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a b s t r a c t

In this work, we introduce, justify and demonstrate the Corrective Source Term Approach (CoSTA)—a
novel approach to Hybrid Analysis and Modeling (HAM). The objective of HAM is to combine physics-
based modeling (PBM) and data-driven modeling (DDM) to create generalizable, trustworthy, accurate,
computationally efficient and self-evolving models. CoSTA achieves this objective by augmenting the
governing equation of a PBM model with a corrective source term generated using a deep neural
network. In a series of numerical experiments on one-dimensional heat diffusion, CoSTA is found
to outperform comparable DDM and PBM models in terms of accuracy – often reducing predictive
errors by several orders of magnitude – while also generalizing better than pure DDM. Due to its
flexible but solid theoretical foundation, CoSTA provides a modular framework for leveraging novel
developments within both PBM and DDM. Its theoretical foundation also ensures that CoSTA can be
used to model any system governed by (deterministic) partial differential equations. Moreover, CoSTA
facilitates interpretation of the DNN-generated source term within the context of PBM, which results in
improved explainability of the DNN. These factors make CoSTA a potential door-opener for data-driven
techniques to enter high-stakes applications previously reserved for pure PBM.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The recent wave of digitalization has given a push to emerging
echnologies like digital twins. A digital twin is defined as a
irtual representation of a physical asset enabled through data
nd simulators for real-time prediction, optimization, monitor-
ng, controlling, and improved decision making (Rasheed et al.,
020). Paramount to digital twins’ success is the level of physical
ealism that can be instilled into them. In this regard, as noticed
y Rasheed et al. (2020), modeling plays an important role. The
xact requirements of the modeling depend on the digital twin’s
apability level, which is generally categorized on a scale from
to 5 (0-standalone, 1-descriptive, 2-diagnostic, 3-predictive,

-prescriptive, 5-autonomous) (see Fig. 1).
Although a digital twin offers huge potential in many indus-

ries, adaptation of the digital twin technology has been stagnated
ince its inception, mainly due to the lack of methodological
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works. To leverage asset-twin technologies, Kapteyn et al. (2021)
proposed a unifying mathematical foundation that draws from
probabilistic graphical models and dynamical system theory. The
role of surrogate models in the development of digital twin has
also been emphasized by Hartmann et al. (2018) and Chakraborty
et al. (2021). There is, however, more work to be done to bring
physical realism into digital twins, as many industrial and sci-
entific applications steadily migrate from sparse data to big data
regimes. With this in mind, San et al. (2021) identified that there
are at least four modeling characteristics of utmost importance;
generalizability, trustworthiness, computational efficiency and accu-
racy, and self-adaptation. A model’s generalizability refers to its
ability to solve a wide variety of problems without any problem-
specific fine-tuning. Trustworthiness refers to the extent to which
a model is explainable, while computational efficiency and accu-
racy refers to the model’s ability to make real-time predictions
that match ground truth as closely as possible. Lastly, a model
is self-adapting if it can learn and evolve when new situations
are encountered. Until recently, most modeling approaches could
be categorized as either physics-based modeling (PBM) or data-
driven modeling (DDM). These categories are briefly explained
below:
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. The capability levels of DTs on a scale from 0 to 5.
Source: Adapted from San et al. (2021).
Physics-based modeling: For any real-world system, PBM seeks
to explain the system’s behavior using existing knowledge of ob-
servable and explainable physics (illustrated by the pink ellipse in
Fig. 2(a)). As such, PBM is ignorant of any unknown physics (illus-
trated by the black background) which, e.g., cannot be observed
directly or is inexplicable. Given the first principles of known
physics, PBM requires the derivation of one or more governing
equations for the system. This derivation might involve making
some assumptions, such that only partial physics (the blue ellipse
in Fig. 2(a)) are accounted for by the governing equations. More
often than not, these equations are difficult to solve analytically.
Therefore, to solve them numerically (in a reasonable amount of
time), we make further assumptions, resulting in further loss of
physics. Thus, the resolved physics (the green ellipse in Fig. 2(a))
is generally only a part of the full physics governing the system.
PBM has been used extensively for engineering applications like
blood flow (Taylor et al., 1998), heat and mass transfer (Liu et al.,
2021) and flow around wind turbines (Siddiqui et al., 2019) to
name a few. A good overview of PBM in the context of digital
twins can be found in Rasheed et al. (2020) and San et al. (2021).
In most of such applications, PBMs tend to be computationally de-
manding. They are also typically static, meaning that they do not
automatically adapt to new scenarios and hence can be inaccu-
rate. Despite these limitations, PBM is attractive due to its sound
first-principles foundation which yields great interpretability and
generalizability.

Data-driven modeling:With the abundant supply of big data fa-
cilitated through, for example, cost-effective sensors, open-source
cutting-edge and easy-to-use machine learning libraries, cheap
computational infrastructure, and high-quality, readily available
training resources, DDM has become very popular. Compared to
the PBM approach, DDM thrives on the assumption that data is
a manifestation of both known and unknown physics, and hence,
when trained with an ample amount of data, DDM will learn the
full physics on their own. Data-driven techniques, in particular
those involving deep neural networks (DNN), have started achiev-
ing human-level performance in several tasks that were, until
recently, considered impossible for computers. Notable examples
include image classification (Szegedy et al., 2016), dimensionality
reduction (Hinton & Salakhutdinov, 2006), medical treatment (Liu
et al., 2019) and smart agriculture (Bu & Wang, 2019). More
recent applications of DDM include tropical cyclone intensity
estimation (Lee et al., 2021), speech recognition (a comprehen-
sive review can be found in Bai and Zhang (2021)), learning
of complex nonlinear dynamics from data (Afebu et al., 2021)
and active noise control (Zhang & Wang, 2021). Some of the
advantages of DDM are their inherent online learning capability,
high computational efficiency for inference, and accuracy even for
very challenging problems (assuming the training, validation, and
test data are prepared properly). However, acceptability of DDM
in high-stake applications has been fairly limited due to their
data-hungry and black-box nature, poor generalizability, inherent

bias, and lack of a robust theory for model stability analysis. In
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fact, the numerous vulnerabilities of DNN have been highlighted
in several recent works (Akhtar & Mian, 2018; Xu et al., 2019;
Yuan et al., 2017).

Due to the challenges described above, it can be concluded
that neither PBM nor DDM is ideal for usage in a digital twin
context as neither satisfies all the four modeling characteristics
identified in San et al. (2021). Fortunately, a new paradigm in
modeling called Hybrid Analysis and Modeling (HAM) – which
combines the generalizability, interpretability, robust foundation,
and understanding of PBM with the accuracy, computational ef-
ficiency, and automatic pattern-identification capabilities of ad-
vanced DDM, in particular DNNs – is emerging. In their recent
surveys, Willard et al. (2020) and San et al. (2021) provide com-
prehensive overviews of techniques for integrating DDM with
PBM. Most of the hybridization techniques lie in one of the cate-
gories of reduced order modeling, physics-guided machine learn-
ing (PGML), physics-informed neural network (PINN) or data-
driven physics discovery using sparse or symbolic regression.
Reduced order models (ROMs) have been proposed as a way of
accelerating high-fidelity simulators by several orders of magni-
tude. In a ROM (Fonn et al., 2019), complex partial differential
equations are projected onto a reduced dimensional space based
on an unsupervised algorithm called the proper orthogonal de-
composition (more commonly known as the principal component
analysis) of the offline high fidelity simulation results resulting
in a set of ordinary differential equations (ODEs). One advantage
of this method is that many terms in the resulting ODEs can be
computed offline using the data, and hence, what remains in an
online phase is a simple forward integration of the ODEs in time,
which can be very fast. These models however, do not perform
well when physics is either missing or get lost during the dimen-
sionality reduction. In the PGML approach introduced by Pawar
et al. (2021), partially known physics or knowledge is injected at
an intermediate layer in a DNN. Such injection has been shown to
improve the accuracy and reduce the uncertainty of the trained
model. However, the PGML models still do not generalize well to
extrapolation scenarios. Within a PINN framework (Raissi et al.,
2019), the commonly used mean squared error cost function of
the DNN is regularized with the residual of the equation de-
scribing the physical laws that should be satisfied. This kind of
regularization can pose a challenge during the optimization step
because of the increase in the complexity of the cost function.
Finally, sparse regression based on l1 regularization and symbolic
regression based on gene expression programming have been
shown to be very effective in discovering hidden or partially
known physics directly from data (Vaddireddy et al., 2020). The
data-driven discovered physics is then added to the PBM to
improve their predictions. Notable work using this approach can
be found in Brunton et al. (2016). One of the limitations of this
class of method is that, in the case of sparse regression, additional
features are required to be handcrafted, while in the case of
symbolic regression, the resulting models are often unstable and

hence might not be fit for interpretation.
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Fig. 2. Physics based modeling vs data driven modeling. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)
From a careful analysis of the work cited here, it is clear
hat the HAM approach has the potential to fulfill the four de-
irable modeling characteristics described earlier in this section.
owever, as discussed above, earlier approaches to HAM have
ome limitations. In the current article, we present the Correc-
tive Source Term Approach (CoSTA) to HAM. The novelty of the
work from a theoretical perspective, is the development of a
sound mathematical foundation of the CoSTA approach to aug-
ment the governing equation of a PBM describing partial physics
with a DNN-generated corrective source term that takes into
account the remaining unknown/ignored physics. By doing so,
the resulting model retains the generalizability and interpretabil-
ity of the PBM while exploiting DDM to make the predictions
more accurate by modeling the unknown physics reflected in
the data. Explainable AI is often attributed to the enhancing
processes in which the results of the machine learning models
and solutions can be better understood by humans. In our view,
our proposed CoSTA approach can be classified as a new ex-
plainable AI approach while synthesizing a modular framework
between black-box DDM and PBM. From a practical perspective,
the superiority of CoSTA in terms of accuracy and generalizability
is quantitatively demonstrated by comparing its results against
183
those of pure PBM and DDM in a series of numerical experiments
concerning heat diffusion.

In Section 2, we start with the rationale behind the devel-
opment of CoSTA. We then continue with a presentation of our
chosen PBM (Section 2.2) and DDM (Section 2.3), before we
explain how the PBM and a DNN can be combined using CoSTA
(Section 2.4). We also provide some background on the method
of manufactured solutions (Section 2.5). Section 3 is devoted to
explaining our experimental setup—including the manufactured
solutions considered, our DNN architecture and hyperparameter
choices, and our data generation, training and testing procedures.
Our experimental results are presented and discussed in Section 4
before the article is concluded in Section 5 with a brief summary
and an outlook on future work.

2. Theory

In this section we present the rationale behind the CoSTA
approach, followed by an overview of the PBM, DDM and HAM
models used in our numerical experiments. The section con-
cludes with a brief introduction to the method of manufactured
solutions.
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.1. The rationale behind the CoSTA approach

In this subsection, we present a mathematical foundation for
he proposed CoSTA approach. Assume that we are aiming to
olve a problem on a domain 
 (with boundary @
 and outward
pointing unit normal n) that can be represented by a linear partial
differential equation (PDE) defined as follows:

Lu = f in 
 (1)

u = gd on @
d (2)

Nu = gn on @
n (3)

Here L is a linear1 differential operator (e.g. L = −∇2 for Poisson
roblems), u is the unknown (e.g. temperature for heat diffusion
roblems), f is the (true) source term (e.g. a heat source/sink in

heat diffusion problems), gd is the prescribed Dirichlet boundary
ondition along the boundary section @
d, and N is the differ-
ntial operator related to the Neumann boundary condition (e.g.
u=@n for heat diffusion problems) with prescribed value gn (e.g.
eat flux) along the boundary section @
n. We assume that @
d
nd @
n cover the whole boundary @
 without overlapping each
ther.
We will now address different cases of uncertainties/errors/

ack of information in the abstract PDE defined above. We will, in
eneral, let ũ denote an analytical solution to a perturbed version
f the PDE problem defined in Eqs. (1)–(3). Furthermore, we
enote numerically computed solutions of the original PDE and
ts perturbation as unum and ũnum, respectively. Here the subscript
‘num’’ indicates the finite resolution of the numerical method (e.g.
inite difference method (FDM), finite volume method (FVM) or
inite element method (FEM)).

Let the error between the two analytical solutions u and ũ be
enoted ẽ, i.e. we have

˜ = u− ũ: (4)

We define the corresponding residual r̃ as follows:

r̃ = f − Lũ (5)

= Lu− Lũ (6)

= Lẽ (7)

Notice that there is a unique relationship between the error in
the analytical solution of the perturbed PDE ũ and the residual
btained by inserting this solution into the (true) original PDE.
he CoSTA approach utilizes this relationship, as illustrated for
ifferent cases 1–4 below. Cases 1 and 2 concern possible sources
f error in the governing PDE itself, while Case 3 is the case when
he governing PDE is known without error but cannot be solved
nalytically. Combinations of Cases 1–3 are treated as Case 4.
Case 1: Inaccurate source term or boundary conditions: In many

eal-world problems, the source term f (e.g. describing internal
heat generation) may not be known exactly.

Let the inaccurate source term be denoted f̃ and assume that
we are able to compute exactly the corresponding PDE such that:

Lũ = f̃ in 
: (8)

Assuming that we know u (e.g. by measurements or analytical
solution), we can add a corrective source term r̃ to compute an
improved (analytical) solution denoted ucosta:

Lucosta = Lũ+ (Lu− Lũ) (9)

1 We may generalize the approach to handle nonlinear differential opera-
ors, but for notational simplicity we restrict ourselves first to address linear
ifferential operators. See Blakseth (2021) for a consideration of non-linear
perators.
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= f̃ + Lẽ (10)

= f̃ + r̃ (11)

f we are able to evaluate Lu for a given solution u, we get the
ollowing relationship from the equations above2:

ucosta = Lu (12)

hus, by the herein developed CoSTA, we may retain the true
nalytical solution without any modeling error caused by the in-
ccurate source term f̃ . The main point to be observed here is that
naccuracies in the source term can be corrected for by computing
he residual from measured (or manufactured) solutions.

Suppose now that, instead of having an inaccurate source term
˜, we have an inaccurate Dirichlet condition g̃d (e.g. inaccurate
urface temperature) or an inaccurate Neumann condition g̃n (e.g.
nknown heat flux). We may correct for any error in ũ caused by
˜d by replacing it with u along the Dirichlet boundary @
d and
imilarly any error caused by g̃n is taken care of by replacing it
ith Nu along @
n.
Case 2: Inaccurate physical parameters and differential opera-

ors: Let the true differential operator L be dependent on some
hysical parameter k (e.g. heat conductivity) that may be a spatial
nd/or temporal function. We indicate this dependency by writ-
ng L(k). Assume now that we do not know the exact value of
, but instead only an approximation k̃, such that our perturbed
DE is defined using the operator L̃ = L(k̃). Alternatively, assume
hat we do not know (or simply neglect) some terms in the true
perator L and denote the resulting inaccurate operator L̃.
For these two situations we will typically solve the following

roblem:

˜ũ = f in 
: (13)

Assuming again that we know u (e.g. by measurements or
nalytical solution) the residual, due to inaccurate differential
perator where L̃ ̸= L, is given by Eq. (7), i.e., r̃ = Lẽ. However,
f L is unknown we cannot compute r̃ from the relations above.
herefore, we introduce an alternative residual ˆ̃r corresponding
o using the perturbed differential operator as follows:

ˆ̃ := L̃ẽ (14)

e then add ˆ̃r as a corrective source term to find the CoSTA-
mproved (analytical) solution ucosta:

˜ucosta = f + ˆ̃r (15)

= L̃ũ+ L̃ẽ (16)

= L̃u (17)

hus, CoSTA can be looked upon as either solving a ‘‘manufac-
ured solution’’ defined by the true solution in Eq. (17), or as
olving the problem using a perturbed (corrected) source term
+ ˆ̃r as given in Eq. (15) — in both cases using the (inaccurate)
erturbed differential operator L̃. Notice that, in the above, we get
n analytical solution ucosta that corresponds to a source term L̃u
efined by the true solution u on a perturbed PDE defined by L̃. If
he perturbed PDE admits a unique analytical solution, then the
se of CoSTA will imply that ucosta = u.
Case 3: Inaccurate differential operator due to discretization er-

ors: Above we have described inaccuracy in the continuous PDE

2 If u is only known in discrete points (e.g. it is measured) we may interpolate
t or project it onto a polynomial basis of order p to achieve up which then can
be differentiated and used instead of u in Eq. (12).
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Fig. 4. The fully connected neural network architecture used in the present work. The definitions of the input vector I and the output vector O depend on whether
he network is used for HAM or DDM. However, note that I always has two more components than O due to the Dirichlet boundary conditions considered in this
ork.
F
i

L

N
a
p

ue to modeling errors. However, when we solve a PDE with
DM/FVM/FEM we introduce discretization errors as we are solv-
ng the problem with a discrete approximation Lnum of the true
ifferential operator L (e.g. FDM using central differences). Fol-
owing the approach for Case 2 above, we get the same rela-
tionships as given in Eqs. (15)–(17) by substituting L̃ with Lnum
for problems with only discretization errors and no modeling
errors.

Case 4: Combined modeling and discretization errors: In our
tudy herein, we will address problems where we have both
odeling and discretization errors. Denote the corresponding
ifferential operator L̃num and the inaccurate source term f̃ . Our
pproach for retaining the true solution u of the true problem
efined by L and f , is outlined below.
We first solve the following problem to find a predictor ũnum:

L̃ ũ = f̃ in 
: (18)
num num t

185
Then we compute the residual, i.e. the corrective source term,
corresponding to the error ẽnum = u− ũnum in the predictor3:

ˆ̃rnum := L̃numẽnum (19)

inally, we do the following corrector step to compute the CoSTA-
mproved numerical solution:

˜numucosta = f̃ + ˆ̃rnum (20)

= L̃numũnum + L̃numẽnum (21)

= L̃numu (22)

otice that if we knew the true solution u(x; t;�) at any node,
t every time step for any choice of the parameter vector � a
riori, we would not need to do the predictor step or compute

3 See Section 2.4 for an example of how to compute the corrective source
erm in practice.
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Fig. 5. Solution 0, interpolation: Comparison of relative errors and final temperature profiles for � = 0:7; 1:5 (— Exact, ◦ PBM, � DDM, ⋄ HAM). HAM’s predictions
are by far the most accurate, followed by PBM, while DDM is least accurate.
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the related corrective source term, because we could have solved
Eq. (22) directly. However, in practice we do not know u for all
choices of �, but we may train a neural network to return a quite
accurate corrective source term (formally defined by Eq. (19))
given a predictor ũnum computed by Eq. (18). Thus, the corrector
step in CoSTA corresponds then to solving Eq. (20).

Applications: To test and demonstrate the value of the pro-
posed CoSTA approach, we choose the problem of one-
dimensional heat conduction described by a PDE derived from the
first principles using the first law of thermodynamics. Accurate
modeling of heat conduction is vital for a wide array of problems
ranging from the modeling of heat transfer from the Earth to its
atmosphere, modeling heat transfer characteristics of the built
environment, and modeling the accumulation of thermal stresses
in heat storage infrastructures. However, the accuracy in most of
these applications is compromised due to geometric simplifica-
tions, uncertainty associated with the values of thermophysical
properties used in the calculation, neglection of unknown (and
even known) phenomena, and numerical approximations. The
CoSTA approach, if successful, has the potential to solve these
kinds of issues — not only for heat conduction modeling, but also
for the modeling of any other steady-state or dynamical system
that can described by a (system of) PDE(s).

2.2. Physics-based modeling

In PBM, PDEs are widely used as governing equations, describ-
ing various physical phenomena by relating partial derivatives
of relevant physical quantities. In this paper, we consider the
186
one-dimensional (1D) unsteady heat diffusion equation, which
describes 1D transient heat transfer in a system of volume V and
cross-sectional area A. The equation, which can be derived by
applying the principle of energy conservation to the 1st law of
thermodynamics, readsZ
V
�cV

@T
@t

dV =
�
kA
@T
@x

�
e
−

�
kA
@T
@x

�
w

+

Z
V
q̂ dV ; (23)

here T , �, cV , and k denote temperature, density, heat ca-
acity, and thermal diffusivity, respectively. The term on the
quation’s left-hand side represents the momentary change in
he system’s internal energy. Furthermore, the first two terms on
he right-hand side represent the heat flux across the system’s
ight (eastern, denoted by subscript e) boundary and left (western,
enoted by subscript w) boundary, respectively, while the last
erm on the right-hand side (q̂) is a source term which accounts
or heat generated within the system. Under certain smoothness
equirements, the 1D unsteady heat equation can also be written
n the so-called differential form:

cV
@T
@t
=

@

@x

�
k
@T
@x

�
+ q̂: (24)

omparing to Eq. (1), the differential operator of the heat equa-
ion is given by

T = �cV
@T
@t
−

@

@x

�
k
@T
@x

�
(25)

while the source term is f = q̂.
In the cases where the solution of Eq. (23) (or Eq. (24)) cannot

be expressed analytically, approximate solutions can be obtained
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Fig. 6. Solution 3 with fine grid, interpolation: Comparison of relative errors and final temperature profiles for � = 0:7; 1:5 (— Exact, — PBM, — DDM, — HAM).
AM improves on an already highly accurate PBM, while DDM is inaccurate.
I
a
p
i

2

F
a
o
a
p
b

D

a
e
l
D
a
b
t
t

sing numerical methods such as FDMs, FVMs, and FEMs. For
irichlet boundary conditions (BCs), Eq. (23) can be written in
he form

T n+1
= b

�
T n
; Ta; Tb; q̂

�
; (26)

hen discretized using the Implicit Euler FVM. Here, T = [T1; : : : ;
Nj ]

T denotes the temperature at all Nj interior grid nodes x1; : : : ;
Nj . Furthermore, the superscripts n and n+1 denote two subse-
uent time levels, A is a tri-diagonal matrix and b is a vector
epending on T n, the BCs (Ta and Tb) and q̂. Notice that A is

the algebraic matrix representation of the discrete differential
operator Lnum, and b is the vector representation of the source
term f which also includes the effects of the boundary conditions.

Since Eq. (26) is an approximation of Eq. (23), a solution of
one of the equations is generally not a solution of the other.
Note also that, in cases where the governing equation (23) is
not fully known, Eq. (26) has to be based on an approximation
of Eq. (23), which causes further discrepancies between the so-
lutions of Eq. (23) and Eq. (26), as discussed in Section 1. To
distinguish the two classes of solutions, we use the notation
Tref to denote a solution of the true governing equation (23)
(i.e., similar to u given by Eqs. (1)–(3) in the general case) and T p
to denote a solution of the discrete system (26). In the context
of a prediction problem, Tref is then the ideal prediction, while
T p is the prediction made by the PBM (i.e., similar to ũnum given
y Eq. (18) in the general case). Thus the equation that we solve
o generate the PBM solution is given by

T n+1
= b

�
T n� (27)
p p r

187
with the prescribed boundary conditions implicitly included in b.
t should be stressed that there is no learning involved in PBM
nd hence, in Fig. 3 – where we illustrate the training and testing
rocesses for PBM, DDM and HAM – there is no mention of PBM
n the part concerning training (Fig. 3(a)).

.3. Data-driven modeling

In DDM, physics is learned directly from the observation data.
or transient systems, one common DDM approach is to define
mapping from the observed state at one time level to the

bserved state at the subsequent time. A DNN is then trained to
pproximate this mapping. In the context of 1D heat diffusion
roblems with known Dirichlet BCs, the mapping to be learned
y the DNN is

NNT : RNj+2 → RNj such that T n+1
d = T n+1

ref ; (28)

T n
d ↦→ T n+1

d

where T n
d refers to the temperature profile predicted by the DDM

t time level n, and T n
ref is the solution Tref of the true governing

quation (Eq. (23)) sampled at the grid nodes x1; : : : ; xNj and time
evel n. Note that the dimensionality discrepancy between the
NN’s input and output is due to the input containing the bound-
ry temperatures, which the output does not include; since the
oundary temperatures are assumed known, there is no reason
o have the DNN predict them. However, we do want to include
he boundary temperature in the DNN input, since they represent
elevant physical information. To avoid notational complexity, we
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