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a b s t r a c t

The data of Arosemena et al. (2021), consisting of turbulent channel flow simulations of generalized
Newtonian (GN) fluids, are considered to study the effects of shear-dependent rheology on the nonzero
velocity–vorticity correlations and the mean dynamics. In the near-wall region and compared to
Newtonian channel flow, the velocity–vorticity products contributing to the turbulent inertia term
decrease/increase with shear-thinning/thickening fluid behaviour suggesting that with e.g. shear-
thinning rheology, the sublayer streaks are more stable, the near-wall vortical motions are dampened
and there is a narrower range of turbulent length scales. The mean momentum balance analysis, on
the other hand, revealed that the four-layer structure first recognized by Wei et al. (2005a) remains
for all GN fluids and that the shear-dependent rheology only seems to influence the location of the
layers. For instance, with shear-thinning behaviour, layers II and III are thicker and there is an increase
in the importance of the viscous forces in these intermediate layers. The influence of shear-thinning/
thickening fluid behaviour on the extent of the layers II and III is found remarkably similar to an
increase/decrease of the Reynolds number for Newtonian channel flow. These findings suggest that
the shear-dependent rheology should also be taken into account for proper scaling of the intermediate
layers. A potential length scale factor is proposed and its suitability is tested.

© 2021 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Turbulence is ubiquitous in nature and many man-made pro-
esses. Wall-bounded shear flows, such as boundary layers and
ressure-driven pipes and channels, despite their simplicity in
erms of geometrical configuration, are important reference flows
or several technological applications. Consider, for instance, drag-
elated studies for novel designs of vehicles propelled in air and
ater, or the energy-budget analyses for a new generation of
ipelines in the transport of gas and fuel within the petroleum
ndustry.

Control of turbulence in wall-bounded flows for drag reduc-
ion, entrainment of particles or mixing purposes has concerned
ngineers and applied physicists for decades. The time-averaged
orm of the momentum equation differs from its instantaneous
orm since it involves a turbulence interaction term consisting
f gradients of the net momentum flux ρu′

i by the macroscopic
elocity fluctuations u′

j; here ρ is the density of the fluid. In
n incompressible turbulent flow, the gradient of the turbu-
ent or Reynolds stresses, ∂

(
u′

iu
′

j

)
/∂xj, can be rewritten as (see
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e.g. Hinze [1], Tardu [2])

∂

∂xj

(
u′

iu
′

j

)
= u′

j
∂u′

i

∂xj
− u′

j

∂u′

j

∂xi
+ u′

j

∂u′

j

∂xi

= −u′

jω
′

kεijk +
∂

∂xi

(
u′

ju
′

j

2

)
. (1)

In the previous equation, mean and fluctuating variables are
identified by ( ) and ( )′, respectively, xi and ωi denote the spatial-
artesian coordinates and the vorticity field, respectively, and
ijk is the alternation or Levi-Civita tensor. Note that, in Eq. (1),
′

k = −εijk∂u′

i/∂xj. Here, when index notation is used, suffix i (or
ny other suffix) takes the value 1,2 or 3 to represent the x, y or z
omponent, respectively; i.e. (x1, x2, x3) = (x, y, z), (u1, u2, u3) =

ux, uy, uz
)
and (ω1, ω2, ω3) =

(
ωx, ωy, ωz

)
, and a repeated index

mplies summation from x to z. Also, note that, we have adopted
he common approach to denote the velocity correlation u′

iu
′

j as
the Reynolds stress tensor, which is not strictly correct.

For canonical channel flow, the i = 1–3 components of Eq. (1)
read

−
∂ (

u′
xu′

y

)
= u′

yω
′
z − u′

zω
′
y, (2)
∂y
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∂k
∂y

= u′
zω

′
x − u′

xω
′
z +

∂

∂y

(
u′
yu′

y

)
, (3)

nd

= u′
yω

′
x − u′

xω
′
y, (4)

respectively. Here k = u′

iu
′

i/2 is the turbulent kinetic energy.
or boundary layer, Eqs. (2)–(4) are approximately valid since
he gradients ∂( )/∂x are small but nonzero and become smaller
relative to the other terms with increasing Reynolds number
(Klewicki [3]). Thus, insight into how the stress gradients are
generated can also be gained through the velocity–vorticity cor-
relation terms, i.e., u′

jω
′

k.
Experimental and numerical investigations related to the

velocity–vorticity products, and to turbulent–vorticity transport
in general, are quite scarce (Eyink [4]). The studies by Klewicki
and co-workers [3,5–8] are notable exceptions. Klewicki [3] used
Eq. (1) and the approximate formulas of Phillips [9] to deduce
some unmeasured (at that point) velocity–vorticity correlation
profiles from available experimental data. The same study
(Klewicki [3]) also showed that contributions to the gradients of
the diagonal Reynolds stresses are dominated by the correlations
involving the z-vorticity component whilst the contributions to
the gradient of the off-diagonal stresses are shared between
the correlations involving the z- and y-vorticity components.
lewicki et al. [5] considered zero-pressure-gradient boundary
ayer measurements to obtain the velocity–vorticity correlations
nd to investigate the ω′

z motion contributions to the gradients
of the turbulent stresses and its possible relation to sweep and
ejection events (Willmarth and Lu [10]; Wallace et al. [11]) in
connection with important contributions to the turbulent diffu-
sion term in the budget for u′

xu′
x. Priyadarshana et al. [6] reported

a number of statistics, based on laboratory data, related to the
velocity–vorticity products including premultiplied cospectra and
correlation coefficients and observed their sensitivity to Reynolds
number as well to wall roughness. Klewicki et al. [7] pondered
Eq. (2) in the context of the mean momentum balance-based
layer structure for boundary layer, pipe and channel flows and
their scaling behaviour (see Fife et al. [12,13]; Wei et al. [14,15];
Klewicki et al. [16,17]; Chin et al. [18]; White et al. [19], among
others).

Afterwards, Morrill-Winter and Klewicki [8] focused on the
u′
yω

′
z correlation and its scale separation also in boundary layers,

ccurring as a function of both the y-coordinate and the Reynolds
umber, finding that the scaling of motions affiliated with the tur-
ulent inertia term, i.e. ∂

(
u′
xu′

y

)
/∂y, is greater than O(µ/ (ρuτ ))

in the region y+
= yuτ/ (µ/ρ) ≤ 40; where µ is the fluid’s

dynamic viscosity and uτ =
√

τw/ρ is the frictional velocity
efined in terms of the mean shear stress at the wall, τw . Aside
rom Klewicki and co-workers, it is worth mentioning the letter
f Yoon et al. [20] who analysed the contributions of the velocity–
orticity correlations to the frictional drag in wall-bounded flows
nd found them dominant over the other contributions due to vis-
ous and inhomogeneous effects in the x-direction (for boundary
ayer).

The aforementioned studies, concerning the velocity–vorticity
roducts, are mostly about canonical wall-bounded flows of New-
onian fluids despite that for many industrial applications, the
orking fluid is non-Newtonian. The purpose of this paper is to
xplore the effects of shear-dependent rheology on the velocity–
orticity correlations in a turbulent channel flow and the under-
ying physical implications. As mentioned before, there are but
few studies regarding the velocity–vorticity interaction terms
nd to the authors’ knowledge, none where the effect of having
on-constant, nonelastic viscosity is considered. Moreover, our
2

interest not only lays in the changes of the correlations but also in
how such changes affect the net mean effect of turbulent inertia
and the resulting mean momentum balance in the wall-bounded
flow. The study of the redistribution of mean momentum clar-
ifies the influence of shear-dependent rheology over the mean
dynamics and potentially leads to a proper scaling of this type of
non-Newtonian channel flow.

2. The numerical experiments

Velocity–vorticity correlations and other statistics are com-
puted using data from turbulent channel flow simulations of GN
fluids at a frictional Reynolds number, Reτ = ρuτh/µw = 180; h
eing the channel half-width and µw the nominal wall viscosity
ased on τw and the considered rheology model (see Draad et al.
21]; Ptasinski et al. [22]). GN fluids are purely viscous, time
ndependent fluids which stress tensor due to viscous effects,
ijvis, is given by

ijvis = 2µSij, (5)

where µ = µ (γ̇ ) is the apparent dynamic viscosity solely
epending on the strain rate γ̇ =

(
2SijSji

)1/2 and Sij =
(
∂ui/∂xj+

∂uj/∂xi
)
/2 is the strain rate tensor. The rheology of a GN fluid

may be reproduced through different models such as the power-
law (PL), Spriggs or Carreau fluid models (see e.g. Irgens [23])
which relate the apparent viscosity to the strain rate through
a constitutive equation. The choice of a particular model has
little effect on the turbulent flow predictions if high strain rate
rheology (typical in turbulent regime near walls) is used in the
rheology characterization (Singh et al. [24]).

The direct numerical simulations (DNS) are performed us-
ing a FORTRAN 77 code called CALC-LES (Davidson and Peng
[25]; Davidson [26]) which solves the incompressible form of
the momentum and continuity equations through a finite volume
method on a collocated grid, using central differencing approxi-
mations in space and the Crank–Nicolson scheme in time. The nu-
merical procedure consists of an implicit, two-time stepping tech-
nique where the Poisson’s equation for the pressure is solved with
an efficient multigrid method (Emvin [27]). Regarding boundary
conditions, in the wall-normal direction (y-coordinate) physical
(no-slip, impermeable) top and bottom walls are imposed and pe-
riodicity is set in the streamwise/longitudinal (x-coordinate) and
spanwise/lateral (z-coordinate) directions of the computational
box.

In the DNS, to avoid unphysical results at large and low strain
rate values which may arise with the simpler PL fluid model, the
rheology is incorporated through the Carreau model, i.e.,

µ = µ∞ + (µ0 − µ∞)
[
1 + (Λγ̇ )2

](α−1)/2
, (6)

where µ∞ and µ0 are the ‘infinite’ and ‘zero’ shear rate viscosi-
ties, respectively, Λ is a time constant and α is the flow index
which for shear-thinning/thickening is to be less/more than unity.
Here, the different parameters are adjusted to attain the target
Reτ according to the set nominal wall viscosity. Fig. 1 shows the
mean (averaged in time and in the spatially homogeneous direc-
tions) viscosity for the considered shear-thinning/pseudoplastic
(P180), Newtonian (N180) and shear-thickening/dilatant (D180)
fluids cases. As evidenced by Eq. (6), shear-thinning/thickening
refers to a fluid exhibiting a decrease/increase in its apparent fluid
viscosity with increasing strain rate. It is remarked that at the
given flow conditions and within the region where viscous effects
are likely dominant, the increase/decrease of local viscosity with
shear-thinning/thickening behaviour is (on average) less than 50%
of the approximate value at the wall. Such increase/decrease
is comparable to what has been reported in previous studies
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Fig. 1. Mean viscosity profile, µ+
= µ/µw , vs. y+ . Here, µ∞/µ0 = 1 × 10−3 ,

+

0 ≈ 1.782/0.561 for fluid case P180/D180, Λ+
= 0.1 and α is set to

.8, 1.0 and 1.2 for fluid cases P180, N180 and D180, respectively. Profiles
orresponding to P180, N180 and D180 are identified by red, black and cyan
olours, respectively. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

see viscosity rheograms in e.g. Rudman et al. [28]; Gavrilov and
udyak [29]; Singh et al. [30]). Note as well that, the channel
low is pressure-driven and that all turbulent scales have been
roperly resolved for the simulations of the three considered GN
luid cases. For further details regarding the computational set-up
nd the used database, we refer to Arosemena et al. [31].
In the following sections, most statistics are given in ‘wall’

nits, ( )+, using µw, uτ , (µw/ρ) /uτ , (µw/ρ) /u2
τ and ρu2

τ as
haracteristic viscosity, velocity, length, time and stress, respec-
ively.

. Velocity–vorticity correlations

Figs. 2 and 3 show the contributions to the wall-normal gradi-
nt of the nonzero Reynolds stresses, i.e., terms on the right-hand
ide of Eqs. (2) and (3), respectively. As it can be seen from Fig. 2,
or the considered GN fluid cases, contributions to the gradient of
he off-diagonal component, ∂

(
u′
xu′

y
+
)

/∂y+, are shared by cor-

elations involving both ω′
z and ω′

y; the interaction term −u′
zω

′
y,

n particular, appears to dominate the most within the region
+ ≲ 30. The relative contributions of these correlations to the
urbulent inertia term are clarified by taking their ratio; see Fig. 4.
he figure also displays the wall-normal position, y+

m , at which a
aximum is attained for the Reynolds shear stress, i.e., the zero-
rossing point of its wall-normal gradient. As seen from Fig. 4,
t y+

m the ratio u′
yω

′
z/u′

zω
′
y ≈ 1 whereas prior/beyond y+

m , the
orrelation u′

yω
′
z becomes smaller/larger than the −u′

zω
′
y term. On

he other hand, Fig. 3 reveals that, for all considered GN fluid
ases, contributions to the gradient of the diagonal stresses are
ominated by the correlation involving ω′

z . The interaction terms
ppearing in Eq. (4), found to be several orders of magnitude less
han u′

zω
′
x which is the smallest velocity–vorticity product studied

so far (see Fig. 3), are considered approximately zero. Thus, for
all cases, the wall-normal and streamwise velocity components
appear to be uncorrelated to the longitudinal and wall-normal
vorticity components, respectively.

The velocity–vorticity correlations presented in Fig. 2 are par-
icularly important since their difference not only expresses the
 b

3

Fig. 2. Contributions to the wall-normal gradient of the Reynolds stress,
−∂

(
u′
xu′

y
+
)

/∂y+ , and wall-normal gradient of the Reynolds stress vs. y+ . Line
styles ‘‘—’’ and ‘‘· · ·’’ are used to identify contributions from the correlations
−u′

zω
′
y
+

and u′
yω

′
z
+
, respectively, whereas line style ‘‘- - -’’ is used for the

gradient −∂y+u′
xu′

y
+

= −∂

(
u′
xu′

y
+
)

/∂y+ and line style ‘‘- · -’’ for the zero-
crossing line. Profiles corresponding to fluid cases P180, N180 and D180 are
identified by red, black and cyan colours, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Contributions to the wall-normal gradient of the turbulent kinetic energy,
∂k+/∂y+ , vs. y+ . Line styles ‘‘—’’, ‘‘- · -’’ and ‘‘· · ·’’ are used to identify
ontributions from the correlations −u′

xω
′
z
+
, u′

zω
′
x
+

and the gradient ∂y+u′
yu′

y
+

=(
u′
yu′

y
+
)

/∂y+ , respectively. Profiles corresponding to fluid cases P180, N180
and D180 are identified by red, black and cyan colours, respectively. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

mean effect of turbulent inertia in the differential statement
of mean dynamics (Morrill-Winter and Klewicki [8]) but also,
their cross-stream gradients are the source or sink for the mean
vorticity (Tennekes and Lumley [32]). The correlation u′

yω
′
z is

elated to the advective transport, central to Taylor’s mixing-
ength theory of vorticity transfer [33], and it has been shown to
e particularly relevant for the development of the logarithmic
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Fig. 4. Ratios of the velocity–vorticity correlations, TIa/TIb and TIb/TIa , vs. y+;
here TIa = u′

yω
′
z and TIb = u′

zω
′
y . In (a)-(c), profiles corresponding to fluid cases

P180, N180 and D180 are identified by red, black and cyan coloured markers,
respectively. The marker ‘◦’ is used for the TIa/TIb ratio whilst the marker ‘□’ is
used for the TIb/TIa ratio. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

mean velocity profile (Klewicki et al. [16]) once the leading order
terms in the mean dynamics are purely inertial (Wei et al. [14]).
On the other hand, the correlation u′

zω
′
y is related to change-

f-scale effects (Tennekes and Lumley [32]), constitute a gain
or loss) of mean vorticity in the channel flow−note that total
roduction of ωz is given by ω′

j∂u′
z/∂xj = ∂

(
ω′

ju′
z

)
/∂xj since

ω′

j is divergenceless− and when it is not negligible implies that
the mixing-length theory is not an appropriate approximation.
In Fig. 2, the peaks in the correlations occur near y+

≈ 5 −

0 where the wall-normal gradients of −u′
xu′

y
+

are the largest.
lso, close to the peak values and with shear-thinning/thickening
luid rheology, the absolute value of the correlations decrease/
ncrease which is consistent with the overall decrease/increase of
urbulent shear stress and its wall-normal gradient with shear-
hinning/thickening fluid behaviour (see the mean shear stress
udget in e.g. Singh et al. [30]). Here, an interesting observa-
ion is that both velocity–vorticity products are affected by the
hear-dependent rheology. This is in contrast with the observed
hanges due to Reynolds number for Newtonian wall-bounded
low where only the correlation u′

zω
′
y appears to be Reynolds-

number-dependent (Chin et al. [18]). Meanwhile, unsurprisingly
and as shown in Fig. 3, the principal contribution to ∂k+/∂y+ also
ttains its maximum close to the edge of the viscous sublayer,
+

≈ 5, and increases/decreases with shear-thinning/thickening
luid behaviour. This interaction term involves u′

x−largest ve-
ocity fluctuation− and ω′

z−important source for the sustain-
ent of turbulence−which intensities are known to increase/
ecrease with shear-thinning/thickening fluid rheology in the
ery near-wall region (see e.g. Arosemena et al. [31]).
4

At this point, we would like to highlight the (potential) phys-
ical implications of changes observed with shear-dependent rhe-
ology in the velocity–vorticity correlations contributing to the
turbulent inertia term. The region of positive u′

yω
′
z , seen up to

y+
≈ 10 (compared to the Newtonian case, actual zero-crossing

oint slightly increases/decreases with shear-thinning/thickening
ehaviour as displayed in Fig. 2), is believed to be related to the
utward motion of sublayer streaks (Klewicki et al. [5]) whereas
he region of negative u′

yω
′
z , after y+

≈ 10, is believed to be due
o the vertical advection of detached hairpin-like vortex heads;
ikely important for the near-wall self-sustaining process of vor-
ical motion (Falco et al. [34]; Klewicki et al. [5]). In consequence,
ompared to a Newtonian fluid and with e.g. shear-thinning fluid
ehaviour, the suppression of u′

yω
′
z across the channel seems to

imply that the sublayer streaks are more stable, i.e., less prone
to be lifted-up, oscillate and eventually break-up during a ‘burst-
ing’ process (Kim et al. [35]; Offen and Kline [36]) and that
the strength of the near-wall vortical motions is reduced. See
contours of instantaneous streamwise velocity fluctuations, u′

x,
in e.g. Singh et al. [37]; Arosemena et al. [31], where coarser
structures with less ‘streakiness’, more streamwise coherence
and larger spanwise separation are observed with shear-thinning
rheology and Arosemena et al. [31], where the intensity of the
streamwise vorticity component is reported to decrease−for the
shear-thinning fluid− when compared to the Newtonian base
case.

Related to one of the previous remarks, it is worth comparing
the changes experienced by the near-wall streaks in Newtonian
channel flow due to a decrease in Reynolds number with those
attributed to shear-thinning rheology. In Newtonian fluids where
the flow is wall-bounded, the streaks are known to keep a rel-
atively constant spanwise spacing (see e.g. Klewicki et al. [38];
Cossu and Hwang [39]) but the bursting periods are longer (see
e.g. Jímenez et al. [40]). The fact that, for a Newtonian fluid, the
bursting period seems to increase with decreasing Reτ does not
mply an increase in stability in the same sense as for shear-
hinning behaviour, i.e. structures less prone to be lifted-up, but
hat perhaps due to the lessened turbulence intensity (see e.g. Lee
nd Moser [41]), the streaks are likely to persist over longer
eriods of time. Furthermore, as aforementioned, the correlation
ssociated with the outward motion of the streaks (u′

yω
′
z) appears

early invariant to changes of Reynolds number. On the other
and, with respect to the term −u′

zω
′
y associated with the mod-

ulation (change-of-scale effect) of near-wall motions, its overall
attenuation−for the shear-thinning fluid case− is a clear indica-
tive of a decrease in the range of length scales in the turbulent
channel flow. See the previously mentioned contours of u′

x in
Singh et al. [37]; Arosemena et al. [31], where a narrower range
of turbulent eddy sizes is observed for the shear-thinning fluid
compared to the Newtonian fluid and also, Section 4.1; about the
hierarchy of length scales.

Finally, it would be wise to discuss the possible Reynolds
number dependency of the velocity–vorticity correlations and
related statistics. At least up to moderate frictional Reynolds
numbers (Reτ = 750), contribution of viscosity fluctuations
in e.g. the mean shear budget or the turbulent kinetic energy
udget) are known to remain relatively small and consistent
rends in the different statistics (including the Reynolds shear
tress which wall-normal gradient is directly related to the terms
u′
yω

′
z and −u′

zω
′
y) are seen when comparing Newtonian and shear-

ependent fluid cases (Singh et al. [37]). In consequence, at least
p to moderate Reynolds numbers, a similar Reτ dependency
for the different statistics) is deem probable for all GN fluid
ases. In other words, it is likely that for a particular GN fluid,
n increase in Reynolds number would lead to an invariant u′

yω
′
z-

profile whereas the correlation −u′ ω′ is expected to display a
z y
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imilar Reynolds number dependency to the turbulent inertia
erm as reported by Chin et al. [18] for Newtonian wall-bounded
low. It is emphasized that this last statement elucidates what the
uthors find probable and should be taken with caution. Definite
vidence about the Reynolds number dependency of the velocity–
orticity products for GN fluids in wall-bounded turbulent flows
equires actual computation of these profiles for a wide range of
eynolds numbers and it is proposed as further work.

. Streamwise mean momentum balance and the four-layer
tructure

Based on the properties of the mean velocity profile and the
ean shear stress field, turbulent boundary layer, channel and
ipe flows are commonly scaled according to identified regions
onsisting of different layers (see e.g. Tennekes and Lumley [32];
ope [42]): there is an inner layer region; comprised by a viscous
ublayer

(
y+ ≲ 5

)
, a buffer layer region

(
5 ≲ y+ ≲ 30

)
, a log-

law region
(
30 ≲ y+ ≲ 0.15h+

)
, and a remaining outer region.

There is some discrepancy in the location of the layers reported
by different authors and in general, the logarithmic-law layer,
overlapping the inner and outer regions, is more distinct as the
Reynolds number increases (see e.g. Smits et al. [43]; Marusic
et al. [44]). Wei et al. [14] remarked that it is the gradients of
the stresses and not the stresses themselves that are the relevant
dynamical quantities and proposed an alternative layer structure
directly based on the mean dynamics described by the time-
averaged momentum balance. As a framework, before discussing
the mean dynamics for the shear-dependent cases, we briefly
outline the mean momentum equation analysis for turbulent
channel flow of GN fluids which (as presented) is indistinct to
the one of Newtonian channel and pipe flows and fairly similar to
the one of zero-pressure-gradient turbulent boundary layer; see
for instance Fife et al. [12]; Wei et al. [14]; Klewicki et al. [17];
Chin et al. [18], among others.

For a statistically converged, pressure-driven, turbulent chan-
nel flow of a GN fluid, the streamwise mean momentum equation
reads
∂

∂y+

(
u′
xu′

y

)+
=

1
Reτ

+
∂

∂y+

(
τ xy

+

vis

)
, (7)

ince the mean continuity equation and the y-component of the
ean momentum equation lead to −∂p+

/∂x+
= −dp+

w/dx+
=

τ+

w/h+ which by definition is equivalent to 1/Reτ . Here p denotes
ressure and the subscript ‘w’ refers to values at the bottom
all of the channel. In general, for a GN fluid, the total mean
iscous shear stress is given by τ xy

+

vis = 2
[
µ+S

+

xy +
(
µ′S′

xy

)+]
;

.e., τ xy
+

vis may also include a contribution arising due to viscosity
fluctuations. In terms of simpler notation, Eq. (7) can be rewritten
as

TI = PG + VF. (8)

Hence, for the channel flow, the mean statement of dynamics
indicates that the net effect of turbulent inertia (TI) is balanced
by the sum of the mean pressure gradient (PG) and net viscous
force (VF). Based on Eq. (8), for Reτ ≥ 180, Wei et al. [14] noted
hat indeed the three effects must all be in balance, or have at
east two non-negligible terms in balance, and recognized that
he mean dynamical balance can be described by a four-layer
tructure: layer I, |PG| ≈ |VF| ≫ |TI|; layer II, |VF| ≈ |TI| ≫ |PG|;
ayer III, |PG| ≈ |VF| ≈ |TI|; layer IV, |PG| ≈ |TI| ≫ |VF|.

Fig. 5, displaying the terms appearing in Eq. (8), reveals the
ean dynamics for turbulent channel flow of the considered GN

luid cases. In the figure, the net mean viscous force is split
nto VF(N)

= 2
(
µ+S

+
)

and VF(NN)
= 2

(
µ′S′

)+
, being the
xy xy

5

Fig. 5. Distribution of stress gradients in the Reynolds-averaged streamwise
momentum equation vs. y+ . Line styles ‘‘- · -’’ , ‘‘—’’, ‘‘· · ·’’ and ‘‘- - -’’ are
sed to identify PG, VF(N) , VF(NN) and −TI, respectively. Profiles corresponding
o fluid cases P180, N180 and D180 are identified by red, black and cyan colours,
espectively. (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

ast term non-zero only for the shear-dependent cases since it
rises due to fluctuations in viscosity. As seen from Fig. 5, in
he near-wall region and for all cases, the turbulent inertia term
s balanced out by VF(N) with an error VF(NN)

+ PG. Further-
ore, as mentioned while discussing Fig. 2, with shear-thinning/

hickening fluid behaviour the peak value in −TI is suppressed/
nhanced and moves slightly to the right/left in comparison with
he Newtonian case. Also, as already seen from Fig. 4, the zero-
rossing point of the turbulent inertia term (y+

m) appears to be
ffected by the shear-dependent rheology; with shear-thinning/
hickening, the wall-normal position at which TI = 0 occurs
urther/nearer the wall in comparison with the Newtonian fluid
ase. On the other hand, the term arising due to fluctuation in
iscosity

(
VF(NN)

)
peaks in magnitude near the upper edge of

he traditional viscous sublayer, i.e. y+
≈ 5, and seems to be in

avour/against −TI for shear-thinning/thickening fluid rheology.
onetheless, VF(NN) approaches zero as we move further away
rom the wall and, across the channel, its magnitude is always
maller than the magnitude of the normalized, constant, driving
ressure gradient. In summary, the inherent character of the
ean dynamics seems to remain the same for all GN fluids
nd the shear-dependent rheology appears to only influence the
ocation of the regions depending on the leading-order balance
etween the terms in Eq. (8).
Following Wei et al. [14], the regions corresponding to the

our-layer structure are revealed through the −VF/TI ratio shown
n Fig. 6. The inner viscous/pressure-gradient balance layer (layer
), extending from the wall up to y+

≈ 3, does not differ in
significant manner from the traditional viscous sublayer and
ppears to be unaffected by the shear-dependent rheology in
erms of its physical extent but does display a larger |VF/TI| ratio
ith shear-thinning fluid behaviour. At the outer edge of layer I,
he ratio −VF/TI approaches −1 and marks the beginning of the
tress-gradient balance layer (layer II). Note that, at low Reynolds
umbers for pressure-driven channel flow, the ratio of −1 is
pproached asymptotically, probably, due to a net diminishing
ffect of the associate surface flux of vorticity (Wei et al. [14]).
ayer II extends up to a wall-normal position where the ratio
VF/TI is less than −2 (Wei et al. [14]) and marks the start of
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Fig. 6. Ratio of the mean viscous force to the mean effect of turbulent inertia,
VF/TI, vs. y+ . Profiles corresponding to fluid cases P180, N180 and D180
re identified by red, black and cyan coloured markers, respectively. (For
nterpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

he viscous/pressure-gradient/inertial balance layer (layer III). In
ayer III, TI changes sign at y+

m and Eq. (8) undergoes a balance
reaking and exchange of terms (Klewicki et al. [7]); i.e., in the
ean force balance, the turbulent inertia starts to be of leading
rder instead of the mean viscous force (Morrill-Winter and
lewicki [8]). Finally, the inertial/pressure-gradient balance layer
layer IV) is attained when the ratio −VF/TI decreases to 0.5
Wei et al. [14]) and marks the beginning of an inertial subrange
here viscous forces can be neglected. As seen from Fig. 6, lay-
rs II and III appear to be thicker/thinner with shear-thinning/
hickening fluid behaviour in comparison to the Newtonian case
nd thus, the influence of VF appears to increase/decrease up to
all-normal positions further away from/closer to the wall with
hear-thinning/thickening rheology. Moreover, such behaviour is
robably due to the local increase/decrease of viscosity as y+

ncreases for the shear-thinning/thickening cases; see Fig. 1. This
learly contrasts with the results reported for viscoelastic channel
low (White et al. [19]); where, even for the low drag reduction
egime (Warholic et al. [45]), the increase of importance in the
iscous effects−compared to Newtonian channel flow and as we
ove further away from the wall− is attributed not to an increase

n viscosity but to a diminishing importance of the inertial effects.
It is also worth remarking that the effect of shear-thinning/

hickening rheology in the −VF/TI profile seems to be similar
o an increase/decrease of the Reynolds number in the New-
onian case (see e.g. Klewicki et al. [17]) which suggests that
roper scaling of the intermediate layers in turbulent channel
low of GN fluids should account for their shear-dependency.
n Section 4.1, scaling concepts are applied to identify the (po-
ential) appropriate length scales in the different regions and
o gain further insight into the four-layer structure once the
hear-dependent rheology is introduced. The analysis follows
he conceptual framework used by Fife et al. [12,13] in which
he stress gradient balance layers have a mathematical structure
omposed of a hierarchy of length scales and, where, the tradi-
ional inner and outer scales are simply the two extremes in a

ontinuum of length scales.

6

.1. The hierarchy of length scales

Consider Eq. (7) in the following convenient form
dV
dy+

+
dT
dy+

+ ϵ2
= 0, (9)

where V
(
y+
)

= τ xy
+

vis, T
(
y+
)

= −u′
xu′

y and ϵ2
= 1/Reτ . Also,

onsider a mathematical construct, based on the Reynolds shear
tress, defined as
β
(
y+
)

= T
(
y+
)
+ ϵ2y+

− βy+. (10)

ere Tβ is an adjusted Reynolds stress (in Tβ , β is a superscript
ot an exponent) and β is a small positive number restricted
o β ≤

[
max

(
dT/dy+

)
+ ϵ2

]
/C; where the coefficient C is a

umber in the interval 5 to 20 (Fife et al. [12]). Note that, the
unction Tβ satisfies
dTβ

dy+
=

dT
dy+

+ ϵ2
− β, (11)

and thus, Eq. (9) can be rewritten as

dV
dy+

+
dTβ

dy+
+ β = 0. (12)

s will be seen shortly, the introduction of Tβ allow us to have an
exact differential equation in rescaled variables with no explicit
dependency on any parameter. Moreover, Tβ has led to Eq. (12)
expressing an approximate balance between its first two terms
for an arbitrary (small) β-parameter. Such balance must be (even-
tually) broken, at a given y+, and changes to another kind of
alance where the three terms in Eq. (12) have the same order
f magnitude (Fife et al. [12]; Fife [46]).
Proper scaling of Eq. (12)−in a given region−requires that the

wo derivatives are bounded and at least one of them cannot be
oo small. Through a transformation of differentials, such as

y+
= ℓdŷ, dV = φdV̂, dTβ

= δdT̂β , (13)

t is possible to rescale the original variables into the new vari-
bles ŷ, V̂ and T̂β which (potentially) represent most clearly and
aturally the momentum balance within a certain subdomain of
nterest. The coefficients ℓ, φ and δ in the linear transformations
re β-dependent. In consequence, with the use of the differential
ransformations (13), Eq. (12) is recast as

φ

ℓ

)
dV̂
dŷ

+

(
δ

ℓ

)
dT̂β

dŷ
+ β = 0. (14)

A suitable scaling would render the previous differential equation
(14) into a parameterless equation. This requires matching, in
formal order of magnitude, between the two terms involving
derivatives in Eq. (14) and the third term, β . Therefore, one can
specify

ℓ =
φ

β
, δ = φ. (15)

As seen from Eq. (15), the criterion of equal order of magnitude,
by itself, does not define uniquely the three scaling factors since,
for a given β , one of them is still undetermined. A possible closure
is found assuming that e.g. φ (β) = β−σ ; where the parameter σ
is an exponent (Fife [46]). Hence

ℓ = β−(σ+1), δ = φ = β−σ . (16)

If β = ϵ2, inner and outer length scaling are recovered for σ =

−1 and σ = 0, respectively. The continuum of scales is between
these two extreme cases, i.e., σ ∈ [−1, 0] when β = ϵ2.

The intermediate or ‘meso’ layer III in Wei et al. [14] corre-
sponds to σ = −1/2 and β = ϵ2. However, this mesolayer III is
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able 1
caling behaviour of the intermediate layer III for turbulent channel flow of GN
luids. Here, ∆y+

III = y+

3 − y+

2 ; where y+

2 and y+

3 denote the beginning and end
f mesolayer III.

Case ∆y+

III µ+
(
y+
m

)
∆y+

III/

√
Reτ µ+

(
y+
m
)

D180 18.6 0.75 1.60
N180 22.1 1 1.65
P180 26.2 1.41 1.64

just one among many, in the sense that, different adjusted meso-
layers can be constructed by replacing T by Tβ and mesolayer III
is just a particular case, where Tβ

= T, and which approximate
centre is at the location y+

= y+
m where the balance breaking

nd exchange of leading-order terms in the streamwise mean
omentum equation occurs (Fife et al. [12]). Note as well that,
hen β = ϵ4, σ = −1/2 and Tβ

̸= T also corresponds to the
uter length scaling case.
At this point, it is worth mentioning that the previous obser-

ations are valid for all GN fluids however, the fact that local
ariations of viscosity take place for the shear-dependent cases,
nd in the light of results presented in Fig. 6− where the ex-
ension of the intermediate layers seems to be affected by the
hear-dependent rheology−make us ponder if the choice σ =

1/2 and β = ϵ2 is the most suitable for layer III. Consider-
ing that the balance breaking in Eq. (8) happens at y+

= y+
m ,

where TI = 0 (see Fig. 4), another reasonable candidate for the
parameter of interest, β , would be ϵ2/µ+

(
y+
m

)
; i.e., a rescaling

actor which takes into account the increase/decrease of the mean
iscosity (with respect to nominal µw) at y+

= y+
m for the

hear-thinning/thickening fluid case. For the Newtonian case, as
emarked earlier, the intermediate layer is centred in the vicinity
f y+

m since dT/dy+
= dTβ/dy+

= 0. In contrast, for the shear-
hinning and shear-thickening fluid cases is centred around y+

=
+

β where dTβ/dy+
= 0. This wall-normal position, for the con-

sidered cases, is nearby y+
m . In comparison with y+

m , y
+

β is slightly
closer to/further away from the wall for the shear-thickening/
thinning case since the location of the maximum for Tβ decreases
as β increases. In consequence, for the shear-dependent cases,
µ+

(
y+

β

)
is expected to be slightly larger than µ+

(
y+
m

)
but not to

significantly affect the proposed scaling, in particular, as ϵ2
→ 0,

i.e., as the frictional Reynolds number increases.
The suitability of the choice β = ϵ2/µ+

(
y+
m

)
for turbulent

hannel flow of GN fluids can be checked in a quantitative man-
er. Based on the transformations (13), we obtain y+

3 − y+

2 =
−1/2

(
ŷ3 − ŷ2

)
; where y+

2 and y+

3 denote the beginning and end
f mesolayer III, respectively, and ŷ2 and ŷ3 the same wall-normal
ositions but now in the rescaled variable. Here, ∆ŷ = ŷ3 −

2̂ = O (1) and thus, ∆y+
= y+

3 − y+

2 = O
(
β−1/2

)
. As seen

rom Table 1, the ratio ∆y+/

√
Reτµ+

(
y+
m
)
appears to bounded

or all GN fluid cases, and, it is expected that will tend to 1 as
eτ increases, i.e., as ϵ2

→ 0. Note as well that this decrease/
increase in the overall range of length scales with shear-thinning/
thickening fluid behaviour is in line with the showed trends for
−u′

zω
′
y in Section 3.

. Summary

Turbulent channel flow simulations of GN fluids, consisting of
eakly shear-thinning, Newtonian, and weakly shear-thickening

luid cases, at Reτ = 180 (Arosemena et al. [31]) are considered
o compute the nonzero velocity–vorticity correlations and some
tatistics related to the mean dynamics.
Regarding the velocity–vorticity products, for all considered

N fluid cases, contributions to the wall-normal gradient of
7

−u′
xu′

y are shared between the vortex-stretching and advective
ransport terms, i.e., −u′

zω
′
y and u′

yω
′
z , respectively. On the other

hand, contributions to the wall-normal gradient of the turbu-
lent kinetic energy are dominated by the correlation −u′

xω
′
z

which, in the near-wall region, seemingly increases/decreases in
magnitude with shear-thinning/thickening fluid behaviour. The
opposite trend is noted for the velocity–vorticity products related
to the turbulent inertia term, suggesting that with e.g. shear-
thinning rheology, the sublayer streaks are more stable, the
near-wall vortical motions are dampened, and there is a narrower
range of turbulent eddy sizes.

In the context of mean momentum balance analysis, for the
shear-dependent cases, the contributions VF(NN) (arising due to
fluctuations in viscosity) are found to peak in the vicinity of the
wall but, across the channel, are always smaller than PG and over-
all are deemed negligible. The study of the terms contributing to
the mean momentum balance revealed that the four-layer struc-
ture, first recognized by (Wei et al. [14]), remains for all GN fluids
and that the shear-dependent rheology appears to only influence
the location of the layers. Compared to Newtonian channel flow,
with shear-thinning/thickening fluid behaviour, the upper bound
for layers II and III are located further away/closer to the wall
and with e.g. shear-thinning rheology, the balance breaking and
exchange of mean forces at y+

m also moves further away from
the channel wall. The results imply an increase/decrease in the
importance of the viscous forces in the intermediate layers with
shear-thinning/thickening behaviour.

We remark that the effect of shear-dependent rheology on the
thickness of layer II and III is strikingly similar to a change of
Reynolds number for Newtonian channel flow (see e.g. Klewicki
et al. [17]; Chin et al. [18]) which strongly suggests that the
shear-dependency should be taken into account for proper scaling
of the intermediate layers in wall-bounded flows of GN fluids.
The mean momentum balance-based layers have a mathematical
structure composed of a hierarchy of length scales (Fife et al.
[12]) and for the intermediate layer III, in case of shear-dependent
rheology, it is proposed that a suitable length scale should ac-
count for the local variation in the mean viscosity (with respect
to its nominal wall value) at y+

m . Quantitative evidence (see Ta-
ble 1) revealed that the width of the mesolayer III, ∆y+

III, seems

to scale with
√
Reτµ+

(
y+
m
)
which is in line with the previous

observation about the overall decrease/increase in the range of
turbulent length scales with shear-thinning/thickening rheology
in the channel flow.
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