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a b s t r a c t

In this work, we introduce, justify and demonstrate the Corrective Source Term Approach (CoSTA)—a
novel approach to Hybrid Analysis and Modeling (HAM). The objective of HAM is to combine physics-
based modeling (PBM) and data-driven modeling (DDM) to create generalizable, trustworthy, accurate,
computationally efficient and self-evolving models. CoSTA achieves this objective by augmenting the
governing equation of a PBM model with a corrective source term generated using a deep neural
network. In a series of numerical experiments on one-dimensional heat diffusion, CoSTA is found
to outperform comparable DDM and PBM models in terms of accuracy – often reducing predictive
errors by several orders of magnitude – while also generalizing better than pure DDM. Due to its
flexible but solid theoretical foundation, CoSTA provides a modular framework for leveraging novel
developments within both PBM and DDM. Its theoretical foundation also ensures that CoSTA can be
used to model any system governed by (deterministic) partial differential equations. Moreover, CoSTA
facilitates interpretation of the DNN-generated source term within the context of PBM, which results in
improved explainability of the DNN. These factors make CoSTA a potential door-opener for data-driven
techniques to enter high-stakes applications previously reserved for pure PBM.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The recent wave of digitalization has given a push to emerging
echnologies like digital twins. A digital twin is defined as a
irtual representation of a physical asset enabled through data
nd simulators for real-time prediction, optimization, monitor-
ng, controlling, and improved decision making (Rasheed et al.,
020). Paramount to digital twins’ success is the level of physical
ealism that can be instilled into them. In this regard, as noticed
y Rasheed et al. (2020), modeling plays an important role. The
xact requirements of the modeling depend on the digital twin’s
apability level, which is generally categorized on a scale from
to 5 (0-standalone, 1-descriptive, 2-diagnostic, 3-predictive,

-prescriptive, 5-autonomous) (see Fig. 1).
Although a digital twin offers huge potential in many indus-

ries, adaptation of the digital twin technology has been stagnated
ince its inception, mainly due to the lack of methodological
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works. To leverage asset-twin technologies, Kapteyn et al. (2021)
proposed a unifying mathematical foundation that draws from
probabilistic graphical models and dynamical system theory. The
role of surrogate models in the development of digital twin has
also been emphasized by Hartmann et al. (2018) and Chakraborty
et al. (2021). There is, however, more work to be done to bring
physical realism into digital twins, as many industrial and sci-
entific applications steadily migrate from sparse data to big data
regimes. With this in mind, San et al. (2021) identified that there
are at least four modeling characteristics of utmost importance;
generalizability, trustworthiness, computational efficiency and accu-
racy, and self-adaptation. A model’s generalizability refers to its
ability to solve a wide variety of problems without any problem-
specific fine-tuning. Trustworthiness refers to the extent to which
a model is explainable, while computational efficiency and accu-
racy refers to the model’s ability to make real-time predictions
that match ground truth as closely as possible. Lastly, a model
is self-adapting if it can learn and evolve when new situations
are encountered. Until recently, most modeling approaches could
be categorized as either physics-based modeling (PBM) or data-
driven modeling (DDM). These categories are briefly explained
below:
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The capability levels of DTs on a scale from 0 to 5.
Source: Adapted from San et al. (2021).
Physics-based modeling: For any real-world system, PBM seeks
to explain the system’s behavior using existing knowledge of ob-
servable and explainable physics (illustrated by the pink ellipse in
Fig. 2(a)). As such, PBM is ignorant of any unknown physics (illus-
trated by the black background) which, e.g., cannot be observed
directly or is inexplicable. Given the first principles of known
physics, PBM requires the derivation of one or more governing
equations for the system. This derivation might involve making
some assumptions, such that only partial physics (the blue ellipse
in Fig. 2(a)) are accounted for by the governing equations. More
often than not, these equations are difficult to solve analytically.
Therefore, to solve them numerically (in a reasonable amount of
time), we make further assumptions, resulting in further loss of
physics. Thus, the resolved physics (the green ellipse in Fig. 2(a))
is generally only a part of the full physics governing the system.
PBM has been used extensively for engineering applications like
blood flow (Taylor et al., 1998), heat and mass transfer (Liu et al.,
2021) and flow around wind turbines (Siddiqui et al., 2019) to
name a few. A good overview of PBM in the context of digital
twins can be found in Rasheed et al. (2020) and San et al. (2021).
In most of such applications, PBMs tend to be computationally de-
manding. They are also typically static, meaning that they do not
automatically adapt to new scenarios and hence can be inaccu-
rate. Despite these limitations, PBM is attractive due to its sound
first-principles foundation which yields great interpretability and
generalizability.

Data-driven modeling:With the abundant supply of big data fa-
cilitated through, for example, cost-effective sensors, open-source
cutting-edge and easy-to-use machine learning libraries, cheap
computational infrastructure, and high-quality, readily available
training resources, DDM has become very popular. Compared to
the PBM approach, DDM thrives on the assumption that data is
a manifestation of both known and unknown physics, and hence,
when trained with an ample amount of data, DDM will learn the
full physics on their own. Data-driven techniques, in particular
those involving deep neural networks (DNN), have started achiev-
ing human-level performance in several tasks that were, until
recently, considered impossible for computers. Notable examples
include image classification (Szegedy et al., 2016), dimensionality
reduction (Hinton & Salakhutdinov, 2006), medical treatment (Liu
et al., 2019) and smart agriculture (Bu & Wang, 2019). More
recent applications of DDM include tropical cyclone intensity
estimation (Lee et al., 2021), speech recognition (a comprehen-
sive review can be found in Bai and Zhang (2021)), learning
of complex nonlinear dynamics from data (Afebu et al., 2021)
and active noise control (Zhang & Wang, 2021). Some of the
advantages of DDM are their inherent online learning capability,
high computational efficiency for inference, and accuracy even for
very challenging problems (assuming the training, validation, and
test data are prepared properly). However, acceptability of DDM
in high-stake applications has been fairly limited due to their
data-hungry and black-box nature, poor generalizability, inherent

bias, and lack of a robust theory for model stability analysis. In
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fact, the numerous vulnerabilities of DNN have been highlighted
in several recent works (Akhtar & Mian, 2018; Xu et al., 2019;
Yuan et al., 2017).

Due to the challenges described above, it can be concluded
that neither PBM nor DDM is ideal for usage in a digital twin
context as neither satisfies all the four modeling characteristics
identified in San et al. (2021). Fortunately, a new paradigm in
modeling called Hybrid Analysis and Modeling (HAM) – which
combines the generalizability, interpretability, robust foundation,
and understanding of PBM with the accuracy, computational ef-
ficiency, and automatic pattern-identification capabilities of ad-
vanced DDM, in particular DNNs – is emerging. In their recent
surveys, Willard et al. (2020) and San et al. (2021) provide com-
prehensive overviews of techniques for integrating DDM with
PBM. Most of the hybridization techniques lie in one of the cate-
gories of reduced order modeling, physics-guided machine learn-
ing (PGML), physics-informed neural network (PINN) or data-
driven physics discovery using sparse or symbolic regression.
Reduced order models (ROMs) have been proposed as a way of
accelerating high-fidelity simulators by several orders of magni-
tude. In a ROM (Fonn et al., 2019), complex partial differential
equations are projected onto a reduced dimensional space based
on an unsupervised algorithm called the proper orthogonal de-
composition (more commonly known as the principal component
analysis) of the offline high fidelity simulation results resulting
in a set of ordinary differential equations (ODEs). One advantage
of this method is that many terms in the resulting ODEs can be
computed offline using the data, and hence, what remains in an
online phase is a simple forward integration of the ODEs in time,
which can be very fast. These models however, do not perform
well when physics is either missing or get lost during the dimen-
sionality reduction. In the PGML approach introduced by Pawar
et al. (2021), partially known physics or knowledge is injected at
an intermediate layer in a DNN. Such injection has been shown to
improve the accuracy and reduce the uncertainty of the trained
model. However, the PGML models still do not generalize well to
extrapolation scenarios. Within a PINN framework (Raissi et al.,
2019), the commonly used mean squared error cost function of
the DNN is regularized with the residual of the equation de-
scribing the physical laws that should be satisfied. This kind of
regularization can pose a challenge during the optimization step
because of the increase in the complexity of the cost function.
Finally, sparse regression based on l1 regularization and symbolic
regression based on gene expression programming have been
shown to be very effective in discovering hidden or partially
known physics directly from data (Vaddireddy et al., 2020). The
data-driven discovered physics is then added to the PBM to
improve their predictions. Notable work using this approach can
be found in Brunton et al. (2016). One of the limitations of this
class of method is that, in the case of sparse regression, additional
features are required to be handcrafted, while in the case of
symbolic regression, the resulting models are often unstable and

hence might not be fit for interpretation.
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Fig. 2. Physics based modeling vs data driven modeling. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
From a careful analysis of the work cited here, it is clear
hat the HAM approach has the potential to fulfill the four de-
irable modeling characteristics described earlier in this section.
owever, as discussed above, earlier approaches to HAM have
ome limitations. In the current article, we present the Correc-
tive Source Term Approach (CoSTA) to HAM. The novelty of the
work from a theoretical perspective, is the development of a
sound mathematical foundation of the CoSTA approach to aug-
ment the governing equation of a PBM describing partial physics
with a DNN-generated corrective source term that takes into
account the remaining unknown/ignored physics. By doing so,
the resulting model retains the generalizability and interpretabil-
ity of the PBM while exploiting DDM to make the predictions
more accurate by modeling the unknown physics reflected in
the data. Explainable AI is often attributed to the enhancing
processes in which the results of the machine learning models
and solutions can be better understood by humans. In our view,
our proposed CoSTA approach can be classified as a new ex-
plainable AI approach while synthesizing a modular framework
between black-box DDM and PBM. From a practical perspective,
the superiority of CoSTA in terms of accuracy and generalizability
is quantitatively demonstrated by comparing its results against
183
those of pure PBM and DDM in a series of numerical experiments
concerning heat diffusion.

In Section 2, we start with the rationale behind the devel-
opment of CoSTA. We then continue with a presentation of our
chosen PBM (Section 2.2) and DDM (Section 2.3), before we
explain how the PBM and a DNN can be combined using CoSTA
(Section 2.4). We also provide some background on the method
of manufactured solutions (Section 2.5). Section 3 is devoted to
explaining our experimental setup—including the manufactured
solutions considered, our DNN architecture and hyperparameter
choices, and our data generation, training and testing procedures.
Our experimental results are presented and discussed in Section 4
before the article is concluded in Section 5 with a brief summary
and an outlook on future work.

2. Theory

In this section we present the rationale behind the CoSTA
approach, followed by an overview of the PBM, DDM and HAM
models used in our numerical experiments. The section con-
cludes with a brief introduction to the method of manufactured
solutions.
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.1. The rationale behind the CoSTA approach

In this subsection, we present a mathematical foundation for
he proposed CoSTA approach. Assume that we are aiming to
olve a problem on a domain Ω (with boundary ∂Ω and outward
pointing unit normal n) that can be represented by a linear partial
differential equation (PDE) defined as follows:

Lu = f in Ω (1)

u = gd on ∂Ωd (2)

Nu = gn on ∂Ωn (3)

Here L is a linear1 differential operator (e.g. L = −∇2 for Poisson
roblems), u is the unknown (e.g. temperature for heat diffusion
roblems), f is the (true) source term (e.g. a heat source/sink in

heat diffusion problems), gd is the prescribed Dirichlet boundary
ondition along the boundary section ∂Ωd, and N is the differ-
ntial operator related to the Neumann boundary condition (e.g.
u/∂n for heat diffusion problems) with prescribed value gn (e.g.
eat flux) along the boundary section ∂Ωn. We assume that ∂Ωd
nd ∂Ωn cover the whole boundary ∂Ω without overlapping each
ther.
We will now address different cases of uncertainties/errors/

ack of information in the abstract PDE defined above. We will, in
eneral, let ũ denote an analytical solution to a perturbed version
f the PDE problem defined in Eqs. (1)–(3). Furthermore, we
enote numerically computed solutions of the original PDE and
ts perturbation as unum and ũnum, respectively. Here the subscript
‘num’’ indicates the finite resolution of the numerical method (e.g.
inite difference method (FDM), finite volume method (FVM) or
inite element method (FEM)).

Let the error between the two analytical solutions u and ũ be
enoted ẽ, i.e. we have

˜ = u− ũ. (4)

We define the corresponding residual r̃ as follows:

r̃ = f − Lũ (5)

= Lu− Lũ (6)

= Lẽ (7)

Notice that there is a unique relationship between the error in
the analytical solution of the perturbed PDE ũ and the residual
btained by inserting this solution into the (true) original PDE.
he CoSTA approach utilizes this relationship, as illustrated for
ifferent cases 1–4 below. Cases 1 and 2 concern possible sources
f error in the governing PDE itself, while Case 3 is the case when
he governing PDE is known without error but cannot be solved
nalytically. Combinations of Cases 1–3 are treated as Case 4.
Case 1: Inaccurate source term or boundary conditions: In many

eal-world problems, the source term f (e.g. describing internal
heat generation) may not be known exactly.

Let the inaccurate source term be denoted f̃ and assume that
we are able to compute exactly the corresponding PDE such that:

Lũ = f̃ in Ω. (8)

Assuming that we know u (e.g. by measurements or analytical
solution), we can add a corrective source term r̃ to compute an
improved (analytical) solution denoted ucosta:

Lucosta = Lũ+ (Lu− Lũ) (9)

1 We may generalize the approach to handle nonlinear differential opera-
ors, but for notational simplicity we restrict ourselves first to address linear
ifferential operators. See Blakseth (2021) for a consideration of non-linear
perators.
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= f̃ + Lẽ (10)

= f̃ + r̃ (11)

f we are able to evaluate Lu for a given solution u, we get the
ollowing relationship from the equations above2:

ucosta = Lu (12)

hus, by the herein developed CoSTA, we may retain the true
nalytical solution without any modeling error caused by the in-
ccurate source term f̃ . The main point to be observed here is that
naccuracies in the source term can be corrected for by computing
he residual from measured (or manufactured) solutions.

Suppose now that, instead of having an inaccurate source term
˜, we have an inaccurate Dirichlet condition g̃d (e.g. inaccurate
urface temperature) or an inaccurate Neumann condition g̃n (e.g.
nknown heat flux). We may correct for any error in ũ caused by
˜d by replacing it with u along the Dirichlet boundary ∂Ωd and
imilarly any error caused by g̃n is taken care of by replacing it
ith Nu along ∂Ωn.
Case 2: Inaccurate physical parameters and differential opera-

ors: Let the true differential operator L be dependent on some
hysical parameter k (e.g. heat conductivity) that may be a spatial
nd/or temporal function. We indicate this dependency by writ-
ng L(k). Assume now that we do not know the exact value of
, but instead only an approximation k̃, such that our perturbed
DE is defined using the operator L̃ = L(k̃). Alternatively, assume
hat we do not know (or simply neglect) some terms in the true
perator L and denote the resulting inaccurate operator L̃.
For these two situations we will typically solve the following

roblem:

˜ũ = f in Ω. (13)

Assuming again that we know u (e.g. by measurements or
nalytical solution) the residual, due to inaccurate differential
perator where L̃ ̸= L, is given by Eq. (7), i.e., r̃ = Lẽ. However,
f L is unknown we cannot compute r̃ from the relations above.
herefore, we introduce an alternative residual ˆ̃r corresponding
o using the perturbed differential operator as follows:

ˆ̃ := L̃ẽ (14)

e then add ˆ̃r as a corrective source term to find the CoSTA-
mproved (analytical) solution ucosta:

˜ucosta = f + ˆ̃r (15)

= L̃ũ+ L̃ẽ (16)

= L̃u (17)

hus, CoSTA can be looked upon as either solving a ‘‘manufac-
ured solution’’ defined by the true solution in Eq. (17), or as
olving the problem using a perturbed (corrected) source term
+ ˆ̃r as given in Eq. (15) — in both cases using the (inaccurate)
erturbed differential operator L̃. Notice that, in the above, we get
n analytical solution ucosta that corresponds to a source term L̃u
efined by the true solution u on a perturbed PDE defined by L̃. If
he perturbed PDE admits a unique analytical solution, then the
se of CoSTA will imply that ucosta = u.
Case 3: Inaccurate differential operator due to discretization er-

ors: Above we have described inaccuracy in the continuous PDE

2 If u is only known in discrete points (e.g. it is measured) we may interpolate
t or project it onto a polynomial basis of order p to achieve up which then can
be differentiated and used instead of u in Eq. (12).
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Fig. 4. The fully connected neural network architecture used in the present work. The definitions of the input vector I and the output vector O depend on whether
he network is used for HAM or DDM. However, note that I always has two more components than O due to the Dirichlet boundary conditions considered in this
ork.
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ue to modeling errors. However, when we solve a PDE with
DM/FVM/FEM we introduce discretization errors as we are solv-
ng the problem with a discrete approximation Lnum of the true
ifferential operator L (e.g. FDM using central differences). Fol-
owing the approach for Case 2 above, we get the same rela-
tionships as given in Eqs. (15)–(17) by substituting L̃ with Lnum
for problems with only discretization errors and no modeling
errors.

Case 4: Combined modeling and discretization errors: In our
tudy herein, we will address problems where we have both
odeling and discretization errors. Denote the corresponding
ifferential operator L̃num and the inaccurate source term f̃ . Our
pproach for retaining the true solution u of the true problem
efined by L and f , is outlined below.
We first solve the following problem to find a predictor ũnum:

L̃ ũ = f̃ in Ω. (18)
num num t
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Then we compute the residual, i.e. the corrective source term,
corresponding to the error ẽnum = u− ũnum in the predictor3:

ˆ̃rnum := L̃numẽnum (19)

inally, we do the following corrector step to compute the CoSTA-
mproved numerical solution:

˜numucosta = f̃ + ˆ̃rnum (20)

= L̃numũnum + L̃numẽnum (21)

= L̃numu (22)

otice that if we knew the true solution u(x, t;µ) at any node,
t every time step for any choice of the parameter vector µ a
riori, we would not need to do the predictor step or compute

3 See Section 2.4 for an example of how to compute the corrective source
erm in practice.
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Fig. 5. Solution 0, interpolation: Comparison of relative errors and final temperature profiles for α = 0.7, 1.5 (— Exact, ◦ PBM, □ DDM, ⋄ HAM). HAM’s predictions
are by far the most accurate, followed by PBM, while DDM is least accurate.
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the related corrective source term, because we could have solved
Eq. (22) directly. However, in practice we do not know u for all
choices of µ, but we may train a neural network to return a quite
accurate corrective source term (formally defined by Eq. (19))
given a predictor ũnum computed by Eq. (18). Thus, the corrector
step in CoSTA corresponds then to solving Eq. (20).

Applications: To test and demonstrate the value of the pro-
posed CoSTA approach, we choose the problem of one-
dimensional heat conduction described by a PDE derived from the
first principles using the first law of thermodynamics. Accurate
modeling of heat conduction is vital for a wide array of problems
ranging from the modeling of heat transfer from the Earth to its
atmosphere, modeling heat transfer characteristics of the built
environment, and modeling the accumulation of thermal stresses
in heat storage infrastructures. However, the accuracy in most of
these applications is compromised due to geometric simplifica-
tions, uncertainty associated with the values of thermophysical
properties used in the calculation, neglection of unknown (and
even known) phenomena, and numerical approximations. The
CoSTA approach, if successful, has the potential to solve these
kinds of issues — not only for heat conduction modeling, but also
for the modeling of any other steady-state or dynamical system
that can described by a (system of) PDE(s).

2.2. Physics-based modeling

In PBM, PDEs are widely used as governing equations, describ-
ing various physical phenomena by relating partial derivatives
of relevant physical quantities. In this paper, we consider the
186
one-dimensional (1D) unsteady heat diffusion equation, which
describes 1D transient heat transfer in a system of volume V and
cross-sectional area A. The equation, which can be derived by
applying the principle of energy conservation to the 1st law of
thermodynamics, reads∫
V

ρcV
∂T
∂t

dV =
(
kA

∂T
∂x

)
e
−

(
kA

∂T
∂x

)
w

+

∫
V
q̂ dV , (23)

here T , ρ, cV , and k denote temperature, density, heat ca-
acity, and thermal diffusivity, respectively. The term on the
quation’s left-hand side represents the momentary change in
he system’s internal energy. Furthermore, the first two terms on
he right-hand side represent the heat flux across the system’s
ight (eastern, denoted by subscript e) boundary and left (western,
enoted by subscript w) boundary, respectively, while the last
erm on the right-hand side (q̂) is a source term which accounts
or heat generated within the system. Under certain smoothness
equirements, the 1D unsteady heat equation can also be written
n the so-called differential form:

cV
∂T
∂t
=

∂

∂x

(
k
∂T
∂x

)
+ q̂. (24)

omparing to Eq. (1), the differential operator of the heat equa-
ion is given by

T = ρcV
∂T
∂t
−

∂

∂x

(
k
∂T
∂x

)
(25)

while the source term is f = q̂.
In the cases where the solution of Eq. (23) (or Eq. (24)) cannot

be expressed analytically, approximate solutions can be obtained



S.S. Blakseth, A. Rasheed, T. Kvamsdal et al. Neural Networks 146 (2022) 181–199

H

u
D
t

A

w
T
x
q
d

b
t

A

Fig. 6. Solution 3 with fine grid, interpolation: Comparison of relative errors and final temperature profiles for α = 0.7, 1.5 (— Exact, — PBM, — DDM, — HAM).
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sing numerical methods such as FDMs, FVMs, and FEMs. For
irichlet boundary conditions (BCs), Eq. (23) can be written in
he form

T n+1
= b

(
T n
; Ta, Tb, q̂

)
, (26)

hen discretized using the Implicit Euler FVM. Here, T = [T1, . . . ,
Nj ]

T denotes the temperature at all Nj interior grid nodes x1, . . . ,
Nj . Furthermore, the superscripts n and n+1 denote two subse-
uent time levels, A is a tri-diagonal matrix and b is a vector
epending on T n, the BCs (Ta and Tb) and q̂. Notice that A is

the algebraic matrix representation of the discrete differential
operator Lnum, and b is the vector representation of the source
term f which also includes the effects of the boundary conditions.

Since Eq. (26) is an approximation of Eq. (23), a solution of
one of the equations is generally not a solution of the other.
Note also that, in cases where the governing equation (23) is
not fully known, Eq. (26) has to be based on an approximation
of Eq. (23), which causes further discrepancies between the so-
lutions of Eq. (23) and Eq. (26), as discussed in Section 1. To
distinguish the two classes of solutions, we use the notation
Tref to denote a solution of the true governing equation (23)
(i.e., similar to u given by Eqs. (1)–(3) in the general case) and T p
to denote a solution of the discrete system (26). In the context
of a prediction problem, Tref is then the ideal prediction, while
T p is the prediction made by the PBM (i.e., similar to ũnum given
y Eq. (18) in the general case). Thus the equation that we solve
o generate the PBM solution is given by

T n+1
= b

(
T n) (27)
p p r
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with the prescribed boundary conditions implicitly included in b.
t should be stressed that there is no learning involved in PBM
nd hence, in Fig. 3 – where we illustrate the training and testing
rocesses for PBM, DDM and HAM – there is no mention of PBM
n the part concerning training (Fig. 3(a)).

.3. Data-driven modeling

In DDM, physics is learned directly from the observation data.
or transient systems, one common DDM approach is to define
mapping from the observed state at one time level to the

bserved state at the subsequent time. A DNN is then trained to
pproximate this mapping. In the context of 1D heat diffusion
roblems with known Dirichlet BCs, the mapping to be learned
y the DNN is

NNT : RNj+2 → RNj such that T n+1
d = T n+1

ref , (28)

T n
d ↦→ T n+1

d

where T n
d refers to the temperature profile predicted by the DDM

t time level n, and T n
ref is the solution Tref of the true governing

quation (Eq. (23)) sampled at the grid nodes x1, . . . , xNj and time
evel n. Note that the dimensionality discrepancy between the
NN’s input and output is due to the input containing the bound-
ry temperatures, which the output does not include; since the
oundary temperatures are assumed known, there is no reason
o have the DNN predict them. However, we do want to include
he boundary temperature in the DNN input, since they represent
elevant physical information. To avoid notational complexity, we
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se T n
d to denote both vectors containing and not containing the

oundary temperatures.
Our reason for choosing DNN-based DDM over other appli-

able DDMs is that DNNs have the ability to approximate any
onlinear function, as guaranteed by the universal approximation
heorem. DNNs (Goodfellow et al., 2016), which are inspired
y the biological neural networks found in e.g. human brains,
ypically consist of multiple layers with one layer’s output being
assed through a non-linear activation function before being used
s the input of the next layer. Each layer typically consists of a
umber of processing units with their own tunable parameters
ommonly called weights and biases. The nature of, and relations
etween, the processing units vary across different layer types.
e refer to the specific composition of different layers used to
efine a DNN as that DNN’s ‘architecture’.
We say that a neural network is ‘trained’ when the individual

arameters are tuned in an effort to make the network a better
pproximator of the desired function. In this paper, we train the
NNs using the framework of supervised learning, which requires
he preparation of sample DNN inputs and corresponding target
utputs. During training, for any sample input, the DNN’s output
s compared to the corresponding target output using a chosen
ost function. Then, the backpropagation algorithm (Goodfellow
t al., 2016) is used to calculate the gradients of the computed
ost with respect to the individual network parameters. Finally,
he network parameters are updated, typically using a gradient
escent algorithm, such as to minimize the cost function. The cost
unction used in this work is the commonly used mean squared
rror. An overview of the training and testing approach for DDM
s illustrated in Fig. 3 with the color blue.
188
.4. Hybrid analysis and modeling with CoSTA

Given a PBM, the principal goal of the corrective source term
pproach (CoSTA) is to modify the governing equation solved
y the PBM using a corrective source term, such as to recover
he true solution of the problem at hand. In this section, we
emonstrate how CoSTA can be used in practice to correct the
mplicit Euler FVM for unsteady heat transfer (Eq. (26)).

The first step of applying CoSTA to the Implicit Euler FVM is
o add the corrective source term σ̂

n+1 to the right hand side
f Eq. (26), such as to obtain the modified system

T n+1
h = b

(
T n

h; Ta, Tb, q̂
)
+ σ̂

n+1
, (29)

hose solutions we denote T h (the subscript h corresponds to
AM). Our goal is now to obtain an explicit expression for
ˆ
n+1 using the framework from Section 2.1. To this end, notice
hat Eq. (29) is analogous to Eq. (20) with the following relations:

˜num = A, ucosta = T n+1
h , f̃ = b, ˆ̃r = σ̂

n+1
. (30)

rom the definition of ˆ̃r (cf. Eq. (19)), we thus have

ˆ
n+1
= ˆ̃r :=L̃numẽnum, (31)

=L̃numu− L̃numũnum (32)

where we utilized the definition of ẽnum to transition from the
first to the second line. As in Section 2.3, we let T n+1

ref denote
the true solution which we aim to find, i.e., we have u = T n+1

ref .
Moreover, as the analogue of the predictor ũ , we choose T̃

n+1

num h
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Fig. 8. Solution 3 with fine grid, extrapolation: Comparison of relative errors and final temperature profiles for α = −0.5, 2.5 (— Exact, — PBM, — DDM, — HAM).
or both α, PBM exhibits high accuracy while DDM exhibits comparatively low accuracy. HAM is able to improve on the accuracy of the PBM for the α = 2.5, but
ields reduced accuracy for α = −0.5.
iven by

T̃
n+1
h = b

(
T n

h

)
, (33)

here A and b are as defined in Eq. (29). By inserting for L̃num, u
nd ũnum in Eq. (32), we thus obtain

ˆ
n+1
= AT n+1

ref − AT̃
n+1
h (34)

= AT n+1
ref − b

(
T n

h

)
. (35)

f we now insert T n
h = T n

ref into the equation above,4 we get

ˆ
n+1
= AT n+1

ref − b
(
T n

ref

)
, (36)

hich is the definition of the corrective source term that we
ill use to generate data for our numerical experiments (cf.
ection 3.3). Note that σ̂

n+1 corrects the error of the Implicit Euler
VM over a single time step. Starting from some known initial
emperature profile T 0

= T 0
h = T 0

ref, the combined use of Eqs. (29)
nd (36), guarantees T n

h = T n
ref also for all n > 0.5

Since T n+1
ref is not known a priori, Eq. (36) – and hence also

q. (29) – cannot be evaluated using pure PBM. On the other
and, pure DDM can (implicitly) take σ̂

n+1 into account, but also
ompletely discards what is already known about heat diffusion

4 Our primary motivation for doing this is that it produces the desirable result
n
h = T n

ref H⇒ T n+1
h = T n+1

ref ∀n ≥ 0.
5 This can be proven by induction: T n

h = T n
ref H⇒ AT n+1

h = b(T n
h)+ σ̂

n+1
=

b(T n
ref)+ AT n+1

ref − b(T n
ref) = AT n+1

ref , which implies T n+1
h = T n+1

ref since A has full
rank.
189
problems. Instead of going to either of these extremes, we choose
a middle ground by training a deep neural network DNNσ to
approximate Eq. (36) given the predictor T̃

n+1
h defined in Eq. (33).

The DNN approximation is then inserted into the modified PBM
(Eq. (29)). That is, we insert σ̂

n+1
nn = DNNσ (T̃

n+1
h ) in the place of

σ̂
n+1 in Eq. (29) to obtain the HAM prediction T n+1

h .
Training data for the DNN can be generated from a known time

series describing the system’s past, or from time series describing
the temporal development of similar systems, using Eq. (36). The
whole process of training and testing the complete CoSTA-based
HAM model is illustrated in Fig. 3 using the color green.

2.5. Method of manufactured solutions

A central part of the present study is the method of manu-
factured solutions (MMS), which has long been a popular tool for
verifying the numerical PDE solvers used in PBMs (see e.g. Roache
(2002) for an extensive introduction). The key concept of MMS is
to choose some explicitly expressible function, and then calculate
the source term required for this function to be a solution of the
PDE in question. For the 1D unsteady heat diffusion equation, this
amounts to deciding upon some temperature function T (x, t) and
calculating the source term q̂(x, t) required for the differential
form of the equation (Eq. (24)) to be satisfied. Thus, the use
of MMS allows us to obtain exact reference solutions Tref of
the 1D unsteady heat equation without running expensive high-
fidelity simulations. We can then use these reference solutions to
evaluate the accuracy of the temperature profiles predicted using
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Fig. 9. Solution 1, interpolation: Comparison of relative errors and final temperature profiles for α = 0.7, 1.5 (— Exact, ◦ PBM, □ DDM, ⋄ HAM). All predictions are
ualitatively correct, but HAM yields superior accuracy.
BM, DDM and HAM, as well as for generating DNN training and
alidation data.

. Experimental setup and procedures

To evaluate the performance of the PBM, DDM and HAM
odels described in the previous section, we have designed a
eries of numerical experiments (the results of which are pre-
ented and discussed in Section 4), where each experiment is
ased on a manufactured solution of the 1D unsteady heat equa-
ion (Eq. (23)). The experimental setup and procedures used to
onduct these experiments are described in the following section.

.1. Choice of manufactured solutions

All manufactured solutions T (x, t;α) used to conduct the
resent study are listed in Table 1. They include both polynomials
nd trigonometric functions, so as to cover a wide variety of
ifferent functional behaviors. Each solution is parametrized by
quantity α, which allows us to investigate the generalizability
f the PBM, DDM and HAM methods across different α-values
corresponding to generalizability across different operating con-
itions in an application context). Along with each manufactured
olution, we have included the corresponding source term q̂
equired for the listed functions T (x, t;α) to satisfy the 1D heat
quation (Eq. (23) or, equivalently, Eq. (24)). From a real world
pplication perspective, the problem corresponds to a one di-
ensional solid body initialized (at t = 0) with a temperature
rofile using the functions given in Table 1. Then the evaluation
 N
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of the temperature across the solid body is predicted under the
influence of differential heating across the length of the solid
body given by the source term q̂. This heat transfer phenomenon
is encountered in a wide variety of real life applications like heat
loss/gain through the building walls, transfer of heat from the
center of the earth to the atmosphere, and cooling/heating of
electric chip on electrical equipment.

3.2. Parametrization

For each manufactured solution in Table 1, the 22 different
α-values listed in Table 2 were used to generate the training,
validation and testing data. Of the 22 α-values, 16 were used to
generate training data, 2 were used to generate validation data
and 4 were used to generate testing data, as indicated in the
table. Of the α-values used for testing, two lie within the interval
[0.1, 2.0] covered by Atrain (defined in Table 2) while the other
two do not. This allows us to evaluate the generalizability of PBM,
DDM and HAM in both interpolation and extrapolation scenarios.

3.3. Training and validation data generation

Given an α and a manufactured solution T (x, t;α) of the 1D
unsteady heat equation, we sample T (x, t;α) at the center of
Nj = 20 equally sized grid cells6 on the spatial domain [0m, 1m]
and at Nt = 5001 equally spaced time levels on the temporal

6 With the exception of one experiment in Section 4.1, where we used
= 200 equally sized grid cells.
j
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Table 1
Manufactured solutions: Functions T (x, t;α) used for performance evaluation of the studied PBM, DDM and HAM methods
(top five rows) and for DNN hyperparameter tuning (bottom two rows). All T (x, t;α) were defined on the spatial domain
x ∈ [0m, 1m] and the temporal domain t ∈ [0 s, 5 s].
Solutions T (x, t;α) q̂(x, t;α)

0 α
(
t + 1

2 x
2
)

0
1 t + 1

2αx2 1− α

2
√
t + α + 1+ 10x2(x− 1)(x+ 2) 1

2
√
t+α+1

− 120x2 − 60x+ 40
3 2+ α(x− 1) tanh ( x

t+0.1 )
α

(t+0.1)2
(
x(1− x)+ 2

(
(x− 1) tanh ( x

t+0.1 )− t − 0.1
))

sech2 ( x
t+0.1 )

4 1+ sin (2π t + α) cos (2πx) 2π (cos (2π t + α)− 2π sin (2π t + α)) cos (2πx)

A
√
t + α + 1+ 7x2(x− 1)(x+ 2) 1

2
√
t+α+1

− 84x2 − 42x+ 28

B −
x3(x−α)
t+0.1

x4−αx3

(t+0.1)2
+

12x2−6αx
t+0.1
b
m
n
s
e
s

b

Table 2
Parametrization: Selection of α-values used for generating training, validation
and testing time series.
Purpose Set of α-values Symbol

Training {0.1, 0.2, . . . , 2.0}\{0.7, 0.8, 1.1, 1.5} Atrain
Validation {0.8, 1.1} Aval
Testing {−0.5, 0.7, 1.5, 2.5} Atest

domain [0 s, 5 s] to generate a reference time series {T n
ref}

Nt−1
n=0 .

raining and validation datasets are then generated using the
eference time series as described in Algorithm 1. This results
n a total of 5000 · 16 = 80000 training examples and 5000 ·
= 10000 validation examples (per model) for each experiment,
ince we use 16 α-values to generate training data and 2 α-values
o generate validation data (cf. Table 2). Moreover, each data
 n

191
example contains two vectors, an Nj + 2-dimensional DNN input
vector and an Nj-dimensional DNN target output vector.7 The
precise definitions of these vectors are given in Algorithm 1. Note
that, for the experiments described in Section 4.2, we set q̂ = 0
in Eq. (26) and Eq. (29) to synthesize modeling error. Note also
that, for each time level n, all data in the datasets are generated
ased on T n−1

ref . This means that no error can accumulate across
ultiple time steps, so DNNs trained using these datasets will
ecessarily be trained to make corrections across individual time
teps. That is, they correct only local, not global, time stepping
rrors. This choice was made based on three observations: (1) A
uccessful, generalizable reduction in local error will necessarily

7 As explained for DDM in Section 2.3, the dimensionality reduction occurs
ecause we take the BCs to be known without error, which means the DNN
eed not make predictions for the boundaries. This also applies to HAM.
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lso reduce global error. (2) Corrections of global errors are hard
o interpret due to error accumulation. (3) Data is more efficiently
btained when one data example corresponds to a single time
tep rather than a complete time series comprising multiple time
teps.

.4. DNN training

Both DDM and CoSTA-based HAM require training of DNNs
sing the datasets described above. For each training iteration,
ne batch of data examples (T n−1

ref , T̃
n
h, T

n
ref, σ̂

n) is used to update
he network’s parameters. However, the components of each data
xample are used differently for the two methods. For HAM, T̃

n
h is

iven as input to the DNN, and the corresponding DNN output is
hen compared to σ̂

n using a cost function. On the other hand, for
DM, T n−1

ref is used as DNN input, and the corresponding output
s compared to T n

ref, again using the cost function. We use the
ean squared error (MSE) cost function, as implemented in the
yTorch ML framework (Paszke et al., 2019). Given the computed
ost, the DNN parameters are updated using backpropagation and
he chosen optimization algorithm. We use the Adam optimizer
ntroduced in Kingma and Ba (2014). The full DNN training pro-
ess is illustrated in Fig. 3(a), where we have also illustrated how
ˆ
n and T̃

n
h were generated from the reference profiles T n−1

ref and
n
ref, as described in the previous section.
At regular intervals (validation periods), the total MSE cost for

ll data examples in the validation set is computed. The validation
ost is computed analogously to the training cost, as described
192
bove. We utilize the early stopping regularization technique by
topping the DNN training if a new lowest validation cost has
ot been recorded for a certain number of consecutive validation
eriods (this number is denoted ‘‘overfit limit’’ in Table 3).

.5. Model evaluation

When deploying a predictive model for use on a practical
pplication, it is imperative that the model remains accurate
cross multiple time levels without relying on the reference data.
hus, when evaluating the performance of PBM, DDM and HAM,
e need to look at the global error of their predictions, even
hough, for DDM and HAM, the DNNs were trained to make local
orrections only. For DDM, this means that T n−1

d – not T n−1
ref –

must be used as DNN input to generate T n
d. Similarly, for HAM,

n−1
h – not T n−1

ref – must be inserted into Eq. (33) (with q̂ = 0
or the experiments of Section 4.2) to generate the DNN input
˜
n
h. For the sake of completeness, we also state that for PBM, T n

p
s calculated by inserting T n−1

p – not T n−1
ref – into Eq. (27) (again

ith q̂ = 0 for the experiments described in Section 4.2). The
esting procedure is described in its entirety in Algorithm 2 and
s illustrated in Fig. 3(b) for a single time step. Since we perform
esting using 4 distinct α-values (cf. Table 2), this procedure
ields 5000 · 4 = 20000 test predictions (per model) in any
iven experiment. We use the ℓ2-norm to quantify the accuracy
f these predictions, as described in the beginning of Section 4.
or a general N-dimensional vector v ∈ RN , the definition of the
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Fig. 12. Solution 4, interpolation: Comparison of relative errors and final temperature profiles for α = 0.7, 1.5 (— Exact, ◦ PBM, □ DDM, ⋄ HAM). Both DDM and
AM provide reasonable predictions, while PBM does not. HAM is significantly more accurate than DDM.
e

2-norm reads

v∥2 =
1
N

(
N∑
i=1

v2
i

)1/2

, (37)

here vi are the components of v.

.6. Neural network architectures and hyperparameters

For both DDM and CoSTA-based HAM, we use DNNs with the
ully connected neural network (FCNN) architecture illustrated in
ig. 4, and the hyperparameters listed in Table 3. The optimal set
f hyperparameters were found using a grid search for the DDM
nd then applied to HAM as well. The number of fully connected
FC) layers, the width of each FC layer and the learning rate were
hosen such as to minimize the total validation loss obtained
or the two manufactured solutions A and B at the bottom of
able 3 in a parameter grid search. The other hyperparameters
alues were chosen based on prior experience with DNN tuning.
e make no claim that our architecture choices are optimal. To

he contrary, we expect that using DNN architectures specifically
onstructed for time series problems (e.g. LSTM networks) would
mprove DDM and HAM performance. However, in the present
ork, we have chosen to use a simple DNN such that its tech-
ical details would not obscure our main contribution, which
s the formal introduction and justification of CoSTA. Therefore,
omparisons of different architectures and hyperparameters are
eferred to future research, as will be touched upon in Section 5.
193
Algorithm 1: Data generation procedure for the training and
validation datasets. All training data is normalized to have a
component-wise mean of 0 and standard deviation of 1. The
validation data is normalized using the same normalization
coefficients as the training set. For the experiments where
modeling error is synthesized, we set q̂ = 0 in Eqs. (33)
and (29).

Define grid nodes x and time levels t0, t1, . . . , tNt−1.
for T (x, t;α) in Table 1 do

for α in Atrain or Aval do
Initialize: T 0

ref = T (x, t0;α)
for n = 1, 2, . . . ,Nt − 1 do

Get DDM input by sampling: T n−1
ref ← T (x, tn−1;α).

Get HAM input T̃
n
h by inserting T n−1

ref into Eq. (33).
Get DDM target output by sampling:
T n

ref ← T (x, tn;α).
Get HAM target output σ̂

n using T n
ref and T n−1

ref in
Eq. (36).

Store (T n−1
ref , T̃

n
h, T

n
ref, σ̂

n) as an individual data
example in the appropriate dataset.

end
end
Normalize all data examples in both datasets.

nd
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Algorithm 2: Testing algorithm used in our numerical ex-
periments. Note that, to match the operating conditions
seen during training, all DNN inputs/outputs are normal-
ized/unnormalized using the same normalization coefficients
as were used to normalize the training and validation data
(cf. Algorithm 1). For the experiments where modeling error
is synthesized, we set q̂ = 0 in Eqs. (27), (33) and (29).

Define grid nodes x and time levels t0, t1, . . . , tNt−1.
for T (x, t;α) in top part of Table 1 do

for α in Atest do
Initialize: T 0

ref = T 0
p = T 0

d = T 0
h = T (x, t0;α)

for n = 1, 2, . . . ,Nt − 1 do
Sample manufactured solution: T n

ref = T (x, tn;α).
Get PBM prediction T n

p by inserting T n−1
p into

Eq. (27).
Get HAM DNN input T̃

n
h by inserting T n−1

h into
Eq. (33).

Get DDM prediction: T n
d ← DNNT (T n−1

d )
σ̂
n
nn ← DNNσ (T̃

n
h)

Get HAM prediction T n
h by inserting T n−1

h and σ̂
n
nn

into Eq. (29).
Relative l2 error of PBM prediction←T n

p − T n
ref


2
/
T n

ref


2

Relative l2 error of DDM prediction←T n
d − T n

ref


2 /
T n

ref


2

Relative l2 error of HAM solution←T n
h − T n

ref


2 /
T n

ref


2

end
end

nd

Table 3
Hyperparameters of the DNN used in the present work.
Parameter Value

Loss function MSE
Learning rate 1e−5
Optimizer Adam
Batch size 32
Number of hidden FC layers 4
Hidden FC layer width 80
LeakyReLU slope 0.01
Validation period 1e2
Overfit limit 20

4. Results and discussion

In each numerical experiment, we consider one of the man-
factured solutions listed in the top section of Table 1. In any
iven experiment, we aim to reproduce the time series {T n

ref}
Nt−1
n=0

or each α ∈ Atest using our PBM, DDM and HAM models.
o quantify the models’ performance, we present the tempo-
al development of the relative l2-errors,

T n
p − T n

ref


2
/
T n

ref


2,

T n
d − T n

ref


2 /
T n

ref


2 and

T n
h − T n

ref


2 /
T n

ref


2, of the PBM-,

DM- and HAM predictions with respect to the sampled man-
factured solution T n

ref. We also present the temperature profiles
redicted by PBM, DDM and HAM at the final time level n = Nt−1
corresponding to t = 5.0 s) alongside the manufactured solution
(x, tNt−1;α).
The boundary conditions and initial conditions corresponding

o the manufactured solutions are assumed known and utilized as
pplicable for all three model types in all experiments. However,
n order to synthesize scenarios where some relevant physics
re unknown, for the experiments discussed in Section 4.2, it is
194
ssumed that we do not know the source terms q̂ required for the
manufactured solutions to satisfy Eq. (23). No such limitation is
imposed on the models discussed in Section 4.1.

4.1. Experiments without modeling error

In this section, we compare the performance of the three
approaches PBM, DDM and HAM in situations where we have
full knowledge of the physics. This implies that the structure of
the governing equation, including the source term and the exact
values of the PBM parameters, are fully known. The following
sections present the results for interpolation and extrapolation
scenarios for Solutions 0 and 3 (cf. Table 1). For the current
experiment using Solution 3, we used a finer spatial discretization
than elsewhere in this work (Nj = 200, rather than Nj = 20)
in order to demonstrate the full power PBM when all physics is
known.

4.1.1. Interpolation scenarios
Figs. 5 and 6 present the results for the two interpolation cases

corresponding to Solutions 0 and 3. From the figures, it is clear
that the predictions of the PBM are better than those of the DDM
in both the cases. The errors associated with the PBM can be fully
attributed to the discretization error, which is especially small for
Solution 3 where a finer spatial grid was used. For both solutions,
HAM improves on the accuracy of PBM by compensating for the
discretization error, even when the discretization error is small.

4.1.2. Extrapolation scenarios
Figs. 7 and 8 present the results for the two extrapolation cases

corresponding to Solutions 0 and 3. As expected, DDM fails to
generalize to both the extrapolation cases, while PBM exhibits
similar level of accuracy for both interpolation and extrapolation.
HAM generalizes better than DDM, and yields high accuracy in
both extrapolation cases. However, HAM does not significantly
outperform PBM here.

In conclusion, PBM generalizes better than DDM, while HAM
generalizes approximately as well as PBM in the presence of nu-
merical error. This ability of the HAM to correct for the numerical
error can be exploited to relax the mesh requirement needed for
solving equations at a fixed error tolerance. That is, equations can
be solved on a coarse mesh in a computationally efficient manner,
and CoSTA-based HAM can be used to correct for the numerical
errors resulting from the coarse discretization.

4.2. Experiments with modeling error

In this section we present the results corresponding to manu-
factured solutions 1–4, given in Table 1. The results correspond-
ing to interpolation are presented first, followed by the results
corresponding to extrapolation.

4.2.1. Interpolation scenarios
As can be seen from the bottom halves of Figs. 9–12, the

predictions of CoSTA-based HAM are qualitatively correct for all
interpolation scenarios. DDM also provides qualitatively correct
predictions for Solutions 1, 2 and 4 (cf. Figs. 9, 10 and 12), but
its final-time-level predictions for Solution 3 deviate significantly
from the reference profiles (cf. Fig. 11). Furthermore, the relative
errors of the HAM predictions are consistently more than one
order of magnitude lower than those of the DDM predictions, as
shown in the top halves of Figs. 9–12; the difference in accuracy
is particularly striking for Solution 2 (cf. Fig. 10). Since HAM
and DDM both utilize the same DNN setup and training routine,
the significant performance difference can only be explained by

the utilization of PBM inside HAM. As discussed previously, the
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Fig. 13. Solution 1, extrapolation: Comparison of relative errors and final temperature profiles for α = −0.5, 2.5 (— Exact, ◦ PBM, □ DDM, ⋄ HAM). All models
erform reasonably well for α = 2.5, but only HAM provides qualitatively correct predictions for α = −0.5.
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ombined use of a PBM and a DNN in CoSTA-based HAM allows
ome relevant physics to be accounted for by the PBM, thereby
aking the learning task of the DNN easier than in the DDM case
here all relevant physics must be learnt by the DNN. It is inter-
sting to note that HAM clearly benefits from the PBM in spite
f the PBM yielding low quality predictions on its own; the PBM
redictions are qualitatively incorrect for Solutions 2 and 3 (cf.
igs. 10 and 11), and their errors are roughly one order of mag-
itude larger than the corresponding DDM errors for Solutions 1
nd 4 (cf. Figs. 9 and 12). Another interesting observation is that
he DDM and HAM error curves are less smooth than those of
BM, suggesting that the DNNs inject some pseudo-random noise
nto the DDM and HAM predictions. This noise could possibly
e reduced by informing the DNNs of the temporal correlation
etween data at subsequent time levels through input (e.g. use
wo subsequent profiles as input, rather than just a single profile),
sing a different DNN architecture (e.g. LSTM architecture) and/or
different training regime (e.g. perform adversarial training with
temporal discriminator).

.2.2. Extrapolation scenarios
Owing to its well-known generalizability, the PBM performs

imilarly in the extrapolation scenarios as in the interpolation
cenarios. However, as the accuracy of PBM was poor in the
nterpolation scenarios due to significant modeling error, the PBM
esults shown in Figs. 13–16 are also poor in general. DDM per-
orms better than PBM, providing qualitatively correct predictions
or Solutions 2 and 4 (cf. Figs. 14 and 16). The better performance
195
f DDM in comparison to the PBM can be attributed to the fact
hat DDM, though generally poor in generalization, still learns
bout the nature of the unknown source term from the data.
owever, in terms of accuracy, HAM significantly outperforms
DM for both these manufactured solutions. HAM also outper-
orms DDM for Solution 1, where the DDM prediction for α =

0.5 is qualitatively incorrect while the HAM prediction is not
(cf. Fig. 13(c)). Furthermore, HAM also outperforms both PBM and
DDM for Solution 3 with α = 2.5 (cf. Fig. 15(b)). The remaining
scenario – Solution 3 with α = −0.5 – proves to be the most
difficult scenario considered, as all three models fail to provide
qualitatively correct predictions for this scenario (cf. Fig. 15(c)).
Thus, while CoSTA-based HAM generally performs well in our
experiments, the results for Solution 3 with α = −0.5 show
hat significant improvements are still possible and desirable. In
ddition to ensuring temporal coherence, as previously discussed,
tilizing problem-specific data augmentation techniques might
e one way of boosting HAM’s performance. Another possibility
s to use a more accurate PBM as a basis for the full CoSTA model
hich will result in more relevant physics being accounted for by
he PBM, thereby simplifying the learning task of the DNN.

. Conclusion and future work

This paper has introduced the Corrective Source Term Ap-
roach (CoSTA) to hybrid analysis and modeling (HAM). The
ethod utilizes a deep neural network (DNN) to generate a
orrective source term that augments the discretized governing
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quation of a physics-based model (PBM). The purpose of the
orrective source term is to account for physics that is unre-
olved by the PBM. In a series of numerical experiments on
ne-dimensional heat diffusion problems, we have compared the
erformance of CoSTA-based HAM with that of the uncorrected
BM and that of a comparable data-driven model (DDM). The
ost important conclusions from the study are as follows:

• In the absence of any modeling error, i.e., when the full
physics were known, the PBM was more accurate than the
DDM. The PBM also generalized well to the extrapolation
scenarios, while the DDM did not. On the other hand, HAM
improved on the accuracy of the PBM in the interpolation
scenarios, while still performing better or very close to the
PBM in the extrapolation scenarios. The accuracy improve-
ments of HAM can be attributed to its ability to compensate
for the numerical discretization error. This ability can be ex-
ploited to accelerate numerical solvers by enabling the use
of coarse meshes while retaining accuracy, as unresolved
subgrid-scale physics can be accounted for by the correc-
tive source term. This feature of HAM will be extremely
useful in digital twin applications as accurate and real-time
performance of the models is of utmost importance.
• In the presence of modeling error i.e., when some relevant

physics was unknown, the PBM failed to make reasonable
predictions. The DDM generally outperformed the PBM for
both interpolation and extrapolation scenarios, since the
DDM could learn about the unknown physics from data
196
observations. However, HAM consistently performed bet-
ter than both PBM and DDM, often decreasing the relative
error of the predictions by several orders of magnitude.
The improvement in predictions compared to DDM was
even more pronounced for extrapolation scenarios; in other
words, HAM was found to be more generalizable to new,
unseen scenarios. In the context of digital twin applications,
it is foreseen that new scenarios never witnessed before
could occur from time to time, and HAM will be able to deal
with such situation better than PBM and DDM.

The work presented herein clearly illustrates the great poten-
ial that can be unlocked by combining PBM and DDM in a HAM
ramework like CoSTA. While we have only considered a single
BM and a single DNN architecture for modeling a single class of
hysical systems, CoSTA can easily be used with other PBMs and
NNs to model other systems as well – including multidimen-
ional systems and systems with multiple governing equations –
ue its solid but flexible theoretical foundation. Thus, the numer-
us benefits of employing a HAM framework like CoSTA, which
e identify below, can greatly increase the applicability of data-
riven techniques in a variety of applications, including digital
wins and also high-stakes engineering applications currently
eserved for pure PBM. Notable examples include improving the
ynamic model of a system (like a vehicle or a process), im-
roving the accuracy of building energy simulation models using
egular measurements, modeling complex physical phenomena
ike turbulence whose full physical understanding is still limited,
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Fig. 15. Solution 3, extrapolation: Comparison of relative errors and final temperature profiles for α = −0.5, 2.5 (— Exact, ◦ PBM, □ DDM, ⋄ HAM). HAM is most
ccurate for α = 2.5, while all methods fail to provide qualitatively correct predictions for α = −0.5.
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ccelerating high fidelity numerical solvers, and stabilizing ROMs
ased on significant dimensionality reduction.
One important benefit is that HAM aims to utilize existing

nowledge to the greatest extent possible, such that, for any given
roblem, HAM requires less complex data-driven techniques than
ure DDM. This can improve the predictability and interpretabil-
ty of the DDM, thereby making the model more trustworthy.
nother related benefit is that the DNN-generated corrective
ource term of CoSTA can be explained and analyzed within the
ramework of a PBM based on known first principles. This allows
or an inbuilt sanity check for the data-driven part of the HAM
odel. For example, in the case of heat diffusion modeling, if

here exist known bounds for the energy transferred to a system,
hen the DNN-generated source term must also be bounded, and
ny violation of these bounds can be automatically detected. The
ack of such automatic DNN-misbehavior detection in pure DDM
s one of the reasons why the black-box nature of DNNs has
nhibited the acceptance of data-driven techniques in high-stakes
pplications. As for digital twins, CoSTA facilitates the use of
oarse meshes in numerical solvers through its ability to correct
oth modeling errors and discretization errors, thereby improving
omputational efficiency while retaining accuracy. Furthermore,
ince the learning of the source term can continue even after
odel deployment, CoSTA allows for any new phenomena en-
ountered by the digital twin to be learned automatically. Thus,
oSTA has the potential to develop models which will be gener-
lizable, trustworthy, accurate and computationally efficient, and
elf-evolving. However, while our results are promising, more
esearch is required with regard to the accuracy, stability and
197
nterpretability of the learned source term, such as to ensure that
he findings of this paper generalize to other physical systems and
rocesses. Making optimal choices for PBMs, as well as for DNN
rchitectures and training regimes, are other interesting research
irections. Some of the outlined improvements and extensions
ill be the topic of future research by the authors, but we hope
hat this paper will inspire other scientists to pursue the outlined
esearch directions as well.
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