyle and M. A. Henson, Nonlinear systems theory, in Nonlinear
Process Control, M. A. Henson and D. E. Seborg, Eds., Prentice-Hall,
Englewood Cliffs, New Jersey, 1997, pp. 111–147.

[3] A. Ferfera, Combinatoire du monoı̈de libre et composition de certains
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