
PHYSICAL REVIEW B 103, 134508 (2021)

Spin pumping in superconductor-antiferromagnetic insulator bilayers
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We study theoretically spin pumping in bilayers consisting of superconductors (SC) and antiferromagnetic
insulators (AFI). We consider both compensated and uncompensated interfaces and include both the regular
scattering channel and the Umklapp scattering channel. We find that at temperatures close to the critical tem-
peratures and precession frequencies much lower than the gap, the spin current is enhanced in superconductors
as compared to normal metals. Otherwise, the spin current is suppressed. The relevant precession frequencies,
where the spin current in SC/AFI is enhanced compared to normal metals/AFI, is much lower than the typical
resonance frequencies of antiferromagnets, which makes the detection of this effect experimentally challenging.
A possible solution lies in the shifting of the resonance frequency by a static magnetic field.

DOI: 10.1103/PhysRevB.103.134508

I. INTRODUCTION

Both superconductors (SC) and antiferromagnets (AF)
are of particular interest in the context of spintronics. An-
tiferromagnets disturb neighboring components less than
ferromagnetic or ferrimagnetic materials, because they pro-
duce no net stray field [1]. This means that antiferromagnetic
components can be packed more tightly and are more ro-
bust against external magnetic fields than their ferromagnetic
counterparts. Additionally, antiferromagnets operate at THz
frequencies, which are much faster than the GHz frequencies
of ferromagnets (F). This can allow for ultrafast information
processing when working with antiferromagnets.

Superconductivity is a type of order that normally com-
petes with magnetism. However, the discovery of spin-triplet
superconductivity has shown that complete synergy between
superconductivity and magnetism is possible [2–6], and super-
conductors are now an integral part of spintronics research. In
addition to the potential for minimal Joule heating that comes
with superconductivity, superconductors are interesting from
a spintronics perspective because of spin-charge separation
[7,8], which allows spin and charge imbalances to decay over
different length scales. It has been observed that the spin
relaxation time can be considerably longer than the charge
relaxation time [9].

Since both superconductors and antiferromagnets are use-
ful as building blocks in spintronic devices, it is of interest to
study spin transport in hybrid superconductor-antiferromagnet
devices. Despite this, SC/AF structures are largely unex-
plored compared to superconductor-ferromagnetic structures.
Here, we study theoretically spin pumping in superconductor-
antiferromagnetic insulator (SC/AFI) bilayers. This refers to
the injection of a spin current in the superconductor, which we
consider to be spin singlet and s wave, by the application of
a precessing magnetic field in the AFI [10]. Spin pumping
has been observed in F/SC structures [11–13] and investi-
gated theoretically in F/SC structures by calculations based

on the local dynamic spin susceptibility in the SC [14,15] and
quasiclassical theory [16,17]. The theoretical works found an
enhanced spin current in superconductors compared to normal
metals (NMs) below the transition temperatures [14,15].

While spin pumping in SC/AF structures has, to our
knowledge, not been explored, some important work has
been done with normal metal-antiferromagnetic systems. It
has been found theoretically that spin pumping is of a sim-
ilar magnitude as in the ferromagnetic case [18,19], and
more recently measurements of the inverse spin-Hall volt-
age demonstrated the spin-pumping effect in MnF2/Pt [20].
Combining the demonstration of AF/NM spin pumping with
the above mentioned evidence of F/SC spin pumping, AF/SC
spin pumping is feasible and merits further study.

We mainly follow the methodology presented in Ref. [15],
but modified for a superconductor-antiferromagnetic insulator
bilayer. In particular, the staggered magnetic order of the AFI
gives rise to two different scattering channels [21–23], and the
two different sublattices can be coupled to the superconductor
in a symmetric or asymmetric way. To capture this we will
not approximate the interaction Hamiltonian by a uniform
scattering amplitude, as in Ref. [15], but instead model the
interaction with an exchange coupling between itinerant elec-
trons in the SC and the localized spins in the AFI. Using this
coupling, it turns out that the relevant quantity is not the local
dynamic spin susceptibility, as in Refs. [14,15], but instead the
planar dynamic spin susceptibility. Using the planar dynamic
spin susceptibility we find that the spin pumping into super-
conductors from antiferromagnets is enhanced as compared
to spin pumping into normal metals when the temperature
is close to the transition temperature and the precession fre-
quency is small compared to the energy gap. Otherwise the
spin current in the superconductor is suppressed. This is
similar to the results obtained from ferromagnets. However,
unlike in the case of ferromagnets, the resonance frequency in
antiferromagnets is typically too large for spin pumping with
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h(t)
SC AFI

FIG. 1. Sketch of a superconductor (SC)-antiferromagnetic insu-
lator (AFI) bilayer with a precessing external magnetic field h(t ).

frequencies below the gap to be experimentally detectable.
One possible solution is to apply a static magnetic field, which
we discuss in Sec. VI.

II. MODEL

The system depicted in Fig. 1 is modeled by the Hamilto-
nian,

H = HSC + HAFI + Hint, (1)

where the Bogoliubov–de Gennes Hamiltonian,

HSC =
∑
k∈�

(c†
k,↑ c−k,↓)

(
ξk �

�∗ −ξk

)(
ck,↑

c†
−k,↓

)
, (2)

where � is the first Brillouin zone (1BZ) in the superconduc-
tor, gives a mean-field description of superconductivity. The
antiferromagnetic insulator Hamiltonian is given by

HAFI = J
∑
〈i, j〉

Si · S j − K
∑

i

S2
i,z − γ

∑
i

Si · h, (3)

where 〈i, j〉 means that the sum goes over nearest neighbors
and

∑
i goes over lattice points in the AFI. The exchange

coupling at the interface is given by

Hint = −2
∑

i

Ji(c
†
i,↑ c†

i,↓)σ

(
ci,↑
ci,↓

)
· Si, (4)

where the sum goes over the lattice points in the interface.
Here, ξk is the kinetic energy measured relative to the chemi-
cal potential μ, ck,σ is the annihilation operator for electrons
with spin σ and wave vector k, J is the antiferromagnetic
exchange parameter, K is the easy-axis anisotropy, Si is the
spin at lattice site i in the AFI, and γ gives the coupling
strength to the external magnetic field h. The vector of Pauli
matrices is given by σ, and Ji = JA (Ji = JB) when i belongs
to the A (B) sublattice. Also, � is the superconducting gap
parameter, which we assume real and satisfies

1 = λ

∫ ωD

0

tanh(
√

ε2 + �2/2T )√
ε2 + �2

, (5)

where T is the temperature, which we assume to be the same
for the superconductor and AFI, and ωD and λ are material-
specific parameters that determine the critical temperature Tc

and the zero-temperature gap �0 := �(0).
In order to diagonalize HAFI we can do a Holstein-

Primakoff transformation followed by a Fourier transform
and a Bogoliubov transformation. This gives to second or-
der in magnon operators the following antiferromagnetic

Hamiltonian:

HAFI =
∑
k∈♦

(
ωα

k α
†
kαk + ω

β

k β
†
kβk

)

+
√

2NAS(u0 + v0)γ [h−(α0 + β
†
0 ) + h+(α†

0 + β0)],
(6)

where ♦ is the first magnetic Brillouin zone, which is the
1BZ corresponding to the A sublattice, NA is the number of
lattice points in the A sublattice, S is the spin at each lattice
point, αk = ukak − vkb†

−k and βk = ukbk − vka†
−k, where ak

and bk are the magnon annihilation operators for the A and B
sublattices, and

uk = Jz + K√
(Jz + K )2 − (Jγk)2

, (7a)

vk = − Jγk√
(Jz + K )2 − (Jγk)2

, (7b)

ωα
k = S

√
(Jz + K )2 − (Jγk)2 + γ hz, (7c)

ω
β

k = S
√

(Jz + K )2 − (Jγk)2 − γ hz. (7d)

Here, hz is the z component of the external magnetic field,
which is the same as the magnetization direction in the an-
tiferromagnet and the direction of the easy-axis anisotropy.
Moreover, h± = hx ± ihy and

γk =
∑
〈δ〉

cos(k · δ) = γ−k, (8)

where the sum goes over the nearest neighbor displacement
vectors δ, and z is the number of nearest neighbors.

To write Hint in terms of Fourier components requires us to
connect the reciprocal space in the superconductor with the
reduced Brillouin zone of the magnetic lattice in the AFI.
This gives rise to so-called Umklapp scattering, where the
wave vector falls outside the 1BZ in the AFI [23]. Whether
this effect is present depends on the interface. Depending on
how the interface slices the biparte lattice of the AFI, the
interface can have a different number of atoms belonging to
the A and B lattices. If the interface has an equal number of
atoms from each sublattice and the coupling strengths JA and
JB are equal, we call it a compensated interface. Otherwise, it
is uncompensated. We let x = 0 be the location of a lattice
point belonging to the A sublattice and x0 be such that all
lattice points at the interface can be written x0 + x̃i, where
x0 · x̃i = 0.

To capture both compensated and uncompensated inter-
faces we will use the notation δA

q‖,k‖ = 1 to mean that q · x̃i −
k · x̃i = 2πn + d1 for all vectors x̃i such that x0 + x̃i is in
the A sublattice at the interface and for some integer n and
a constant d1 that is independent of x̃i. Similarly, δB

q‖,k‖ = 1
means that q · x̃i − k · x̃i = 2πn + d2 for all lattice vectors
x0 + x̃i in the B sublattice at the interface and for some integer
n and a constant d2 that is independent of x̃i. We can determine
d1 by noting that both x̃i and 2x̃i is in the A sublattice, so
2d1 = d1 + 2πn ⇒ d1 = 2πm for some integer m. Hence, we
can set d1 = 0. Similarly, if x̃i is in the B sublattice, then
2x̃i is in the A sublattice, so 4πn + 2d2 = 2πm ⇒ d2 = lπ
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for some integer l . The k vectors that result in l being an
odd number give rise to the Umklapp scattering channel. We
can drop the superscripts because δA

q‖,k‖ = 1 ⇐⇒ δB
q‖,k‖ = 1.

This is because every lattice point in the B sublattice is mid-
way between two lattice points in the A sublattice and vice
versa. Finally, if the number of lattice points at the interface
is equal on the superconductor and the antiferromagnet, then
half of the possible k vectors in the superconductor will give
l = 0 and the other half will give l = 1. There is a vector G
connecting the region in � with l = 0 to those with l = 1.

For a concrete example, consider the situation where the
crystal lattices of the SC and AFI are equal and cubical.
The 1BZ in the SC, �, is therefore also cubical. Meanwhile,
the sublattice in the AFI is face-centered cubic, so ♦ is the
truncated octahedron inscribed in �. A wave vector in the
corner of � will be in the center of the second Brillouin zone
in the AFI. If we let G be the vector in a corner of �, then
exp(iG · xi ) is 1 when xi is in the A sublattice and −1 when
xi is in the B sublattice. Thus G is the vector that connects the
region of k vectors in � with regular scattering and those with
Umklapp-scattering.

Using this notation, Hint can, to first order in magnon oper-
ators, be written

Hint =
∑
k∈�

∑
q∈♦

[
T α

qkαqs−
k + T β†

qk β†
q s−

k + H.c.
] + HZ

int, (9)

where

HZ
int = −

√
2SNA

∑
k∈�

δk‖,0(J̄A − (−1)l J̄B)sz
ke−ix0·k (10)

is the Zeeman energy and

T α
qk = −eix0·(k+q)[J̄Auq + (−1)l J̄Bvq]δk‖,−q‖ , (11a)

T β†

qk = −eix0·(k−q)[J̄Avq + (−1)l J̄Buq]δk‖,q‖ . (11b)

Additionally,

J̄A = JA
2
√

2SN‖
A

NS
√

NA
, (12a)

J̄B = JB
2
√

2SN‖
B

NS
√

NA
, (12b)

where NS is the number of lattice points in the superconductor
and N‖

A (N‖
B) is the number of lattice points belonging to the A

(B) sublattice at the interface, and

sz
k = 1

2

∑
q∈�

(c†
q↑cq+k↑ − c†

q↓cq+k↓), (13a)

s−
k =

∑
q∈�

c†
q↓cq+k↑. (13b)

The reason why the factor (−1)l is in front of the terms
proportional to J̄B in Eqs. (10) and (11) is that the coordinate
system is defined such that x = 0 is the location of a lattice
point belonging to the A sublattice.

III. GREEN’S FUNCTIONS

In order to calculate the spin current we will make use
of Green’s functions corresponding to three different types
of operators. Let ψ be either α, β†, or s+, then the lesser,
retarded, and advanced Green’s functions are

G<
ψ (t1, t2, k) = −i〈ψ†

k (t2)ψk(t1)〉0, (14a)

GR
ψ (t1, t2, k) = −iθ (t1 − t2)〈[ψk(t1), ψ

†
k (t2)]〉0, (14b)

GA
ψ (t1, t2, k) = iθ (t2 − t1)〈[ψk(t1), ψ

†
k (t2)]〉0, (14c)

respectively. The subscript 0 means that the expectation values
are taken in the absence on Hint. This is done because we
will treat Hint as a perturbation in the interaction picture. This
is a good approximation as long as the transmission coeffi-
cients are small and has previously been shown to give good
agreement with experiments [24–26]. We will also define the
distribution function,

f ψ (ε, k) := G<
ψ (ε, k)

2iImGR
ψ (ε, k)

, (15)

where the Green’s functions in Eq. (14) are Fourier trans-
formed with respect to the relative time t1 − t2. In thermal
equilibrium, f ψ (ε, k) is equal to the Bose-Einstein distribu-
tion function nB(T, ε).

First consider the effect of spin pumping. We add spin
pumping in the AFI by letting h±(t ) = h0e∓i�t . The reader
is referred to Appendix A for the detailed calculation, which
shows that the retarded Green’s functions are unaffected to
second order in h0. Since the unperturbed Hamiltonian is
diagonal in α and β, this means that the retarded Green’s
functions for α and β† are

GR
α (ε, k) = 1

ε − ωα
k + iηα

, (16a)

GR
β† (ε, k) = −GA

β (−ε, k) = 1

ε + ω
β

k + iηβ
, (16b)

where ηα and ηβ are the lifetimes of the α and β magnons. The
distribution functions are modified by the oscillating magnetic
field, and to second order in h0,

f ν (ε, k) = nB(ε, T )

+ 2πNAS[(u0 + v0)γ h0]2

ην
δk,0δ(ε − �), (17)

where ν ∈ {α, β†}.
The dynamic spin susceptibility GR

s+ is more compli-
cated, but can be calculated from the imaginary time Green’s
function by use of analytical continuation and Matsubara sum-
mation techniques. This is shown in Appendix B, and the
result is

GR
s+ (ε, k) = −1

4

∑
q

∑
ω=±E

∑
ω̃=±Ẽ

(
1 + ξ ξ̃ + �2

ωω̃

)

× nF (ω̃, T ) − nF (ω, T )

ε + iηSC − (ω̃ − ω)
, (18)

where ξ = ξq, ξ̃ = ξq+k, E =
√

ξ 2 + �2, and Ẽ =√
ξ̃ 2 + �2, nF is the Fermi-Dirac distribution function.
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Since the spin pumping in the AFI does not affect the
Hamiltonian in the superconductor, the distribution function
is f s+

(ε, k) = nB(ε, T ).

IV. SPIN CURRENT

To find the spin current we follow Kato et al. [15] and use

Is = − ∂

∂t

〈
sz

0

〉 = −i
〈[

H, sz
0

]〉
. (19)

From the fact that sz
0 commutes with HSC + HAFI, [s−

q , sz
0] =

s−
q , and [A†, B] = −[A, B†]†, we find that

[
H, sz

0

] =
∑
k∈�

∑
q∈♦

[
T α

qkαqs−
k + T β†

qk β†
q s−

k − H.c.
]
. (20)

Thus, the spin current is

Is(t ) = 2
∑
k∈�

∑
q∈♦

∑
ν∈{α, β†}

Im
〈
T ν

qks−
k (t )νq(t )

〉
. (21)

We evaluate this expectation value in the interaction picture
and treating the interfacial exchange interaction as a pertur-
bation using the Keldysh formalism. First, let Gψ with no
superscript denote contour-ordered Green’s functions,

Gψ (τ1, τ2, k) = −i〈Tcψk(τ1)ψ†
k (τ2)〉0, (22)

where Tc means that ψk and ψ
†
k are ordered with respect to τ1

and τ2 along the complex Keldysh contour C. Next, we define

C(τ1, τ2) := 〈
TcT ν

qkνq(τ1)s−
k (τ2)

〉
, (23)

where ν is either α or β†.
Going to the interaction picture with Hint as the interaction,

we get

C(τ1, τ2) = 〈
TcT ν

qkνq(τ1)s−
k (τ2)e−i

∫
C

dτHint (τ )
〉
0

≈
〈
Tc

∫
C

dτ
∣∣T ν

qk

∣∣2
νq(τ1)ν†

q (τ )s+
−k(τ )s−

k (τ2)

〉
0

= i
∣∣T ν

qk

∣∣2
[Gν (q) • Gs+ (k)](τ1, τ2), (24)

where we have used the bullet product • to denote integration
of the internal complex time parameter along the Keldysh
contour. In the second equality it was used that

−i〈Tcs+
−k′ (τ )s−

k (τ2)〉0 = δk,k′Gs+ (τ, τ2, k), (25)

as can be confirmed by using Wick’s theorem. Next, if we
choose τ2 to be placed later in the contour we have

C(τ1, τ2) = C<(τ1, τ2) = 〈
T ν

qks−
k (τ2)νq(τ1)

〉
. (26)

From the Langreth rules we have

C<(t, t ) = [
GR

ν (q) ◦ G<
s+ (k) + G<

ν (q) ◦ GA
s+ (k)

]
(t, t ), (27)

where the circle product ◦ means integration over the internal
real time coordinate. The circle products are the same as
normal convolution products, since GR

ψ (t1, t2) and G<
ψ (t1, t2)

only depend on time through the relative time t1 − t2. Thus,
by writing Eq. (27) in terms of Fourier transformed Green’s
functions, the circle products become normal products, so, by

inserting it into Eq. (21),

Is = 4
∫

dε

2π

∑
k∈�

∑
q∈♦

∑
ν∈{α, β†}

∣∣T ν
qk

∣∣2
ImGR

ν (ε, q)

× ImGR
s+ (ε, k)[ f ν (ε, q) − f s+

(ε, k)], (28)

where we used that GA
ψ (ε) = [GR

ψ (ε)]∗.
Inserting Eqs. (11), (16), and (17) into Eq. (28) and using

Eq. (7) gives

Is = Ir + IU , (29)

where

Ir = −J̄2
Aγ 2h2

0

(
1(

� − ωα
0

)2 + (ηα )2

[
UK + (1 − c)

2 + UK

]2

+ 1(
� + ω

β

0

)2 + (ηβ )2

[
cUK + (c − 1)

2 + UK

]2
)

×
∑

k∈�,l=0

ImGR
s+ (�, k)δk‖,0 (30)

and

IU = −J̄2
Aγ 2h2

0

(
1(

� − ωα
0

)2 + (ηα )2

[
UK + (1 + c)

2 + UK

]2

+ 1(
� + ω

β

0

)2 + (ηβ )2

[
cUK + (c + 1)

2 + UK

]2
)

×
∑

k∈�,l=0

ImGR
s+ (�, k + G)δk‖,0. (31)

Here, UK = K/(Jz) and c = J̄B/J̄A is the interface asymmetry
parameter that gives the degree to which the interface is com-
pensated. The sums are restricted to include only the k vectors
that satisfy δk‖,0 = 1 with l = 0 and G is the vector that
connects these to the k vectors with l = 1. When both the SC
and AFI are cubical with a lattice parameter a and a compen-
sated interface, then G = π (ex + ey + ez )/a. In order for the
Umklapp scattering to produce a nonzero IU , it is necessary
that there exists k, q ∈ � such that both q and q + k + G are
close to the Fermi surface and δk‖,0 = 1. In a cubical lattice the
minimal value of k + G is

√
2π/a, so the maximal diameter

of the Fermi surface must be at least
√

2π/a. The Umklapp
current is also zero if the interface is fully uncompensated.
In this case there is no Umklapp scattering and the current is
simply Is = Ir with c = 0.

V. NUMERICAL RESULTS

Next we show numerical results for a cubical lattice with
lattice constant a such that

ξk = −2t
∑

i∈{x,y,z}
cos(aki ) − μ, (32)

where t is the hopping parameter. In Fig. 2 we show the spin
current into the superconductor ISC

s for different temperatures
T and precession frequencies �, normalized by the normal
state value INM

s in Fig. 2(a) and a constant in Fig. 2(b). In
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FIG. 2. The spin current into a superconductor with gap given by
Eq. (5), ISC

s , for different precession frequencies � and temperatures
T and normalized by the normal state spin current, INM

s , found by
setting � = 0 in (a) and the constant I0 = γ 2h2

0J̄2
ANSN⊥

S /[(2π )4�0]
in (b). N⊥

S is the number of lattice points in the superconductor in the
direction transverse to the interface, �0 is the superconducting gap
at T = 0, and Tc is the critical temperature.

this case we have used μ = −4t , which means that IU = 0.
However, we find that both Ir and IU scale in the same way as
functions of � and T also for other values of μ. In Fig. 2 we
have also used Uk = 0.01, which is close to the reported value
for MnF2 [27,28], t = 1000�0, c = 0.5, ηα = ηβ = �0 ×
10−4, and ωα

0 = ω
β

0 = 4�0. This corresponds to a resonance
frequency of 1 THz when �0 = 1 meV. From Fig. 2(b) we
see that the normal state spin current at T > Tc scales linearly
with � as expected. In comparison, the spin current changes
only very slowly with � in the superconducting state. This is
consistent with the physical picture that it is the availability
of quasiparticles rather than unoccupied states that limits the
current in the superconducting state.

As one can see from Fig. 2(a), the spin current in the
superconductor is peaked at small frequencies close to the
critical temperature, where it can be more than twice as large
as the normal-metal spin current. This is similar to the results
for spin currents in superconductor-ferromagnetic bilayers
[14,15]. Figure 3 shows the ratio ISC

s /INM
s as a function of

�/�0 for various T . It can be seen that at zero temperature the
spin current in the superconducting case is zero for � < 2�0.
For T > 0 the ratio ISC

s /INM
s initially decreases as � increases

and reaches a minimum at � = 2�(T ).

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2 2Δ(0.9Tc)
2Δ(0.7Tc)

2Δ(0.4Tc)
2Δ(0)

Ω/Δ0

I
S
C

s
/I

N
M

s

T/Tc = 0.0
T/Tc = 0.4
T/Tc = 0.7
T/Tc = 0.9

FIG. 3. The spin current into a superconductor ISC
s , normalized

by the normal state spin current INM
s , found by setting the gap � = 0,

as a function of the spin-pumping precession frequency �. Here,
�(T ) is the energy gap that solves Eq. (5) and Tc is the critical
temperature.

This can be understood physically in the following way.
The spin current is generated by spin-flip scatterings which
excite particles by energy � and flip their spin. This can be
seen from Eqs. (9), (18), (30), and (31) when ηSC � 1. In this
case the sum in Eq. (18) only contributes to the imaginary part
of GR

s+ (�, k) when ω̃ − ω = �, and only when nF (ω, T ) −
nF (ω̃, T ) �= 0. In the normal metal case there are a number of
electrons proportional to � around the Fermi surface which
can be excited to an available state. Hence, the dynamic spin
susceptibility is proportional to �.

In a superconductor the spin-flip scatterings can happen
by breaking a Cooper pair or exciting a quasiparticle from
above the gap to a higher energy. When � < 2�(T ) only the
latter is possible. Thus, in order to get a nonzero spin current
when � < 2�(T ) the temperature must be large enough for
quasiparticle states above the gap to be occupied. This is why,
in Fig. 3, the current is identically zero in the superconductor
when T = 0 and � < 2�0. On the other hand, when the
temperature is close to the critical temperature there can be
many available quasiparticles available because the density
of states is peaked around the gap. This peak in the density
of states is why the spin current in a superconductor can be
larger than the spin current in a normal metal, but only when
the temperature is close to the critical temperature. It is also
only larger when � � �(T ), which is because the lack of
states below the gap in the superconductor means that the
spin susceptibility cannot increase as fast as in the normal
state when � increases. In the normal state there is a range of
energies ∝� around the Fermi surface that can be excited to
an available state, but in the superconducting state the number
of states that can be excited is limited by the number of
quasiparticles present. Increasing � therefore decreases the
ratio ISC

s /INM
s when � < 2�(T ), as can be seen in Figs. 2

and 3. At � = 2�(T ) the breaking of Cooper pairs becomes
possible as a spin-transfer mechanism, which is why ISC

s /INM
s

starts to increase. This can be seen most clearly in Fig. 3.
Figure 4 shows the ratio between regular spin current Ir

and the Umklapp contribution IU for μ = −2.2t . The result is
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FIG. 4. The ratio of the spin-current contribution from the reg-
ular scattering channel Ir , and the Umklapp scattering channel IU ,
as a function of the interface asymmetry parameter c for �/�0 =
0.1, T/Tc = 0.9, μ = −2.2t . The results are shown for easy axis
anisotropy values Uk = 0.01 and Uk = 0.37, where the former is
found in MnF2 and the latter is found in FeF2 [27–29].

shown for axis anisotropy Uk = 0.01, which corresponds to
MnF2 [27,28], and Uk = 0.37, corresponding to FeF2 [29].
In both cases the regular current dominates when the in-
terface asymmetry parameter c is small, meaning that the
superconductor is coupled more strongly to one of the sub-
lattices in the AFI. The Umklapp contribution becomes more
important as c increases and when Uk is small the Umklapp
contribution eventually becomes larger than the contribution
from the regular scattering channel. This is consistent with
the work by Kamra and Belzig showing that the in the ab-
sence of easy-axis anisotropy the cross-sublattice contribution
quenches the spin- current from the regular scattering channel
[19]. However, here we see that if we include the Umklapp
scattering the spin current will not go all the way to zero, even
in the absence of easy-axis anisotropy. Mathematically, this
can be seen from Eqs. (30) and (31): When Uk = 0 we have
Ir ∝ (1 − c)2 and IU ∝ (1 + c)2. However, when Uk = 0.37
the regular contribution remains dominant for all values of c.

VI. EXPERIMENTAL DETECTION

Although the spin current can be enhanced in SC/AFI
bilayers as compared to NM/AFI bilayers, it can be difficult
to observe this enhancement experimentally. This is because
the spin current is strongly peaked around the antiferromag-
netic resonance frequencies ω

α/β

0 . In antiferromagnets this
resonance frequency is on the order of 1 THz, which is much
larger than in ferromagnets [1]. This is an advantage for
spintronics as it allows for ultrafast information processing,
but in the context of this paper it means that observation
of the enhancement produced by the superconducting order
is hard to experimentally verify. A resonance frequency of
1 THz means that the spin current is most easily observed at
�/�0 ≈ 4, assuming that �0 = 1 meV, but from Fig. 2 we
see that the current is enhanced only for �/�0 < 0.2.

In order to observe the strong suppression of spin current at
low temperatures, it is necessary to probe frequencies below
2�0. This is also below 1 THz, but not out of reach. The res-

0 1 2 3 4
0

0.5

1

1.5

γhz = 0

γhz = −3.9Δ0

Ω/Δ0

I s
/

m
ax

I
N

M
s

)

ISC
s

INM
s

FIG. 5. The superconductor spin current ISC
s and normal metal

spin current INM
s normalized by the maximal value of INM

s as a
function of the precession frequency � for two different values of
constant external magnetic field hz. Here, γ is the gyromagnetic ratio,
T/Tc = 0.9, ηα/β/�0 = 0.01, c = 0.5, Uk = 0.01, Tc is the critical
temperature, and �0 is the superconducting gap at zero temperature.

onance frequency of MnF2, which was used in the detection
of spin pumping by Vaidya et al., was reported to be around
250 GHz [20]. This corresponds to � ≈ 1 meV ≈ �0, which
makes the low-temperature suppression shown in Figs. 2 and
3 detectable.

One way to potentially detect the spin-current enhance-
ment at low frequencies is to apply a constant magnetic field
along the z axis. This was also done by Vaidya et al., who
reduced the frequency of MnF2 to 120 GHz by applying a
magnetic field of 4.7 T. From Eqs. (7), (30), (31) we see that
the resonance frequencies are

ωres = ω0

√
Uk (2 + Uk ) ± γ hz, (33)

where ω0 = JzS. Thus, by applying a magnetic field of
ω0

√
Uk (2 + Uk )/γ , the resonance frequency can be pushed

well below �0, making the enhancement in spin current due
to superconductivity detectable. This is illustrated in Fig. 5.
At γ hz = 0 the peak is at � = 4�0, where the peak in ISC

s is
only slightly smaller than the peak in INM

s , in accordance with
Fig. 3. However, when γ hz = −3.9�0, the peak is shifted to
� = 0.1�0 and the peak in the superconducting case is taller.
How large the applied magnetic field is required to be depends
on the gyromagnetic ratio γ as well as ω0 and Uk , but it will
in general be several tesla. Experimental ingenuity is therefore
required in order to make sure that the superconductivity is not
completely suppressed by the magnetic field. This could, for
instance, be done by shielding the superconductors or using
superconductors that can withstand large magnetic field from
a certain direction, such as Ising superconductors.

VII. CONCLUSION

We have derived an expression for the spin current in
SC/AFI bilayers undergoing spin pumping, valid for both
compensated and uncompensated interfaces and taking into
consideration both the regular scattering channel and the
Umklapp scattering channel. We found that for temperature
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T well below the critical temperature Tc, the spin current is
strongly suppressed as long as the precession frequency of the
applied magnetic field is less than 2�(T ). This is because the
energy gap in the superconductor inhibits spin-flip scatterings
below the gap and there are few quasiparticles present that
can be scattered to higher energies. However, at temperatures
close to Tc there are quasiparticles present and because of their
large density of states close to the gap, the spin current can
be more than twice as large as for NM/AFI bilayers when
the precession frequency is significantly less than the gap.
The spin-current contribution from the Umklapp channel is
typically much smaller than the contribution from the regular
scattering channel, but it can be significant if the Fermi surface
is large, the easy axis anisotropy is small, and the interface is
compensated.

The relevant precession frequencies where the spin cur-
rent in SC/AFI is enhanced compared to NM/AFI is much
lower than the typical resonance frequencies of antiferromag-

nets, which makes the detection of this effect experimentally
challenging. A possible solution lies in the shifting of the
resonance frequency by a static magnetic field.
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APPENDIX A: AFI GREEN’S FUNCTIONS

In this section we calculate the correction to the magnon
Green’s functions due to the precessing external magnetic
field. The Hamiltonian for the antiferromagnetic insulator is
given by Eq. (3), and we treat

V :=
√

2NAS(u0 + v0)γ [h−(α0 + β
†
0 ) + h+(α†

0 + β0)] (A1)

as a perturbation. In order to calculate GR
ν and G<

ν , where ν ∈ {α, β†}, we will first calculate the contour-ordered Green’s function.
This, in turn, is done by adding an infinitesimal imaginary part to the otherwise real time coordinates and integrating over the
complex Keldysh contour.

To second order in V , the contour-ordered Green’s function is

Gν (τ1, τ2, k) = −i〈Tcνk(τ1)ν†
k (τ2)e−i

∫
C

dτV (τ )〉0

= −i〈Tcνk(τ1)ν†
k (τ2)〉0 −

〈
Tc

∫
C

dτνk(τ1)ν†
k (τ2)V (τ )

〉
0

+ i

〈
Tc

∫
C

dτ ′dτνk(τ1)ν†
k (τ2)V (τ )V (τ ′)

〉
0

+ O(V 3),

(A2)

where Tc means ordering along the Keldysh contour C and the subscript 0 means that the expectation values are evaluated in
the absence of V . The first-order term is odd in magnon operators and is therefore zero. Inserting Eq. (A1), the correction to the
equilibrium Green’s function is

�Gν (t1, t2, k) := Gν (t1, t2, k) − G0
ν (t1, t2, k) = iλ2

〈
Tc

∫
C

dτ ′dτνk(t1)ν†
0 (τ )h+(τ )h−(τ ′)ν0(τ ′)ν†

k (t2)

〉
0

, (A3)

where

λ =
√

2NAS(u0 + v0)γ . (A4)

We can use Wick’s theorem to evaluate the rewrite as〈
Tc

∫
C

dτ ′dτνk(t1)ν†
0 (τ )h+(τ )h−(τ ′)ν0(τ ′)ν†

k (t2)

〉
0

=
∫

C
dτ ′dτh+(τ )h−(τ ′)[〈Tcνk(t1)ν†

0 (τ )〉0〈Tcν0(τ ′)ν†
k (t2)〉0

+ 〈Tcνk(t1)ν†
k (t2)〉0〈Tcν0(τ ′)ν†

0 (τ )〉0]. (A5)

The second term is zero, which we show in the following. First, define

�(τ1, τ2) = h+(t1)h−(t2) = 〈Tch+(τ1)h−(τ2)〉. (A6)

Then,∫
C

dτ ′dτh+(τ )h−(τ ′)〈Tcνk(τ1)ν†
k (τ2)〉0〈Tcν0(τ ′)ν†

0 (τ )〉0 = −G0
ν (τ1, τ2, k)

∫
C

dτ
[
� • G0

ν

]
k=0(τ, τ )

= −G0
ν (τ1, τ2, k)

(∫ ∞

−∞
dt +

∫ −∞

∞
dt

)[
� • G0

ν

]
k=0(t, t ) = 0, (A7)

where it was used that C goes from −∞ − iδ to ∞ − iδ and then from ∞ + iδ to −∞ + iδ with δ ∈ R being an infinitesimal.
The bullet product is

(A • B)(τ1, τ2) =
∫
C

dτA(τ1, τ )B(τ, τ2). (A8)
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Hence, we are left with

�Gν (τ1, τ2, k) = −iδk,0λ
2
(
G0

ν • � • G0
ν

)
(τ1, τ2). (A9)

To get the real-time Green’s functions we can use the Langreth rules. If

C(τ1, τ2) = (A • B)(τ1, τ2), (A10a)

D(τ1, τ2) = (A • B • C)(τ1, τ2), (A10b)

where A and B are contour-ordered functions, then the corresponding advanced, retarded, and lesser Green’s functions satisfy
[30]

C< = AR ◦ B< + A< ◦ BA, (A11a)

CR/A = AR/A ◦ BR/A, (A11b)

D< = AR ◦ BR ◦ C< + AR ◦ B< ◦ CA + A< ◦ BA ◦ CA, (A11c)

DR/A = AR/A ◦ BR/A ◦ CR/A, (A11d)

where the circle product is

(A ◦ B)(t1, t2) =
∫ ∞

−∞
dtA(t1, t )B(t, t2). (A12)

Using Eq. (A11c) as well as �< = � and �R = �A = 0 we see that �GR/A
ν = 0 and

�G<
ν (t1, t2, k) = −iδk,0λ

2
(
GR

ν ◦ � ◦ GA
ν

)
(t1, t2). (A13)

Next, if we let hx(t ) = h0 cos(�t ) and hy(t ) = −h0 sin(�t ) we get h±(t ) = h0 exp(∓i�t ), so

�(t1, t2) = h2
0e−i�(t1−t2 ). (A14)

The circle products in Eq. (A13) reduce to normal convolutions because G0
ν and � only depend on the relative time. Thus,

they further reduce to ordinary products in energy space. The Fourier transform of � is

�(ε) =
∫ ∞

−∞
d (t1 − t2)�(t1, t2)eiε(t1−t2 ) = 2πh2

0δ(ε − �). (A15)

We also have [30]

GA
ν (ε, k) = [

GR
ν (ε, k)

]∗
, (A16)

so, to second order in h,

�G<
ν (ε, k) = −2iπh2

0λ
2
∣∣GR

ν (ε, k)
∣∣2

δk,0δ(ε − �). (A17)

Inserting this into the definition of the distribution function and using Eq. (16) finally gives us Eq. (17).

APPENDIX B: BCS DYNAMIC SPIN SUSCEPTIBILITY

To calculate ImGR
s+ (ε, k) we will use the imaginary time Green’s function [31],

Ḡs+ (τ1, τ2, k) = −〈Tτ s+
−k(τ1)s−

k (τ2)〉, (B1)

where Tτ means time ordering in τ , together with the connection through analytical continuation,

GR
s+ (ε, k) = Ḡs+ (ε + iηSC, k), (B2)

where

Ḡs+ (iωn, k) =
∫ β

0
d (τ1 − τ2)Ḡs+ (τ1, τ2, k)eiωn(τ1−τ2 ) (B3)

and

ωn = 2nπ

β
(B4)

are bosonic Matsubara frequencies. The inverse temperature is β = 1/T .
We will also make use of the Nambu spinors,

φ
†
k = (c†

k,↑ c−k,↓). (B5)
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With these spinors we can write

s−
k =

∑
q

φ−q,2φq+k,1, s+
−k =

∑
q

φ
†
q+k,1φ

†
−q,2. (B6)

Thus,

Ḡs+ (τ1, τ2, k) = −
∑
qq′

〈Tτ φ
†
q+k,1(τ1)φ†

−q,2(τ1)φ−q′,2(τ2)φq′+k,1(τ2)〉

=
∑
qq′

(〈Tτ φ
†
q+k,1(τ1)φ−q′,2(τ2)〉〈Tτ φ

†
−q,2(τ1)φq′+k,1(τ2)〉 − 〈Tτ φ

†
q+k,1(τ1)φq′+k,1(τ2)〉〈Tτ φ

†
−q,2(τ1)φ−q′,2(τ2)〉)

=
∑

q

[G1,2(τ2, τ1, q + k)G2,1(τ2, τ1,−q) − G1,1(τ2, τ1, q + k)G2,2(τ2, τ1,−q)], (B7)

where

G(τ1, τ2, k) = −〈Tτ φk(τ1)φ†
k (τ2)〉 = 1

β

∑
n

1

(iνn)2 − ξ 2
k − |�|2

(
iνn + ξk −�

−�∗ iνn − ξk

)
e−iνn (τ1−τ2 )

(B8)

is the BCS single-particle Green’s function. Here, νn = (2n + 1)π/β are fermionic Matsubara frequencies. Inserting this into
Eq. (B3), we get

Ḡs+ (iωn, k) = T
∑
q,m

[G1,2(−iνm − iωn, q + k)G2,1(iνm,−q) − G1,1(−iνm − iωn, q + k)G2,2(iνm,−q)]

= T
∑
q,m

[G1,2(iνm + iωn, q + k)G2,1(iνm,−q) + G2,2(iνm + iωn, q + k)G2,2(iνm,−q)]

= 1

2β

∑
q,m

Tr[G(iνm + iωn, q + k)G(iνm, q)]. (B9)

In the last equality we have used G(iνm,−q) = G(iνm, q), G1,2(iνn, k)G2,1(iνm, q) = G2,1(iνn, k)G1,2(iνm, q) and∑
q,m

G1,1(iνm + iωn, q + k)G1,1(iνm, q) =
∑
q′,k

G1,1(−iνk, q′)G1,1(−iνk − iωn, q′ + k)

=
∑
q′,k

G2,2(iνk, q′)G2,2(iνk + iωn, q′ + k). (B10)

In the first equality, we introduced q′ = −q − k and iνk = −iνm − iωn, and in the last equality we used G2,2(iνk, q′) =
−G1,1(−iνk, q′).

Next, we can use the spectral form,

G(iνm, q) =
∫ ∞

−∞

dω

(−π )

ImG(ω + iηSC, q)

iνm − ω
, (B11)

and the Matsubara sum identity,

1

β

∑
m

1

iνm + iωn − ω̃
× 1

iνm − ω
= nF (ω, T ) − nF (ω̃, T )

iωn − (ω̃ − ω)
, (B12)

where we have used that νm are fermionic Matsubara frequencies, giving rise to the Fermi-Dirac distribution function nF . We
have also used that nF (ω − iωn) = nF (ω) since ωn is a bosonic Matsubara frequency. Additionally, Eq. (B8) gives, assuming �

real,

ImG(ω + iηSC, k) = − π

2
√

ξ 2
k + |�|2

(
ω + ξk −�

−� ω − ξk

)[
δ
(
ω −

√
ξ 2

k + |�|2) − δ
(
ω +

√
ξ 2

k + |�|2)], (B13)

in the limit ηSC → 0+. Hence, if we define Ek :=
√

ξ 2
k + |�|2,

lim
ηSC→0+

Tr[ImG(ω̃ + iηSC, q + k)ImG(ω + iηSC, q)] = π2 ωω̃ + ξ ξ̃ + �2

2EẼ
[δ(ω − E ) − δ(ω + E )][δ(ω̃ − Ẽ ) − δ(ω̃ + Ẽ )],

(B14)
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where ξ = ξq, ξ̃ = ξq+k, E = Eq, and Ẽ = Eq+k. Inserting this into Eq. (B9) gives

Ḡs+ (iωn, k) = −1

4

∑
q

∑
ω=±E

∑
ω̃=±Ẽ

ωω̃ + ξ ξ̃ + �2

ωω̃

nF (ω̃, TSC) − nF (ω, TSC)

iωn − (ω̃ − ω)
. (B15)

From Eq. (B2) we then finally have Eq. (18).
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