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Temporarily enhanced superconductivity from magnetic fields
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Contrary to the expected detrimental influence on superconductivity when applying a magnetic field, we
predict that the abrupt onset of such a field can temporarily strongly enhance the superconducting order
parameter. Specifically, we find that the supercurrent in a Josephson junction with a normal metal weak link
can increase more than twentyfold in this way. The effect can be understood from the interplay between the
energy dependence of Andreev reflection and the abrupt spin-dependent shift in the distribution functions for
excitations in the system. The duration of the increase depends on the inelastic scattering rate in the system and
is estimated to be in the range of nanoseconds. We demonstrate this by developing a method which solves the
Usadel equation for an arbitrary time dependence. This enables the study of ultrafast time-dependent physics in
heterostructures combining superconductors with different types of materials.
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Introduction. Time-dependent phenomena in superconduc-
tors encompass a variety of both applied and fundamental
physics. These phenomena range from the perfect voltage-
to-frequency conversion via the AC Josephson effect to
excitation of the amplitude mode of the superconducting order
parameter, which is the condensed-matter equivalent of the
Higgs boson in the standard model.

More recently, interest in time-dependent phenomena in
superconductors has been generated by experiments showing
optically induced transient states with superconducting prop-
erties well above the equilibrium critical temperature [1–3]. In
superconducting heterostructures it has also been shown that
microwaves can greatly increase the critical current [4,5]. This
was given a theoretical explanation based on quasiclassical
Green’s functions [6]. Another application of quasiclassical
Green’s functions has been to show that time-dependent ex-
change fields can produce odd-frequency superconductivity
which survives for long distances inside ferromagnets [7,8].
This is a type of superconductivity that is interesting due
to its nonlocal temporal symmetry, its direct connection to
Majorana states [9], and for its resilient nature, making it
practically relevant in, e.g., superconducting spintronics [9].

Discovering new time-dependent physical phenomena in
superconducting structures, and explaining existing experi-
mental results, is clearly of substantial interest. Unfortunately,
a solution of the quasiclassical Green’s function equation is
generally not attainable, even numerically, when the system
evolves in time. This is because the relevant equations, pre-
sented below, are complicated partial differential equations
(PDEs) of infinite order. So far, approximate solutions have
been found for periodic [6,7,10–12] and slow [13,14] tempo-
ral evolutions. Although many situations are either slow or
periodic, there is still a multitude of physical systems that are
unsolvable with current techniques. For instance, the transient
behavior of any sudden change that is not periodic, such as
a sudden increase in the applied magnetic field or voltage,

would not be possible to study, even numerically, with these
methods. Finding a way to solve the Usadel equation that is
less restrictive on how it allows the system to evolve in time
would therefore open the possibility to study a vast range of
new physical phenomena.

Here we accomplish this goal and present a method solving
the time-dependent Usadel equation in hybrid nanostructures
that places no constraint on the time dependence. We apply
this to a superconductor-normal metal-superconductor (SNS)
Josephson junction with a time-dependent spin-splitting ap-
plied to the N part. Interestingly, we find that the transient
behavior can involve a large increase in both the supercurrent
and the superconducting order parameter. This is our main re-
sult, which stands in stark contrast to the equilibrium effect of
an applied magnetic field, which is to exponentially dampen
superconductivity [15].

In addition to the curious enhancement of superconduc-
tivity, which we suggest can be understood as the interplay
between properties of Andreev reflection and the transient
behavior of the distribution function, we show how the
methodology developed herein can be used to uncover new
physics in a wide range of systems. It only requires that the
proximity effect is sufficiently weak. In particular, it could be
used to study the mostly unexplored territory of explicit time
dependence in odd-frequency superconducting condensates,
both in the ballistic and diffusive limit.

Equations and notation. The quasiclassical theory is valid
when the Fermi wavelength is much shorter than all other
length scales. Here we shall focus on the dirty limit, which
is valid when the mean free path is short. However, we note
that the same derivation can be done with arbitrary impurity
concentration, something that is further discussed in the Sup-
plemental Material [16]. The relevant equation for the dirty
limit is the Usadel equation [17,18],

D∇̃ ◦ (ǧ ◦ ∇̃ ◦ ǧ) + i(σ̌ ◦ ǧ − ǧ ◦ σ̌ ) = 0. (1)
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Here, D is the diffusion coefficient, the 8×8 matrix

ǧ =
(

ĝR ĝK

0 ĝA

)
(2)

is the isotropic part of the impurity-averaged quasiclassical
Green’s function, σ̌ is a self-energy that depends on the spe-
cific system, and

∇̃ ◦ ǧ = ∇ǧ − ie(â ◦ ǧ − ǧ ◦ â) (3)

is the covariant derivative. The vector â includes the effect of
the vector potential, but it could also incorporate spin-orbit
effects [19,20]. The electron charge is e = −|e|. Finally, the
circle product is

a ◦ b = exp

(
i

2
∂a
ε ∂b

T − i

2
∂a

T ∂b
ε

)
ab, (4)

which is what makes Eq. (1) difficult when the constituents
depend on the center-of-mass time T . The superscripts in
Eq. (4) denote which function the operators acts on and ε is
energy. The superscripts R, K , and A are used to denote the
upper-left, upper-right, and lower-right 4×4 blocks of 8×8
matrices, respectively.

Equation (1) can be made dimensionless by dividing every
term by the Thouless energy, εT := D/L2, where L is the
length of the system. With this one can define dimensionless
quantities, where lengths are given in multiples of L and
energies are given in multiples of εT. Dimensionless quantities
will be used in the rest of this paper. We also use natural units
throughout, meaning that c = h̄ = 1.

Quasiclassical theory is invalid at interfaces between
different materials. Consequently, one needs boundary con-
ditions in order to connect the Green’s functions in different
materials. Here we use the Kupriyanov-Lukichev boundary
condition [21],

en · (ǧi ◦ ∇̃ ◦ ǧi ) = z

2
(ǧi ◦ ǧ j − ǧ j ◦ ǧi ), (5)

which is valid for low-transparency tunneling interfaces. The
subscripts i and j label the two different regions, the unit
normal vector en points out of region i, and z is the ratio
between the bulk resistance of a part of the material that is
of length L and the interface resistance. Although we use
the Kupriyanov-Lukichev boundary condition here, the same
method could also be used with other types of boundaries [22].

The quasiclassical Green’s function satisfies the normaliza-
tion condition ǧ ◦ ǧ = 1 and the relations

ĝA = −ρ̂3(ĝR)†ρ̂3, ĝK = ĝR ◦ h − h ◦ ĝA, (6)

where ρ̂3 = diag(1, 1,−1,−1). From Eq. (6) one can see that
it is sufficient to solve for the retarded Green’s function ĝR and
the distribution function h. Equation (1) does not fully specify
h, and we can use this freedom to make h block-diagonal [23].

Finally, we use capital letters to denote Fourier transforms,

F (t, T, r) ≡ F ( f )(t, T, r) = 1

2π

∫ ∞

−∞
dε f (ε, T, r)e−iεt ,

(7)

and • to denote the circle product between functions of the
relative time t , that is, • is the mathematical operation which
satisfies F ( f ◦ g) = F • G.

The aim is to find the Green’s function that solves Eq. (1)
in a region that is connected through the boundary condition
in Eq. (5) to a region with Green’s function ǧs. This region
could, for instance, be a superconducting reservoir. We have
developed a method which solves the Usadel equation with an
arbitrary time dependence, allowing for the study of quantum
quenches and ultrafast dynamics, and present this method
below.

The first step is to write the retarded Green’s function
as ĝR = ρ̂3 + ĝ + f̂ , where ĝ and f̂ are block-diagonal and
block-antidiagonal, respectively. Under the assumption that
the proximity effect is small, the components of ĝ and f̂ are all
much smaller than 1. One way to formalize this is to Taylor
expand ĝ and f̂ in terms of the interface parameter z. When
σ̌ R is block-diagonal and z = 0, we find that ĝR = ρ̂3 solves
the Usadel equation. Hence, assuming σ̌ R is block-diagonal to
lowest order in z, we can write

f̂ =
∞∑

n=1

zn f̂n and ĝ =
∞∑

n=1

znĝn. (8)

From the normalization condition ĝR ◦ ĝR = 1, we see that
2ρ̂3ĝ + ĝ ◦ ĝ = − f̂ ◦ f̂ and ĝ ◦ f̂ = − f̂ ◦ ĝ. Hence, ĝ1 = 0
and ĝ2 = − 1

2 ρ̂3 f̂1 ◦ f̂1.
To first order in z, the retarded part of the Usadel equation

reads

ρ̂3∇̃ ◦ (∇̃ ◦ f̂1) + 2iερ̂3 f̂1 + i(σ̂ R ◦ f̂1 − f̂1 ◦ σ̂ R) = 0, (9)

where ερ̂3 has been extracted from the self-energy and σ̂ R is
the remaining part. The self-energy σ̂ R could also depend on
ĝR, for instance, if the system included spin-orbit impurity
scattering or spin-flip scattering [24]. In that case Eq. (9)
would look slightly different, but the derivation would be
similar. To first order in z, the boundary condition (5) reads

en · ∇̃ ◦ f̂1 = f̂s. (10)

Despite being linearized, Eqs. (9) and (10) are not much
simpler than the original Usadel equation and Kupriyanov-
Lukichev boundary condition. They still include the circle
product, given in Eq. (4), meaning that they are still PDEs of
infinite order. However, one observation can be made which
will drastically simplify the equations. This is the fact that
all the circle products are between f̂1 and functions that are
independent of energy ε. It is this fact, not that the equations
are linear, that is crucial for the solvability of Eqs. (9) and (10).
As we shall see, this observation allows us to evaluate all the
circle products if we first Fourier transform the equations.

When a function (ε, T ) �→ a(T ) is independent of ε, the
Fourier transform, as given by Eq. (7), is simply A(t, T ) =
δ(t )a(T ), where δ is the Dirac δ distribution. Accordingly, the
circle products of a function (ε, T ) �→ f (ε, T ) with a function
(ε, T ) �→ a(T ) are, in Fourier space,

(A • F )(t, T ) = a(T + t/2)F (t, T ), (11a)

(F • A)(t, T ) = F (t, T )a(T − t/2). (11b)

With this, all the circle products in Eq. (9) turn into normal
matrix multiplications when evaluated in Fourier space. This
is under the assumption that the self-energy σ̂ R does not
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depend explicitly on ε. However, it can depend implicitly on
energy through its dependence on ǧ, as mentioned above.

Let the subscripts + and − denote B±(t, T ) = b(T ± t/2).
Then the equations for the retarded Green’s function become

2
∂F̂1

∂t
= ∇2F̂1 + 2i(∇F̂1 · Â− − Â+ · ∇F̂1)

+i(F̂1∇ · Â− − ∇ · Â+F̂1) − Â
2
+F̂1 + Â+F̂1Â−

−F̂1Â
2
− + iρ̂3(�̂R

+F̂1 − F̂1�̂
R
−), (12a)

en · [∇F̂1 − i(Â+F̂1 − F̂1Â−)] = F̂s. (12b)

Hence an approximate solution to the full time-dependent
Usadel equation can be found by solving a normal PDE of
matrices. The approximation is good as long as the proximity
effect is weak and, crucially, no assumptions have been made
with regard to the time dependence. This approach there-
fore works for systems that vary both fast and slow in time
and regardless of whether or not the system is periodic. The
equations for the distribution function h can be obtained in a
similar way. This is shown in the Supplemental Material [16].

Application. We now use the above framework to show
the counterintuitive result that the abrupt onset of a magnetic
field can temporarily strongly increase superconducting order.
Consider an SNS junction with no vector potential and a
time-dependent, spatially uniform exchange field m(T ) that
lifts the spin degeneracy of the bands. The geometry is shown
in the inset of Fig. 1, where the nanowire geometry allows
us to neglect the orbital effect of the magnetic field whereas
the thick superconducting regions screen the effect of the
magnetic field in the bulk. The self-energy associated with the
exchange field is σ̂ R = mdiag(1,−1, 1,−1). We also include
the effect of inelastic scattering through the relaxation time
approximation [6], which adds

σ̌i =
(

iδρ̂3 2iδρ̂3heq

0 −iδρ̂3

)
(13)

to the self-energy. Here δ is the inelastic scattering rate and
heq(ε) = tanh(βε/2), where β is the inverse temperature to-
wards which the system relaxes.

If we write the upper-right block of F̂1 as F1 = σ1Ft + σ2Fs,
where σ1 and σ2 are Pauli matrices, the zeroth-order distri-
bution function H0 = HLI4 + HTSdiag(1,−1,−1, 1), and let
m±(t, T ) := m(T + t/2) ± m(T − t/2), we find that(

2
∂

∂t
− ∇2 + 2δ

)(
Fs

Ft

)
=

(−m+Ft

m+Fs

)
, (14a)

en · ∇Fs|x=0,1 = F BSC
l,r , en · ∇Ft |x=0,1 = 0,

(14b)(
∂

∂T
+ 2δ

)(
HL − Heq

HTS

)
=

(−m−HTS

m−HL

)
, (14c)

where F BCS
l = 
e−δt J0(|
|t )θ (t ) and F BCS

r = eiφF BCS
l are

the anomalous Green’s functions in the left and right super-
conductors, respectively. J0 is the zeroth-order Bessel function
of the first kind, 
 is the superconducting gap parameter, and
φ is the phase difference between the two superconductors.
Equation (14) can be solved analytically for arbitrary m(T ),
and the solution is shown in the Supplemental Material [16].
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FIG. 1. Critical current Ic and singlet Cooper pair correlation
function s normalized by the values at zero exchange field, I0 and
0. The inset in (a) shows a sketch of the setup. Panels (a) and
(b) show the steady-state values obtained with δ = 0 for various
values of exchange field m0. Panels (c) and (d) show the time evo-
lution for different values of m0 with δ/
 = 10−4 and β
 = 1000.
Panels (e) and (f) show the time evolution for different values of δ

with m0/
 = 0.9 and β
 = 1000. In all cases 
/εT = 10. s is
computed for φ = 0, which makes the enhancement predicted here
applicable also to an SN junction.

The interface parameter z is assumed small enough to fulfill
the criterion of a weak proximity effect for all relevant times
t and T .

Consider an exchange field that abruptly changes value
from 0 to m0 at time T = 0, m(T ) = m0θ (T ). The critical
supercurrent

Ic = max
φ∈(0,2π]

πN0eD

4
Tr[ρ̂3(Ǧ • ∇̃ • Ǧ)K ]t=0 (15)

and the singlet Cooper pair correlation function

s = −iπN0(Fs • HL − Ft • HTS)|t=0, (16)

following an abrupt change in the exchange field, are shown
in Fig. 1. When the time becomes comparable to the inelastic
scattering time, both Ic and s are suppressed and the quan-
tities reach their equilibrium values. However, before that, Ic

and s are significantly enhanced when the exchange field is
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close to the superconducting gap 
. When m0 	 
 there is
only a slight change to the current and Cooper pair correlation
function.

We suggest that the behavior of Ic and s can be un-
derstood from the interplay between the spin dependence of
the nonequilibrium distribution function and the energy de-
pendence of both the Andreev reflection probability and the
degree of coherence between the participating electrons and
holes. To see this, we note that in a time-independent situation
both Ic and s, jointly denoted A below, can be written as an
integral over energy of the form

A =
∫

dε(a↑h↑ + a↓h↓), (17)

as shown in the Supplemental Material [16]. Here h↑ and h↓
are the distribution functions for electrons with spin ↑ and ↓.
The explanation can be summarized as three key points.

First, a↑,↓ is of largest amplitude at energies close to
±
 and ±m, where a↑ is large close to ε = −m and a↓
is large close to ε = m. These energies are special in the
context of Andreev reflections, which is the process rele-
vant for transferring superconductivity into the normal metal.
At ε = ±
 there is a large peak in the Andreev reflection
probability [25] which physically can be understood as res-
onant scattering produced by subsequent reflections by the
interface and the superconducting order parameter [26]. At
ε = ∓m the wave vector of the incoming electrons, ke

↑↓ =√
2m(EF + ε ± m), match that of the retroreflected holes,

kh
↓↑ = √

2m(EF − ε ∓ m). Hence, at energies close to ±m
the superconducting correlations penetrate far into the normal
metal.

Second, a↑,↓ is antisymmetric close to ∓m, as long as
m < 
. This is shown in the Supplemental Material [16].
That is, filled states with energy just above ∓m contribute
oppositely to filled states with energy just below ∓m. Hence,
when m > 0 and the system is at equilibrium, such that
h↑(ε) = h↓(ε) = tanh(βε/2), the contributions to s and Ic

are suppressed because the coherent states are shifted away
from the Fermi surface. However, before inelastic scattering
relaxes the system, we find that the distribution functions
evolve toward h↑,↓(ε) = tanh[(ε ± m)/β]. This is physically
reasonable, since an abrupt temporal change induced by the
magnetic field not only shifts the energy levels but also pre-
serves the occupation of these states before they have had time
to relax. The energy shift in the antisymmetric contribution to
a↑,↓ coming from the coherent Andreev reflections are thus
matched by a similar shift in the distribution function, so s

and Ic are not suppressed as m is increased.
Third, when m ≈ 
 the enhanced probability of Andreev

reflections amplifies the contribution from ε ≈ m. In equi-
librium, both the positive and negative contributions are
amplified, so the overall effect is still a suppression of s

and Ic when compared to m = 0. However, in the transient
period with h↑,↓(ε) = tanh[(ε ± m)/β] the consequence is a
manifold increase in s and Ic. In other words, when m ≈ 


the Andreev reflections with the longest lifetimes are also
the ones with the highest probability of occurring, and the
nonequilibrium distribution functions that are present before
the system has had time to relax allows this to manifest as a
strong enhancement in superconductivity.

We find that the timescale for which the Ic and s are able
to reach their amplified states is given primarily by 
. Hence,
in order to experimentally detect the enhanced supercurrent it
is necessary that δ/
 is not too large. From Fig. 1 one can
see that δ < 10−2
 is sufficient to observe an increase in the
supercurrent. Experimental values of the inelastic scattering
rate, or Dynes parameter, are often found by parameter fitting,
and values as low as δ/
 = 2.2×10−5 have been reported
in the millikelvin regime [27]. With 
 ≈ 1 meV and δ/
 =
2.2×10−5, the relaxation time is about 10ns. A Zeeman split-
ting of 1 meV is achieved with a magnetic field strength of
around 30 T/g, where g is the Landau factor. This could be
either tens of T if g = 2 or tens of mT when g ≈ 103. The
latter can be found, for instance, in Dirac semimetals [28]. In
the former case, an Ising-type superconductor such as NbSe2

can be used to retain superconductivity at high in-plane fields.
The strong enhancement of the proximity-induced singlet

order parameter s suggests that the order parameter in the
superconductor, if solved for self-consistently, could poten-
tially also be enhanced by virtue of the inverse proximity
effect. In turn, this would imply an increase in the critical
temperature Tc of the superconducting transition. We leave
this issue, which requires complicated time-dependent, self-
consistent numerical calculations, for a future work.

Conclusion. We have presented a method for solving the
time-dependent Usadel equation with arbitrary time depen-
dence. This is made possible by two observations. First, the
circle products simplify considerably in Fourier space when
one of the arguments is independent of energy; second, by
linearizing the equations, only such products remain.

We applied this method to analytically study SNS junctions
with time-dependent Zeeman splitting m where a magnetic
field is abruptly turned on. We demonstrated a strong en-
hancement of the supercurrent and Cooper pair correlation
function when m ≈ 
, where 
 is the superconducting gap.
In particular, if the inelastic scattering rate δ is smaller than

×10−2 and the magnetic field changes value during a time
frame shorter than 1/δ, our results show an up to twentyfold
increase in the magnetic field that potentially lasts for tens of
nanoseconds.
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