
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s 
an

d 
M

an
ag

em
en

t 
D

ep
t. 

of
 In

du
st

ria
l E

co
no

m
ic

s 
an

d 
Te

ch
no

lo
gy

 M
an

ag
em

en
t

Vegard H
ansen and Trond H

åkon Trondsen

Vegard Hansen and Trond Håkon Trondsen

An application of approximate
dynamic programming/
reinforcement learning to salmon
production scheduling

Master’s thesis in Industrial economics and technology
management
Supervisor: Stein-Erik Fleten
Co-supervisor: Andreas Kleiven
June 2021

M
as

te
r’s

 th
es

is





Vegard Hansen and Trond Håkon Trondsen

An application of approximate
dynamic programming/reinforcement
learning to salmon production
scheduling

Master’s thesis in Industrial economics and technology management
Supervisor: Stein-Erik Fleten
Co-supervisor: Andreas Kleiven
June 2021

Norwegian University of Science and Technology
Faculty of Economics and Management
Dept. of Industrial Economics and Technology Management





Industrial economics and technology
management

TIØ4905/4900 - Master Thesis, Managerial economics
and operations research/Financial engineering

An application of approximate dynamic
programming/reinforcement learning to

salmon production scheduling

Authors:
Trond H̊akon Trondsen and Vegard Hansen

June, 2021



Preface

This master thesis is the conclusion of our Master of Science in Industrial Economics and Tech-
nology Management at the Norwegian University of Science and Technology. The thesis is written
in the intersection between the areas of Managerial Economics and Operations Research and Fi-
nancial Engineering. The thesis is motivated by our mutual interest in salmon production and by
the growing number of successful applications of the interface between advanced optimization and
machine learning. The thesis is also motivated by the operations of innovative salmon producers
such as Andfjord Salmon.

We have received much appreciated help and guidance in completing this thesis, both from the
faculties at NTNU and the industry. We would especially like to thank our supervisor, professor
Stein-Erik Fleten and PhD Research fellow Andreas Kleiven for interesting discussions, guidance
and valuable feedback and help. We would also like to thank professor Keith Downing for his
hands-on feedback on our reinforcement learning model and professor Qing Li from the Hong
Kong University of Science and Technology for interesting discussions. Finally we would like to
thank Christian Torgersen and his colleagues at Andfjord Salmon for discussions and valuable
input on relevant research topics, realistic production and parameter values.

Trondheim, June 24, 2021

Trond H̊akon Trondsen Vegard Hansen

i



Summary

Global demand for Atlantic salmon as a healthy, resource-efficient and climate friendly protein
source is only expected to rise. The compounded annual growth rate (CAGR) of salmon harvest
volumes has been 5% in the period 2001-2020 (Mowi, 2021). At the same time the industry is
facing environmental challenges and governmental restrictions on traditional salmon production in
fjords and bays. Land based salmon production is a growing part of the industry and a response
to the environmental challenges of traditional production, currently attracting large amounts of
investor capital (Berge (2021)). Land based production has several advantages, including more
controllable production and less biological pollution. However, producing salmon on land while
also facing stricter requirements on e.g. feed quality is causing a rise in production costs (Bjørndal
and Tusvik, 2019). Smart production scheduling is therefore becoming increasingly more important
to the salmon producer, both land based and sea based. With the salmon price being a particu-
larly volatile and varying commodity price, taking this uncertainty into account when scheduling
production has been deemed highly interesting by players in the industry. However, the salmon
production scheduling optimization problem remains a challenging and computationally demand-
ing problem, with a need for more advanced optimization techniques. An inherent key issue in
the problem is determining the true value of the standing biomass. Machine learning methods like
reinforcement learning are on the rise, having shown impressive results to complex problems, and
are inclined to deal with such issues exactly.

This master thesis represents the first attempt, to the authors’ knowledge, to model the salmon
production scheduling problem as a Markov Decision Process and to solve this model by approx-
imate dynamic programming or reinforcement learning. Warren B. Powell and David Silver are
two front figures in this field and their works are key sources of knowledge and inspiration for this
thesis. The ADP/Deep RL model developed is based on a value function approximation policy.
This is in turn based on n-step Temporal Difference (TD(n)) learning, testing both custom func-
tions and deep neural networks as value function approximators and using a count-based, problem
specific exploration strategy resembling the Upper Confidence Bound method. To be able to solve
the stochastic problem version with respect to salmon price uncertainty, a novel semi-parametric
structural price model based on forward curve data has been developed. This model generates
random salmon price development samples.

The ADP/RL model has been benchmarked against a mixed integer programming model and a
rolling horizon model for the deterministic and stochastic problem, respectively. The best schedules
produced by the ADP/RL model in its current state earns ∼ 80% of the profits earned by the
MIP model for small problem instances, which is not deemed good enough for use in real world
production. However, ADP/RL is in many ways as much an art as a science, requiring great
amounts of algorithm tuning and creative problem solving, and the authors are convinced that
there is a large potential in applying ADP/RL to not only salmon production scheduling, but also
other biological herd management problems. This thesis therefore merely opens the door to an
entire field of research the authors believe will be fruitful. The thesis also investigates the value of
stochastic solution. The results suggest that the value of stochastic solution is small compared to
scheduling with respect to deterministic price seasonality, but large compared to scheduling with
respect to a constant price.
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Sammendrag

Global etterspørsel etter laks som en sunn, ressurs-effektiv og klimavennlig protenkilde er forventet
å øke i årene som kommer. Sammensatt årlig vekstrate for slaktevolumer av laks har vært 5% i
perioden 2001-2020 (Mowi (2021)). Samtidig møter tradisjonell oppdrett i fjorder og viker b̊ade
miljømessige utfordringer og restriksjoner fra myndighetene. Landbasert oppdrett er en voksende
del av industrien og en respons p̊a de miljømessige utfordringene ved tradisjonell oppdrett som for
tiden tiltrekker seg store mengder kapital (Berge (2021)). Landbasert oppdrett har flere fordeler,
deriblant mer kontrollerbar produksjon og mindre biologisk forurensning. P̊a den andre siden fører
det å produsere laks p̊a land samtidig som det stadig stilles strengere krav til blant annet forkvalitet
til høyere produksjonskostnader (Bjørndal and Tusvik (2019)). Smart produksjonsplanlegging blir
derfor stadig viktigere for en lakseoppdretter, b̊ade p̊a land og i sjø. Videre er lakseprisen en
spesielt volatil og varierende r̊avarepris, og det å ta dette i betraktning i produksjonsplanleggingen
blir ansett som svært interessant av spillere i industrien. Planlegging av lakseproduksjon er et
utfordrende og beregningsmessig krevende optimeringsproblem som krever mer avanserte optimer-
ingsmetoder. Et viktig spørsmål i dette problemet er hvordan bestemme verdien av den st̊aende
biomassen i anlegget. Maskinlæringsmetoder som forsterkende læring er p̊a fremmarsj, med im-
ponerende resultater å vise til for komplekse problemer, og de er naturlig anlagt for å løse slike
utfordringer.

Denne masteroppgaven representerer det første forsøket p̊a å modellere produksjonsplanleggingsprob-
lemet i lakseoppdrett som en Markov beslutningsprosess og å løse denne modellen med approksimert
dynamisk programmering eller forsterkende læring. Warren B. Powell og David Silver er to front-
figurer for dette feltet og deres arbeider er viktige kilder til kunnskap og inspirasjon for denne mas-
teroppgaven. ADP/dyp RL modellen tar beslutninger basert p̊a verdifunksjonsapproksimasjon.
Modellen er videre basert p̊a n-stegs Tidsmessig Forskjell læring, tester b̊ade problemtilpassede
funksjoner og dype nevrale nettverk som verdifunksjonsapproksimasjoner og bruker en tellebasert,
problem-spesifikk utforskningsstrategi som etterligner Øvre Konfidensgrense-metoden. For å kunne
løse problemet stokastisk med hensyn p̊a prisusikkerhet har vi utviklet en semi-parametrisk struk-
turell prismodell basert p̊a forwardkurvedata. Denne modellen genererer tilfeldige prisutviklinger
og tilhørende prisforventninger/forwardkurver.

ADP/RL modellen har blitt m̊alt mot en blandet heltallsprogrammeringsmodell og en rullende
horisontmodell for henholdsvis det deterministiske og stokastiske problemet. De beste produksjon-
splanene generert av ADP/RL modellen i sin n̊aværende tilstand tjener ca 80% av sammenlign-
ingsmodellene. Dette regnes ikke som bra nok for kommersiell bruk i virkelig produksjon. ADP/RL
er p̊a mange m̊ater like mye en kunst som en vitenskap og er en metode som krever store mengder
algoritmetuning og kreativ problemløsning. Forfatterne er derfor likevel overbevist om at ADP/RL
har stort potensial for å løse ikke bare produksjonsplanleggingsproblemet for laks, men ogs̊a for
andre dyrearter. Denne masteroppgaven åpner derfor kun døren til et stort forskningsfelt vi tror
vil bli verdifullt. Oppgaven undersøker ogs̊a verdien av stokastisk løsning av produksjonsplanleg-
gingsproblemet for laks med hensyn p̊a lakseprisen. Resultatene antyder at verdien av stokastisk
løsning er liten sammenlignet med deterministisk løsning med hensyn p̊a en forventet prisutvikling
inkludert sesongvariasjon, men stor sammenlignet med deterministisk løsning med hensyn p̊a en
konstant pris.

iii



Table of Contents

Preface i

Summary ii

Sammendrag iii

Table of Contents iv

1 Introduction 1

2 The salmon farming industry 4

2.1 Global scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 How salmon farming works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Future of the industry - land based or sea based . . . . . . . . . . . . . . . . . . . 8

2.4 Salmon production scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 The facility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.2 The optimization problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Financial aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Salmon spot price . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.2 Salmon forward contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.3 Optimal harvest, discount rate and finance structure . . . . . . . . . . . . . 17

3 Theoretical Background 20

3.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Artificial neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Implementation - software packages . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Markov decision processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Profit maximization / problem formulation . . . . . . . . . . . . . . . . . . 25

3.2.2 The Bellman equation - the dynamic programming principle of optimality . 25

3.2.3 Solution strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

iv



3.3 Reinforcement learning - Approximate dynamic programming . . . . . . . . . . . . 27

3.3.1 Value function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Exploration versus exploitation . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 On-policy vs off-policy learning . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 Model-free vs model-based RL . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.5 Temporal difference learning . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.6 Algorithm tuning - hyper parameters . . . . . . . . . . . . . . . . . . . . . . 34

4 Relevant literature 35

4.1 The price of Atlantic salmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Relevant ADP/RL applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Salmon production optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Relation to other operations research literature . . . . . . . . . . . . . . . . 38

4.3.2 Mathematical programming applied to biological systems . . . . . . . . . . 38

4.3.3 Salmon production specific literature . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Summary and our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Model and solution approach 45

5.1 Salmon production scheduling as a Markov Decision Process . . . . . . . . . . . . . 45

5.1.1 Extensive mathematical formulation . . . . . . . . . . . . . . . . . . . . . . 45

5.1.2 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.3 Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.4 Exogenous information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.5 Transition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.6 Direct profit/reward function . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.7 Overall objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Semi-parametric modelling of prices . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.2 Decomposition heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.3 Key algorithmic elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Model evaluation 60

6.1 Qualitative assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 Model learning development . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1.2 Model scalability - runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



6.2 Benchmarking - deterministic optimization . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Benchmarking - stochastic optimization . . . . . . . . . . . . . . . . . . . . . . . . 64

6.4 Value of stochastic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7 How ADP/RL works for salmon production scheduling 69

7.1 Vast action space - Computational time . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1 Reducing the number of decisions . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.2 Smarter selection of decisions . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1.3 Speed-up of model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Algorithm convergence - overall performance . . . . . . . . . . . . . . . . . . . . . 71

7.2.1 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2.2 Exploration vs exploitation strategy . . . . . . . . . . . . . . . . . . . . . . 74

7.2.3 Value function shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.4 Value function training algorithm . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.5 Constraint management challenges . . . . . . . . . . . . . . . . . . . . . . . 77

7.3 What characterizes the optimal solution and how ADP/RL can find it . . . . . . . 78

7.3.1 The number of smolts released . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.3.2 Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3.3 The coordination of different tanks - opening up for other methods? . . . . 80

7.4 Value of stochastic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.5 Critical reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.1 Results validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5.2 General reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Conclusion 85

Bibliography 88

A Appendix 91

A.1 Skretting growth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2 Numerical illustrative examples to optimal harvesting. . . . . . . . . . . . . . . . . 92

A.2.1 Expected price variations - seasonality and fish size . . . . . . . . . . . . . . 95

A.3 Seasonal component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



Chapter 1

Introduction

Global harvest of atlantic salmon amounted to nearly 2,500 Gutted Weight equivalent Tonnes
(GWT) in 2019, with Norway producing more than 50% of that (Mowi (2020)). The global
production of salmonids (of which the majority is atlantic salmon) still only amounted to 4.4% of
global seafood supply, which in turn amounted to 7% of global protein consumption. Both because
of a growing world population and how healthy and environmentally friendly salmon is compared
to other protein sources, the demand is only expected to grow. In fact, both global and Norwegian
salmon production has grown by a compounded annual growth rate of 5% ever since 2000 (Mowi
(ibid.)).

Part of the reason for Norway’s dominance in the salmon industry is the natural environment of
our fjords which is very favorable for salmon. Traditional salmon farming in the fjords of Norway
is however facing a number of challenges related to environment and sustainability. Environmental
issues include the use of wrasse to remove sea lice, plastic waste pollution, ocean seabed pollution
and negative effects on other wildlife in the area (Bjørndal and Tusvik (2019)).

The industry has to adapt to these challenges to be able to meet the increasing demand. One
possible and promising solution is to produce salmon in land based facilities. Land based production
has several advantages both in terms of sustainability, amongst others because production can
be located closer to the markets, and in terms of a more controllable environment and reduced
production risks (Bjørndal and Tusvik (ibid.)). Companies that specialize in the segment of land
based production are therefore attractive as never before, and large amounts of investor capital
are going in that direction (Berge (2021), EY (2020)). The following research confirms this trend.

Figure 1.1: Estimated development of production. Source: Land-based and offshore farming, what
will be the impact from new farming methods, DNB Markets (2021)
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Land based salmon producers do however face higher production costs, for example from electricity
and water management. Increasing costs and competition puts pressure on margins that can give
producers an edge over the others. What’s more, the salmon price faced by the producer is known
as a particularly volatile commodity price. The salmon price is found to vary quite significantly
with season, primarily because of biological factors in production (Mowi (2021)). Furthermore,
the price per kg of biomass is not the same for all salmon, instead it is generally higher for larger
salmon. Salmon are therefore typically categorized in different sales classes, e.g. 3-4 kg and 4-
5 kg. An interesting question in planning salmon production therefore is the trade-off between
merely producing as much biomass as possible and producing so that harvesting is done when the
price is at it’s highest. The optimal production schedule is characterized by as high as possible
utilization of both the density constraints and the MAB constraint, which is an essential feature of
the problem. This requires a delicate balancing of the number of fish released and the harvesting
schedule, as well as a detailed biological growth model. Generally speaking, salmon production
scheduling represents a very interesting optimization problem which in turn can have significant
effects on a salmon producer’s bottom line.

In the project thesis leading up to this master thesis, we therefore investigated optimizing salmon
production scheduling with respect to price variations. The experimental analysis suggested that
there is indeed added value to gain from planning production with respect to price variations. One
of the goals for this thesis is however to do what we were not able to do in the project thesis,
namely to explore the so-called value of stochastic solution with respect to price uncertainty, i.e.
investigating how much there is to gain for the salmon producer in actively and continually taking
the price variations into account when planning production.

Our work in the project thesis also revealed how computationally expensive and complex full-scale,
detailed versions of the salmon production scheduling problem are when solved with traditional
optimization methods such as mixed integer programming (i.e. branch and bound). Straight
forward, a state-of-the-art solver like Gurobi showed exploding computational times already for
a 3- or 4-tank facility problem. The salmon producer we cooperated most closely with were
planning a 10-tank facility and the need for more advanced optimization methods which are more
scalable became apparent. This represents the second goal of this thesis: designing a more scalable
optimization method for optimizing production schedules.

EY (2020) also write in their report that the rise of land based and offshore salmon farming largely
take away Norway’s natural competitive edge and that a potential success factor for Norwegian
aquaculture to keep on leading the way is ”the institutionalization of salmon industry competency
and knowledge through big data sets and machine learning (all production technologies)”. They
further write that a threat to Norwegian leadership in the aquaculture domain is that ”the Nor-
wegian industry does not build a sufficient pipeline of talents to transfer the industry to being AI-
and knowledge-based due to existing ”super profits””.

In Kennedy (2012), ”Dynamic programming applications to agriculture and natural resources”,
the author argues that many biological herd management problems naturally lend themselves to
dynamic programming based methods. We agree with this, and argue that three key factors
suggest that such methods are a good fit for the salmon production scheduling problem. First,
the problem has a repetitive, cyclic nature where decisions are made over time and hence can
be modeled as a Markov Decision Process, which will be discussed in more detail later. Second,
there exists good sources of research such as the Skretting growth table which enables accurate
modeling of salmon growth. Finally, an essential, governing concept to managing biomass systems,
whether it is in the shape of salmon, cattle or even forests, is determining and understanding
the true value of the standing biomass at any point. This final idea also came from the fact
that an inherent challenge with modeling salmon production as a linear programming problem
is the so-called end-of-horizon problem, which basically is about finding the true value of the
remaining fish in the fish tanks. Dynamic programming methods such as Approximate Dynamic
Programming/Reinforcement Learning, as presented by W. Powell (2011), and particularly the
subtopic of value iteration methods are at their very core about this exact concept, iteratively
estimating the true value of the state of the system and using this value to make the optimal
decision. What’s more, such methods are flexible, adaptable, and, not least, naturally inclined to
dealing with stochasticity, which is a requirement for the problem we are researching.

2



When combining the above insights with the recent rise of machine learning in general and rein-
forcement learning in particular, investigating the application of the advanced method of approx-
imate dynamic programming(ADP)/reinforcement learning(RL) to salmon production scheduling
seemed promising and intriguing. Deep reinforcement learning (the word deep coming from the
application of advanced machine learning concepts such as multi-layered artificial neural networks)
has in recent years shown impressive results when applied to highly complex problems/challenges,
many of them focused on video games, in the computer science community. Perhaps the most
famous example is DeepMind’s AlphaZero. AlphaZero is a highly advanced reinforcement learning
model which learned to play the games of chess, shogi and go and actually in a matter of days of
trial-and-error learning achieved superhuman performance and beat existing world-champion pro-
grams (Silver et al. (2017)). Such impressive applications, along with other real-world applications
of the same principles, suggest several new applications of such methods might be promising and
valuable.

This master thesis aims at thoroughly investigating the application of ADP/RL to the salmon
production scheduling problem with a focus on price stochasticity by building such a model. We
are the first to do so. Most artificial intelligence applications in the salmon industry have revolved
around analysing operational elements such as ”smart fish feeding” and not around production
schedule optimization (not including traditional optimization methods), even though our project
thesis research revealed significant profit gains can be achieved. Most optimization efforts focused
on the salmon production scheduling problem have to the authors’ knowledge applied methods such
as traditional mixed integer programming, column generation or general stochastic programming
methods, and none have so far gone down the path of dynamic programming. We therefore find our
research interesting both from an operations research and machine learning community perspective
but also from the salmon farming industry perspective.

The work presented in this thesis had three primary goals. First, we wanted to develop a more
scalable optimization model for producing high-quality, profit-maximizing production schedules
which can take into account price uncertainty. Second, we wanted to investigate whether ADP/RL
can serve this purpose and work also for salmon production scheduling, and if so, then how well
it can work and whether or not it has the potential for future industrial application. In this
respect, we aim to not only build a successful model on our own, but also to gain experiences and
lessons for future research in the same, novel intersection between ADP/RL and salmon production
scheduling. Finally, we want to tie up a loose end from our project thesis which is determining
the value of stochastic solution of the salmon production scheduling problem with respect to price
uncertainty. By reading this thesis, we hope the reader will get significant, holistic insight into
these questions. We discuss both the salmon farming industry background and sequential decision
making theory and in the end devote a chapter to thoroughly presenting and discussing our learned
insights into both the optimal solution of the optimization problem and the nature of ADP/RL
approaches to finding this solution. The reader of this thesis will hopefully achieve in-depth,
qualitative understanding of the problem at hand.

The thesis is structured as follows. Chapter 2 is meant to give the reader an introduction to
the salmon farming industry. This chapter also discusses the dynamics of the salmon price and
describes the salmon production scheduling problem in more detail. In chapter 3 we present some
theoretical background on machine learning in general and reinforcement learning/approximate
dynamic programming in particular. Chapter 4 present relevant literature in order to place our
work into a larger context, both from an operations research perspective, from a salmon specific
perspective and from an ADP/RL perspective. Our models, both the ADP/RL model and the price
simulation model, are presented in chapter 5. An evaluation of the model is presented in chapter 6.
Chapter 7 is a thorough discussion of how ADP/RL works for salmon production scheduling, i.e.
what poses important challenges and which aspects are promising. Finally we draw conclusions
and make suggestions for future research in chapter 8.
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Chapter 2

The salmon farming industry

The Mowi Salmon Farming Industry Handbook 2021 (Mowi (2021)) gives a comprehensive overview
of the salmon farming industry. The reader is referred there for data and parameters not mentioned
here. Information not found there has been collected through the authors’ various discussions with
industry professionals over several years of personal interest in the industry.

2.1 Global scale

Farmed Atlantic Salmon harvested worldwide in 2019 amounted to almost 2,500 million GWT
(gutted weight equivalent tonnes), with wild caught salmonids at around one third of that. Norway,
Chile, Scotland and Canada supply the vast majority of this fish, with Norway harvesting around
1,200 million tonnes GWT in 2019 (Mowi (2020)).

The world demand for seafood based protein grows as the world populations grows and a larger
part of the world starts consuming seafood. Atlantic salmon is a particularly interesting species for
meeting this demand, because of its low production risks and its high potential for industrialization.
Other advantages include a low feed conversion ratio, a low emission gas footprint compared to
other protein sources and health benefits in terms of Omega-3 and vitamins. Salmon has also
historically been a relatively expensive product on the shelves compared to other protein sources,
which is one of the reasons for its high profitability. Furthermore, the supply from wild catching
is stagnating in most geographical areas. Farmed Atlantic Salmon, along with other seafoods, is
increasingly being seen as both a promising protein source for the future and an exciting industry
in terms of business potential (Mowi (2021)).

The industrialization and large upscaling of Atlantic Salmon farming in recent years is increasing
in intensity, and the resources put into it invites interest in more advanced research in the business
aspects of the industry.

2.2 How salmon farming works

Salmon, in this case referring to Atlantic Salmon, is an anadromous fish species. This means they
hatch in fresh water and live the first period of their life in fresh water, before they go through
a smoltification process while migrating into the saltwater ocean and live there. For this reason,
the industry is often segmented in a freshwater part producing salmon smolt weighing typically
around 50-500 grams and a saltwater part growing the smolt further to salmon for food, typically
harvested at weights between 3 and 7 kilograms. The total salmon farming life cycle is around 3
years, of which the first year is spent in fresh water. The growth time in salt water is 12-24 months,
and heavily dependent on water temperature. Atlantic Salmon needs temperatures between 0 and
20 degrees Celsius, but the growth is by far highest at around 14-16 degrees Celsius. It is also
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worth mentioning that the risks of diseases are higher at very high temperatures, so that there is
a trade-off between disease risks and growth. This is also the reason that optimal conditions of
sea based production is found in for an example Norway. When the fish have reached harvesting
weight, they are typically collected by a well boat and transported to a processing plant where
they are slaughtered and guttered (Mowi (2021)).

Figure 2.1: The salmon production cycle. Source: Salmon Farming Industry Handbook 2020, by
MOWI ASA

Traditional salmon farming has to a large extent taken place in cages in protected fjords or bays.
Smolt are produced in land based facilities where salmon fry are hatched in small fresh water tanks
and grown to a certain size, typically around 100 grams. They are then released into cages in the
fjords during spring or autumn, and held there for 12-24 months. Harvesting is done all throughout
the year, with the majority harvested in the last half of the year, when the water temperature is
higher and growth is better.

Salmon growth is typically a non-linear function of water temperature, feed quality, feeding sat-
uration, water quality, light conditions and the weight of the salmon itself. In traditional salmon
farming however, one tries to keep the water quality and light conditions at the optimal level at
all times. Feed quality is a constant area of research and feed amount is usually set to saturation
level to ensure maximum growth. asche2011economics argues that this is the optimal course of
action for salmon producers. Given this, one can, as we do in this thesis, assume that the fish
growth is only dependent on the water temperature and the fish size, as given for example by the
Standard Growth Rate (SGR) tables provided by the feed producer Skretting (ref. figure A.1). It
is then possible to create a biological growth model. In the case studied in this thesis, the water
temperature in production is given at each time, and the growth for each weight class of fish at
each time is then given by the SGR table and the time. One way of modelling growth that has been
found preferable by researchers before us, is then to build a multi-dimensional matrix of transition
coefficients between a set of weight classes at given temperatures.
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Genetic differences in fish cause different growth in between the fish in a single batch, even if they
all start at the same weight. This means the weight of the fish in a batch is typically a distribution
around an average weight. In reality, this distribution is an approximate normal distribution with
a coefficient of variation of up to 0.1. When the difference between the smallest and largest fish in
a batch gets above a certain level, evolutionary effects divide the batch into what is called ”winner
fish and looser fish”, where the largest fish take most of the food and the difference is growth
is increased. For this reason, salmon producer generally do not want too large spread in weight
between the fish in a batch.

The main costs in salmon farming are feed costs, smolt costs, labour costs, harvesting costs and
other general costs. Of these, feed costs amount to almost half of the costs, with typical costs
around 15 NOK/kg of feed and a Feed Conversion Ratio, FCR, of around 1.12 kg feed pr kg
salmon growth. Smolt costs of around 12 NOK per smolt for 100 gram smolts and an additional
0.04 NOK per gram for smolts larger than that, as well as 1 MNOK fixed harvesting costs are
common parameters reported to us by industry professionals which are used in the calculations in
this thesis. Labour costs, interest costs and miscellaneous operating costs are also significant cost
components, although these are typically left out of the salmon production scheduling problem.

Figure 2.2: Breakdown of major costs in Norwegian salmon production over the last years. Source:
Salmon Farming Industry Handbook 2021, by MOWI ASA

The salmon production part of the value chain is done by the most publicly known companies such
as MOWI, Lerøy Seafood and SalMar, which are publicly traded at Oslo Børs. The specialized
tasks of the value chain such as producing feed, smolt and harvesting is often done by special-
ized companies, i.e. feed producers, smolt producers and harvesting and processing facilities and
wellboat owners. These are often wholly or partially owned by the salmon production companies.
In that sense, some of the largest salmon production companies are involved in most parts of the
value chain until harvesting. Nevertheless, it is possible for companies to operate in only one
part of the value chain, for an example only producing salmon in the saltwater phase. In such
cases, the producer typically enters a (long-term) deal with e.g. a feed producer to deliver feed
at a certain quality and quantity to a given price. The largest salmon feed producers globally are
Skretting, Ewos and BioMar. Increased demand and higher prices for farmed salmon has been
the main driver of the revenue growth for aquaculture companies the last years, and this has had
spill-over effects to other companies in the value chain. Various companies providing solutions for
the aquaculture industry has experienced growth along with the salmon producers. This group
of companies have been focusing on improving aquaculture technologies to provide solutions of
biological challenges and the general increase in production cost. Such companies include software
and technology providers like ScaleAQ. The largest companies among producers of technical solu-
tions and services for the aquaculture industry such as barges, wellboats, feeding systems, cages,
mooring systems, sea lice treatments and software are Steinsvik AS, Akva Group ASA, Aas Mek
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Verksted AS, Optimar AS and Egersund Net AS (Olafsdottir et al. (2019)).

After harvesting, the fish are ready for sale, typically in either fresh or frozen form. The fish first go
through primary processing (gutting) into HOG (Head-on-Gutted) fish, which is done in the same
facility as the slaughtering. Then (possibly, not always) the fish are sent to secondary processing
(smoking, filleting etc). The below figure attempts to illustrate the downstream distribution of
Norwegian harvested salmon. While most of Norwegian salmon is sold fresh to the EU, Chilean
salmon are mostly sold frozen (Olafsdottir et al. (ibid.)).

Figure 2.3: Typical downstream distribution of Norwegian harvested salmon. Source: Olafsdottir
et al. (2019)

In the case of fresh salmon, a relatively high price differential is required to justify transport over
long distances because it requires the cost of airfreight. Such trades vary over time, depending on
arbitrage opportunities due to short-term shortages and excess volumes from the various producing
regions. Drivers of the salmon price will be further discussed in section 2.5.1 on the salmon spot
price.

Salmon are typically sold either through spot price contracts, futures contracts or long-term B2B
contracts/agreements. The salmon market is still considered relatively immature, and sales mech-
anisms and the global market are characterized by this (Denstad, Ulsund, and Lillevand (2015)).
It is estimated that approx. 60% is sold on such spot market conditions where contracts are signed
on a weekly basis (i.e. delivery within a week), to the highest bidder. The salmon spot price is
not regulated. About 40% of the volume is contracted, mostly from the largest producing compa-
nies. However, the ratio between spot and contract sales varies (Olafsdottir et al. (2019)). There
is an emergence of long-term supplier-customer relationships through delivery contracts. These
direct B2B agreements are typically agreements between large producers and large supermarket
retailers, secondary processors or other wholesalers with a duration of 3-12 months. Many types of
contracts exist, with both fixed and adjustable prices and fixed and adjustable quantities. These
serve amongst others to smooth out price variations and to stabilize outlooks for both produc-
ers and customers and allow for better utilization of capacities (Denstad, Ulsund, and Lillevand
(2015)). Financial forward contracts traded at Fish Pool involve a fixed price for a future delivery
of salmon and are purely financial instruments used to hedge against price risks. These will be
discussed further in 2.5.2.

As salmon is mostly marketed as a fresh product, each production region has historically focused
on developing the nearby regions. Time and cost of transportation has driven this trend. The
global trade flow of Atlantic Salmon in 2020 can be seen below (Mowi (2021)).
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Figure 2.4: Global trade flow of Atlantic Salmon. Source: Salmon Farming Industry Handbook
2021, by MOWI ASA

2.3 Future of the industry - land based or sea based

The industry as a whole is facing both governmental and environmental restrictions setting limits
on the increased supply of traditionally farmed salmon. Also, traditional salmon farming has large
challenges in e.g. the sea lice problem. A company nowadays needs a license from the government
to produce salmon. Traditional salmon farming in the fjords has received much criticism for
environmental pollution, and there is a shift towards more sustainability in the industry coming
up to meet the increasing global demand (Bjørndal and Tusvik (2019)). As polluting the fjords will
not be accepted to a larger extent than already done, the industry has two options for increased
production, simply put: going out into the deep ocean or going onto land. Large amounts of capital
have the last few years been spent on research in both areas (Berge (2021), Hersoug, Mikkelsen,
and Osmundsen (2021)). Producing salmon in the open sea is more challenging in terms of cage
design, transport costs and wave motions. Producing in tanks in land based facilities has one
main challenge in increased costs, for example from water flow management, salting of the water
and increased electricity costs. Most likely, salmon farming in the future will be a combination of
both land based, sea based and fjord based farming, with land based and sea based increasing in
proportion.

Figure 2.5: Estimated production distribution in 2040. Source: Norwegian Aquaculture Analysis
2020, by EY
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As we can see from figure 2.5, it is expected that land-based production will be a significant
portion of the global salmon supply in 2040. With increasing focus on Environmental, Social, and
Corporate Governance (ESG) factors, one advantage of land-based farming is that there is less
need for transport because the facilities can be put almost anywhere. This is, however, also a
threat to Norwegian producers (EY (2020)) and as pointed out in the introduction, the Norwegian
industry should build a sufficient pipeline of talents to transfer the industry to being AI and
knowledge-based to maintain their position leading the way in the aquaculture industry.

Bjørndal and Tusvik (2019) conduct a thorough economic analysis of land based salmon farming
and its competitiveness. They conclude that while the actually realized production costs are still
uncertain, land based farming has several potential advantages in for example taking advantage of
the seasonality in the rest of the industry. If successful, land based farming will profoundly change
the industry and potentially shift the geographical center of production. The reader is referred
there for further in-depth understanding.

2.4 Salmon production scheduling

2.4.1 The facility

In the sort of land based facilities that are kept in mind for this thesis, production works in many
ways like in the traditional fjord based open cage facilities. Information stems from conversations
we have had with different Norwegian land based salmon farmers. Each facility usually buys smolt
from an external producer, or at least produces smolt in a separate facility or part of the facility
and can then release batches of smolt in each tank for further growth until sales ready weight.
Larger smolt, so-called postsmolt, are typically more expensive than smaller smolt. In land based
facilities, the production environment is typically more controllable. In facilities where temperature
can be controlled, smolts can be released throughout the year, however in facilities where sea water
is used directly and the water temperature is given, smolts are typically not released during winter
because the low temperature and bad growth conditions is not good for the fish in the first phase
of life.

One of the most important differences from production in cages at sea to land based production,
is water management. There are mainly two different technologies used in land based aquaculture.
Recirculating aquaculture system (RAS) has been in use for the longest period of time and is the
most common. This technology is basically the same that we find in aquariums, where water is
recirculated. Most land based producers add salt to fresh water and heat it up. The recirculating
process includes 1) bio-filtration where ammonia (toxic waste) is converted into nitrate, 2) solids
removal, 3) oxygenation 4) pH control and 5) temperature control. The other main technology
is a flow-through system where water from an outside source flows through the facility before
going back into the source. This is typically cheaper than RAS. Disadvantages with flow-through
compared to RAS include limited possibility to control temperature. It is also possible to combine
these two technologies. With flow-through systems the temperature can be assumed to be given
instead of being a variable. That yields less flexibility, but also simpler computational models.

A set of equal or different size water tanks, ranging typically from 5-20 tanks with volumes of
thousands of cubic metres of water, are combined in what we term a facility. The facility kept
in mind for this thesis has tanks with a volume of 30,000 cubic metres, and plans to have 10 of
these. This corresponds to the planned facility of the salmon producer we have cooperated most
closely with. Both smolts and feed are bought externally, and a contract is signed with a salmon
processing operator which sends a well boat each time the producer wants to harvest fish from one
or several tanks. New technology in the shape of sorting nets that are lowered into the fish tanks
are used to sort the fish (roughly) by size. This way, the salmon producer can harvest only the
largest fish in a batch and let the smaller fish grow additionally.

In many land based facilities the salmon farmer has the opportunity to move and split fish batches
between different tanks during growth. This is highly interesting from an optimization perspective
because it might improve the possible utilization of the facility capacity, but it also introduces a
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whole range of mixed integer restrictions which increase the problem complexity. However, for the
land based farmer we have cooperated most closely with during this work, this is not an option.
This is also the case for traditional sea based farming, and hence serves to make this thesis more
relevant for that as well. Therefore this is disregarded in this thesis.

2.4.2 The optimization problem

The salmon producer wishes primarily to maximise profits when planning/scheduling production.
The only relevant source of revenue is the harvesting and selling of salmon at a size attractive
in the market, typical in the range 3-6 kg. The main production costs to take into account in
production planning, as described above, are feed costs, smolt costs and harvesting costs. Labour
costs and other costs are typically considered fixed with respect to the production schedule, and
are hence not relevant.

A set of very important restrictions characterize the salmon production in general and land based
production in particular. First, different batches of fish cannot share tanks, meaning a tank must
be empty and cleaned for a minimum of around three weeks before new fish/smolt are released in
a tank. Second, fish welfare regulations set a limit on the density of fish in each tank, typically
around 40 kilograms per cubic metre. Third, each facility is awarded a Maximum Allowable
Biomass (MAB) quota from the government of the maximum amount of tons of fish allowed to be
in the facility at any time.

The salmon production scheduling problem means to decide on a production plan that maximizes
profit from growing and selling salmon for the salmon producer, while satisfying the constraints
mentioned above. A production plan is a plan for the management of fish in each tank in the
facility for a given period into the future, typically 3-5 years. The specific decisions are when to
release smolts in each tank, how many smolts to release, what size of smolts to release and when
to harvest from each tank, how many fish to harvest and at what size. The plan is inherently
complicated in terms of how all decisions affect each other, and the managers in the industry
typically spend weeks discussing and developing the production plan manually, based on years of
experience and expertise on salmon growth.

We will now illustrate a few of the trade-offs faced; one wishes to harvest as much biomass through-
out the year, but preferably when the price is at its highest. However, because of the MAB re-
strictions, there can never be more than a certain number of tons in the facility, so if all the tanks
are on the same production cycle this greatly limits the output from the facility, as the facility
will then be far from the MAB quota at the start of the cycle, and greatly limited by it at the
end. As a consequence, one needs to coordinate the different tanks such that the biomass output is
maximized without ever exceeding the MAB quota. Having different growth rates due to differing
temperatures throughout the year further complicates the issue, because the release time in the
year will affect the production time quite significantly. Another question is how many smolts to
release. More fish means more biomass output per tank but also meeting the density restriction
in each tank at a sooner point (lower weight). Hence, the producer will have to harvest more
small fish, typically giving significantly lower price/kg than larger fish (above 4-5 kg). Thus, the
combination of the MAB quota and density restrictions should indicate an optimal number of fish
released exists, a number that makes the fish reach the optimal harvesting weight exactly when
density restrictions and/or MAB restrictions are met (it might not be so simple due to the coordi-
nation with other tanks, but the principle remains). The size of the smolt released is also a highly
relevant issue, because larger smolt are typically more expensive. However, releasing smolt of size
500 grams versus smolt of size 100 grams can greatly reduce the total production time in the salt
water phase, and thus the time until harvesting can be done and a new batch can be released after
that.

For each single tank, once the smolt have been released and are approaching sales ready weight,
one gets what is called the single rotation problem, namely to find the optimal harvesting time
of a batch. This is approached in a theoretical manner later in this chapter. In this situation,
harvesting the fish at any given time will give a sales revenue minus a harvesting cost. However,
both because the price received for the fish typically rise with growing fish size and because the
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salmon price is volatile and seasonal, one can often get a better value of the batch of the fish by
delaying harvest. Delaying will at the same time accumulate other costs such as extra feed costs,
a discounting of the revenue received and also an extra risk taken on, because the production is
inherently risky. Also, when salmon reach sexual maturity, typically at around 5-7 kg, growth
stagnates (Denstad, Ulsund, and Lillevand (2015)). By delaying harvesting, the producer also has
an alternative cost of delaying release of smolt. There is thus a trade-off between the possibly added
value from waiting and the cost of waiting at each point in time. To complicate even further, the
new sorting lattices, mentioned in the previous subsection, can now be used to harvest only some
of the fish in a batch, typically the largest fish. That means extracting the highest-value part of the
batch right now, and letting the smaller fish grow up in a better, more low-density environment.
Both academic research and industry experience has shown that this can greatly increase the value
extracted from a batch of fish, see for example Forsberg (1999). The question then becomes when
to harvest which part of a batch, where to set the weight limit for harvesting and when to harvest
the remaining fish, and one quickly realizes a myriad of possibilities exist. Experienced salmon
producers deem the problem of scheduling their production a constant head-scratcher, in the sense
that one can seldom be certain that a solution is the absolute optimal solution and a lot of time
goes into careful planning.

The overall problem has a special, decomposed structure which is interesting from an optimization
perspective. The structure arises from the fact that the only thing connecting the individual fish
tanks is the MAB constraint. Without the MAB constraint, the optimal solution would merely
be the optimal solution for a single tank applied to every tank, meaning that all tanks would
be on exactly the same production cycle, i.e. they would be synchronous. Because of the MAB
constraint however, which to repeat is a restriction on the total biomass allowed in the facility
at any time, the optimal facility design in terms of number of tanks and tank sizes which allows
the best utilization of the MAB quota is such that the sum of the tank biomass capacities (given
implicitly by the density restrictions and the volume) exceeds the MAB quota, which in turn
makes the optimal production schedule one where the tanks are asynchronous. In other words, the
single tank schedules must be combined in a ”master problem” such that the fish in the tanks reach
harvest weight at different times. The ”subproblems” can thus be said to be about determining the
specific release of smolt and harvesting configuration for each individual tank (which, principally,
are identical to the others). Utilizing this structure will be discussed later and will likely be a
key feature in approaching this problem. For example, as will also be discussed in the literature
review, most advanced optimization efforts on this problem have been about directly exploiting
this structure by using Dantzig-Wolfe decomposition.

2.5 Financial aspects

All historical salmon price data are found at www.fishpool.eu.

2.5.1 Salmon spot price

The salmon spot price market is where salmon are traded bilaterally for delivery within one week
from a salmon producer to retail or to external processing or wholesale.

Head-on-gutted (HOG) salmon prices are normally reported in terms of specific reference prices.
The three reference prices most widely used worldwide are: (1) the NOS/FHL FCA Oslo price, (2)
the Urner Barry FOB Seattle price, (3) and the Urner Barry FCA Miami price. These prices are
based on prices for superior quality fish, and not reflecting freight. Furthermore, each reference
price refers to one specific product. For example, The FCA Oslo price refers to the price per
kilogram HOG salmon between 4-5 kg packed fresh in a standard box and delivered in Oslo. The
FCA Oslo price represents about two thirds of the global quantities for Atlantic salmon, and is
thus the most important reference price used. NASDAQ have their own reference price index
published for weekly spot prices for different sized HOG salmon which is based on FCA Oslo.
This index is calculated based on reports of achieved prices and volumes made by a representative
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panel of Norwegian salmon exporters and producers (Denstad, Ulsund, and Lillevand (2015)). As
mentioned, roughly 60% of salmon is sold in the spot market. Thus, a salmon producer faces
significant price risks, as the salmon price is found to be particularly volatile. Factors affecting the
market price of salmon include:

• Supply (absolute and seasonal variation)

• Demand (absolute and seasonal variation)

• Globalisation of the market

• Presence of sales contracts reducing supply available in the spot market

• Flexibility of market channels

• Quantity

• Disease outbreaks

• Food scares

Basically, all price dynamics has it main reason in supply and demand dynamics. Supply and
demand are in turn determined by other factors, such as the ones above. The price of distributing
salmon, which in turn affects the salmon price, is determined by geographical locations of produc-
tion and consumption. Salmon in Japan is typically more expensive than in the EU due to the
longer travel from the producing countries (almost all salmon being produced in Norway, Chile
or Scotland). Furthermore, there are different trade deals in different regions and a lack of price
regulation in the salmon spot market, which is cause for imperfections in the market (Olafsdot-
tir et al. (2019)). Also, salmon has been found to have positive cross-price elasticity with other
protein sources, which might serve as substitutes, and the price of other protein sources such as
meat affect the salmon spot price (Lodhi (2015)). There exists different value-added products of
salmon, often considered more high-end products, which might be priced considerably higher than
and independent from the reported spot price and Norway has a standardized distinction between
product quality, the grades being Superior, Ordinary or Production quality. The introduction
of standards like the Aquaculture Stewardship Council (ASC) Salmon standard has also become
an important product differentiator. The introduction of the the many contract types and bilat-
eral relationships, as well as the increasing degree of vertical integration in the business further
complexify the market.

Because of limited possibility to store salmon, most of the explanation behind changes in salmon
spot price can be related to production risks that affect harvest volumes. We will now have a look
at historical salmon spot price development, and discuss different factors affecting both supply and
demand. A larger share of production being land based (with more controllable environments) in
the future might lead to fewer abrupt supply changes and hence reduce price volatility. However,
salmon prices have been shown to be highly fluctuating, and will probably stay so in the upcoming
years while land based farming develops further.
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Figure 2.6: Spot prices August 2010 - August 2020. Source: fishpool.eu

From figure 2.6, we can see that there is quite a bit of noise in salmon spot prices. Annualized
volatility were estimated to be approximately 40% in 2016, which was significantly higher than the
average of commodities at approximately 25% (Asche, Misund, and Øglend (2016)). Highly volatile
prices has its main reason in inelastic supply in the short run as a consequence of biological factors
in the production, as well as a long production cycle. Salmon farmers generally spend significant
efforts on forecasting harvest volumes in the industry, as this is the most important indicator
for price movements. They do this by reviewing reported feed consumption data, smolt market
sales, seawater temperatures and vaccination rates (Mowi (2021)). As salmon production is a
biological process, realised production does not always concur with planned production, which
leads to periods of under- and oversupply, which again lead to fluctuating prices. That means,
when supply or demand changes, it is not possible for producers to turn on some switch to get
more salmon in the short run. Examples include shortage in supply because of mass deaths due
to algae blossoms, or change in demand because of holidays. The latter is to some degree possible
to schedule. However, some risks in production are not possible to predict and hard to plan for.
As land based producers do not face biological risks to the same degree, they might benefit from
periods of biological problems at sea based farms. One might even imagine situations where, if one
has information about production levels of large salmon producers or particular large biological
accidents, one can to some extent forecast certain price fluctuations.

In figure 2.6, we can see that there is a significantly higher average price after 2015. Possible
explanations include higher demand compared to supply and/or higher production costs. Although
the introduction of land based farming gives higher competition, these producers will also have
higher production costs and land based farming is still in a very early stage and small compared
to traditional farming. That suggests prices in the future will be partly determined by a trade-off
between increased competition and higher average production costs.

The seasonality in the salmon price can largely be explained by biological factors in production.
Approx. 89% of Norwegian salmon is sold as fresh products and therefore have limited storage
possibility (Olafsdottir et al. (2019)). In traditional sea based salmon farming, salmon smolts are
not released all year round but rather in the times of the year where the water is warmer and more
healthy for the fish in its first stages of life. Harvesting on the other hand, can be done throughout
the year, but is also mostly done during the summer half of the year. The reader is referred to
Mowi (2021) for detailed graphs showing this seasonality. These factors, combined with a typical
demand peak around christmas times and the inelastic supply discussed earlier, together create a
natural seasonality in salmon prices.

Historical seasonality can be found by adjusting an oscillating function to historical data by regres-
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sion. It is possible to use different functions, and a model will of course always be a model that does

not reflect reality perfect. Nevertheless, we have used a function on the form S = α cos( 2∗π∗(t)
52 +φ)

in a regression to find an estimate for the seasonality, where t is the week of the year. Salmon spot
prices and the fitted regression line is plotted in figure 2.7.

Figure 2.7: Plot of historical salmon spot prices and the regressed cosine-function

The results show 8% deviation from the average to the top/bottom. There are of course a lot
of fluctuations around this estimate, but it might be used to say that, given this function and
historical prices, the expected price on top of the cycle is 8% higher than the average price. The
expected price is 8% lower at the bottom of the cycle. We will later use an amplitude of 5-10% of
the average price as a reference point for the seasonality in the price. The industry expects a price
top ranging from Christmas and until the end of Q1, and the phase of the regressed cosine function
is in line with this. Yet, the real seasonality might not best be represented by a smooth sine/cosine
function, but rather by a function with a wider top, stretching over Q1. Furthermore, the amplitude
and timing of seasonality peaks can vary from year to year in reality. The seasonality amplitude is
also typically relatively small compared to the random fluctuations in the salmon price, which is
one of the reasons why the seasonality might be hard to see when looking at a graph of historical
prices.

Salmon spot prices are given for different for different weight classes. There are (usually) different
prices for these classes, which are for example 3-4 kg, 4-5 kg and 5-6 kg. The majority of salmon
is sold in these weight ranges. In general, larger fish are worth more in NOK/kg. The price
development of these three sales classes are plotted from August 2019 to August 2020 in 2.8. We
only present these over one year, so that we can see the price dynamics better.
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Figure 2.8: Spot prices August 2019 - August 2020. To see the details in the weight class price
differences, only one year is presented. Source: fishpool.eu

We see that these graphs have a high degree of correlation, and that there usually is a difference
in price between the weight classes. The reasons for the (varying) price difference between weight
classes are that they can to some extent be seen as different products combined with supply and
demand mechanisms (Olafsdottir et al. (2019)). Bigger fish contain a slightly higher percentage of
meat, and a lower percentage of bones etc. Because the fish is bigger, it is also possible to make
bigger fillets which might be attractive. Hence, they are not necessarily perfect substitutes. The
price of a heavier fish is therefore usually higher. At some points however, these graphs might cross
each other so that, for an example, a fish of 5-6 kg is actually lower paid than 4-5 kg in NOK/kg
like in April 2020. Around this point in time, the price gaps between sales classes were very low.
At other points, the difference is relatively large. During the presented period the maximum price
difference between two weight classes were almost 15%. Larger differences between sales classes
imply a higher optimal harvesting weight for salmon farmers. Over five years starting in April
2015, the price of the mentioned weight classes were as follows:

Sales class 3 - 4 kg 4 - 5 kg 5 - 6 kg FPI

Average price (NOK/kg) 56.96 58.86 60.52 58.79
% deviation from FPI -3.105 0.120 2.944 0

Table 2.1: Average price difference between weight classes. For reference, the basis of salmon
forward contracts (Fish Pool Index (FPI)) is included. This is calculated as 0.3P (3 − 4kg) +
0.4P (4 − 5kg) + 0.3P (5 − 6kg). Salmon forward contracts is further described in the next sub-
chapter. Source: Fishpool.eu and NASDAQ Salmon Index

It is worth noticing that producers get paid for the weight of salmon after some weight loss due to
slaughtering at approximately 18%, that is the difference between live weight and gutted weight.
The latter is usually referred to as gutted weight equivalent tonnes, GWT. This difference does not
really matter for the study we are going to do, but this weight difference is nice to keep in mind
when considering profits based on weight. Finally, salmon prices are always referenced in price/kg.

2.5.2 Salmon forward contracts

A forward contract is an agreement between a buyer and seller to trade an asset or commodity at
a specified price at a future date. The price of the asset is set when the contract is drawn up. For
the case of salmon, the underlying basis is the Fish Pool Index ™ (FPI), which is a synthetic spot
price reflecting the current market price of 1 kg fresh Atlantic Salmon. This price is computed as
FPI = 0.3P (3 − 4kg) + 0.4P (4 − 5kg) + 0.3P (5 − 6kg), superior quality head-on-gutted salmon.
Thus, forward prices does not have weight classes, such as the spot price. The FPI price is reported
on weekly basis, while the underlying of forward prices are computed as the monthly average of
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weekly FPI prices. The final clearing services are operated by NASDAQ OMX, so that counterparty
risk is removed. The forward contracts traded on Fish Pool are purely financial instruments used
for price risk hedging.

The organizer behind the FPI is Fish Pool ASA. Fish Pool ASA facilitates an international market
place for financial salmon contracts. They are licensed by the Norwegian Ministry of Finance,
and have been providing risk management tools for market participants subject to salmon price
risk since 2005. Financial contracts are primarily used by salmon farmers, exporters, importers,
processors and retailer in the value chain of salmon to hedge their salmon price risk (FishPool
(2020)). Fish Pool ASA provides daily forward prices based on the latest market trades. For a
forward market to be efficient, sufficient numbers of long-term and short-term positions should be
taken. With less than 10% of the total production of salmon trading at Fish Pool, the volume
is relatively low, compared to other, more mature forward markets. The volume has, however
increased from recent years, and Fish Pool expect the volume to increase as they will get access
to the Euronext infrastructure (FishPool (ibid.)). Out of the contract lengths, Andersen (2019)
found half-year and quarterly, as well as the front-month, 1 and 2 months to expiration contracts
to be superior in terms of trading volume.

Forwards are today’s value on future delivery of fish. Forwards of longer maturities contain less
noise than spot prices. The forward curve as of August 2020 is plotted in figure 2.9. The expected
seasonality is well reflected in the forward curve, which can be constructed by plotting forward
prices of different maturities. Later, the forward curve will be used to estimate the seasonal factor
for our price model.

Figure 2.9: Forward curve August 2020. Source: fishpool.eu

We see that the expected seasonality in the forward curve confirms the estimated peak in Q1 based
on historical prices. However, for this particular point in time, there is an 18% deviation to the
maximum and minimum from the mean price. The expected prices in this forward curve take
into account that there will be higher demand around Christmas. Prices were expected to rise
from Summer until October, and then stay high and almost flat until March before they drop.
This corresponds very well to the expectations of the industry, where they are talking about a
”Christmas rush” and a price peak in Q1. We see that the forward price is flat beyond 2.5 years
due to low trading volumes and high uncertainty in very long contracts.
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2.5.3 Optimal harvest, discount rate and finance structure

In this section we present the single rotation harvesting problem, aiming to give the reader in-
troductory insight into the qualitative aspects of harvest timing. Based on this, we discuss the
importance of the discount rate applied by the salmon producer. Finally, we discuss how this
discount rate in turn is dependent on the financial structure of the salmon producer.

The so-called single batch rotation problem is a (theoretical) problem considering a one-time
investment in fish and when to harvest these fish. Studying this isolated subproblem of the salmon
production scheduling problem can give imporatant insights. Because of the time value of money,
the discounting rate is an important factor in this deciding the optimal harvesting schedule of a
single batch. The elements going into the calculations are the revenue from the harvested biomass,
the feeding costs accumulated throughout the production, fixed and/or variable harvesting costs
and (possibly) insurance costs. Smolt release costs are irrelevant to this problem. In reality,
however, a salmon producer as considered in this thesis has a set of tanks or cages, and will release
and grow and harvest fish in these batches multiple times into the future. In the multiple tank,
multiple batch rotation problem this presents, once the batch is harvested, space is available for a
new batch and new smolts are released. The multiple batch rotation harvesting problem therefore
includes, in addition to the abovementioned elements, an additional opportunity cost for delaying
all future batch harvests. This is because delaying harvest of a batch a certain amount of time
then also delays all future cash flows from that tank by the same time.

Let us first consider the theory behind the single batch rotation optimal harvesting problem.
Consider a case where we release a single batch of N fish in a tank. Ignoring mortality, the number
of fish in the batch will remain unchanged. Say that all the fish are of equal weight at each point
in time, w(t). w(t) can be calculated as a Markovian process from w(0) (the smolt size), because
growth is assumed to only be a function of temperature and size. Then the biomass in the tank
at time t can be calculated as

B(t) = Nw(t) (2.1)

The value of a batch of fish today which is harvested at time t and continuously discounted is then,
assuming the whole batch is harvested at once,

π(t) = e−rtB(t)P (w, t)− e−rtChf − e−rtChvN −
∫ t

0

e−ruCfNw′(u)du (2.2)

where P (w, t) is the salmon price as a continuous function of fish size and time, Cf is the feed cost
per kg of fish growth (feed cost multiplied by FCR), Chf is a fixed cost on harvesting, Chv is a
variable cost of harvesting per fish and w′(t) is the growth at time t. The last term represents the
feeding costs which have accumulated throughout the time until harvest.

The optimal harvesting time is thus found by finding

max
0≤t≤T

π(t) (2.3)

In the following, we will omit the harvesting costs from our discussions because they have relatively
limited effect on optimal harvesting time (see Bjørndal (1988)), and we will also ignore insurance
costs. We have stated that the price is a function of both fish size w and time t, which is true
in general for the salmon price, but in our case of a single batch rotation problem, the weight
w is simply a function of time t, so P (w, t) = P (w(t), t) = P (t). Furthermore, we can define
V (t) = B(t)P (t). Finally, we can name Cf (t) = NCfw′(t) the feeding cost at time t (which is a
function of the growth, or weight change, at time t). To find the optimum, we take the derivative
with respect to time and set equal to zero, which gives

π′(t) = V ′(t)e−rt − rV (t)e−rt − e−rtCf (t) = 0 (2.4)

By diving by e−rt and rearranging, this becomes the criterion for the optimal harvesting time t*,

V ′(t∗) = rV (t∗) + Cf (t∗) (2.5)
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which can be understood as the marginal increase in value/revenue having to equal the opportunity
cost plus the feed cost at time t. As long as V ′(t), the marginal increase in revenue at time t, is
larger than the opportunity cost and the marginal feed cost at time t, it is advantageous to delay
harvesting. Or, in even simpler terms, if the value increase from delaying harvest is larger than
the added cost of delaying harvest, then the salmon producer should delay harvesting until the
point where these are equal. The potential profit today needs to be weighted against the option to
harvest at a later point and pay the operating and financial costs in the meantime. The reason the
revenue from harvesting at a later point will be higher is primarily because the fish grow so there
will be more biomass. What makes it interesting in terms of optimization, however, is that fish
growth diminishes with increasing weight (stagnating when sexual maturity is reached at around
5-7 kg (Denstad, Ulsund, and Lillevand (2015))) and that there also is a mortality to consider.
Because of this, it is not optimal to wait forever, even in the case of a non-changing price and no
density restriction in the tank/cage. When one also adds a change in price, and then adds real
production constraints such as density restrictions, this problem gets rather intricate. Bjørndal
(1988) goes even further than the theory presented here by also including harvesting costs and
insurance costs and by providing practical examples of numerical calculations given an empirical
weight function w(t). He does not, however, consider density restrictions in the salmon cages. We
will also leave this (rather important) restriction for this part, although it is an essential part of
the problem we tackle in the rest of this thesis. The interesting takeaways from this analysis are
as follows (see Bjørndal (ibid.)).

• Both interest rates, feed costs, harvesting costs and insurance costs have an effect on the
optimal harvesting time and should be considered. However, the effect is relatively small
compared with the solution in the no-cost example where harvesting is done when biomass
is maximised (this necessitates an included mortality rate) (or when the density capacity is
reached).

• Increasing interest rate, feed costs and insurance costs push the optimal harvesting time
closer in time, i.e. the fish should be harvested sooner, whereas increasing harvesting costs
(either fixed or variable) push the optimal harvesting time further into the future, i.e. later
harvesting. That is because harvest costs occurring at a later point in time is also discounted
by the discount rate. Harvesting costs have a relatively smaller effect than feed and insurance
costs.

• In the case where growth rates differ with weight, as is the case in real production, selec-
tive/partial harvesting can be profitable and depends on how the price varies with fish size.

• Considering a real salmon production where production will go on forever and harvesting the
first batch makes room for releasing a new batch (the multiple rotation problem) makes the
problem more complex, but essentially only works to push the optimal harvesting time closer
in time, i.e. to harvest sooner, because all future cash flows are also delayed by delaying
harvest and the opportunity cost of the fish farm has to be included on the right hand side
of equation 2.2.

The reader is referred to Bjørndal (ibid.) for further reading and more thorough derivations. We
are here primarily concerned with the qualitative considerations regarding optimal harvesting time.

In appendix A.2 the reader will find a set of illustrative numerical examples. These show that
the discount rate might play an important role for the optimal harvesting schedule. Sometimes,
a different rate to discount future cash flows will make one salmon producer harvest today, while
another might delay harvesting until the next time period. In fact, when planning production
and harvesting times in particular, we believe that a salmon producer should keep in mind all the
elements such as feed costs, delay of release of the next batch, as well as harvesting costs, smolt
release costs and other relevant costs. We show that the expected price changes are particularly
relevant to these decisions. In addition, the time value of money and it’s relation on the applied
discounting factor is a key concept, which will be discussed further here.

In equation 2.2, 2.4 and 2.5, the discount rate r can be set equal to the risk free rate. That is the
case if we operate in forward contracts with reasonably long maturity, or equivalently risk adjusted
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future prices. However, the fact that unpredictable events may lead to jumps in the price over
a short period has implications on how we discount future cash flows. The probability that such
events occur is difficult to predict. Therefore, it is also hard to estimate the correct discount rate.
If we estimate the probability of such events higher, for example , the discount rate also needs to
be higher. Therefore, expected (but uncertain) prices should be discounted with an appropriate
risk adjusted rate. It is natural to assume that the main source of income at salmon companies
come from selling salmon. Then the company risk will be approximately equal to the project or
activity risk. Therefore, it is natural to assume that the weighted average cost of capital (WACC)
is very well suited for discounting cash flows.

We then have that todays value of one unit (kilogram) salmon delivered at time T is equal to

E[ST ]

(1 +WACC)T
(2.6)

Where ST is the spot price at time T and the WACC is given by

WACC =
E

E +D
re +

D

E +D
rd ∗ (1− t) (2.7)

Where t is the corporate tax rate, E is the value of equity and D is value of debt with discount
rates rr and rd, respectively. As the expected value is not risk adjusted, it is discounted with a
factor that accounts for risks, given by the WACC. Often, capital is more expensive for young
companies, because they do not earn money yet and are associated with larger risks. The required
rate of return for investors will thus be higher because of the higher risk. For land-based salmon
producers, of which there are still only few and relatively young and small companies, financing is
almost solely made by equity in the early phases. Investments are very large and banks assume
risk to be high which make financing by debt difficult. Solheim and Trovatn (2019) assume that a
land-based facility is financed with 89% equity and 11% debt. This will, however, vary with the
development of the company. For example, Atlantic Sapphire, one of the leading land based salmon
producers, announced that they secured a USD210m senior secured credit facility with DNB in
April 2020. DNB commented in a panel debate that although they are cautious in financing land-
based projects, Atlantic Sapphire has a proven track record of industrial experience and closeness
to customers, which significantly reduces transportation cost. These are all factors that reduce
the credit risk to an acceptable level for the banks. More mature companies will typically have
more debt financing, but also lower risk. For example, Mowi, the world’s largest salmon producer,
reports an equity ratio of 50.9% in Q1 2021. Ultimately, this leads to a lower WACC.

That the discount rate does have an impact on optimal harvesting is confirmed by Mistiaen and
Strand (1998). Consequently, companies discounting their future cash flows with a higher discount
rate will in general have an incentive to harvest sooner than those discounting their cash flow with
a lower discount rate.
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Chapter 3

Theoretical Background

This chapter will provide some theoretical background on a set of algorithms stemming from the
interception between dynamic programming theory and machine learning called approximate dy-
namic programming or reinforcement learning. We first introduce the general concept of machine
learning. Then we discuss a type of problems which are called Markov decision processes and
explain why salmon production scheduling can be seen as such a problem. Then we discuss rein-
forcement learning (RL) and approximate dynamic programming (ADP) in particular, and various
concepts thereunder. We also explain why ADP and RL, though stemming from two different
communities, are two sides of the same coin. Most of the material on reinforcement learning and
approximate dynamic programming has been distilled from books, papers and articles found on
the internet. The two most important sources of inspiration are worth mentioning and they are
”Approximate dynamic programming: Solving the curse of dimensionality” by Warren Powell (W.
Powell (2011)) and the UCL course on reinforcement learning by David Silver (Silver (2015)). The
authors have gained most of their basic understanding of ADP and RL from these two renowned
experts on the topic, and their various successful applications of the methods inspired the question
of whether such methods could work well for salmon production scheduling.

3.1 Machine learning

Machine learning is an important subtopic of artificial intelligence that focuses on how a computer
can learn by applying different statistical models on data.

Machine learning can roughly be divided into three different categories:

• Supervised learning: In supervised learning, an agent (action-taker) is given a set of input
(independent variables) and output(dependent variables) data, which in turn is used to learn
the function that has produced the output from the input. Thus, supervised learning tries
to generalize a pattern by looking at examples. Examples of supervised learning include
regression and classification.

• Unsupervised learning: Unsupervised learning is equal to supervised learning except that the
dependent variables are not given and need to be discovered by the model. Thus, unsuper-
vised learning tries to find patterns in the independent variables themselves. Clustering is
an example of unsupervised learning.

• Reinforcement learning: In reinforcement learning, an agent is placed in an environment and
learns how to take actions in order to maximize the notion of cumulative reward. This is
learned through a series of reinforcements where the model experiences what kind of rewards
different actions lead to.
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3.1.1 Artificial neural networks

Artificial neural networks (ANNs) are a general class of functions which take an input and produce
an output, just like any other function. These ”functions” have grown to be of vast importance
in almost all types of machine learning because of their desirable qualities, such as their general
applicability and universal approximation capabilities.

Neural networks were originally invented as an attempt to artificially mimic how human brains
work. They are named after the neurons of the brain, and such neurons are combined like nodes
in a network. Each node takes a number of inputs, multiply each of them with a corresponding
weight, sums these weighted inputs and finally adds a bias to this sum, before sending the final
number output on to the nodes in the next layer of the network. Mathematically, the output of
every node j is the following:

âj =

n∑
i=0

wijai + b (3.1)

where i is the index of all nodes in the previous layer and b is the bias. This is the primary idea of
a neuron, i.e. a linear combination of inputs. However, in order to further expand the capabilities
of neural networks, amongst others to be able to approximate non-linear functions, the notion
of activation functions were made a standard part of most neural networks applied today. An
activation function is a (simple) function applied to the output of each node before the it is sent
on to the next layer in the network. ReLU, tanh and sigmoid are widely used activation functions.
We will not be going deeper into their specifics here. This makes the total mathematical operation
of each neuron the following:

aj = g(â) = g(

n∑
i=0

wijai + b) (3.2)

where g is the activation function.

Figure 3.1: Simple neuron model from Russell and Norvig (2002)

ANNs are organized such that you might have different layers of nodes. When a network has more
than two layers (the input and output layers), the layers in between are called hidden layers. When
a network has hidden layers, it is called a deep network. The term deep learning, which applies
to machine learning in general, and deep reinforcement learning which applies to RL in particular,
refers to the use of deep neural networks. If inputs are sent chronologically through the network,
we call it a feedforward network. The network can also be recurrent, which means that there are
loops where information is sent in loops between layers. Other types of networks exist as well.
In the case of one or none hidden layers, we are dealing with a shallow network. Shallow neural
networks usually require more features in order to perform well. Features are characteristics found
in training data. However, this depends on the nature of the problem. One of the advantages of
deep neural networks is that we can feed them with raw data instead of a human deciding on what
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to feed the network with. Then the DNN will decide itself what features are important, and then
develop features itself. Each layer can create abstractions which are then fed to the next layer and
so on to create more and more complex features. The drawback of deeper networks is on the other
hand that they typically require more training. The picture below illustrates a deep feedforward
neural network of fully connected layers.

Figure 3.2: Deep neural network example

Each node performs a linear combination of inputs, but the whole network can be non-linear.
In fact, ANNs are universal function approximators, which means that they can, in theory, ap-
proximate any kind of function. The universal approximation theorem was first proven in a basic
version by Hornik, Stinchcombe, and White (1989), later extended in many ways and recently given
a thorough description by Kratsios (2021). The approximation and the training of the network is
done by changing the different weights of the linear combination performed in each node as well
as the node bias for each node in the network. The set of weights and biases of all nodes are called
the parameters of the network, often denoted θ in parametric functions. The typical use of neural
networks is to either approximate unknown functions, such as in RL, or to recognize features in
input data. In modern, complex applications of neural networks, the networks can contain a large
number of hidden layers and many thousands of nodes. As an example, while not relevant to this
thesis, we mention how neural networks are used for image recognition by actually feeding the
color value of each picture pixel as a single input to the network and sending these values through
many layers in order to have the output nodes recognize what the picture is showing.

Gradient descent

Training a neural networks means optimizing the parameters (i.e. node weuights and biases) in
order to make the network produce the desired output. The desired output depends on the task
at hand. In a reinforcement learning problem, the task is to approximate some unknown function.
The most common way of doing this is a numerical optimization algorithm known as gradient
descent. One calculates some sort of loss, which is a function of the error between the output
calculated by the network for a given input and the target output, which is (our estimate of) what
the output should have been. In order to minimize this error/loss, one takes the derivative of the
loss with respect to each of the function parameters and then adjusts each parameter a small step
in the direction of the negative gradient. This is then repeated iteratively. Mathematically, given
a loss function Θ, the parameters are updated as follows

Θ←− Θ− α∇Loss(Θ) (3.3)

Here, α is the learning rate, which can be tuned in order to tell the network how fast it should
converge. This might have big impact on the final performance of the network. The learning rate
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might be constant, or decrease over time. Similar to the equation above, the node weight updates
can be mathematically written as

wi = wi − α
∂

∂wi
Loss(Θ) (3.4)

Many variants of the gradient descent algorithm exists. One way to perform gradient descent is
to randomly select training samples and update after each sample. The name of this method is
stochastic gradient descent (SGD). Several other, modern algorithms have been developed alongside
the development of neural networks in order to improve training. Adam, AdaGrad and RMSprop
are three widely used optimization algorithms today. Such variants make various extensions to the
algorithm by adding features such as momentum and decay rates, keeping track of per-parameter
learning rates and so on, but they are all based on the same principle, which is taking a step in
the direction of the negative gradient of the loss function.

Backpropagation

With the introduction of multiple layers in the networks, the output becomes a nested function
of the input and calculating the gradient becomes not straight forward. The solution is based on
the chain rule for derivatives. Basically, to first update the parameters in the output layer, the
derivative of the loss function (i.e. some function of difference between target and prediction) is
taken with respect to the output(s) of the node(s) in the output layer which is then multiplied
by the derivative of these node outputs with respect to the individual node parameters and then
this is used to update the parameters for these node(s) according to 3.4. Then, to update the
parameters in the layer before the output layer, the derivative of the loss function is taken with
respect to the output layer node outputs and multiplied by the derivative of these outputs with
respect to the outputs in the previous layer and then again multiplied by the derivative of these
outputs with respect to the respective node parameters, which is then updated. So it goes on, for
each layer and each node of the network. In other words, the chain rule is used systematically in
many turns while propagating backwards through the network, updating all network parameters.
This is called backpropagation and it is a cornerstone of all neural network training.

To illustrate, the rule for updating weight j for node k in the output layer N is given as,

wj,k ←− wj,k − α×
∂aNk
∂wj,k

×∆k (3.5)

where

∆k =
∂Loss

∂aNk
(3.6)

Now we want to propagate the modified error ∆k backwards to all nodes with connection to node
k. The intuition is that each node in connection with node k is responsible for some of the loss,
proportional to the weight. Thus, the error with respect to node j in layer N-1 is:

∆j =
∑
k

∂aNk
∂aN−1

j

∆k (3.7)

This makes the update of weight i for the last hidden layer equal to the output layer updates,

wi,j ←− wi,j − α×
∂aN−1

j

∂wi,j
∆j (3.8)

We will not go further details of the mathematical explanation and derivation of backpropagation
here.
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3.1.2 Implementation - software packages

Following the accelerating growth and popularity of machine learning and in particular the use of
neural networks, various software packages have been developed to streamline the implementation
of neural networks. TensorFlow and PyTorch are the two most widely recognized, maintained and
practically used such tools. We have used PyTorch for the work developing our machine learning
model.

PyTorch

PyTorch is an open source machine learning library based on the Torch library and provides a wide
range of algorithm tools for deep learning. It is primarily developed by Facebook’s AI Research
lab (FAIR) and is a free and open-source software. In the implementation of our machine learning
model, Python is used as interface and programming language.

Pytorch provides several high-level features which profoundly ease the implementation of neural
networks. First, Pytorch has a Tensor class to store and operate on homogenous multidimensional
rectangular arrays of numbers. Tensors can be seen as NumPy arrays, but they can also be operated
on GPUs which gives them a computational advantage. Second, PyTorch provides a framework
(syntax and fast, underlying code) for defining what they call computational graphs, which in
general means any function (neural network or other) which produces an output from an input
tensor. With a focus on neural network, the implementation has been streamlined for deciding on
e.g. the number of nodes, layers and types of layers in the network. Third, Pytorch provides a
method of automatic differentiation which they call Autograd. When applying the computational
graph (the function), a recorder records what operations have been performed on each tensor
element, and then it applies backpropagation (described above) to calculate the gradient of the
output with respect to the parameters of the function. Finally, PyTorch has streamlined the
training of neural networks by providing readily available, optimized implementations of standard
algorithm building blocks such as loss functions, parameter optimizers and activation functions.

3.2 Markov decision processes

A Markov Decision Process (MDP) is a discrete-time stochastic control process. This is a mathe-
matical framework to model decision making where outcomes are partly random and partly con-
trolled by the decision maker. MDPs consist of the following:

• All possible states of the environment S, called the state space

• All possible actions in each state A(s), called the action space

• A transition model P (s′ | s, a) that provide the probability of reaching state s’ when per-
forming action a from state s

• The direct reward (or cost) received by the agent in state s by doing action a, R(s,a)

In a MDP, an agent ”moves through” the environment, observing the state of the environment, by
making a decision at each discrete time point, which in turn sends the agent to a new state at the
next time point.

Transition between states is assumed to obey the Markov property, which means that transition
to the next state is only dependent on the current state. Thus, state transition is independent of
how we got to the current state.

The state space, which is the environment in the case of RL, can be partly or fully observable to
the decision maker (agent) depending on how much of the state space the agent can observe.
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Both state spaces and action spaces can be made up of continuous or discrete variables, or both.
They can also be one-dimensional or multi-dimensional. The problem can also be both infinite and
finite (i.e. episodic).

3.2.1 Profit maximization / problem formulation

The policy of an agent is the agent’s ”guide” to making decisions. Thus, the policy is basically
a mapping from a state in the state space St to an action in the action space. The policy might
be deterministic, usually denoted µst and mapping each state to a specific action, or stochastic,
usually denoted as π(at|st) and giving a probability for making a specific action. After making an
action a, the agent receives an immediate reward rt and is ”sent” to a next state st+1.

As the agent ”plays the game”, it receives rewards in each state, accumulating a total reward over
time, which is often discounted by a discount factor:

G(τ) =

∞∑
t=0

γtR(st, at) (3.9)

where τ is a trajectory, i.e. a sequence of states and actions

τ = (s0, a0, s1, a1, ...) (3.10)

Over time the agent’s goal is to find the policy which maximizes the cumulative reward it receives
given a starting state. In other words, the objective function of the overall problem (infinite
horizon) is

max
at∈A(st)

E{
∞∑
t=0

γtR(st, at)} (3.11)

3.2.2 The Bellman equation - the dynamic programming principle of
optimality

The problem of maximizing the cumulative reward and finding the optimal action in each state
and time step is often computationally intractable and highly complex. Richard Bellman, known
as the father of dynamic programming, therefore came up with the idea of breaking the problem
down into one subproblem for each time step in order to find the overall optimal policy. The reason
this is possible is because of the Bellman principle of optimality. This states that the optimal path
has the property that whatever the previous states and decisions taken for the initial period, the
decisions chosen for the remaining period must be optimal with respect to the remaining problem.
Directly following from this is that given a certain state and time step we are in, if we assume we
know the optimal remaining path (and hence optimal value, i.e. cumulative discounted reward)
given each state we might end up in in the next time step, we must simply now make the decision
which gives the highest value of immediate reward now plus the (discounted) value of the next
state. This led to the famous Bellman equation:

V (s) = max
a∈A(s)

R(s, a) + γ
∑
s′

P (s′ | s, a)V (s′) (3.12)

where V(s) is the optimal (/true) value of being in state s.

The name dynamic programming comes from this iterative nature of the problem breakdown,
which is such that by finding the optimal value of a state, we can use the Bellman equation to find
the optimal value in the state preceeding that one.
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3.2.3 Solution strategies

Dynamic programming and reinforcement learning is in general concerned with two types of prob-
lems/mechanisms: prediction and control. Prediction is about determining the true value of a given
policy, and control is about improving a policy. Both are key to dynamic programming methods,
which is about using value functions to organize and structure the search for good policies. Based
on these two mechanisms, there are two main solution strategies to solving MDPs which both start
from the Bellman equation and iteratively improve the policy of the agent. These are called value
iteration and policy iteration, and they partly follow the same logic. The methods as explained
here are simplified solution strategies only applicable to small state spaces and not directly what is
used in most advanced reinforcement learning models, but they illustrate principles which substan-
tiate the whole ADP/RL field. (There is also a third strategy, the linear programming approach
to dynamic programming, where the value of a state is found by solving a linear program, but this
is not relevant for this paper and is generally disregarded for large-scale problems).

Policy iteration

Policy iteration is about choosing a policy π, estimating the true value V π of this policy by
performing a (sufficient) number of iterations of policy evaluation (prediction), then using the
policy improvement theorem to find a new, improved policy based on the estimated value and then
repeating this until convergence. In other words, repeatedly switching from policy evaluation to
policy improvement. The policy evaluation involves looping over each state s several times (again,
we are here talking classical dynamic programming for small state space problems for illustrating
the principles) and estimating the value of the policy π using the following update rule:

vπk+1(s) = Eπ[Rt+1 + γvk(St+1) | St = s]

=
∑
a

π(a | s)
∑
s′

p(s′ | s, a)[R(s, a) + γvπk (s′)] (3.13)

Then, after this has converged (close enough) to the true value, i.e. |vπk − vπk+1| < ∆, we go over
to to the policy improvement step by choosing a new policy π′, such that

π′ = arg max
a

∑
s′

p(s′ | s, a)[R(s, a) + γvπk (s′)] (3.14)

The key to policy iteration is in the policy improvement theorem which states the ”power of the
max operator” in that any policy which is better than the current value for even a single state
while giving the same value for all other states, is a better policy than the previous policy. Policy
improvement is in other words about making a new, greedy policy with respect to the newly
calculated value of the current policy. While basic policy iteration offers convergence guarantees,
it has the drawback of each iteration involving a policy evaluation, which in itself may require
many sweeps of the state space which may only in the limit converge to the true value V π. Hence,
policy iteration is often slow to converge.

Value iteration

Value iteration is actually a special case of policy iteration where one truncates the policy evaluation
already after one time step (hence does not wait for convergence toward V π) and uses Bellman’s
optimality equation and the max operator directly in each step. In other words, both a policy
evaluation and a policy improvement is done simultaneously in each step. One then loops over
each state a sufficient number of times until the update is satisfyingly small using the following
update rule:

v∗k+1(s) = max
a

E[Rt+1(s, a) + γvk(St+1) | St = s]

= max
a

∑
s′

p(s′ | s, a)[R(s, a) + γvπk (s′)]
(3.15)
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Often more used than value iteration is the term generalized policy iteration (GPI), which refers to
the more general idea of letting policy evaluation and policy improvement processes interact, often
in large state space settings where approximate algorithms are used, but we will not go deeper into
this term here as it is not strictly important what we call it.

Of these two, value iteration remains the most widely used method in both ADP and RL, both
because it is the simplest to implement and because it often is the most natural way of solving
many problems. Most of the work in ADP and RL has therefore focused on this, and so will the
remainder of this thesis do. The value iteration algorithm forms one of the most basic elements of
most ADP/RL methods.

3.3 Reinforcement learning - Approximate dynamic pro-
gramming

Solving large scale stochastic problems by exact dynamic programming, i.e. recursively solving
the Bellman equation backwards in time, is usually intractable because of the well-known ”curse
of dimensionality” (W. Powell (2011)). The curse of dimensionality is three-fold. First, one has
to loop through each state of the state space, which for a multidimensional state space quickly
becomes computationally intractable. Second, one has to calculate the expectation of the values of
the next states, which is time-consuming when the number of random variables grows. Finally, the
action space may be so large that deciding on a specific action means evaluating virtually infinitely
many actions.

The solution to resolving the curse of dimensionality in order to be able to apply dynamic pro-
gramming principles to large scale MDPs is, basically, in approximating the value function instead
of computing it exactly. By 1) stepping forward in time, instead of backwards, and by 2) using
Monte Carlo sampling to generate random information and 3) using so-called post-decision state
variables, one omits the calculation of the expectation in each step. Further, by choosing some sort
of a value function representation which is more compact than simply a look-up table value for each
single state in the state space, one is able to generalize learnings of the value of one state to other
states as well. This latter element is key, because by doing this one no longer has to loop through
every state in the state space. Instead, one can iteratively try to improve the approximation of
the optimal value function going through the MDP, and hence iteratively make better and better
decisions.

Both the operations research and stochastic programming communities and the machine learning
community have developed these ideas, partly together, partly separately. While the operations
research and stochastic programming communities named the area approximate dynamic program-
ming (ADP) and the machine learning community named it reinforcement learning (RL), it is
important to understand how these two names refer to the same types of solution strategies to the
same types of problems (at least principally) (W. Powell (ibid.)). (Neuro-dynamic programming
is another name used by some communities). The difference between ADP and RL is therefore
not in the algorithms as such, but in 1) the terminology and notations used, 2) the ”focus area” of
the algorithmic research, and 3) the typical applications of the methods. The operations research
community often uses ADP as an alternative solution strategy to large-scale industrial mathemat-
ical programming problems such as inventory routing problems, production scheduling problems,
energy trading problems or even stock trading problems. The control theory community also uses
ADP for typical process control problems such as energy flow problems. The most famous appli-
cations of RL in the RL community (as a subdivision of the larger computer science community),
however, are in playing video games. The AlphaGo model and the RL model playing the game
of Dota are extremely impressive such examples, but the RL community has also, like the ADP
community, focused on real-world problems like robot control or business management. The RL
community otherwise tend to focus more on the extensive use of neural networks to e.g. do visual
recognition of states. The ADP community tends to focus more on finding high quality heuris-
tic solutions to optimization problems, while RL practitioners often work on automating complex
tasks. Overall, however, there is no principal difference between ADP and RL. This is important
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to stress, because we will use both names interchangeably throughout this thesis. While the au-
thors definitely come from the operations research community and have a background primarily in
mathematical programming, we experienced how, when deepdiving into ADP, one quickly moves
into ”artificial intelligence land” and realizes that the merger of neural networks with ADP (i.e.
RL) is extremely valuable. Throughout the work developing our ADP/RL model we have therefore
found ourselves researching advanced machine learning concepts related to neural networks while
also maintaining an operations research perspective on our problem. We will therefore deliberately
use both names in conjunction (ADP/RL). Sometimes we also use the term deep RL, which refers
specifically to RL models which apply deep neural networks. We will now move on to discuss
important ADP/RL concepts as background theory for the rest of the thesis.

As already mentioned, approximate dynamic programming and reinforcement learning focuses on
how agents can learn to maximize some cumulative reward. By ”learning” in this respect, we mean
”playing the game” by being out in the environement and then learning better approximations of
the value of being in a state by observing the immediate rewards the agent receives. The agent
is often initialized without any information. Each decision is made by considering the Bellman
optimality criterion, which means that it is the estimate of the value of the next states that
indirectly determines what actions the agent will take. The optimal policy and the optimal value
function are therefore by definition linked together. Over time, the estimates of the value function
(hopefully) improve so that they approximate the optimal value function, which in turn gives the
optimal policy. The direct use of the Bellman equation for each decision, as well as the fact that
the policy (i.e. decisionmaking) is implicitly given by the current value function approximation,
corresponds to the general class of policies called value function approximation policies by W. B.
Powell (2016) in his overarching framework for sequential decisionmaking problems. We specify
that this policy class is what we will typically be referring to when we use the term ADP/RL in
this paper, as this is the by far most common type of ADP/RL. RL can be divided into Prediction
and Control. Prediction is when when RL is used to learn a value function for a given policy. On
the other hand, Control is where RL is used to learn a policy that maximizes the reward which
may include prediction. As the latter is mostly relevant for our thesis, reinforcement learning will
refer to the concept of Control from now on. This is also most common in other literature (Silver
(2015)).

The RL agent’s task is to decide what actions to take in the different states it can enter. This
is done by observing how the environment responds to different actions in terms of state change
and received reward. As the name reinforcement learning tells, the agent tries to improve its
performance through iterations where each reward signal the agent receives acts as a reinforcement.

In RL, reward is the measurement of how good or bad a state or action is. However, the agent can
also take into account future rewards so that it chooses the best actions to receive highest possible
cumulative reward. An important note to rewards is that the reward might be intermittent and
delayed. Take a board game as an example. The agent takes several actions throughout the game,
and receives some reward for winning the game in the end. However, it is difficult for the agent to
learn which actions was actually important to take the win. This is known as the credit assignment
problem.

Figure 3.3: Illustration of interaction between agent and environment
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The ADP/RL algorithm (for an infinite horizon problem) logic goes as follows: Subject to the cho-
sen exploration vs exploitation strategy, the agent is out in the environment, ”playing the game”,
i.e. performing as good as it knows how to by choosing decisions which maximize the Bellman
equation. In each iteration, it maintains a value function (given by the function approximation pa-
rameters) which gives a value estimate for each state, which in turn determines the actions. After
a certain amounts of steps, (each single step in TD(0)-learning), the agent can now learn from its
experiences, because now the rewards the agent has received since it last visited a state gives new
information regarding the true optimal value of that state. A new, hopefully more correct target
for the respective state can then be calculated, where the target is typically based on both the
rewards experienced and a bootstrapping of the current value function estimate. If the agent has
behaved better (i.e. closer to optimally) than it did in the previous iteration, the rewards collected
after the visit of the respective state should better approximate the true value of that state. A
loss function is then applied on the difference between the current value estimate of that respective
state and the newly calculated target for that state. The basic idea is then to differentiate this
loss function with respect to the function parameters and then adjust each parameter a small step
in the direction of the negative gradient in order to over time minimize the loss. This updates
the valuefunction for next iteration, hopefully making the agent make even better choices going
forward.

3.3.1 Value function

Types of value functions

As discussed, the value of following a policy π is given as

V π(s) = E[G | s0 = s, at = π(st)] (3.16)

where G is defined as in 3.2.1. The optimal value of a state, regardless of policy, is given by
equation 3.12, which is the Bellman equation. That means the value function estimates how good
a given state is. We can also estimate how good a given state-action pair is, i.e. the value of
being in a given state and taking a given action and subsequently either following a given policy
or making the optimal action. This type of reinforcement learning is called Q-learning, where the
name comes from the Q-function:

Qπ(s, a) = E[G | s0 = s, a0 = a, at = π(st), t ∈ [1,∞]] (3.17)

The corresponding optimal Q-value is then defined as

Q∗(s, a) = R(s, a) + γ
∑
s′

P (s′ | s, a)V (s′) (3.18)

Q-learning and Q-functions have been considered less relevant for our problem and will therefore
not be discussed further in this thesis, but they are a large subtopic in RL.

There are a number of different ways to calculate, estimate and save the value of different states,
depending on the art and classification of the problem.

The traditional way to save state values is in the form of a look-up table, which stores a single
scalar value either for each state or for each aggregated state. In exact dynamic programming, one
maintains one value for each state, the number of which quickly explodes in large-scale problems.
Even using aggregated state spaces or feature spaces, which are powerful techniques in ADP-
context, multiple dimensions quickly makes the number of scalar values to save intractable.

The idea has therefore been to look for more compact representations of the state values. Such
representations can be divided into parametric and non-parametric functions.

Non-parametric functions include for example K-nearest neighbours and are functions of a state
which typically try to value states by looking at the relationship between states. This is generally
highly problem-specific and very little used in practice and will therefore not be discussed further
here.
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The most common in terms of RL learning is parametric functions, i.e. some sort of a classical
mathematical function, smooth or otherwise, which has certain tuneable parameters. This can
for example be a neural network, or a custom value function like a polynomial. Such functions
take the state as input, either directly in the form of the state variables or in the form of certain
state features, and calculates the value of the state by performing mathematical operations on the
parameters and the input variables. The advantages of parametric functions lie both in their wide
applicability, their very compact representation of the state space values (reducing the amount of
values to keep track of from a virtually infinite number of states to a handful of function parameters)
and in the extensively developed theories and practices on regressions, which aims to adjust the
function parameters in order to approximate some target function.

3.3.2 Exploration versus exploitation

One important dilemma in RL is the tradeoff between exploration and exploitation. Exploration
refers to the exploration of the state space by visiting unseen states, while exploitation refers to
following the current best policy to receive as much reward as possible. The latter choice is called
greedy. As an example, with a low degree of exploration, the agent might get stuck in a path
without knowing if other paths is better even though the agent thinks it has a good policy. We
therefore want to make sure the agent explores other states as well, to not get stuck in a lock
minimum. That means the agent has to give up some short-term reward in order to find the best
long term policy (Silver (2015)).

An ADP/RL model therefore needs to be set up with some sort of exploration strategy. There
has been developed several advanced exploration strategies, all of which requiring considerable
application specific tuning. Exploration vs exploitation remains one of the most fundamental and
interesting challenges to ADP and RL (alongside e.g. value function design and training method)
and is therefore an area of considerable research.

The most natural and perhaps most intuitive way to explore a state space is by introducing
randomness, i.e. by making random decisions. The most common exploration strategy is therefore
the ε-greedy strategy (W. Powell (2011)). ε is chosen as a random number between zero and one.
The ADP/RL agent then chooses a random action with probability ε and a greedy action with
probability (1 − ε). This strategy is seen in almost any textbook introduction to ADP or RL,
primarily because it is by far the simplest to implement.

Silver (2015) discusses several principles which might be used for exploration. Another easy to
implement strategy mentioned both there and in W. Powell (2011) is optimistic initialization.
This basically means initializing the value function approximation with a (very) high value for all
states. This way, the agent will itself want to explore all of these high values. While ε-greedy and
optimistic initialization are often effective and part of many successful RL applications, they might
not be the best alternatives, and most advanced applications require a cleverer strategy. One more
advanced strategy is curiosity driven exploration.

Curiosity driven exploration

Curiosity-driven exploration is a collective term for a set of more advanced exploration strategies
often encountered in complex RL applications. Silver (2015) calls this ”optimism in the face of
uncertainty”. The basic idea is to add an intrinsic element of ”motivation” to the reward function
which rewards the agent’s curiosity regarding less frequently visited parts of the state space.

While there has been many research efforts on the topic of curiosity-driven exploration, Pathak
et al. (2017) has been credited with advancing the field significantly. Their approach is one of the
most advanced types of curiosity driven exploration which (simplified) employs a separate model
which trains to predict the outcome of the agent’s actions and which then gives the agent a reward
for choosing actions which have a high estimation error, the logic being that the agent is bad
at predicting the dynamics of states it has visited few times. This goes under the subtopic of
prediction-based exploration.
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Another subtopic of curiosity driven exploration considered more relevant for the problem in this
thesis, is count-based exploration. Here the basic (simplified) idea is to count how many times a
part of the state space has been visited and give the agent an intrinsic reward for visiting novel
states. Several advanced variations exist. For example, ”counting” can be done both by a density
model or via a hashing function. One of the more popular approaches is called Upper Confidence
Bound (UCB). A variant of this is used by Google DeepMind’s AlphaGo model (Silver et al. (2017)),
Google DeepMind being one of the world leading communities in the development of RL. UCB
favors actions which have a high potential for being optimal, by being optimistic about uncertainty.
The agent then maximises Qt(s, a)+Ut(a), where Q is value of the current estimate of the Bellman
equation and U is an additional function which is reversely proportional to the number of times
action a has been chosen (Silver (2015)). The idea is to design U so that the true optimal value
is below (Q+U). Memory-based exploration builds upon the abovementioned strategies, especially
the count-based exploration strategies, by saving both a lifetime and an episodic memory (in a
way which keeps the memory space required acceptably low). These methods are both applicable
and promising for our problem and will therefore be discussed more in-depth later.

There are also other exploration strategies (also outside the curiosity driven umbrella) that will
not be discussed further here, such as Boltzmann exploration and Thompson sampling, both using
chance and randomness to ensure exploration.

3.3.3 On-policy vs off-policy learning

As described, the RL policy refers to a function (in the most general sense) mapping from a state
to an action. However, in a reinforcement learning algorithm, we can actually distinguish between
two policies. One is the policy used to generate the behaviour and the data which forms the basis
for training, called the behaviour policy or the sampling policy (we prefer sampling policy, which
is often used in stochastic problems). The other is the policy we are attempting to evaluate and
improve, called the target policy or the learning policy. The concepts of on-policy vs off-policy
learning are closely related to that of exploration vs exploitation, because they represent two
different strategies to choose when deciding on an exploration strategy.

In on-policy learning, these policies coincide. This means that the updates to the value estimates
are dependent on the generated trajectory and hence the sampling policy. To ensure both ex-
ploration and convergence towards optimality in on-policy learning, it is often required that ε
decreases with time (in the case of ε-greedy policies, which is the most typical use-case).

In off-policy learning, the sampling policy and the learning policy are two distinct policies. On-
policy learning is hence a special case of off-policy learning. Off-policy learning often uses a
concept called importance sampling, which effectively enables the updating of the learning policy
with respect to the optimal value while still generating behaviour with a sampling policy. Off-
policy learning is often more noisy, slower to converge and more unstable than on-policy learning.
Still, off-policy learning has been devoted more research in the later years because of it’s greater
potential and applicability to a wider array of problems with the use of more advanced and more
problem-specific exploration strategies and hence sampling policies.

We point out a common misunderstanding. On-policy and off-policy learning is not the same as
online and offline learning. Online vs offline learning refers to whether value function estimate
updates are performed as the RL agent is playing along and gathering data, so that it is receiving
continuous updates, or whether it is done after a given amount of data has been gathered.

3.3.4 Model-free vs model-based RL

RL algorithms can be either model-based or model-free. The distinction between these two are
whether the agent has access to a complete model of the environment or not. If the agent has
not access to a model of the environment, it has to learn the model through interaction, which is
the model-free approach. In this setting, the model of the environment refers to the model telling
the agent explicitly what will be the next state and what will be the reward given a state and a
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decision, so that the agent can use this when making a decision. Dynamic programming with use
of the Bellman equation is therefore model-based. AlphaZero is another example of model-based
RL, using models of the rules of the board games chess, shogi and go to tell the agent what will
be the immediate(!) consequences of it’s actions (Silver et al. (2017)). Q-learning and SARSA are
examples of model-free algorithms where the model is not explicitly told what will be the reward
and next state given a state and decision, but rather has to learn this on its own as part of the
learning.

One major advantage of model based learning is that the agent can look ahead to consider different
outcomes. This yields a higher sample efficiency than model-free algorithms (Stray (2019)). As
model-free algorithms often do not have the same sample efficiency, they can be easier to implement
and tune. At this time, model-free methods are more popular and have been more tested than
model-based methods (Achiam (n.d.)). Whether or not the algorithm is model-free or model-based
often depends entirely on the specific problem being approached and on what is the goal of the
algorithm. The focus of this thesis is a model-based RL algorithm.

3.3.5 Temporal difference learning

RL methods are categorized into subclasses. One such subclass is Monte Carlo-methods, which
typically refers to RL agents learning in finite environments where each episode has a definitive
ending (such as winning or losing a video game) and where a key element often is that the RL
agent’s target for a given state (i.e. the current iteration’s value estimate for that particular
state) is a sum of the episode return, given by all the remaining rewards earned in the episode,
subsequent of the state. We will not go further into Monte Carlo methods here, as they are not
strictly relevant because they only apply to episodic problems (salmon farming is in theory an
infinite horizon problem, although we often use the term episode in this paper to denote the time
the RL agent gathers data before each training/value estimate update). We do however mention
it because the notion that the target for the estimate should depend on all downstream states and
rewards is important.

Temporal Difference (TD) learning is another subclass which is often mentioned as the counter-
part to Monte Carlo-methods. This method can be model-free and hence learn directly from
experiences, and also employs statistical bootstrapping, which means that estimates are updated
using the already learned estimate of the value function, without knowing the actual outcome
(Stray (2019)).

Algorithm 1: Tabular TD(0) for estimating Vπ

Initialize V(s) arbitrarily, π to the policy to be evaluated;
for for each episode do

Initialize s;
for each step of episode do

a ← action given by π for s;
Take action a; observe reward, R, and next state, s´;
V(s) ← V(s) + α(R + γ V(s´) - V(s));
s ← s´;

end

end

Here, α is the learning rate that adjust the speed of convergence, and γ is the discount factor.
R + γV (s′) is the TD target where the last term is the bootstrapping term, while δt = Rt +
γV (s′t+1)− V (st) is known as the temporal difference error for time step t.

Important to this thesis is the concept of n-step bootstrapping, often called TD(n) learning. The
idea here is to not let the update depend only on the next state but on several of the subsequent

states. Then the temporal difference target, which we call the n-step return G
(n)
t is extended to,
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for example in the case of 3-step bootstrapping,

G
(3)
t = Rt + γRt+1 + γ2Rt+2 + γ3V (st+3) (3.19)

Recall that Gt was defined in equation 3.9. By definition, Gt is defined as G
(∞)
t .

N-step TD learning therefore uses the following updates

V (st)← V (st) + α(G
(n)
t − V (st)) (3.20)

The concept of statistical bootstrapping is important, because it is what makes the method appli-
cable to infinite horizon problems, such as the one discussed in this thesis. It also enables online
learning, i.e. updating estimates as the RL agent is ”playing”, by learning from incomplete episodes
(which Monte Carlo-methods by definition cannot). N-step bootstrapping is the primary method
applied in this thesis.

A special version of TD learning where we observe several states instead of just the next is called
TD(λ). We mention this as well, because it gives important insights. This can be understood as
averaging n-step returns, each weighted proportional to (1− λ)λn−1 where λ is in the range [0, 1].
The λ− return is

Gλt = (1− λ)

∞∑
n=0

λn−1Gnt (3.21)

After a (defined) terminal state has been reached at time T, all subsequent n-step returns are set
equal to RT . Therefore, we can separate these terms from the main sum if we want to;

Gλt = (1− λ)

T−t−1∑
n=0

λn−1Gnt + λT−t−1Gt (3.22)

After calculating Rλt , the change in value of the state occurring in that iteration is

∆Vt(st) = α(Gλt − Vt(st)) (3.23)

When λ = 0, this whole term turns into the same as TD(0) which was described earlier. In
the case of λ = 1 we have the equivalent Monte Carlo learning. Thus, TD(λ) is somewhere in
between TD(0) and Monte Carlo learning, depending of the adjustment of λ. The following figure
is intended to illustrate this.

Figure 3.4: Illustration of different learning targets. Nodes represent downstream states and
rewards. From Sutton and Barto (2018)
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An important insight is that Monte Carlo-methods, which use the full return Gt as target have a
low bias but high variance as an estimate of the true value of the state. The high variance comes
from the fact that the target depends on very many downstream actions and transitions. TD(0),
on the other end of the scale, has a high bias, because of the statistical bootstrapping using a (not
yet correct) estimate of the true value, but also a much lower variance because it only depends
on one downstream action and transition. TD(λ) and TD(n) therefore act as adjustable middle
grounds in the bias-variance trade-off in RL (Silver (2015)). Monte-Carlo methods typically have
good convergence properties and are intuitive. TD learning convergence is often more sensitive,
but learning is in return also often more efficient. This trade-off can have large effects on a RL
algorithm.

3.3.6 Algorithm tuning - hyper parameters

RL is famous for being a notoriously challenging algorithm in terms of convergence towards opti-
mality. This is amongst others due to the estimation of moving targets and the approximation of
a function we do not know the shape of and only get noisy signals from. This was discussed with
NTNU professor and experienced practitioner of RL Keith Downing on a meeting on 9th April,
2021.

RL implementations for complex real-world problems such as salmon production scheduling of-
ten requires very much tuning of algorithmic hyperparameters. Typical hyperparameters in an
ADP/RL algorithm include, but are not limited to, the following:

• Learning rate: This is related to the valuefunction optimizer/training algorithm, and decides
how large change is applied to the valuefunction parameters/weights in each iteration. This
is one of the first places to start tuning when tuning an ADP/RL algorithm.

• Policy-related parameters such as ”ε” percentage share of total actions which are random,
exploring actions or magnitude of exploration bonuses in case of a bonus-based exploration
strategy.

• Function training algorithm, meaning how often and with what targets to adjust the param-
eters of the valuefunction.

• Batch size, meaning how many experiences to select for training on in each iteration.

• Discount rate, used in calculating both the targets in the training algorithm and for use in
Bellman’s optimality criterion when choosing decisions in each time step. Note that this is
not necessarily the same discount rate as the financial discount rate discussed in chapter 2.

When practically implementing an ADP/RL algorithm, all of the above parameters, plus sev-
eral other, more application specific parameters will have to be tuned to ensure satisfying per-
formance/convergence of the algorithm. As ADP/RL typically do not offer general convergence
guarantees, convergence is strongly dependent on these parameters. In an ADP/RL setting, the-
oretical ”soundness” can therefore be very unrelated to actual practical performance of a model.
It is also very hard or even impossible to ”imagine” or reason what the hyperparameters should
be in large scale problems, mainly because the whole concept of the gradients of the loss function
between the valuefunction predictions and a (moving!) target with respect to the (many!) param-
eters in the valuefunction and how these change and how these affect the valuefunction updates
and the valuefunction shape is immensely complex.
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Chapter 4

Relevant literature

This chapter is a review of literature and research relevant to this thesis. The structure of the
chapter reflects the thesis’ conjoining of several fields. First, we review literature on commodity
price modelling in general and on salmon price modelling in particular. Second, we review a few
ADP/RL applications which might be deemed relevant to this thesis. Third, we review literature
relevant to salmon production scheduling optimization. Finally, this thesis is placed in the context
of the reviewed literature and the contribution of this thesis is presented.

The search for literature has been done using Google Scholar and the NTNU university library at
www.oria.no.

4.1 The price of Atlantic salmon

In this section we first review important papers which contribute to the understanding of the
salmon price. We then move on to discuss different researchers’ efforts to model and forecast the
salmon price.

Commodities are widely traded, relatively homogeneous raw materials such as sugar, grains, iron,
crude oil and salmon. Commodities need to be stored, which typically has a storage cost. In salmon
production, products may be stored in fresh condition for a limited time, but considerably longer in
frozen or smoked condition. However, storage is still limited compared to many other commodities.
Pindyck (1990) found that inventories may serve to smooth production during periods of low or
normal prices, but during periods of temporarily high prices inventories play a more important
role in production facilitation, delivery scheduling and avoiding stock-outs. Deaton and Laroque
(1992) also show that the prices behave differently if there is a possibility to store the commodity.
Thus, the possibility to store the salmon may smooth prices somewhat.

Although possibility in theory would smooth the price development, salmon prices are very volatile
where supply and demand are the strongest drivers, as explained in chapter 2.5.1. Bjørndal,
Knapp, and Lem (2003) study the global supply and demand for salmon, which contribute to
an understanding of the drivers behind salmon prices. In later years, the long term price has
been growing. This implies that growth in market demands might have been stronger than the
growth in supply, and/or that production costs have been increasing. While Bjørndal, Knapp,
and Lem (ibid.) studies the global distribution, Asheim et al. (2011) investigated the historical
development of salmon supply to show that the price of farmed salmon has limited effect on the
quantity of supply, because of a highly inelastic supply in short-run. Because of a production time
of approximately three years (including smolt production etc.), producers struggle to meet short
term changes in demand. They found that farms’ total biomass and seasonal factors are the main
determinants of shifts in salmon supply in the short term.

Oglend (2013) found an increasing trend in price volatility. This effect is explained by tighter
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supply/demand conditions and lower short-run supply elasticity, and he points out possible expla-
nations with basis in 1) strong demand for salmon from Norway, 2) increased capacity utilization as
a response to favorable demand conditions and the resulting effects of occasionally binding MAB
restrictions (introduced in 2005), 3) the increasing use of bilateral contracts over spot trading
and 4) the overall strong prices for relevant commodities globally increasing production costs and
contributing to strong demand for salmon. Consequently, the forward-market is pointed out as
one possible explanation to higher price volatility because they tie up some of the supply in the
short run. Thus, the short run supply becomes even more inelastic with the possibility to trade
in the forward-market. Bloznelis (2016) identified two periods of different price volatility regimes,
before and after 2006. Both volatility and conditional correlations increased from 1996–2005 to
2007–2013, and return dynamics became more homogeneous across weight classes. This substan-
tiates the findings of Oglend (2013).

Instead of exploring general price trends or volatility, Asche and Guttormsen (2001) show that price
patterns between different weight classes exists, using prices from 1992-1998. Producing salmon is
a biological production process. Hence, productional constraints imply that different fish farmers
are likely to have a similar distribution of different sizes of fish over time. If there are no perfect
substitutes for the different sizes of fish in the short run, the production cycle can cause different
relative prices between the different sizes over the year.

The salmon price has a seasonal pattern, that Asche and Bjorndal (2011) discuss. They find
that the most significant influence on seasonality is from water temperature. Temperature has
big implications for salmon growth, where lower temperature yields lower growth. Both setting
out smolt and harvesting at cold water is unfavorable due to growth conditions. However, higher
temperature also yields higher risk of diseases and algae blooms. Sudden mass deaths might have
the biggest influence on large fluctuations in prices when they occur.

Fish pool opened in 2006, which made spot and forward prices on Atlantic salmon publicly avail-
able. This also made studies on risk related to prices easier. Asche, Misund, and Øglend (2016)
investigate to what extent forward prices of salmon can provide unbiased estimators of spot prices.
They found that forwards provide a good estimate of future spot price. However, they also found
that the ”discover prices effect” that often exist in mature forward markets is limited due to low
volumes of trading. That means we cannot fully say that the forward price is the markets expec-
tation of the spot price at maturity of the forward. On the contrary, they found that actually
the spot price plays a ”leadership role” for the forward price. Ankamah-Yeboah, M. Nielsen, and
R. Nielsen (2017), using a more recent data set, found a higher degree of maturity of the salmon
futures market, and that this trend was likely increasing. This goes against Asche, Misund, and
Øglend (2016) and suggests that analyses using forward prices as estimates of future spot prices
are indeed worthwhile, at least for shorter term contracts.

Producers who combine price forecasts with production planning will have a potential advantage
compared to other farmers. Guttormsen (1999) test the methods of Classical Additive Decom-
position (CAD), Holt Winters Exponential Smoothing (HW), Auto Regressive Moving Average
(ARMA), Vector Auto Regression (VAR) as well as two different naive models for salmon price
modelling. The results do not provide any obvious winner, but several methods provide good pre-
dictions of price changes. Thus, he did show that participants in the salmon industry can produce
forecasts that are of good quality relatively easily.

Another approach to price series modelling is based on the framework of Schwartz (1997). They
showed that knowledge about the forward price curve are essential for making optimal decisions.
This work was based on oil, but has later been applied to other commodities. The work of Schwartz
(1997) was further extended by Schwartz and Smith (2000), where dynamics of the spot price is
modelled as the sum of a short term factor and a long term factor. The application of the latter
model to salmon prices is confirmed by Ewald and R. Ouyang (2017) that built a model based on
the Schwartz-Smith two factor model and seasonality represented by a truncated Fourier series.
In another paper Ewald, R. Ouyang, and Siu (2017) again use the same dynamics as Schwartz-
Smith with a real option approach to find optimal harvesting. Their approach can also be used to
determine the value of leasing or owning a fish farm.

It is of interest to model forward prices as they provide price expectations for any given time, despite
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the findings of Asche, Misund, and Øglend (2016), but in line with the findings of Ankamah-Yeboah,
M. Nielsen, and R. Nielsen (2017). Monteiro (2020) suggest a novel semi-parametric structural
model to compute continuous forward curves in the electricity market. The price of electricity
show some of the same patterns as the salmon price in terms of volatility, although electricity
has even more limited options for storage. Nevertheless, the basis of the model is a data set of
historical forward prices. PCA analysis is used to explain a high percentage of the variance of
forward prices at different maturities with a few factors. Then an AR(1)-GARCH(1,1) is used for
modelling forward prices. Thus, a time series model is used to predict the spot development, while
a parametric approach is used to model the forward curve for each time step in the spot price.
Because such an approach has never been applied to price modelling of salmon, but still seems
to be an increasingly popular method for other commodities, we adopt this framework of price
modelling.

4.2 Relevant ADP/RL applications

This section reviews a few ADP/RL applications which both give examples of typical ADP/RL
models and which might serve to give some inspiration for using the same methods on salmon
production scheduling.

A long-standing goal of artificial intelligence has been to build an algorithm that learns, tabula rasa,
superhuman proficiency in challenging domains. There are several very impressive RL applications
where model performance becomes superior to humans. This is demonstrated by for an example
Mnih et al. (2013). They first made a deep learning model that could learn control policies directly
from high-dimensional sensory input using RL. The model is a variant of Q-learning trained neural
network, whose input is raw pixels and output is a value function estimating future rewards. By
applying the method to seven Atari 2600 games, with no adjustment of the architecture or learning
algorithm they found the model to outperform all previous approaches on six of the games as well
as beating a human expert on three of them. Another, perhaps the most famous, result is from
when Silver et al. (2017) made the model called AlphaGo, which became the first program to defeat
a world champion in the game of Go. The program was later developed into AlphaZero, which
also masters both chess and shogi at superhuman levels. The tree search in AlphaGo evaluated
positions and selected moves using deep neural networks. These neural networks were trained by
supervised learning from human expert moves, and by reinforcement learning from self-play. The
algorithm were based solely on reinforcement learning, without human data, guidance or domain
knowledge beyond game rules.

An essential part of the usability of RL/ADP to optimization is to what degree it performs as good
as traditional optimization approaches on small scale problems. Successful applications of ADP
include transportation, finance, healthcare, energy, and supply chain management (e.g., Fang et al.
(2013), Lei and Y. Ouyang (2017)). For example, Rivera and Mes (2017) considered the planning
problem faced by Logistic Service Providers, i.e. transporting freights periodically, and they used
a ”basis function neural network” approach and the non-stationary least squares method. That
means using a least squares regression with basis functions to approximate the value functions
which can remarkably decrease the computational time/curse of dimensionality. Yin et al. (2016)
considered a metro train rescheduling problem with uncertain time-variant passenger demands,
and they utilized linear and separable basis functions as value function approximations.

Salas and W. B. Powell (2013) benchmark an approximate dynamic programming algorithm and
find that it is capable of designing near-optimal control policies for time-dependent, finite-horizon
energy storage problems, where wind supply, demand and electricity prices may evolve stochas-
tically. The algorithm was able to design storage policies that are within 0.08% of optimality in
deterministic comparisons and within 1.34% in stochastic ones on a single storage with different
data input. They emphasize that the algorithm easily scales to a lot of devices since the size of
the decision problem grows linearly with the number of devices. On the matter of solution time,
Papageorgiou et al. (2015) study the application of ADP to a deterministic maritime inventory
routing problem with a long planning horizon. They used a value function approximation that is a
separable piecewise linear continuous function and introduced a multi-period look-ahead strategy.
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On average, after 30 minutes of CPU time, the quality of the ADP solution was 92% compared
to the best known solution, while local search with considering many periods simultaneously was
at 84% and Gurobi at 72%. Thus, their work show that ADP solution reach good performance
quicker than MIP solutions. Both of these studies show promising results in terms of producing
good solutions faster than traditional optimization methods.

As earlier mentioned, neural networks can perform as powerful and universal approximators for
nonlinear mapping (Khosravi et al. (2011)). Because of the wide applicability, neural networks have
been extensively used in the ADP and reinforcement learning fields as a powerful and adaptable
class of nonlinear forms of value function approximations (W. Powell (2011)). The literature
review suggests that neural networks can play an important role when it is difficult to find suitable
(linear) basis functions and there is no reasonable prediction of the nonlinear structures of the
value function. However, these networks might need a lot of iterations to converge, and require
careful tuning of hyper parameters to converge correctly.

4.3 Salmon production optimization

4.3.1 Relation to other operations research literature

The salmon production scheduling problem that is the focus of this master thesis has parallels to
several other problem classes within operations research. First and foremost, it has similarities
with a range of problems in other biological systems, which will be described in the next subsection.
However, our problem can also be seen in relation to more general problem classes studied in the
operations research community.

The salmon production scheduling problem can be seen as a type of manufacturing problem in
the operations research literature. However, there is typically no demand to be met in salmon
problems. Machine scheduling and jobshop scheduling problems as described by Graves (1981)
and Fuchigami and Rangel (2018), with multiple jobs (fish batches to grow) and multiple, identical
machines (fish tanks), can be relevant reference points. These types of combinatorial optimization
problems are known to be hard, and solution methods prevalent in the research literature are
dominated by heuristical methods. One important distinction away from these problems, is the
biological growth element as well as the MAB restriction which is a sort of resource restriction that
works ”cross-machine”.

Our problem also has parallels to certain inventory-related problems. The so-called warehousing
problem, with buying and selling of products in each time-period, is another relevant problem to
relate to, where dynamic programming is often suggested as a solution method. The distinction
from this would be that in salmon production scheduling each ”product” has to ”wait a certain
time in the warehouse” for the growth process before it can be sold.

Both hydropower and water reservoir management problems and gas storage problems have similar
features to the salmon production scheduling problem and to the warehousing problem more gener-
ally. Both problem types also lend themselves naturally to sequential decision making algorithms,
and involve the issue of determining the value of the resource, e.g. what is the value of a batch
of fish or the water in the reservoir or the gas stored. Price dynamics are hence often essential in
such problems. However, again, the biological growth is one of the additional complications of the
salmon production scheduling problem relative to these other problem types.

4.3.2 Mathematical programming applied to biological systems

The most similar problems to the salmon production scheduling problem are found in other biolog-
ical systems. The application of mathematical programming to biological systems is a very large
and valuable field of research. When excluding fields such as biochemical systems and applications
in medicine and only considering fields related to some sort of harvesting-for-profit systems, the
search narrows somewhat. Large areas of research in this category are, amongst others, agricul-
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ture/farm design or operations optimization, crop and livestock production optimization, animal
feed optimization and plant or forest management optimization. Some of the difficulties typically
encountered in modelling biological systems include the often great number of factors affecting
growth (of an animal or plant), as well as non-linearities and in some cases the solution of differen-
tial equations. For example, growth is actually weight-dependent, which means one gets equations
of the form newWeight = growth(oldWeight)∗oldWeight, which are nonlinear, and, furthermore,
growth is a result of a multitude of environmental factors affecting an entire population as well
as genetic factors affecting each individual. Simplifications and linearizations therefore typically
have to be made, at least in mathematical programming methods. In the following we will men-
tion a few research efforts from other biological systems that have parallels to salmon production
optimization.

One interesting area of research has been poultry production planning and scheduling. Both Taube-
netto (1996) and Brevik et al. (2020) are examples of this. Brevik et al. (ibid.) address this on a
high-level supply chain, deterministically, with rather simplified growth modelling of chicken and
call it the Chicken Flock Sizing, Allocation and Scheduling problem. Their problem of allocating
chicken eggs from broiler breeders to broiler farms and subsequently coordinating logistics for
slaughtering from each farm after the poultry has grown as close as possible to a target weight
and minimizing total costs and penalties doing so is solved by rolling horizon heuristics. This
problem has several parallels to supply chain optimization for large traditional salmon producers,
with smolt production facilities representing egg breeders, salmon cage locations representing farms
and well boats representing slaughtering trucks. Taube-netto (1996) goes more specifically into
the day-by-day production scheduling for each chicken plant, involving decisions such as selecting
”grandparent chicken”, deciding the flow of eggs to growers (”housing” the chicken), scheduling
slaughtering processes based on live weight distributions of each flock and deciding on the number
of products (wings, chest, thighs etc.) to produce. Here, a large decision-support tool has been
developed, and a more advanced growth model has been applied in order to account for both day-to-
day growth and weight distribution within each class. This is similar to the production scheduling
of a single salmon production location with several cages, except for the added complexity of one
chicken possibly becoming several different products (wings, thighs etc.), which is not the case in
salmon farming. Another similar feature of the scheduling nature of both poultry production and
salmon production (as well as other live animal breeding business) is the welfare-related restriction
of different flocks of chicken (or batches of salmon) not being allowed to share a house (or cage/tank
for salmon). In other words, there is an ”all in, all out”-policy with washing of the facilities in
between each cycle to prevent diseases spreading. One typical element considered in livestock
breeding problems is the diminishing feed conversion ratio (FCR) as the animals grow larger (lower
growth per feed input), which directly affects the harvesting scheduling problem. This is for the
most part simplified in salmon research literature, where FCR is considered a constant. To our
knowledge, this is because the FCR generally is less variable for atlantic salmon than for livestock.

Another interesting application area is forest management, which also has parallels to salmon pro-
duction. Forest management optimization is a large research field, where the decisions typically
are which areas of the forest to harvest at what time and in what order, with considerable setup
costs and complicating constraints on harvesting. In this field, the focus has mostly been on har-
vesting scheduling and not multi-cycle planting and harvesting, which is natural due to the long
life cycle of trees. One similarity to salmon production is the increased value gained from each tree
from delaying harvest because of a larger diameter on each tree, such as the higher price for larger
sales classes of fish. Furthermore, in the stochastic versions of the forest management problem,
uncertainties are typically modelled in both, prices, tree growth and in physical damages (fires,
pests etc.). This would be the equivalent to uncertainty in the salmon price, salmon growth and
salmon mortality, which are the typical uncertainties in the salmon production problem. Lohman-
der (2007) writes about several mathematical programming solution methods for these stochastic
forest management problems, mentioning both stochastic dynamic programming and various other
multi-stage stochastic programming algorithms.

In the book ”Dynamic Programming applications to agriculture and natural resources”, Kennedy
(2012) argues that both agriculturerelated problems of farm design, crop management and livestock
breeding and natural resource management problems such as land management, forest management
and, last but not least, fisheries management, are natural candidates for solution by dynamic
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programming algorithms. The author bases this on amongst others the repetitive, cyclical nature
of decisions over time and the elementary question of deciding the value of an amount of a certain
biological resource. Note that the author here by fishery management primarily addresses catching
of wild fish in open sea and not fish farming, but we will argue that many of the same points
stand also for fish farming. In all of these cases, there are typically both production risks in
growth, mortality and price risk. Furthermore, there is typically a long time horizon and the main
question of when to harvest and/or when to start a new production cycle given a limited number
of areas/facilities. This suggests, as per the author, that dynamic programming algorithms such
as approximate dynamic programming or stochastic dual dynamic programming will work well for
these problems.

4.3.3 Salmon production specific literature

Salmon farming specific literature contains several subcategories. There is much literature on
farming of other fish species as well, but this will for the most part be kept outside of this thesis.
Research on the biological aspects of salmon and salmon growth, e.g. on sea lice and on feed
mixture optimization, are large fields, but will also be excluded from this project as they are not
what we deal with. There is also a substantial amount of literature on e.g. investments in salmon
farming facilities, production cost increase breakdown and analysis and more, but these sort of
topics will also be kept outside of this project. We will focus on research on the operations aspect
of salmon production scheduling, typically involving decisions about the release of either fry (eggs)
or smolt and harvesting, with the objective of either minimising costs, maximising biomass output
or maximising profits. Salmon face a number of challenges in the ocean, like varying growth condi-
tions, potential disease outbreaks, escape from cages etc. All these elements make the production
process uncertain. When the salmon is ready to be sold, producers face uncertain and volatile
salmon price. Furthermore, as described in chapter 2, there are several complicating constraints
on production. Thus, there is a need for support to make profitable decisions regarding harvest
and forward sales. Our literature has revealed that salmon production scheduling optimization is
a relatively young and small field of research compared to other operations research areas. This
could be because the industry only in quite recent years have gotten industrialized and up-scaled
and because not many regions in the world focus on salmon farming. Much of the literature on
salmon production originates in Norway or another of the large salmon producing countries, which
is natural. The importance of production planning for salmon is however reflected in the growing
amount of literature on the area. We will in the following go through relevant literature with
respect to optimizing salmon production scheduling in particular.

In the very beginning, research papers focused mainly on optimal harvesting decisions in the single
rotation problem (harvesting of a single batch of fish) with an analytical, microeconomic approach.
Lillestøl (1986) develops analytical derivations of optimal feeding schedules and harvesting times
for a single batch of fish, the so-called single rotiation problem, where the full batch is harvested at
once. He argued that the full, global problem description would be too comprehensive to be solved
exactly, and argued in favour of simplified, discrete growth modelling in return for better solution
estimates. He suggested dynamic programming approaches for the problem. Bjørndal (1988) also
took an analytical approach to finding the optimal harvest time of a single batch of fish, and he
includes smolt release costs and fish insurance costs as well. He does however use a simplified,
continuous growth model, only modelling average weight of the batch. He makes simple analytical
remarks regarding the possibility (and value) of selective harvesting of a batch and regarding the
multiple rotation problem. Neither of these two early papers seem to be written with mathematical
programming in mind, however, and they are theoretical rather than practical in approaching the
problem in the eyes of a salmon farmer. Bjørndal (ibid.) mentioned that fish farming actually has
more in common with forestry and agriculture than with ocean fishing. He also later co-wrote the
book Asche and Bjorndal (2011) which addresses most aspects of salmon production and salmon
production facility investments from an economical perspective.

Arnason (1992) and Mistiaen and Strand (1998) follow the abovementioned papers in their ana-
lytical, microeconomical approach. The former proves that the optimal feeding schedule and the
optimal harvest time are inevitably interdependent. The latter is the first to include what we deem
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the more interesting salmon price variations, with a piecewise constant price for different weight
classes of fish. Mistiaen and Strand (1998) found that small changes in discount rate have big
implications for the optimal time of harvesting. These results are of interest because firms tend to
have different cost of capital depending on size, maturity and cash flow.

As both mathematical programming as a developed field and the global salmon market grew larger,
research combining these emerged. Sparre et al. (1976) and Forsberg (1996) were among the first
in doing so. Forsberg (ibid.) used discrete weight classes and weight grading of fish (yielding a
distribution of the weight of the fish in a batch) and formulated a mixed-integer, multi-period
deterministic programming model for harvesting different fish cohorts to maximise profit. The
growth model takes feed type, fish size and water temperature as input. Other input parameters
are the salmon price, feeding costs, transportation and slaughtering. More realistic, complicating
harvesting restrictions are implemented. This model does not consider production restrictions as
limits for Maximum Allowable Biomass (MAB), which was introduced later, in 2005. It also misses
possibilities for other important restrictions as well boats, fallowing etc. In Forsberg (1999), he
uses a similar model to investigate the value of graded/selective harvesting vs having to harvest
the full batch at once. The results suggest that by sorting fish before slaughtering, the salmon
producer can increase profit by 10% compared to slaughtering the whole cohort at the same time.

Pascoe, Wattage, and Naik (2002) stated that there so far was a gap between practice and theory,
in the sense that research on optimal harvest timing did not take into account the great risks in
production as well as other essential real-world production constraints. Forsberg and Guttormsen
(2006) stated that fish farmers traditionally have focused either on production planning or price
forecasts, and conclude that these aspects should be combined in order to make good harvesting
decisions. He therefore goes more in depth on the value of information in fish farming. The large
price variations must be taken into account when making production plans, which is an important
idea this thesis in part is based on.

More recent research has attempted to use more advanced mathematical programming on more
realistic problem versions, aiming at providing practical decision support for salmon farmers. As
mentioned, MAB restrictions were introduced in Norway in 2005, and Stikholmen (2010) could
not in 2010 conclude in whether the aquaculture industry had become more or less efficient in the
previous decade. Langan and Toftøy (2011) were of the earliest in this respect. They developed
an optimization tool for salmon production scheduling when maximizing MAB utilization of the
saltwater facilities. During development, they discussed different ways of linearising and discretising
the growth model, but ended up with a rather simple model where all the fish in a batch have the
same average weight at each point, and hence with no weight distribution within the batch.

Their two-stage stochastic model considered uncertainty in growth and mortality of the salmon but
not in the salmon price, and showed that minimizing deviation from MAB quota is not the same as
increasing the biomass output. Hæreid (2011) instead created a one-year horizon stochastic model
with uncertainty in prices, focusing on which sales contracts the salmon producer should enter.
Rynning-Tønnesen and Overaas (2012) built on these previous papers and developed a tactical
planning model that makes smolt delivery and deployment as well as harvesting plans. The model
considers uncertainty in growth and mortality, but leaves out price uncertainty. Hæreid, Schütz,
and Tomasgard (2013) takes this further and combined the best of the above by creating a multi-
stage stochastic model with a time horizon of 3-5 years and with uncertainty in both prices, growth
and mortality. This was however not implemented and solved for actual cases, from what we can
understand. Both Rynning-Tønnesen and Overaas (2012) and Hæreid, Schütz, and Tomasgard
(2013) have a more advanced growth model with multiple weight classes and a distribution of
fish between several weight classes in each time step, giving a weight distribution within each
batch. Kure and Frøystein (2013) is in turn one of the first papers to apply optimization to smolt
production (the freshwater phase) in particular. They minimize total costs in smolt production
given that smolt orders from the saltwater locations should be delivered. An essential difference in
their model is that temperature is a variable in a land based facility, and they modelled this using
SOS2 sets, with uncertainty in the water intake temperature.

Looking at research papers who included more parts of the value chain in the problem, we have
Denstad, Ulsund, and Lillevand (2015) and Bravo et al. (2013). Also inspired by Hæreid (2011),
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Denstad, Ulsund, and Lillevand (2015) took salmon production optimization one step further
by introducing several downstream parts of the value chain, such as sales allocation to different
products, different contract types as well as inventory management and global logistics for bringing
salmon to the market. They implemented both a deterministic and a stochastic model, the latter
with uncertainty in prices and in water temperature. This is a multi-national logistics problem, and
thus written with a large global salmon producer in mind, and hence the pure salmon production
scheduling problem of both deploying smolt and harvesting salmon in several cycles is deliberately
modelled with less detail in this paper. Bravo et al. (2013) made two models, one for the freshwater
phase and one for the saltwater phase, and used these two in conjunction.

The models above do not apply any particular advanced optimization algorithms such as for
example decomposition, and there has not been many attempts at doing so, neither exact nor
heuristic, despite the fact that several of the research efforts conclude that multi-cage, multi-cycle
problem versions including uncertainty with a detailed growth modelling are practically unsolvable
with MIP and branch-and-cut commercial solvers alone. We are aware that there has been attempts
at solving freshwater phase problems by column generation. Cobo et al. (2019) uses particle swarm
optimization to solve a similar problem for other fish species production in Spain. Yu, Leung, and
Bienfang (2006) solved a multi-cycle, multi-pond problem for shrimp farming by using a network
flow formulation such as the average weight formulation presented in this project, but this has
a limited growth model in terms of weight distributions. Solving large scale problems in salmon
production scheduling still seems to be an area for future research.

As induced by Kennedy (2012) (see the previous subsection), other researchers have also figured
that dynamic programming methods are appropriate for aquaculture production scheduling op-
timization. Although most of these efforts date several years back, are based on other species
than salmon and deal with highly simplified problem versions compared to this thesis, they are
important mentions because they show that others have seen the logical modelling of the problem
as a Markov Decision Process and solved it by dynamic programming methods. Both Karp, Sadeh,
and Griffin (1986) and Leung and Shang (1989) model shrimp production as a Markov Decision
Process and solve it by exact, backward dynamic programming. They also mention that because
they use exact methods, the models are limited to very small problem versions with small state
spaces. The state space of the salmon production scheduling problem as it is presented in this
thesis would be computationally intractable by such exact methods.

4.4 Summary and our contribution

As described in chapter 2, traditional salmon farming has taken place in cages in fjords or bays,
where smolt (”youth” fish) have been grown to sales ready weights. Before this, smolts are produced
from eggs in freshwater facilities on land, in tanks. Different papers have focused in different parts
of this value chain. In the table below are the most relevant and inspiring research efforts with
respect to this thesis. We limit the table to papers focusing on the ”pure” production scheduling
problem with emphasis on release and harvest scheduling. This gives an overview of the focus area
and the solution approaches of the literature on the salmon production scheduling problem.
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Paper Deterministic/
stochastic

Objective
function

Growth
model

Remarks Solution
method

Saltwater phase: salmon production in sea
Forsberg (1996) Deterministic Profits Discrete,

with
distribution

No MAB
restrictions,

only one
tank (?)

N/A, only
formula-

tion

Langan and Toftøy
(2011)

Two-stage,
uncertain

growth and
mortality

Profits Discrete, no
distribution

MIP, with
Xpress

Rynning-Tønnesen
and Overaas (2012)

Two- and
multistage,
uncertain

growth and
mortality

Profits Discrete,
with

distribution

Focus on
smolt

ordering and
deployment

MIP, with
Xpress

Hæreid, Schütz,
and Tomasgard
(2013)

Multi-stage,
uncertain
growth,

mortality
and prices

Profits Discrete,
with

distribution

No actual
model imple-
mentation,

only
formulation

N/A

Freshwater phase: smolt production on land
Kure and Frøystein
(2013)

Stochastic,
uncertain

water intake
temp

Costs Discrete,
with

distribution

Temperature
as variable

MIP, with
Xpress

Other aquaculture species, selected papers
Cobo et al. (2019)
(Seabream)

Deterministic Profits Simple,
without

distribution

Full batch
harvesting

Particle
Swarm Op-
timization
(heuristic)

Karp, Sadeh, and
Griffin (1986)
(Shrimps)

Deterministic
and

stochastic

Profits Simple,
without

distribution

Full batch
harvesting

Exact,
backward
dynamic
program-

ming
Our contribution: Land based salmon farming
This master
thesis

Deterministic
and

stochastic
wrt. price

Profits Discrete,
with

distribution

Focus on
land based

salmon
farming and

price
uncertainty

ADP/RL

Table 4.1: Summary of relevant literature regarding salmon production scheduling

The authors are also aware of at least two current research efforts which apply Dantzig-Wolfe
decomposition and column generation with Branch-and-price to the salmon production scheduling
problem. This is an exact solution method, unlike ADP/RL which is a heuristic method. These
efforts, including our own, reflect the increasing interest in this optimization problem and in the
computational complexity of the problem. These works are not yet published and/or finished and
we are therefore not able to discuss them closer, however relevant. In addition, there are papers
such as Denstad, Ulsund, and Lillevand (2015) and Bravo et al. (2013) with a larger value chain
focus, shifting the problem more towards a logistics and operations problem, which thus is not
strictly relevant.

As explained earlier, this paper is written with a land based salmon producer in mind, partly
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because the salmon producer we have been cooperating most closely with is land based and partly
because this is an important part of the future of the salmon industry. In land based salmon farm-
ing, growth rates and mortality risks are greatly reduced due to more a controllable environment.
Thus, the single greatest remaining uncertainty factor is the salmon price, with it’s large variations
both throughout the year, between different sales classes and from year to year. The problem is
however, for most practical matters, similar to that of a traditional salmon producer in cages in the
fjords. The difference in focus is mostly conceptual and primarily comes to show in that growth
rates and mortality is considered less uncertain, and that there is a larger focus on detailed growth
modelling reflecting the more controllable environment in tanks on land.

Research on optimization of salmon production scheduling is, as shown, quite limited compared
to other areas of operations research. For solving salmon production scheduling optimization
problems on a real-production scale, it has become clear to us, other current researchers on the
field and through the literature reviewed, that more advanced optimization techniques are needed.
Most of the few such efforts conducted so far have applied methods such as Branch-and-Price,
which focus on deterministic optimization, or stochastic programming methods such as 2-stage or
3-stage models without the application of more advanced decomposition methods. For the problem
we consider however, advanced multistage stochastic programming decomposition approaches like
stochastic dual dynamic programming and approximate dynamic programming, both also falling
under the sequential decision making umbrella, are relevant. They do however need some clever
adaptations for application to salmon production scheduling, mainly because of the complicated
value function the problem presents.

Most machine learning applied to salmon production has not been about mathematical optimiza-
tion but about operational analytics such as e.g. monitoring fish feeding using cameras to discover
efficiency gains in feeding.

To our knowledge, ADP/RL has not been applied to salmon production in particular and our
paper will thus be the first effort towards applying ADP/RL to salmon production scheduling.
This requires modelling the problem as a Markov decision process. The complexity of the full-scale
salmon production scheduling problem has revealed that smarter optimization methods are needed,
and our contribution will be to investigate whether or not ADP/RL could serve this purpose also
for salmon farming. The goal is twofold: both designing a more scalable solution method in terms
of computational time and finding high-quality solutions close to optimality. The many impressive
and highly complex applications of ADP/RL and the rise of machine learning suggests possible
application to many operations research areas, and we will take the, to our knowledge, first step in
applying it to salmon production scheduling. Because of the novelty of the application, our focus
will to a large extent be on discussing what further research should focus on and on concluding on
whether ADP/RL has potential to work for our problem.
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Chapter 5

Model and solution approach

In this chapter we start by formulating and modelling the salmon production scheduling problem
as a Markov Decision Process. We then present the salmon price model we have developed. Finally,
we present our algorithm and solution approach for solving this MDP by ADP/RL.

5.1 Salmon production scheduling as a Markov Decision
Process

5.1.1 Extensive mathematical formulation

Below is the extensive mathematical formulation of the salmon production scheduling problem
that is being attacked in this thesis.

Sets and indices

T Set of all time periods
U Set of all tanks in the facility
W Set of all weight classes (smallest is 50 grams and largest is
W g Subset of all weight classes where the fish have not yet reaches sales ready weight
W s Subset of all weight classes above the first sales ready weight class
J Set of all sales classes
Wj Set of all weight classes corresponding to sales class j
S Set of different smolt types (smolt weights)
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Parameters

πjt Price of salmon in sales class j at time t
πavr Average price of all sales classes throughout production period
Css Cost of smolt type s
Cf Cost of 1 kg of feed
Ch Fixed cost on harvesting
W̄w Average weight of weight class w
W̄ s
s Average weight of smolt of smolt type s

Ḡwt Growth in grams of one fish in weight class w during time period t
incBiow Amount of fish in weight class w from start of planning period
ρw̃wt Share of fish in weight class w̃ growing into weight class w from time t to time t+1
FCR Feed conversion ratio
SR Survival rate of fish during one time period
Dsw Share of number of smolts of smolt type s released that goes into weight class w
β Adjustment factor for valuation of fish in tanks at end of horizon
γt Discounting factor for time t
γh Discounting of value of fish in tanks at end of horizon
Fmax Maximum number of fish in a tank (big M factor)
m Minimum number of fish in a tank
V Volume of each tank
Densmax Maximum density restriction in each tank
MAB Maximum Allowable Biomass in facility
minHarv Minimum harvested biomass at each harvesting

Variables

fuwt Amount of fish in weight class w at end of timeperiod t in tank/unit u
xuwt Amount of fish slaughtered from weight class w at end of timeperiod t in tank/unit u
yust Amount of smolts of smolt type s released in tank u at time t
δut Binary helper variable, 1 if tank u is occupied at time t, 0 otherwise
αt Binary harvesting variable, 1 if harvesting from facility in time t, 0 otherwise

Maximize

∑
u∈U

∑
t∈T

∑
j∈J

∑
w∈Wj

xuwtπjtγtW̄w − γtCh
∑
t∈T

αt −
∑
t∈T

∑
w∈W

CfFCR Ḡwtγtfuwt −
∑
u∈U

∑
t∈T

∑
s∈S

CssγtW̄
s
s yust

+
∑
u∈U

∑
w∈W

γhβπavrW̄wfuw|T |

(5.1)

subject to

Growth and mass balance constraints:

fuw0 =
∑
s∈S

Dswyus0 + incBiouw w ∈W,u ∈ U (5.2)

fuw(t+1) =
∑

w̃∈[0,w]

SR ρw̃wtfuw̃t +
∑
s∈S

Dswyus(t+1) w ∈W g, t ∈ T/|T |, u ∈ U (5.3)

fuw(t+1) =
∑

w̃∈[0,w]

SR ρw̃wtfuw̃t − xuw(t+1) w ∈W s, t ∈ T/|T |, u ∈ U (5.4)
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Production constraints: ∑
w∈W

fuwt ≥ mδut t ∈ T, u ∈ U (5.5)

xuwt ≤ SRρw̃w(t−1)fuw̃(t−1) w ∈W s, t ∈ [1, |T |] (5.6)

xuw0 ≤ incBiouw w ∈W,u ∈ U (5.7)

∑
w∈W

∑
u∈U

xuwt ≤ Fmaxαt (5.8)

∑
u∈U

∑
w∈W

xuwtW̄w ≥ minHarv ∗ αt t ∈ T (5.9)

∑
s∈S

yust ≤ Fmax(1− δu(t−1)) t ∈ [1, |T |], u ∈ U (5.10)

∑
w∈W

W̄wfuwt ≤ V Densmax δut t ∈ T, u ∈ U (5.11)

∑
w∈W

∑
u∈U

fuwtW̄w ≤MAB t ∈ T (5.12)

5.1.2 State

In this and the following subsections follows the formulation of our problem, i.e. the problem
expressed in mathematical terms above, as a MDP.

For the full facility (i.e. multitank) problem, a system state includes the following information:

• The current salmon (spot) prices (one for each sales class)

• The current time and time of year (month), in case of stochastic solution

• The amount of fish in each tank in each weight class

The salmon spot price and the time represents the part of the state exogenous to the salmon
farmer, and the information about the fish in the tanks of the facility represent the internal state.

5.1.3 Decision

One system decision contains the following information:

• Whether or not harvesting is done from each tank

• Whether or not smolt of type s are being released in each tank

• The amount of fish harvested from each weight class from each tank

• The amount of smolt of smolt type s released in each tank
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5.1.4 Exogenous information

As we model both the fish growth (and water temperature) and fish mortality deterministically,
the only random process is the development of the salmon prices. In each new time step, a new
salmon price is realized and becomes part of the exogenous part of the state.

5.1.5 Transition function

Given a current state and a decision made, the transition to the next state is deterministic except
for the price development.

For the exogenous information, the transition function increments the time by one unit and samples
a new price realization from the price model.

A decision contains a decision regarding either harvesting or smolt release for each individual tank.
The transition function therefore calculates the transition for each tank independently:

• If the tank is empty, and smolts are released into the tank, the next state will contain the
amount of smolt released distributed with a normal distribution with coefficient of variation
10% around the average weight of the smolt type s. If smolts are not released, the tank
remains empty.

• If the tank has fish and some of these fish are harvested, we first remove the harvested fish
and then let the remaining fish grow according to the growth model. We thus subtract the
harvested amount of fish from each weight class from the current amount in the respective
weight classes and let the remaining amount of fish in each weight class grow for one period,
calculating how they transition into new weight classes.

• If the tank has fish but no fish are harvested, the fish will only grow, meaning they transition
into new, higher weight classes according to the growth model.

A key part of the transition function is the salmon growth model we have developed. The growth
model is based on the Skretting growth rate table which can be found in the appendix. Skretting
is a world leading salmon feed producer and their data sources for salmon growth are a widely
acknowledged standard used in the industry. We will not go deeply into the specifics of the growth
model here. The model assumes that the fish are fed to saturation and that water quality is
maintained at an optimal level, both of which are standard practice in the industry (Asche and
Bjorndal (2011)). Then, the Skretting table provides daily growth in percentage of fish weight
per fish for a given temperature and a given fish weight. The water temperature is given as a
temperature profile with a specific temperature for each month of the year, because the salmon
producer we have cooperated most closely with uses seawater in their facility. As we have pre-
defined a set of 50 weight classes ranging from 50 grams to around 7 kilograms, the growth model
then uses the temperature and the weight to calculate a three-dimensional transition matrix which
calculates what share of the fish in each weight class will grow into a specific other weight class at
a certain time period. This transition matrix is the key part of how the fish are transitioned into
a new state. This matrix also serves to linearize the growth model in a way that makes it usable
in linear programming (as in the MIP formulation above), and it is a central part in the Markov
state transition probabilities.

5.1.6 Direct profit/reward function

The common term in RL setting is reward function, but we prefer the term direct profit function
as this is more relatable to our problem.

The direct/immediate profit R(st, at) made from being in a particular state (at a particular time)
and making a particular decision is calculated as the sum of the following terms:
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• The harvesting revenue:
∑
u∈U

∑
j∈J

∑
w∈Wj

xuwπjW̄w

• The feed cost:
∑
w∈W CfFCR Ḡwtfuw

• The smolt cost:
∑
u∈U

∑
s∈S C

s
sW̄

s
s yust

• The fixed harvesting cost: Chαt

• A penalty for harvesting fish before they are sales ready (and penalty for breaking the density
or MAB constraints in case of soft modelling of constraints)

Where the notation of the parameters and variables are the same as defined above in the extensive
mathematical formulation.

5.1.7 Overall objective

The overall objective of a MDP is to find the policy which maximizes the expected cumulative
discounted reward/profit earned by the agent.

In other words,

maxE[

∞∑
t=0

γtR(st, at)]

where R is defined in the previous subsection.

Assumptions and clarifications

The following are some assumptions and clarifications made in this master thesis regarding the
salmon production modelling specifics. These are primarily assumptions reflecting the type of
production of the salmon farmer we have cooperating most closely with, but also assumptions
made to ease computation because not all model factors are equally relevant for determining the
suitability of ADP/RL as a solution method for the problem in general. The general assumptions
for the project are discussed here.

First, this project is meant to take the perspective of a land based salmon producer, which is a
new and growing part of the industry, and which our main industry contact represents. We assume
that fish growth and mortality, as well as any other production risks, are sufficiently controllable
that they can safely be left out of this project without loss of relevance of our results.

Second, different feed types and the choice between them, as well as the feeding schedule, is left
out. Earlier researchers such as Asche and Bjorndal (2011) have found that the optimal choice for
a salmon producer generally is to always provide oxygen and feed to saturation. This also makes
growth modelling easier, because growth then can be assumed to only be a function of weight and
temperature and can be linearised as a Markovian process.

We also make the simplifying assumption that all harvested salmon will be sold immediately and
in the spot market. The entering of futures contracts and other forms of price hedging is beyond
the scope of this project. If there is a fixed delay between harvesting time and selling time of a
fish, we assume that our results are not affected because the salmon price applied in the model can
simply be shifted accordingly. We also do not take into account the weight loss between so-called
live weight and harvested weight (typically around 18% (Mowi (2021))). This does not have any
effect on the optimization problem, as it effectively only serves to raise the weight limit for all sales
classes.

We do not take smolt production and smolt ordering uncertainty into account, meaning, we assume
that the salmon producer can order smolt with any average weight he/she desires and get delivery
at any time. In reality, there can be deviations from the order in terms of both size, number and
time of delivery, but this is kept out of this thesis. Furthermore, for most of the calculations, we
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will assume only smolts of average weight 100 grams are available, which is the most common type
of smolts.

Water temperature was initially meant to be treated as a decision variable in this thesis, as is the
case in many land based facilities with RAS technology. However, the industry contact we are
cooperating with is applying an innovative, cost-efficient solution where seawater is pumped into
the facility and therefore the temperature is treated as an exogenous input parameter following a
yearly profile provided to us. This eases modelling efforts. It also serves to make our project more
similar to traditional salmon production in fjords.

A rather big problem feature left out of this thesis is the option to move and split fish batches
between different tanks during growth. The reason for this is explained in 2.4.1. While this feature
increases the optimization problem complexity, we argue that it is not necessary for qualitatively
determining whether or not ADP/RL will perform well for the salmon production scheduling
problem. The same argument is made for another, smaller problem feature, which is giving the
farmer the choice between different sizes of smolts to release (e.g. choosing between 100, 200 or
300 gram smolts). While this is built into the model (and the ADP/RL model is perfectly able of
handling it), it will be kept out of computations and evaluations.

5.2 Semi-parametric modelling of prices

As discussed, forward prices are todays value of fish delivered at some point in the future. Sim-
ulation of future expectations is essential to make our rolling horizon model perform well. Also,
we need to simulate spot price dynamics in order to generate price samples and be able to solve
the stochastic problem. As the salmon price behaves similarly to electricity prices in many ways,
our stochastic price model is inspired by Monteiro (2020). She presents a novel semi-parametric
structural model for forward curves. The basis of the approach is a data set of historical forward
prices of salmon ranging from 2015-2020. All price data are collected from fishpool.eu. The reason
only data after 2015 are used is that there seems to be a regime shift at around this point in time,
as discussed in 2.5.1. These prices are then log-, mean and seasonal adjusted to find residuals εt,j
before performing a principal component analysis (PCA). Here, t is the time with weekly resolu-
tion, while j is the time to maturity. The basis for the seasonal component estimation can be seen
in Appendix A.3.

The procedure is as follows:

• Prepare data set by log-, mean and seasonal adjustment

• Perform PCA analysis on residuals

• Decide how many components are needed to include in model in order to explain a sufficient
part of the variance

• Save component weights

• Fit AR(1)-GARCH(1,1) for components.

• Generate S scenarios N steps ahead for residuals

• Generate S scenarios N steps ahead for the components

• Generate S price scenarios N steps ahead

In the context of this study, PCA decomposes the matrix of residuals in two separate sets: one of
time-indexed series, called components, and another of their factor loadings, which change with
maturity and represent the weight of each component on εt,j . The approach is analysed with
respect to how many components are necessary to explain a high percentage of the variance of the
residuals. As PCA’s objective is dimensionality reduction, its use is only reasonable if the number
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of used components is significantly lower than the number of maturities. The component series are
uncorrelated, which means univariate models can fit each of them separately.

An issue regarding PCA performance on the residuals is how many forward maturities should be
included in the data set for the analysis. Due to liquidity issues in long forward contracts, and
requirement of at least 26 months for our rolling horizon model (that is how long horizon we found
appropriate for the sub problem) we chose to do the analysis on 26 maturities. Summarizing, the
data input were contracts from 0-26 months from 2015 and 2020. The results of the PCA showed
that five components were needed to explain approximately 86% of the variance in the data set.
We find this level of explanation satisfactory and do not include more components to maintain a
high degree of dimensionality reduction. The weights for component i and maturity j wi,j were
saved for use in prediction of forwards with different maturities. By fitting autoregressive(1) -
generalized autoregressive conditional heteroskedasticity(1,1) (AR(1)-GARCH(1,1)) model to the
residuals we were able to simulate new residuals ε for S scenarios N time steps ahead for each
component. Finally, we were able to predict future prices scenarios for S scenarios, N time steps
ahead and j maturities. The procedure can be summarized as follows

AR(1) model:

ct,k = α+ φct−i,k + ξt,k (5.13)

With ξt,k v GARCH(1, 1) :

ξt,k = µ+ σt,kZt,k (5.14)

σ2
t,k = ω + α(ξt−1,k − µ)2 + βσ2

t−1,k (5.15)

Where Zt,k v N(0, 1)

In the AR model, c is component, φ is a constant and ξ is residual. The GARCH model is used
for simulation of new residuals as input in the AR model. µ, α and β are constants, σ is variance
and Z is a white noise process.

Five random samples of the simulation are shown in the plot below.

Figure 5.1: Five examples of price simulations

From the plot of price simulations we can see that the predictions are in range approximately
40-90 NOK/kg. These numbers seem realistic in light of historical variations and seem qualified
to be used as input in the optimization models. It is, however worth noting that there might be
deviations from this range over more price samples.
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To give the reader more insight to how the price model works, we have also plotted one simulation
with corresponding price expectations below.

Figure 5.2: Simulated price development (purple) with corresponding 26 months price expectations
starting at t = 0, t = 21 and t = 42 (blue, red and green, respectively)

Here, the expectations (or forward price curve) at a given point in time, for example t = 0, is
calculated as the sum wi,j ∗ ct,i for each component i and maturity j. These can be provided for
any t, but only three examples are shown here for illustrative purposes. Figure 5.2 is based on one
random price realization. How well the expectation corresponds with the realized simulation will
vary over time, but they seem to imitate the historical forward curves reasonably well. For the
purpose of our thesis this price model seems to give satisfactory results.
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5.3 Solution algorithm

The following algorithm, here written in pseudocode, represents the ADP/RL model we have de-
veloped. The model has been implemented in Python. The biological growth model, the transition
function and the direct profit function, as well as other algorithm components, have also been built
from scratch and implemented in Python.

Algorithm 2: Stochastic ADP/RL

Result: Optimal policy + according optimal value of each state
Initialization of value function approximation and salmon growth model;
for n iterations do

State ← random start state;
Draw sample price realization;
for T timeperiods do

for each tank do
Get relevant decisions for each tankstate;

end
Find relevant combinations of relevant single tank decisions and construct candidate
overall decisions;

for each candidate decision do
Calculate direct profit of (state, decision);
Calculate exploration bonus of (state, decision);
Calculate potential penalties of (state, decision);
Next state ← transition(state, decision);
Calculate value of next state = value function(next state);

end
Draw random number between 0 and 1;
if random number ≤ ε then

Choose candidate decision with highest (direct profit + exporation bonus -
penalties + γ * value of next state);

else
Choose candidate decision with highest (direct profit - penalties + γ * value of
next state);

Next state ← transition(state, chosen decision);
State ← next state;
Update counts for exploration bonus;
Save experience (state, decision, directprofit + penalties);
Append experience to episode data;

end
Select s random experiences from episode data;
for each selected state/experience do

Target ← Sum of discounted remaining profits until T + discounted value of state in
time T;

Calculate loss = target - value of state;
Take gradient of loss wrt. valuefunction parameters;
Update parameters by taking step in direction of negative gradient to minimize loss;

end
ε← ε− δ (reduce ε)

end
return Value function with trained parameters, policy given by value function
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5.3.1 Variants

Hard vs soft constraints

The tank density constraints and the facility MAB constraint are the primary interesting produc-
tion constraints for this problem, and these can be modelled as either hard or soft in the eyes of
the ADP/RL agent.

When modeling the density and MAB constraints as hard constraints, we only present the ADP/RL
agent with candidate decisions which respect these constraints. This involves checking each relevant
decision generated for whether or not making this decision in the current state will lead to these
constraints being violated in the next state. In other words, when modelling as hard constraints
the ADP/RL agent never gets the opportunity to violate these constraints.

When modelling these constraints as soft constraints, the agent can perform any relevant actions,
but is then faced with a penalty incorporated in the direct profit function when making decisions
which leads to states where the constraints are violated. This requires modifying the direct profit
function slightly and introduces the said penalties as tunable parameters in the algorithm.

Stochastic vs deterministic solution

The stochastic and deterministic models are solving two principally different problems. The de-
terministic problem assumes either a constant or a known salmon price whereas the stochastic
problem involves not knowing how the price will develop in subsequent time steps.

In the deterministic version, the solution algorithm is the same as for the stochastic version except
that for each episode, the price is set equal to a constant price of 60 NOK/kg. The algorithm for
the stochastic version is described above.

The important difference between the solution of the stochastic problem with ADP/RL and the
deterministic problem with ADP/RL is that the stochastic version needs to be able to take into
account the development of the salmon price. It also needs to take into account the time of the
year of a given state, given that we assume a certain seasonality, which is implemented in the price
model. The key point here is that the value function approximation needs to take both the current
salmon price and the current time of year as input features, and needs to have a shape which allows
these features to adjust the value of the state. In case of a custom value function approximation,
this needs to be handled manually by e.g. introducing a factor which is a function of type (1+
sine/cosine of the time of year) in the value function approximation and by also introducing some
function of the salmon price as a factor. In case of the neural network, this is as ”simple” as adding
the salmon price and the time of the year in the given state as input features to the network and
letting the network figure out the shape itself. In practice, however, this radically changes how to
neural network behaves and converges.

5.3.2 Decomposition heuristic

As described in 2.4.2, the salmon production scheduling problem has an inherent decomposed
structure.

We have exploited this structure to design an alternative solution approach which trades off some
potential loss of optimality with much faster training for the multi-tank problem. The use of this
alternative algorithm is thus to speed up solution of the multitank problem. This idea builds on
an assumption that in the steady-state optimal production schedule, each tank is on a steady-state
production cycle where new fish are released immediately after the tank is empty (and washed)
and then is continuously in production. In other words, given this assumption the only difference
between the tanks is that they (potentially) are out of synchronization with each other, in order to
exploit the MAB restriction. According to our research so far with the MIP model, this assumption
does not necessarily always hold exactly, especially with large price variations, but it is still ”quite
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close” to holding, and we expect the loss of optimality by making this assumption to be in the
order of < 5− 10% of optimality.

With this assumption as a foundation, one can then further draw the conclusion that the value of
the whole system state is nothing more than the sum of the values of the individual tank states. Our
alternative solution algorithm involves only training a value function for the single tank problem
until satisfying convergence is achieved. This is the training part of the algorithm. Then, for the
inference part of the algorithm (inference in RL setting refers to using the model for producing
results), the single tank value function is used to produce a schedule for the multi tank facility.
The algorithm simply makes decisions for the multitank facility by using the value of the next state
as the sum of the values of the individual tank states, which are given by the single tank value
function which has been trained in the first part of the algorithm.

The algorithm is explained with high-level pseudocode in the figure below.

Algorithm 3: Alternative ADP/RL decomposition heuristic algorithm

Result: Optimal policy + according optimal value of each state
Part 1: Train single tank value function
Train single tank value function as per the main ADP/RL algorithm described
above;

Part 2: Produce multi tank schedule
State ← empty start state;
Draw price realization scenario to evaluate;
for t in Thorizon do

Schedule += state;
for each tank do

Get relevant decisions for each tankstate;
end
Find relevant combinations of relevant single tank decisions and construct candidate
overall decisions;

for each candidate decision do
Calculate direct profit of (state, decision);
Calculate potential penalties of (state, decision);
Next state ← transition(state, decision);
Calculate value of next state = sum over each tank of value function(next tank states);

end
Choose candidate decision with highest (direct profit - penalties + γ * value of next state);
Next state ← transition(state, chosen decision);
State ← next state;

end
return Single tank value function, multi tank production schedule

5.3.3 Key algorithmic elements

Value function

One of the biggest focus areas of our research has been on the implementation of a value function
approximation and which such approximation would work best, given our intuition about the
optimization problem at hand.

Neural Network

We have implemented and tested different deep feedforward neural networks as value function
approximations. Our primary focus has been on networks with one or two hidden layers and 20-60
nodes in the hidden layers (depending on the number of tanks) as these seemed to perform best.
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Custom value function

As an alternative to value function approximation based on a neural network, we have also tried to
design a custom value function based on our knowledge of the problem. Our primary efforts have
been testing one function based on second degree polynomials and one piecewise linear function.

Variants of the following function were used, with the idea of using a second degree polynomial to
catch the concavity of the value function in the number-of-fish variable: (PS: the function below
is only written in order to illustrate the principle and is not necessarily mathematically accurate)

V (s) =

k∑
i=0

((1 + a1sin(a2(month/12)) + a3cos(a4(month/12)))p

n∑
i=0

(−ai1wif2
i + ai2wifi + ai3)

−a5 exp(

n∑
i=0

wifi − densityCap)− a6 exp(
∑
u∈U

n∑
i=0

wifi −MAB) + C

where the a’s are the tunable parameters of the function. Again the notation partly follows
the notation defined in the extensive mathematical formulation above. The first factor is the
sine/cosine intended to capture seasonality, which is multiplied by the salmon price p and by
the sum of a second degree function of the number of fish in each weight class, where each such
number is weighted by the weight of the weight class. From this value two penalty terms are
subtracted which are designed like exponential functions in order to be differentiable at all points.
The penalty terms grow exponentially when the biomass in a tank exceeds the density restriction
(which translates to a biomass restriction given the volume of the tank) or when the total biomass
exceeds the MAB restriction. The constant term C is added to represent all future batches after
the current batch and hence is initiated with a large absolute value. The idea is to split the value
function into two parts, the value of the current standing biomass in the tanks plus the value of
all future batches. We also know that the function has some degree of concavity in the number of
fish, because, as discussed in chapter 2, there exists an optimal amount of fish for each batch.

The second custom value function applied is a piecewise linear functions of the numbers of fish in
the different tanks. The idea is to provide a more flexible function shape than a simple second
degree function that is still simpler to understand and initialize than a neural network. The
function is then split into linear segments based on both average weight of the fish in each tank
and the total amount of fish in each tank. In other words, average weight and total amount of
fish were the input features when this function was used. We tried this both with and without
penalty terms and seasonality adjustments. The drawback with a piecewise function is that more
iterations are needed for each segment’s tunable parameters to be updated sufficiently (need to
visit each segment of the piecewise function sufficiently many times).

Policy implementation, how decisions are made in each time step

The decision space for a single fishtank in our problem is quite complex compared to typical ADP
and RL applications. The main complexity comes from the non-convexity and binarity of the
decision space, meaning that if the tank is empty, the decision is about the amount of smolts to
release and if the tank is populated, the decision is about harvesting. In typical and comparable
ADP/RL applications, decisions are more low-dimensional, such as deciding the flow of a fluid
through a system (control theory) or deciding which direction to walk in (RL for games). The size
of the decision space in the problem studied here is enormous. When deciding about smoltrelease
for an empty tank, one could in theory release every amount of fish from zero to the constant
”Maxfish”, which is the highest number of fish we consider relevant to consider, typically in 6∗105

scale for the facility parameters applied. This gives in theory S ∗Maxfish number of possible
decisions to consider for each tank, where S is the number of different smolt types. When deciding
about harvesting for a populated tank, one could in theory choose to harvest any number of the
fish in the tank, starting from the largest weight class and moving down the weight classes. This
gives in theory Maxfish number of decisions to consider for each tank with harvest ready fish.

Furthermore, because of the decomposed structure of the problem, the possible decisions for each
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tank, as described above, needs to be combined with possible decisions for all the other tanks in
the facility to make up one overall decision. By this we mean that to find the globally optimal
overall decision for a 2-tank facility when, say, one tank is empty and one is populated, we need to
consider every combination of relevant decisions for the two tanks. This means for every amount
of smolts considered released in the empty tank, one needs to combine this with every relevant
amount of fish harvested from the populated tank. The amount of decisions that would need to
be evaluated in theory grows exponentially with the number of tanks. When the amount of tanks
increases to e.g. ten tanks, the theoretical amount of decisions to consider becomes in the order of
≈Maxfish10.

In our problem, we do not have a ”clean” analytic function for the policy, that is, the decision to be
made given a state. In other types of dynamic programming applications one makes the decision,
implements the policy, by taking the derivative of the cost-to-go function (a common name for the
whole right-hand side of Bellman’s equation) with respect to the decision variables. In our case,
this is not possible, and we have to do a ”manual” evaluation of each relevant decision we want
to consider, meaning evaluating Bellman’s optimality criterion for each relevant decision. That is,
for each state and possible decision to consider, we calculate both the direct/immediate profit and
the value of the next state one would end up in if making the actual decision, and then add these
together (only multiplying the next state value by the appropriate discount factor) and use this as
a basis for comparison with the other relevant decisions we want to evaluate. We then choose the
decision with the highest such value.

Because of the sheer amount of decisions to consider for each tank and the exponential nature
of the combination of single tank decisions into an overall decision, we have to make heuristic
simplifications in our algorithm. This speeds up the algorithm and makes it less computationally
demanding, but also potentially goes at the expense of optimality. All of the three measures below
are discussed further in section 7.1.

First, we reduce the amount of relevant harvesting decisions to consider by only considering har-
vesting whole sales classes of fish. This means we have abstracted up from individual fish-level
and further up from weightclass-level and to sales class level. Only in the special case of hard
constraints where harvesting all the fish in the sales ready sales classes will still not satisfy the
density or MAB constraint in the next state, we consider harvesting not sales ready fish, and then
relevant decisions are selected on weightclass-level, starting from the largest weight class just before
the fish are sales ready.

Second, we reduce the amount of smolt release decisions to consider for each empty tank to certain
points in the interval [0,Maxfish].

Finally, when combining the relevant decisions between different tanks, we have tried to exclude
”irrelevant” combinations of singletank decisions before evaluating the decisions. This has the
largest impact on computability, because of the exponential behaviour of the combination of single
tank decisions into an overall decision.

Value function training method

Introductions to ADP/RL algorithms often present temporal difference learning, as described in
chapter 3.3.5. This means that during the forward pass of the algorithm, the value function is
trained at every time step with target equal to the temporal difference target.

In our problem, which in theory is an infinite horizon problem, we have designed a training algo-
rithm with balances the low variance of temporal difference (0) learning and the low bias of Monte
Carlo methods. Our method resembles TD(n)-learning with n-step bootstrapping, where the n
varies. In our algorithm, the agent first ”plays” through the forward pass, which is an episode of
salmon farming of a set length T, say, 60 months, using the current sampling policy as decided by
the value function. In each step the agent gathers an ”experience”, and saves all the experience in
a storage called ”episodedata”. One experience is comprised of a state, a decision, a corresponding
immediate profit and the corresponding next state. There is then no training during the forward
pass. After the forward pass is done, the algorithm then selects a number (a predefined sample-
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size) of random ”experiences”/time points from the episodedata gathered in the forward pass, i.e
a set of random numbers in the interval [0, T ]. For each of the selected ”training times” t, the
algorithm takes the corresponding state (the state the agent was in at that time step), and creates
a corresponding target for the value function according to the following expression:

rt + γrt+1 + γ2rt+2 + ...+ γ(T−1)−tr(T−1) + γT−tV (ST ) (5.16)

Where γ is the discount rate and ST is the state at time T, the end of the episode. rt is here
simplified notation for R(st, at), where st and at are the state the agent was in and the action
the agent took (according to the sampling policy) at time t in the respective episode/iteration.
The idea is based on TD(n)-learning, only that in our case, the n parameter is equal to the time
remaining until T for each of the selected training times.

The rationale behind this training method is primarily faster convergence, because the bootstrap-
ping term becomes less significant because of the discounting (lower bias), and more emphasis is
put on the more recent reinforcements/direct profits. This also speeds up convergence because, say
for a given state in a tank where the fish are not yet harvest ready, the immediate profit will be
negative because of the feedcost. Training on a temporal difference target on this state alone would
then give a negative reinforcement to the value function. For most states, except the ones where the
fish are harvested, reinforcements would be negative, but with a small magnitude. This lays greater
requirements on the careful tuning of hyper parameters such as the learning rate and the type of
gradient descent algorithm used. With our training, less training is needed and the convergence
is more robust because the reinforcement is more ”detailed”/specific, meaning the reinforcement
takes into account what will happen several steps in the future. We still need bootstrapping in the
algorithm though, i.e. we cannot use traditional Monte Carlo learning because we have an infinite
horizon problem and Monte Carlo learning only applies to episodic problems. Because we have an
infinite horizon problems, the parameters/weights of the value function approximation has no time
subscript, and we can therefore train/adjust the same parameters with different training targets.

For the actual regression done to fit the value function approximation to the targets, we use the
PyTorch toolkit for this and build the function approximations in a way that we can use the
automatic differentiation and adjustment tools that PyTorch offers. What is done in principle is
simply for each of the selected training times calculating a loss function, which is the error between
the current value function prediction of the value of the relevant state and the calculated target.
This loss function is then differentiated with respect to the parameters of the value function to find
the gradients with respect to each parameter. Each parameter is then updated by taking a step in
the direction of the negative gradient in order to minimize the loss. While most of the algorithms
follow this basic principle, PyTorch offers many variants of the ”optimizer” (the function actually
updating the parameters after the gradients are calculated), such as Adam, RMSprop and SGD.
These differ mainly in how much they use momentum and other methods to adjust the step size.

Exploration strategy - sampling policy

In a salmon production schedule, there are certain ”key decision dimensions” which by and large
determine the production schedule:

• The number of smolts released in a batch

• The number of different harvests each batch is divided into and the average weight of the
harvested fish in each harvest

• The coordination of different tanks, i.e. when smolts are released in the different tanks

Realizing this, and that these are the dimensions along which exploration needs to be done, is the
most innovative and problem specific breakthrough we have had in applying ADP/RL to salmon
production scheduling. We believe this represents a key insight.
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The above three are the primary dimensions of the decision (and state) space along which we
want the agent to explore. These dimensions are somewhat independent from each other, meaning
that in a certain state (e.g. all tanks empty), only the number of smolt and tank coordination
dimensions might be relevant, while in another state (e.g. all tanks have sales ready fish), only the
harvest weight and tank coordination dimensions are relevant. This dynamic, where exploring is
done along certain dimensions which can be (partly) independent from each other, is quite specific
to our problem, in an ADP setting.

This has been exploited by implementing a more advanced exploration strategy than the common,
simple ε-greedy strategy which most ADP applications apply. The sampling/behaviour policy of
our ADP/RL agent is such that in ε percent of the time steps, the direct profit function adds an
exploration bonus (often called intrinsic motivation in RL literature) to the evaluation criterion
(the Bellman equation) of each decision. The exploration bonus we apply is count-based, and
hence resembles the Upper Confidence Bound (UCB) method (Silver (2015)). Shortly speaking,
the algorithm divides the number of fish released, the average weight of each batch and the absolute
difference in average weight between the different tanks into three sets of intervals. The ADP/RL
agent then keeps track of how many times the agent has been in or taken actions which correspond
to each of these intervals in each of the three dimensions. In ε percent of the time steps, the
ADP/RL then includes an exploration bonus in the evaluation of each relevant decision which
is inversely proportional to the amount of times the relevant exploration dimensions have been
explored, raised to a power between 0 and 0.5 (λ). The exploration bonus added to the evaluation
of each decision is then

bonus ∗ 1

nδ
(5.17)

Where n is the number of times, say, between 50,000 and 75,000 smolts have been released. The
bonus is initialized as a very large sum with value larger than the largest imaginable harvest
revenue. This has the added effect of initializing all states with a high value, another exploratory
principle discussed in section 3.3.2.

This exploration strategy resembles the Upper Confidence Bound method in that it favours states
which the agent has visited few times, i.e. has ”little knowledge and is curious about”. Over time,
the exploration bonus becomes relatively smaller as the estimate of the true value of the state
(hopefully) gets better. Also, after each iteration, ε is decreased slightly, such that towards the
end of the training, i.e. in the last iterations, the sampling policy is greedy/exploitive almost all
of the time. The sampling policy then converges towards the target policy (see section 3.3.3).
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Chapter 6

Model evaluation

In this chapter we will evaluate the performance of the ADP/RL model, both qualitatively and
quantitatively, versus a MIP model for the deterministic version and a rolling horizon model based
on the MIP model for the stochastic version, respectively. We will also use the rolling horizon
model to perform a test to determine the value of stochastic solution of the salmon production
scheduling problem with respect to price uncertainty.

The results by the ADP/RL model presented here are the results by the hard constraints variant.
The soft constraints variant generally performed slightly worse.

All calculations were run on the Solstorm computational cluster belonging to NTNU. The specific
nodes used had the following hardware specifications:

Type Dell PowerEdge R640
CPU 2x 2.4GHz Intel Xeon Gold 5115 CPU – 10 core
RAM 96Gb

Table 6.1: Hardware specifications

6.1 Qualitative assessment

On the next page is a screenshot of a production plan for a 30-month period for 2 fish tanks in a
constant-price scenario. It is one of the best-performing schedules we have been able to produce
using the ADP/RL model.

The illustration (rotated 90 degrees), shows the time period (month) along the horizontal axis,
starting from month 0 on the left, and the average weight of each weight class on the vertical axis,
starting from 50 grams and going up to 7 kilograms. The upper half of the plot represents the
first tank, the lower the other tank. Each number represents the amount of fish in that weight
class in that time period in that tank. The smolts are already from delivery distributed around
an average weight of 100 grams with a coefficient of variation equal to 10%, which is common in
real production. As is also common, and given by the growth model, the fish grow into new weight
classes and get a wider distribution as time goes and genetic differences come into play. The blue
marked cells indicate where, when and how many fish are harvested. The reason the growth is not
the same all the time, but sometimes steeper and sometimes less steep, is the changing season and
that fish grow faster in warmer water during summer time and slower during winter.

The following are some key insights we can draw from qualitative inspection of this production
plan regarding the performance of the ADP/RL model.

The ADP/RL model seems to release a reasonable amount of smolts in each batch, and also keeps
each tank on a contionuous production cycle, meaning that new fish are released as soon as a
batch is harvested. This last point means the model has ”understood how valuable biomass is”.
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A reasonable amount of fish means the amount which allows the model to utilize the density and
MAB restrictions to a (relatively) high degree. This will be discussed further in chapter 7. In
terms of the harvesting of each batch, it is more difficult to say without deeper analysis whether
the harvesting is optimal, i.e. whether for example it would have been better to let the fish grow
to a larger weight. If that is the case, the model has not in this case been able to learn that
delaying harvesting and reaching a state with fish with larger average weight would have been
better. However, a relatively low price differentiation between the sales classes of 2% indicates
that harvesting early is more optimal, and this being a typical price differentiation seen in the real
market, the harvesting done here is qualitatively similar to harvesting schedules in real production.

Figure 6.1: Example production schedule by our ADP/RL model
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The MIP model solution for the same problem parameters (i.e. the optimal solution, not shown
here) has almost the same way of harvesting the batches, but releases slightly more fish and is
better able to utilize the density restriction and the MAB capacity for a longer time, meaning
it lies closer to these limits for longer periods. One clear difference is that the two tanks in
the ADP/RL solution are on a synchronous production cycle, while for the optimal solution. The
reason they are is that the ADP/RL model only releases so many fish that even the sum of the tank
biomasses never exceeds the MAB. The MAB quota in our problem parameters is, and typically
would be for such a facility, set to slightly less than the sum of the tank density capacities. Again,
we repeat how the tank density restrictions translates into a biomass restriction given the tank
volume. In other words, to be able to fully utilize the capacity of the facility, the optimal solution
has to put the two tanks on asynchronous production cycles, meaning they are in opposite phase
with each other and fish are released in one tank halfway into the batch cycle for the other tank.
This is a challenging realization for the ADP/RL model to make, that in order to fully utilize the
capacity of the facility by releasing and harvesting even more fish, the model has to put the two
tanks on different cycles. This model version has not been able to learn that yet. This will be
discussed further in section 7.3.3.

6.1.1 Model learning development

Figure 6.2: ADP/RL model development over
75,000 episodes: One episode equals 4.5 years of
salmon farming, on the y-axis is the total profit
the model is able to earn over this period

The graph on the right is a plot showing the de-
velopment of the ADP/RL agent’s performance
while ”out farming salmon and earning prof-
its”. The upward trend which can be seen is
in fact proof of machine learning. The plot is a
scatter plot, plotting the total cumulative profit
(not discounted) earned in the episode in NOK
on the y-axis and the episode/iteration num-
ber on the x-axis. Our ADP/RL agent starts
out with a randomly initialized neural network
value function approximation and uses this in
the policy (i.e. a value function approximation
policy (W. Powell (2011))). In other words,
the only thing making the agent able to per-
form better is that the neural network is learn-
ing and improving its estimate of which states
are the most valuable and hence which states
it ”chooses to go to” (in our case, for example,
what number of fish to have in a batch are most valuable). The main reason for the high variance,
i.e. the seemingly large spread in earnings (earnings ranging from 200 to 600 MNOK even for a
short iteration number range), is that we found the far most effective learning occurs when each
episode is initiated from a random start state. A random start state means with a random number
of fish at a random size in each tank. Because each episode contains 5 years of salmon farming,
each tank only has time for around 3 batches harvested, but each harvesting is so valuable in
terms of revenues (almost 100 MNOK) that only having time for one more harvesting, which for
example might happen if the episode starts with a batch already at harvesting ready weight, the
total profits earned will be much larger than an episode starting from a state of empty tanks, even
if the agent’s choices (actual performance) are the same. For example, with a given starting state
and a given set of choices, at the end of the 5 years the ADL/RL agent might have a fish batch
in a tank which is almost ready for harvesting, but not quite. This means the revenues from this
last batch will not be counted in the total iteration profit, but the feed and smolt costs related
to it will. The variance in earnings per iteration can also be attributed in part to the random
exploration in the sampling policy. Each time step, an exploratory action is selected if a random
drawn number between 0 and 1 is below a certain threshold (an important hyper parameter), and
this can cause some iterations/episodes to contain more random, exploratory actions than others,
and exploratory actions are by definition not exploitive (not ”optimal”).
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6.1.2 Model scalability - runtime

Model runtime is not as obvious a measure for an ADP/RL algorithm as it is for a MIP model.
A MIP model is less tuneable and will generally take a relatively specific amount of time to
reach a certain optimality gap (we use 1% gap). ADP/RL is a heuristic, which does not provide
an optimality gap feedback during runtime, so it is generally not possible to know how close to
optimality the algorithm and hence when to stop it. As will be discussed further in the next
chapter, ADP/RL runtime can be seen as the time spent on each function training/iteration
multiplied by the number of trainings/iterations run, the latter of which in turn is a decision
totally up to the modeler and is dependent on how well and quickly the algorithm converges, which
varies significantly with a large set of algorithm hyper parameters/variants (such as the learning
rate). In the algorithm configuration applied for most of our results, which we found to give the
most promising results, we typically applied ∼ 50, 000 iterations. For a different configuration of
algorithm parameters, fewer iterations might be sufficient. In the case of our ADP/RL algorithm
then, we define the runtime as the time it took to run the amount of iterations which seemed
to give the best results given the specific algorithm configuration applied, i.e. a more subjective
measure.

Nevertheless, the runtime of our algorithm is an important measure because the ability to solve
full-scale salmon production scheduling problem instances in an acceptable time was one of the
main motivations for applying more advanced optimization methods than MIP. Recalling from our
project thesis, and confirmed with other salmon production scheduling researchers’ experiences,
MIP models become computationally intractable already for 3 or 4 fish tank, detailed problem
instances.

Some insight into the scalability of our ADP/RL algorithm runtime versus a MIP model for a
5-year production schedule is presented below:

Solution time in seconds
Method 1 tank 2 tanks 10 tanks
MIP < 100 < 2000s Unsolvable*
ADP/RL < 50 000 (1 per iteration) < 100 000 (2 per iteration) < 1 500 000 (30 per itera-

tion)

Table 6.2: Illustration of total solution time in seconds (and time per iteration for APD/RL model)
for different problem instances. Only illustrative, as multiple problem parameters and ADP/RL
algorithm parameters greatly affect the results

*Not solvable within reasonable time (more than a week)

We point out how this optimization problem is a long-term strategic planning problem and not an
operational problem. In other words, this problem is not intended to be solved every day, instead
it might go months between each time the production schedule has to be reviewed due to e.g.
changes in exogenous circumstances. Therefore, after discussing with industry professionals, we
believe a solution time of less than 1-2 days would be acceptable.

Also, while there is limited room for speeding up the MIP model, as the Gurobi solver is highly
optimized already, there are many ways to vastly speed up our ADP/RL model, for example by
something as easy as writing the model in a faster programming language like C++ instead of
Python. We will discuss this further in the next chapter.
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6.2 Benchmarking - deterministic optimization

The following table compares how much the ADP/RL model is able to earn over a 40-month plan-
ning to the optimal schedule found by the MIP model for a 1-tank and 2-tank facility, respectively.

Profits from deterministic solution
Method One tank Two tanks
MIP 139 MNOK 268 MNOK
ADP/RL 118 MNOK (85%) 211 MNOK (79%)

Table 6.3: Summary of profits earned in the deterministic, constant-price problem version by the
MIP and ADP/RL models for the one and two tank problems, respectively

6.3 Benchmarking - stochastic optimization

The following graphs are scatter plots of the rolling horizon model and ADP/RL model perfor-
mances (profits earned) evaluated over a set of 1,000 price realizations generated by the price
model. On the y-axis is the total, discounted, cumulative profits earned by the model for the
respective sample, and on the x-axis is the average price in the sample.

Rolling horizon

Figure 6.3: Profit vs price for one tank stochastic solution. Regression line plotted in red
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Figure 6.4: Profit vs price for two tanks stochastic solution. Regression line plotted in red

ADP/RL

Figure 6.5: Profit vs price for one tank stochastic solution. Regression line plotted in red

65



Figure 6.6: Profit vs price for two tanks stochastic solution. Regression line plotted in red

Profits from stochastic solution
Method Tanks Avg profit Regression line slope
Rolling horizon

One 120 MNOK 2.7 MNOK
Two 270 MNOK 6.0 MNOK

ADP/RL
One 114 MNOK (95 %) 3.4 MNOK
Two 210 MNOK (78%) 6.4 MNOK

Table 6.4: Comparison of profits earned by rolling horizon and ADP/RL models, averaged over
1,000 price realizations

Comments on benchmarking results

The ADP/RL model earns on average 95% and 78% of the rolling horizon model when evaluated
over (the same) 1,000 price realizations for the single tank and multitank problems, respectively.

That the ADP/RL model is closer to the optimal solution for the single tank problem than the
multitank problem is in line with expectations. As will be discussed further in 7.3, the multitank
problem has an additional feature that in order to exploit the facility capacity to the maximum,
the schedules need to asynchronize the individual tank cycles. This is an additional challenge for
the ADP/RL model.

The fact that the stochastic ADP/RL model performs better than the deterministic ADP/RL
model in the single tank problem in relative(!) terms is attributed mainly to the weaknesses of
the rolling horizon model versus the MIP model (see section 7.5). However, it could also suggest
that the ADP/RL is able to take advantage of the price variations quite good in the single tank
problem, at least better than in the multitank problem.

The regression slopes were calculated to indicate to what extent each model is able to benefit from
a higher average price. The number can be interpreted as the additional profit the model earns for
1 NOK/KG higher average price. We initially suspected that the rolling horizon model was better
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able to take into account the price variations, in fact we have qualitatively seen that it is, so it is
therefore assumed that the reason the ADP/RL model has higher regression derivatives is due to
a worse fit of the regression line to the ADP/RL results. It can be seen from the ADP/RL plots
that for a small subset of the samples, the model seems to score significantly worse compared to
the otherwise linear trend, something which ”disturbs” the regression line and causes the higher
regression line slope.

6.4 Value of stochastic solution

To investigate the value of stochastic solution (VSS) with respect to price uncertainty, we use
the rolling horizon model. This is because in its current state, this model does not only give
closer-to-optimal solutions than the ADP/RL model but also seems to be more sensitive to price
variations/better at taking the price variations into account. The idea is to investigate whether the
stochastic solution provided by the rolling horizon model in fact earns more than the deterministic
solution methods when evaluating over the same 1,000 realized price samples.

For this particular part of the master thesis, we ask the interested reader to also read our project
thesis leading up to this master and to see the results in context with each other. The project
thesis included an in-depth discussion of the effect of price seasonality on the optimal production
schedule for a salmon producer. Here, the large influence of the starting point of the year on the
quantitative results, as well as the relative effect of different seasonal amplitudes are discussed,
factors which are very much relevant for the particular quantitative results in this section as well.
However, as this section has only been a minor focus in this master thesis in order to tie up a loose
end from the project thesis, we will not be going thoroughly through this here, as that requires
lengthy, in-depth discussions.

We test three cases:

I. Deterministic solution with respect to a constant price. This solution is the closest (not
completely equal) to the equivalent solution simply maximizing biomass output instead of
profits

II. Deterministic solution with respect to the price expectation given the price in the first period,
using the forward curve model

III. The rolling horizon model, solving each subproblem with respect to the relevant price expec-
tation, implementing the first two steps, then seeing how the price develops and repeating.
This is the same as was used in the previous section to benchmark the stochastic ADP/RL
model

Average earnings over 1,000 price realizations
Case 1 tank 2 tanks
I 121 MNOK 213 MNOK
II 126 MNOK 270 MNOK
III 120 MNOK 270 MNOK

Table 6.5: VSS research results using MIP and rolling horizon averaged over 1,000 price realizations

Implications

The following are the key takeaways from the above results.

• The single tank problem results suggest that the value of stochastic solution is very low. The
seemingly slightly negative VSS is attributed to sources of error and a small loss of optimality
in the rolling horizon model compared to the MIP model.
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• The results suggest that the VSS is larger for the multitank problem than for the single tank
problem, which is in accordance with the results from the project thesis. It takes very large
price variations for the optimal single tank schedule to deviate from a continuous production
cycle starting ”straight away”. For the multitank problem however, the coordination aspect
creates an interesting trade-off between utilizing the MAB quota and receiving high prices
already at quite small price variations.

• For the 2-tank problem results, the difference between (I) and (II) indicate a large value for
the salmon farmer to time production against price seasonality, which is a confirmation of
the results from the project thesis.

• The VSS seen by comparing (II) and (III) for the 2-tank problem indicates a low value of
stochastic solution given that the salmon farmer is already planning to harvest as much
biomass as possible during the high price season.

Critical reflections regarding the validity of these results will be discussed in the next chapter.
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Chapter 7

How ADP/RL works for salmon
production scheduling

7.1 Vast action space - Computational time

The action space for a multitank facility grows exponentially with the number of tanks. This
is a challenge because our algorithm chooses a decision given a particular state by evaluating
each individual relevant decision ”manually”. The computational time increases greatly with the
number of relevant decisions to evaluate, as will now be explained. Our algorithm iteratively
gathers training data by ”playing salmon farming episodes”, trains on this data and then performs
this for many iterations over and over. The total computational time is thus a function of 1) the
time spent on data gathering and value function training within one iteration respectively, and of
2) the total number of iterations needed before convergence is satisfying. Of the time spent one
episode, > 95% of the time is spent on data gathering, i.e. ”playing salmon farming”. Within the
data gathering, the RL agent moves forward in time, and for each time step (and state) the agent
is in, it first has to generate the relevant potential decisions to consider and then evaluate each
of these. Each decision is evaluated using the Bellman equation as explained in earlier chapters.
Within each such timestep, generating the relevant solutions takes < 10% of the time, depending on
the amount of decisions to generate and evaluate. While one decision evaluation takes vanishingly
little time (0.002 seconds with our simple, not-particularly-fast Python implementation), the time
to evaluate all relevant decisions grows large when the number of decisions increases exponentially.
Even such a coarse decision space division as only five relevant decisions, would for a 10 tank
problem give theoretically 510, almost 10 million, decisions to evaluate.

This challenge remains by and large unsolved for our application of reinforcement learning. There
are however several approaches to tackling this. These can be divided into three main categories:
1) Reducing the number of decisions to consider (at potential expense of optimality), 2) selecting
decision in a smarter way than manually evaluating each one or 3) speeding up the computation
either algorithmically or programming wise.

7.1.1 Reducing the number of decisions

To reduce the number of decisions to evaluate, one can make the decision space coarser, i.e.
restricting the possible model decisions. For example, instead of considering every number in the
interval [0,Maxfish] (Where Maxfish is the maximum number of fish we consider relevant to
even consider, which again is a function of the size and density restriction of the fish tank), one
can only consider every 5% increment in that interval. If Maxfish would equal 100,000 fish, only
considering 0 fish, 10,000 fish, 20,000 fish and so on greatly reduces the number of decisions from
considering 0, 1, 2... fish. Other smarter divisions of the intervals are also applicable, if one knows
where in the interval the optimal amount of fish is likely to be. The same goes for the harvesting
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decision, where it is natural to aggregate up to only considering harvesting whole weightclasses or
whole sales classes, rather than individual fish. Generally, we can call this different aggregations
of the decision space. This sort of simplification does however go at the expense of optimality,
because the theoretically optimal amount of fish could have been 11,253 fish, an alternative which
would not have been considered. There is therefore a clear trade-off between increasing solution
quality/optimality and reducing computational time by doing this. We will however argue that
some level of aggregation will always be applicable, because real life production does not make
it practically possible to make decisions at individual fish level. For example, when harvesting,
salmon farmers actually sort the fish by lowering a masked net into the tank with a finely set mask
size, such that only fish below a certain size can go through. Both because the salmon farmer
does not know the exact distribution of the fish batch and because not all the fish might swim
through the net, the farmer can only approximately adjust the size and number of fish harvested.
Also when ordering fresh smolt to release in a tank, the delivery of smolt from the smolt producer
usually has some error margin in terms of number of smolt. For these reasons, we argue that some
level of aggregation is always applicable and that there is only a balance/trade-off to be done.
This is however an easily changed parameter in the algorithm and therefore something which the
salmon farmer can decide in each specific situation, depending on how fast the solution is needed.

The number of decisions can also be reduced by excluding certain ”irrelevant” decisions, such as
harvesting fish before they are sales ready. This is the natural starting point when restricting the
decision space, and is what we mean by the term ”relevant decisions”.

As one decision is a combination of (sub-)decisions for each tank, one can also reduce the number
of potential decisions to consider perhaps even more by excluding what combinations of decisions
are considered. For example, one can exclude combinations of single tank decisions where one is
harvesting more fish from a tank with less biomass than from one with larger biomass. The question
is then whether or not this excludes the potentially best solution, and while it is very difficult to
prove that such a combination is never optimal, we will intuitively argue that for the vast majority
of practical situations, this can safely be excluded without measurable loss of optimality.

7.1.2 Smarter selection of decisions

In our algorithm, we generate all relevant decisions we want to evaluate and then evaluate each of
this manually by calculating their Bellman equation value. As earlier stated, this corresponds to
the general policy class of value function approximation policies, as given by W. B. Powell (2016)
in his overarching framework for sequential decision making problems. There are other imaginable
ways of doing this.

One approach would be to solve the subproblem in each timestep as a mixed integer program.
This requires a parametric value function which is linear in the decision variables (or at least one
that the solver can tackle) so that it can be put in the objective function of the program. A
neural network is, to our understanding, not applicable as a value function in such a case, while a
piecewise linear value function might be. When the number of relevant decisions to consider grows
very large, this might be preferable. This also has the advantage of always being able to solve (the
subproblem) to optimality, given the current parameters of the value function. This remains an
interesting option for future research.

Another potential approach would be to look to other sequential decision making policies which
select decisions by (in principle) taking the derivative of the value function with respect to the
decision variables and setting equal to zero. Such a policy would also belong to the class of value
function approximation policies. In our case, the challenge in doing this is that we do not have
a closed-form, concave value function which is differentiable in all points, because of the non-
convexity of the decision space. By this we mean the binary nature of harvesting versus release,
which is decided by whether or not the tank is empty. This was one of the arguments for choosing
ADP/RL (specifically a value function approximation policy). We are not aware of any other
sequential algorithms which guarantee convergence for such mixed integer non-linear problems
without proven convexity of the value function, and ADP/RL therefore remains as an applicable
heuristic.
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In his sequential decision making framework, W. B. Powell (2016) mentions three other high-level
classes of policies. These are cost function approximation policies, direct, deterministic lookahead
policies and policy function approximations and they might all be interesting to explore for this
problem as well. We believe however that cost function approximation policies and lookahead
policies are the most promising options, given that policy function approximations would quickly
become both complex and limiting for the multitank problem.

7.1.3 Speed-up of model

An advantage of our algorithm is that there are several ways to speed it up. This section is not
considering speed-up by making the algorithm converge faster and therefore need fewer iterations
(which would be an obvious way to speed up the algorithm). This will be considered in the next
chapter, and is considered a separate problem entirely, and what this thesis is mainly about. Here
we only consider practical, implementation-related ways of speeding up the algorithm, given that
the algorithm converges ”satisfyingly”, so the number of iterations are given.

One interesting approach is what is called distributed RL. By this we mean taking advantage
of several computational nodes at once, performing certain tasks in parallel. This is done in
many advanced reinforcement learning applications where training typically takes days or weeks.
There are several ways to distribute a RL model, but in our case it would be most beneficial to
gather training data by deploying several RL agents in parallel. Since data gathering is what
takes up the majority of the time in one iteration, the algorithm might keep the value function
and the value function training on one central node, while multiple agents are deployed to other
computational nodes where they ”play salmon farming episodes” and continually sends data to to
the value function training node. When the value function training node has received enough data
to calculate new targets, the function parameters could be updated and sent back to the agents.
This would be interesting in order to simply speed up the algorithm, but would probably require
significant work on its own.

Our code is written in Python and without much programming knowledge from before. Python is
known for not being particularly fast, and there is probably large speed-up potential to be gained
by e.g. writing the algorithm in C++ and optimizing it for speed. For a practical, commercial
implementation of the algorithm, this would be recommended.

7.2 Algorithm convergence - overall performance

In this section we will discuss the main factors for algorithmic convergence and performance, i.e.
how profitable production schedules the model produces. This is based on our now relatively
extensive knowledge about both salmon production scheduling optimization in general and also
about reinforcement learning algorithms and their ”behaviour”.

Broadly speaking, the biggest, most widely applicable and most favoured branch within rein-
forcement learning (and ADP) is about solving Markov decision processes by some sort of value
iteration while approximating the value function (i.e. a value function approximation policy in
Powell’s framework). At the very core of making such algorithms converge and perform are the
following four key elements:

• Exploring all of the potentially ”interesting” states and visiting them ”enough” times so that
the training algorithm can fit well to the true values of these states

• Making sure the targets provided to the training algorithm are sufficiently ”good”/correct,
at least in the long run. This involves making close to ”optimal” subsequent decisions after
visiting an interesting state in order to make the target actually resemble the true value of
that state, which can be conflicting with the first point (exploration vs exploitation)

• Choosing a value function shape which is able to (sufficiently) capture the qualities of the
optimal value function
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• Designing a training algorithm which, given a set of states and corresponding targets, is able
to adjust the weights of the function approximator so that the function actually gets better
at estimating the true optimal value of being in a state

These four elements are basically what reinforcement learning and approximate dynamic program-
ming revolves around. ”Solve these, and you have a functioning algorithm”. Much harder in
practice than in theory. Given that these elements are in place, the value function will converge
towards values of states which are such that the decision making in each time step (which takes
into account the values of resulting states) is done so that the highest values are reached in the
long run, which is the goal of the algorithm. Sadly, reinforcement learning in this general form
does not offer any convergence guarantees. Such guarantees would need to be built on a long line
of assumptions regarding algorithmic details, which in turn basically comes back around to solving
these four elements. Reinforcement learning and approximate dynamic programming is therefore a
class of methods we find have promising features in theory, but which often prove highly challenging
in practical implementation.

The first (and second) element is directly linked to the famous problem of exploration vs exploita-
tion, which was discussed in chapter 3.3.2. Deciding on an exploration strategy is an essential part
of advanced reinforcement learning, which often makes the problem one of off-policy learning. The
second element is related to the first, because the sampling policy (/behaviour policy) influences
the targets calculated (because these are calculated from ”backed-up values”). For the fourth el-
ement, almost all reinforcement learning algorithms use some sort of gradient descent algorithm,
as described earlier. PyTorch and TensorFlow are software packages intended to deal with this
point (see 3.1.2). The question is then not only which specific variant of these to use (assuming
differentiation is done correctly), but also of deciding on loss functions, learning rates and other
hyper parameters. This is much harder in practice than in theory, and is largely a trial-and-error
issue which is known to all practitioners of reinforcement learning. The specific training algorithm,
i.e. what types of targets to use and how often to update the value function approximation, is also
a challenge for the fourth element. This involves deciding on what type of Temporal Difference
learning with bootstrapping or Monte Carlo methods (if the problem is episodic) to use.

Our problem-specific versions of these four challenges, as well as how we have tried to tackle them,
will now be discussed.

7.2.1 Hyperparameter tuning

Typical hyper parameters in an ADP/RL algorithm include the following:

Learning rate

Reinforcement learning algorithms typically need very low learning rates, lower than what is ideal
for supervised learning. This is because of the moving targets and that one wants the algorithm
only over time to adjust to the trends it finds while ”playing the game”. We found that a too high
learning rate both caused oscillatory, unstable performance and possibly also made the network
unable to capture the finer non-linearities (the concavity) of the optimal value function. We found
that a learning rate in the order of 1× 10−3 to 1× 10−5 seemed to give more robust results for
between 1,000 and 100,000 training iterations.

Number of iterations/training episodes

The number of iterations to train the network are closely related to the applied learning rate. The
following graph shows the improvement of the model for a 2-tank facility over 12,000 episodes:
This is the same type of graph that was explained in 6.1.1. First, the ”score” in this graph ac-
tually means the total (discounted) profits the agent was able to earn in each episode, meaning
that the model was able to earn at most ∼ 700 MNOK during this training. Second, the large
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variance in the agent performance is largely due to the random starting state for each episode
and due to the random exploration in the sampling policy. Each episode here only lasts 52

Figure 7.1: Algorithm score development graph
example for one run of 12,000 episodes

months, meaning that the agent only has time
for 2-3 full batch cycles. Both how many
batches the agent has time for and how soon
the first revenue comes in has a large influence
on the total profits of the episode because of the
discounting of the profits. This was explained
in more detail in 6.1.1. The important point
however is to see how the algorithm, for this
set of hyper parameters and this sampling pol-
icy, behaves and actually ”learns somethings”.
The slow, but steady improvement in perfor-
mance (the trendline/moving average line one
can imagine being drawn in the plot) is what
we want to see. This graph indicates that more
iterations should be run with the same hyper
parameters, which is what we did. When it
comes to the specific slope of the improvement,
this is very problem specific and algorithm spe-
cific, and remains one of the ”black box workings” of reinforcement learning algorithms. In our
case, there is a definitive limit to how much it is theoretically possible to earn during an episode,
which probably lies around the maximum profit earned here (∼ 700 million NOK). Naturally, im-
provement towards this theoretical optimum slows as one gets closer. While understanding exactly
how convergence/learning will occur for a given set of algorithm and problem parameters is virtu-
ally impossible, investigating this development graph can give important clues as to the tuning of
the algorithm.

Momentum factor

For the training of the neural network, i.e. the adjustment of the network parameters, momentum
is a potentially interesting factor to add to the function parameter updates. Momentum basically
adds another term to the parameter update which is a small weighted average of the previous
parameter updates, in addition to only the gradient term, intended to smooth out learning and
avoid local optima. We found that when we did not apply any smarter exploration algorithms to
the algorithm and/or the learning rate was too high, momentum could help avoid the algorithm
too quickly converging towards a negative fish value if the agent received large penalties. However,
once we had stabilized the algorithm and found satisfying performance in other ways, we found
that adding momentum to the parameter updates seemed to have a counterproductive effect on
the learning. This could be because of a relatively large amount of ”noise” in the targets, which
when combined with momentum seemed to make the algorithm get ”stuck” without improvements
quite easily.

Discount factor

The discount factor is one of the most important ”tools” for making reinforcement learning al-
gorithms work. Because of our training algorithm design, and the way we calculate our targets,
the discount factor basically decides how much weight to put to each direct profit earned in the
subsequent time steps. It is well known that lowering discount factor in many cases makes ADP
algorithms converge more quickly (W. Powell (2011)). This depends on the nature of the problem
but is due to the fact that while all future rewards should be counted in the decision, often sat-
isfyingly good decisions are found easier (when the value function estimates are inaccurate) when
putting more weight on short-term rewards. It is important to note that the discount rate both
affects the decision making in each step (through the Bellman optimality criterion) and the value
function training targets. While the discount rate in problems like the salmon production problem
have linkage to the concept financial time-value of money, including a discount factor less than 1
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is a general way for ADP/RL algorithms to make the value function (and the Bellman equation)
converge to a finite sum.

In the case of salmon production scheduling, an interesting dynamic is the following: The value
function should in theory incorporate all future profits earned starting in a state and behaving
”optimally”. In salmon production however, it is often more useful to think in terms of batch
cycles than one step profits. The value function for the single tank problem (and the multi tank
problem) can therefore be divided in two terms: first, the value of the fish that are currently in
the tank, i.e. the currently ”active” batch, and second, the value of all the subsequent batches.
While the order of magnitude of the value function depends on all the future batches as well,
the changes in the value function for different states is mostly related to where in the cycle the
current batch is. And more, the optimal decisions to perform in a given state seems to by and
large be guided by estimating the correct value of the current batch and is less dependent on
estimating the correct value of the subsequent batches. Because we know that batches typically
take 15-22 months, adjusting the discount rate just so that the harvesting revenue at the end of
the batch gets sufficient ”weight” but without getting too much ”disturbed” by the subsequent
batches seemed to give more robust and quick convergence. A discount factor in the order of 0.92-
0.97 seemed to work best. The obvious drawback with adjusting the discount factor using in the
algorithm away from the correct financial discount rate is that in theory, the optimal production
schedule is dependent on the financial discount rate. (E.g. higher discounting means one wants
to harvest a batch sooner.) In ADP/RL models where the discount factor is adjusted, this effect
is lost. Luckily, the loss is quite minimal in our case. Nonetheless, ADP/RL modelers typically
distinguish between the theoretical financial discounting rate and the algorithmic, practical ”future
significance” discounting factor.

7.2.2 Exploration vs exploitation strategy

The innovative and problem specific exploration strategy we have achieved the most promising and
robust results with was explained in 5.3.3.

The count-based exploration strategy we implemented had the effect of always making sure that
the algorithm had tested the different alternatives ”enough times” and that at least no alternative
was left unexplored, which is what one generally wants. However, the great ADP/RL challenge
of exploration vs exploitation is not only about ensuring sufficient exploration (that would have
been easy), but about ensuring the proper balance between exploration and exploitation. In order
to estimate the true value of a state, the sampling policy ideally should make a long line of
optimal decisions after visiting the state one wants to investigate, because the optimal value is by
definition dependent on subsequent optimal actions. Our exploration strategy does not involve any
randomness in it’s typical sense, instead it simply for a long time (many iterations) makes sure all
alternatives are ”tested” a certain number of times. The balancing act therefore comes in tuning
the sizes of the exploration bonuses and, more importantly, the ε parameter which determines what
share of time the exploration sampling policy is used vs the exploitation sampling policy (i.e. the
greedy policy). This is similar to the issue of the standard ε-greedy policy and is closely related
to the algorithm learning rate as well. While the problem specific exploration strategy we have
designed has been a successful measure in this thesis, further development is needed and extensions
or improvements of the strategy, for example involving some element of randomness, might speed
up or even improve convergence.

7.2.3 Value function shape

As discussed, we have focused our efforts on two types of value function approximations, both
being parametric functions. Two questions arise when deciding on such a value function: deciding
what should be the inputfeatures to the function (the ”x”) and deciding what basic shape the
function shall have.

The ”custom” value function approximation has the main advantage of faster training, i.e. faster
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convergence. The idea is that we can ”skip” a lot of the training a neural network requires only
to start approximating the shape of our problem-specific optimal value function, which we have
already decided on when we design our own value function. In the case of a custom value function,
the training time can also be considerably shortened because one then has the ability to initialize
the parameters of the function to something that one guesses is close to the optimal/true value
function. In other words, we can initialize the value function to something we believe is at least
”pretty good”. There are two main drawbacks to using a custom value function however. The first
and most fundamental is related to how such a pre-defined function will always remain limited
to the shape it has. When the true shape of the optimal value function is both unknown, highly
complex and most likely not continuous at all points, it is rather hard to ”guess” the optimal
function shape and the output space of the value function approximation chosen will (most likely)
be a restricted set which does not contain the exact true, optimal value function. If one uses a
custom value function, one typically hopes one is able to decide on a function shape which captures
the qualities of the optimal value function sufficiently to make (quite) good decisions. This is the
case for most ADP applications. The second drawback is related to practical implementation of
the function and attempting to train its parameters. Because the gradients of the loss function
with respect to the parameters typically have very varying orders of magnitude (at least when the
value function shape is not linear in the input features, a linear value function being a poor fit for
our particular problem), actually calculating the parameter updates is challenging and causes for
poor performance of the algorithm. This latter problem should however be solvable beyond what
we have been able to do, possibly with more programming expertise at hand.

A neural network has one theoretical and one practical implementation-related advantage over
fixed-design value functions, but also introduces new parameters to decide on, with limited theo-
retical foundation, in the implementation of the algorithm. The theoretical advantage is related
to the universal approximation theorem (see 3.1.1), which means that the value function in theory
can approximate any function shape. In other words, we need not worry about finding the optimal
value function shape, but we do also not need to worry about whether or not the shape of the
function becomes a ”limitation” for the function. With a neural network, you can in theory always
increase either the depth or the breadth of the network and then you are sure that at least it is
theoretically able to capture the shape of the value function. The practical advantage when it
comes to implementation is related to the extensive, well-developed software framework packages
by e.g. PyTorch, which makes training both simple and more easily optimized.

We have found that we are able to train a neural network much more robustly than a custom
value function in the case of our problem. While the neural network requires many more training
episodes, it converges more robustly and satisfyingly, and still has about the same computational
time as using a custom value function because our implementation of the custom function in Python
is not able to take advantage of the very fast underlying code for neural networks which are built in
the PyTorch tool we used. After analyzing how the parameter values change as the training goes
along for the custom value function, we are also more convinced that neural networks have more
potential in terms of reaching optimality for the salmon production scheduling problem, mostly
because of the unknown, complex shape of the true optimal value function, which most likely does
not have an ordered, ”pretty” shape.

For both types of value function approximations however, the modeler needs to decide on what
should be the input variables to the function. In our problem formulation, a state contains in-
formation regarding how many fish are in each weight class in each tank. For many ADP/RL
applications however, one attracts certain ”features” from the state information from which one
believes the optimal value can be calculated. In the case of salmon production scheduling, there
are two natural alternatives we have tested. The first is using as input the numbers in the state
information directly, i.e. having one input variable for each weight class for each tank, in addition
to the salmon price at the relevant time and the time of the year (in the stochastic model only).
The second is calculating from these numbers the total number of fish in the batch, the average
weight and the total biomass and making the value function a function of these. In the case of
the neural network we have experimented with different options for input features and found that
a smaller network with only one hidden layer and a breadth of 20-60 nodes in the hidden layer
(depending on the number of tanks) with the number of fish, average weight and biomass of each
tank, along with the total facility biomass, the current salmon price and the time of the year as
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input features performs best, suggesting that the true optimal value function could be a function
of these features alone. When using only these features, the network could be smaller (and ergo
have fewer parameters), which seemed to make the training able to concentrate on extracting use-
ful information from these features alone and thus not need more detailed information about each
weight class. An important realization here could be that having one input variable for each weight
class in each tank gives a very large theoretical input space. However, because in any relevant parts
of the state space we only ever have fish in a few weight classes at a time (because the fish have a
rather narrow distribution around an average weight and fish never are in e.g. all weight classes at
the same time), we only ever visit a very small part of this theoretical input space which the neural
network ”trains to handle”. This suggests that a deeper network is needed when using these as
input features, because a deeper network (meaning more layers) is more able to make higher-level
abstractions of the input features, and the network needs to understand that it should look at the
combinations of the different weight classes of fish and not necessarily ”base the calculation” on
e.g. single weight class variables. Deeper networks are however more challenging to train. Also,
exactly because the fish always are in some sort of distribution and hence always only are in a
few neighbouring weight class of all the possible weight classes, it is natural to assume that the
neural network will be able to extract quite much information about the value of the state from
the number of fish and the average weight alone, without being explicitly ”told” the distribution
of the fish, at least enough information to be able to make sufficiently good decisions (which is the
RL goal). Further research, which might get to an even finer/deeper level of value function tuning
closer to the optimal value function, could experiment with giving the network additional features
with information regarding the fish distribution, such as variance or median weight as well.

We would like to stress here that deciding on the depth and breadth of the neural network applied
is one of the elements which cause reinforcement learning experts to say that RL in many ways is as
much an art as a science. While the theoretical foundation for understanding how neural networks
learn is solid, actually reasoning the exact size and type of neural network to work best for any
given problem is next to impossible. Practitioners play by certain guidelines, as we have been
presented with by amongst others professor Keith Downing at NTNU. Nonetheless, what turns
out to actually work best for a particular problem and coordinating all the different decisions
of a reinforcement learning model is something that needs a combination of both deep problem
understanding and thorough RL modeling experimentation.

7.2.4 Value function training algorithm

By the value function training algorithm we mean both how the targets for the value function are
designed and calculated, how often the function parameters are updated and the method applied
to adjust the function parameters in each iteration. This was explained in chapter 5.3.3.

The targets we feed to the neural network for each training sample were explained in 5.3.3. We
found that our version of the TD(λ)-algorithm was much more efficient in training than the classical
TD(0)-learning which is typically used for illustrations of RL-algorithms. At the same time, because
we have a varying bootstrapping length, we found that not only the first time steps in an episode
could be used for training, but also using the later time steps where the bootstrapping term ”comes
sooner” is beneficial. Our findings suggest that having a varying bootstrapping length gives both
faster initial learning and less bias (as inspired by Monte Carlo approaches), but also more stable
learning will less variance than having no bootstrapping would give. Our approach is made possible
because of the infinite horizon nature of the problem.

Choosing training samples as well as the best optimizer algorithm is another element to the ”art”
of reinforcement learning. We found that using a mini-batch training algorithm where we choose
almost all of the experiences gained during the relevant episode while at the same time having an
episode length which gives time for 2-3 full batch cycles of harvesting (typically 55-60 months) is
the most efficient. It does not put too much weight on one episode, but still makes the experiences
from the episode relevant enough by at least having more than one full batch cycle. (What we
want the network to ”focus on” is how the batch of salmon develops and gives a profit). We also
found that the RMSprop optimizer by PyTorch gave the most robust learning. We cannot exclude
that other algorithms could not potentially help find better optima, but the way RMSprop uses
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a decaying learning rate seemed to be the ”safest” alternative in avoiding divergence. However,
while choosing and tuning the specific network optimizer did show performance differences for our
problem as for most RL problems, we found this had less effect on our problem than what many RL
modelers experience. We therefore do not believe this will be the most important area of research
going forward.

7.2.5 Constraint management challenges

One challenge specific to the application of ADP/RL to salmon production scheduling, is the
management of the tank density and MAB constraints. Most reinforcement learning research
does not come from an operations research background, and hence is not ”used to” this type of
constraint management. This is more common in the ADP community, but still, the nature of most
ADP applications is such that the challenge is more about finding the optimal ”balance” of the
decision variables and less about managing feasibility within the constraints. In the application to
salmon production scheduling however, the management of the tank density and MAB constraints
is essential to the problem. This is because the optimal solution typically is the one which as
closely as possible exploits these constraints, as these constraints limit the biomass output of the
facility.

There are two main ways of modelling constraints, as hard constraints or soft constraints. We have
tried both. Whether or not the constraints are hard or soft constraints in real world production is
not straight forward to answer. Physically, it is for sure possible for the biomass in the tanks/facility
to exceed the density or MAB restrictions, because these are merely restrictions imposed by the
authorities to ensure fish welfare and sustainability, respectively. The individual, actual salmon
producer’s preferences then decides whether they should ideally be modelled as hard, unbreakable
constraints or soft constraints with large penalties imposed when breached.

Modelling density and MAB constraints as soft constraints means implementing penalties in the
direct profit function for choosing decisions which send the facility into a state in the next time
period where the density and/or MAB constraints will be broken. In our model this proved to
be a great challenge for the algorithm, in the sense that the convergence was highly sensitive
to the magnitude of the constraint penalties. Too high penalties, and the value function often
converged towards that ”it is best to not release any fish at all and not risk a penalty” or, with
too low penalties, the model seemed not to care about the constraints at all. This convergence
is again strongly and in a highly complex way related to the learning rate and the exploration
strategy used. For example, a high learning rate in combination with a high penalty would give
the ”negative experiences” too large impact on the value function parameters to say that the ”value
of fish” is low or negative. Higher penalties therefore suggests lower learning rates are necessary,
but also that more clever exploration of different amounts of smolts released is necessary. Even
experimenting with these relations however, the soft constraints version of the algorithm proved
challenging. The balance here would probably need further in-depth research and more advanced
exploration strategies.

Modelling as hard constraints means removing all decisions from the ”relevant decisions” in each
state which will lead to infeasibility in the next step. This of course prevents the model from ever
breaking these constraints, but also limits the ”learning potential” of the value function, in the
sense that one ideally would like a value function which is so ”smart” and sophisticated that it can
”balance” around these constraints more delicately. It is also physically, in real production, more
realistic in our understanding to model these constraints as soft constraints with large penalties.
Our model has however performed better with hard constraints, more efficiently learning to release
the ”right amount of fish”. In this case, we shape the direct profit function to impose a large
penalty on harvesting fish before harvest ready weight (one should not harvest fish which will not
be sold as food). If the model chooses to release too many fish (in the sense that the biomass
restrictions will be met too early in the growth process), the model then has to harvest some of
the fish before they are sales ready and then receives a penalty. This way, the model seemed to
more efficiently and more robustly learn which amount of fish was the ”right amount”.
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7.3 What characterizes the optimal solution and how ADP/RL
can find it

Very broadly speaking, the optimal production schedule for a salmon farming facility is the one
which exploits the tank density restrictions as well as the MAB quota to the maximum possible
while at the same time taking into account the development of the salmon price. That is at
least true in the problem formulation/version we are looking into. Producing and selling salmon
has (historically at least) been highly profitable, and salmon farmers therefore generally want to
produce as much biomass as possible and also to sell the salmon in the high price periods. The
tank density restrictions and the MAB quota are therefore essential to the problem, as these are
what limit the output of the facility.

Salmon farmers try on a weekly, monthly or yearly basis to figure out what is the best production
schedule. There are then, as discussed also in 5.3.3, three key decision dimensions which by and
large determine the production schedule:

• The number of smolts released in each batch

• How to harvest each batch, i.e. when to harvest, at what weight and in how many turns

• The coordination of the batch cycles of the different tanks, i.e. when fish are released in one
tank versus in the others

These are the decisions which together with a growth model forms a production schedule and
therefore these are the decisions the ADP/RL modeler needs to figure out how to solve. We will
now, for each of these, discuss an ADP/RL model’s ability to find the optimal decision with respect
to these three dimensions.

7.3.1 The number of smolts released

One important insight is that if there was no density restriction or biomass restriction, there
would, in each specific situation, be a theoretically optimal harvesting weight. This is because at
one point, the feed cost and added time discounting of the harvesting revenue would outweigh the
added biomass (which is marginally decreasing) from fish growth and the higher price per kg for
higher sales classes (only up to ∼6 kg). Additionally, the market does not necessarily want as large
fish as possible, and most of the demand for salmon is for fish between 3 and 6 kg. So there exists
a theoretical ”optimal harvesting weight”. However, in real land based salmon production, the
tank density restrictions makes the situation more complex than this. When planning production
of a single batch of fish, the salmon farmer then has three options. Theoretically, one could release
so few fish in the tank that even at the optimal harvesting weight, the tank density restriction is
not met. Alternatively, one could release more fish so that the fish would need to be harvested
before this theoretically optimal harvesting weight (because the density restriction is being met).
Finally, one could try to balance these so that the density restrictions are met exactly when the
optimal harvesting weight is reached. It turns out, as all salmon producers have figured out and
as our mixed integer programming solving a small problem version to optimality has showed, the
balancing option is better. This is due to the marginally decreasing value of larger fish. This
however involves a careful balancing in each situation, because the question of how many smolts
to release directly relates to the weight of the fish when they have to be harvested. Too many fish,
and some might even have to be harvested before they reach sales ready weight (∼3 kg), and this
is very undesirable both for ethical and economical reasons. (Economically because one then has
had to pay smolt costs and feed costs for fish one cannot earn revenue from). The optimal solution
would be to release so many smolts that the density restrictions are exactly met when the fish
reach the weight where (ideally, according to the balance between added biomass and increasing
feed costs described above) either the whole or the largest part of the batch is harvested.

The number of smolts therefore very directly relates to the utilization of the tank capacities and
therefore to the optimal production schedule. One unequivocally essential aspect of the optimal

78



value function is then that it is concave in the number of fish in a tank. Our efforts have shown
that the value function therefore needs to have some sort of non-linear, concave (at least in the
number-of-fish dimension) shape. If a custom function with a pre-determined shape is applied,
then one of the ”tasks” of the ADP/RL algorithm is to move the (local) maximum (”top”) of this
function to where the optimal amount of fish is.

Neural networks on the other hand, have the interesting property that they can (in theory) ap-
proximate any function shape because of their inbuilt non-linearities (see background chapter).
They are however initiated randomly. A neural network value function therefore has some other
interesting requirements for the training. First, the network must ”understand” that the value
function should not be linear and/or constant such that all fish amounts are associated with either
a positive or a negative value. One key learning has been that if the training algorithm gets too
many targets with large negative values early in the network training (for example if it releases too
many fish and gets a large penalty for either harvesting too early (hard constraints model) or for
breaking the density constraint (soft constraints model)), then the network often very quickly con-
verges towards parameters which say that all numbers of fish have a negative value. The ADP/RL
agent then seems to quickly decide that ”it is better not to release any fish at all and not risk the
penalty”. The exploration strategy therefore needs to, especially in the early iterations, explore
”good” numbers of smolts released ”enough” times.

Second, the network needs to learn about the convexity of the optimal value function, and to
be (ideally) tuned very finely to find the maximum value with respect to the number of smolts
released, which goes back to the discussion above. This brings us to the second key learning in
this respect; how finely and robustly this function ”top” is determined basically determines to a
large extent how close to the optimal solution the ADP/RL algorithm will get. This is because,
again, the amount of smolts released is the number one most important quality of the optimal
production schedule. Both because of the fact that the targets are moving and dependent on
how ”well” the harvesting of the respective batch released is later performed, and because such
finetuning of a neural network requires a lot of training iterations and very carefully tuned training
hyperparameters, this proves to be highly callenging. This is also one of the reasons we during the
work with this thesis were told by RL experts that ”we should not have too high hopes of reaching
”optimality””, because this sort of finetuning of the weights of a network with a RL algorithm (as
opposed to supervised learning where the targets are standing still and are always ”correct”(!)) is
very challenging. If this is solved however, which there is no theoretical reason why it should not
be, ADP/RL will most likely be able to perform very close to optimally (< 5% difference by our
estimates), at least for the single tank problem (for the multitank problem, the coordination of the
tanks makes for another challenging dimension). This seems therefore to be the foremost challenge
of solving salmon farming with ADP/RL, and therefore will be a key focus area for future research.

7.3.2 Harvesting

The logic and reasoning in the above subsection is further complicated by the fact that the fish in a
batch do not grow uniformly and their weights typically follow an approximate normal distribution.
The ”ideal” harvesting weight discussed above is therefore not straight forward when talking about
a batch, because when the average weight of the batch is at the ideal weight, the largest fish will
be much larger. Ideally, one would therefore harvest only the largest fish once they reach the ideal
weight, and let the rest keep growing until that weight. This way one even further maximizes
the value of a batch and the utilization of the density restriction. Following the logic from the
above subsection, if there were no practical issues and no costs related to harvesting fish, one would
ideally harvest a batch continuously, starting with the largest fish, once the tank density restriction
is exactly met, and then continuously harvest the largest fish until there are none left such that
one always ”balances” at the density restriction. In real production however, this is of course not
possible, both because of considerable practical efforts involved in harvesting, considerable setup
costs and also due to the fish experiencing unwanted stress during harvesting. The ”balance” in
the optimal solution therefore is about deciding in how many turns to harvest the batch and how
many and how large fish to harvest in each turn. Larger setup costs would imply fewer turns, and
vice versa.
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For an ADP/RL model to strike this balance, the value function would need to have learned very
exactly the true value of having fish at each possible harvesting weight, which involves incorpo-
rating the fixed harvesting cost. Striking this balance close to optimally is highly challenging and
increasingly challenging for the last ”percentages” of optimality. This is probably the biggest chal-
lenge of the three dimensions discussed in this subchapter. When fish are ready for harvesting, the
model in each time step has to make the decision between harvesting and having fewer (or no) fish
left and not harvesting and having larger average weight and larger biomass in the next period.
In other words, the model has to ”resist the temptation” to receive a large revenue directly by
harvesting now. This is in turn linked to the discount rate applied. This is one of the issues that
probably becomes more challenging when using only number of fish, average weight and biomass
as input features, instead of the full distribution. The algorithm then probably needs to many
times experience having fish at different average weights to be able to understand that it then also
receives higher prices (which it is also fed as input features). In other words, a deeper network
might be necessary for the model to sufficiently learn how which price (i.e. which sales class) is
relevant for different average weights. This, understanding when to combine the biomass with
which sales class price, would probably require more levels of abstraction, which suggests a deeper
network is appropriate, which in turn makes training possibly even more challenging. We believe
there is much to gain in doing further research on different input features and different neural net-
work sizes for our problem, but also on even smarter exploration strategies for making the model
explore different average weights for harvested fish. Switching to mixed integer programming for
the harvesting decision is another interesting option left for future research.

7.3.3 The coordination of different tanks - opening up for other meth-
ods?

Given the presence of a MAB quota which is granted to the facility by the authorities, the salmon
producer also wants to utilize this capacity as much as possible. Given a set of fish tanks, each
tank has its own schedule of batches, or batch cycles. In the case of only a single tank, and given
a ”start point” in time where the facility is empty, the optimal solution is to release fish straight
away and maintain a continuous cycle of batches (assuming relatively small price variations). In
the case of multiple tanks and an overarching MAB quota however, one can produce more biomass
per unit of time over the next years if one starts the tank cycles out of synchronization, such that
while one tank has harvest ready fish, the other tanks still have fish in the growing phase. Because
of this feature, facilities are typically designed so that the sum of the tanks’ density capacities
(which translates into a biomass capacity given the tank volume), is higher than the MAB quota.
This way, by having asynchronous production in the different tanks, one can utilize more of the
MAB quota at all times. The question then is whether to for example to ”distribute” the starting
time of each tanks production cycle evenly over the next batch production lead time or instead
to have almost all the tanks start their cycle immediately and then only put a few tanks on an
opposite-phase cycle such that the MAB quota is respected. The issue is made even more complex
by the variations in salmon prices, because given that one expects a high price season and a low
price season, one might want to ”concentrate” more of the tank cycles so that more tanks harvest
during a certain period, even though this might mean slightly worse utilization of the MAB quota.

For an ADP/RL algorithm to solve this challenge, two factors need to be in place. First, the value
function form and the algorithm needs to be such that it ”understands” the symmetry between the
tanks, and that the tanks are identical. Whether or not two tanks ”switch place” should not have
any effect on the value of the state. Second, it needs to understand that too much total biomass
in the facility is not good, and learn to balance the MAB constraint the same way it learned how
to balance the density constraints. While not exceeding the MAB, the more biomass the better,
generally speaking. The latter will most likely be the greatest challenge for an ADP/RL algorithm
to achieve the last few percentages of the optimal solution.

When it comes to the aspect of combining different, equal tanks in a schedule, the decomposed
structure of the problem becomes apparent. This is what we exploited with the decomposition
heuristic algorithm presented in chapter 5.3.2.
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It is important to note that while the single tank optimization problem naturally lends itself
to dynamic programming approaches, the advantage of such approaches when it comes to the
multiple tank problem is not as apparent. The single tank problem is the typical control of an
entity/resource over time which ADP/RL methods deal with. When introducing multiple tanks
however, while there is an important element of coordinating the different tanks, the single tank
problem remains more or less independent of the master problem. This is because our research so
far has shown that the optimal solution (often, not always) has the quality of the individual tanks
being initiated on a steady state ”batch cycle” (releasing one batch, harvesting and then releasing
next batch immediately in a steady state) and then the coordination of the tanks remain the same
into the future.

One of our most promising suggestions for future research therefore is about how to exploit the
decomposed nature of the problem even more while still applying the promising, more scalable
qualities of the ADP/RL approach to the single tank sub problems. Hybrid approaches to this
might even turn out to be more promising than applying ADP/RL to the multitank problem
directly.

7.4 Value of stochastic solution

Solving a stochastic optimization problem is typically much harder computationally than solving
the corresponding deterministic problem. This is because instead of merely finding a fixed solution
value of all decision variables, one has to find an optimal policy, which is basically a given value for
each decision variable for each possible scenario. This is also the case for the salmon production
scheduling problem. As the focus on salmon price stochasticity has been a major focus in both
this master thesis and the preceding project thesis, it is natural to ask about the actual value
of stochastic solution. In other words, is it worthwhile to solve the stochastic problem, actively
taking into account the price development, or is the salmon farmer basically just as well served
with assuming either a constant price or a deterministic price expectation.

The results in 6.4 suggest that the value of stochastic solution is rather low compared to deter-
ministic optimization with respect to the price expectation (i.e. the price forward curve), but high
compared to deterministic optimization with respect to a constant price. The latter gap is however
comprised mainly of the difference between deterministic optimization with respect to a constant
price and a realistic price expectation assuming the correct price seasonality. Our results alone
therefore suggest that the salmon farmer would be practically equally well of by optimizing deter-
ministically with respect to a realistic price expectation based on a reasonable price seasonality.

These results are very dependent on the quality of the price expectation available to the salmon
farmer. The price expectations given by our price model gives rather good ideas about how the
price will actually develop, as can be seen in 5.2. In reality, there might be more uncertainty
also related to the seasonality of the price than what is assumed in our price realizations. We
know that salmon farmers use forecasted harvesting volumes as an important indicator of future
salmon prices. Due to significant volatility from other sources as well, and the sometimes limited
availability of this information, good price forecasts might not be available for much longer than a
year into the future. Salmon price forecasting is very difficult, as discussed thoroughly also in the
literature (Guttormsen (1999)). However, this does not only affect the advantage to optimizing
deterministically with respect to the price expectation, but also to stochastic optimization, and
the reason is the long production lead times of salmon. Therefore, the VSS given by comparing
(II) and (III) in 6.4, might be larger in reality when less good price forecasts are available. Our
results are therefore far from definitive regarding the VSS.

Based on insight in the problem and the optimal solution, the low VSS might be reasonable.
A basic realization is that it is hard, or maybe even not desirable, to account today for (large)
uncertainty 18 months into the future, i.e. when smolts released today will only be harvested after
15-22 months. Even for the multitank problem (the singletank problem is not really necessary
to consider here, because no actual salmon farmer only has one tank), the mechanisms which
might provide stochastic flexibility are mainly the coordination of the different tanks and the
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harvesting timing. However, given the amount of fish which have already been released when these
two mechanisms become ”relevant” (18 months after), the flexibility left to the salmon farmer
is greatly reduced, because of amongst others the density and the MAB restrictions. Again, the
reader is referred to our project thesis for in-depth discussions on this matter. The main insight we
would like to point out from this is that one batch of salmon alone is so valuable and so profitable
that producing as much biomass as possible is often the best solution, even in the face of (small)
price variations. Only at relatively large price variations (> 10%), the optimal production schedule
is significantly changed.

Qualitative inspection of the ADP/RL model shows that the stochastic version of the model is
having trouble actually taking into account the price variations. As mentioned earlier, the addition
of the time of year and the salmon price as input features into the neural network (or any other
value function approximation) suddenly makes the ADP/RL agent’s challenge much harder. This
is mainly because the correlation between these input features and the value of the state is totally
different and much weaker than the correlation between the features related to the fish themselves
and the same value. While a neural network in theory is perfectly capable of understanding such
”differences in correlativity”, in practice this makes the learning much more difficult. It can even
have undesirable consequences on convergence and overall performance according to our experience.
After all, the job of the neural network is to find the true correlation between each state feature
and the value of the state. The findings suggest that deeper networks might be preferable, to allow
more levels of abstraction.

So, what does this mean for future research? The results given here have too many uncertainties and
error sources to be conclusive in that stochastic solution is not worthwhile to a salmon producer.
Also, experienced salmon farmers we have discussed this with state that this issue is of great
importance to them and that they continuously and actively try to ”harvest their fish when prices
are high”. Our conclusion will therefore be that more research is needed. Our literature search
revealed a growing amount of literature on both the salmon price and on salmon production
scheduling optimization, but we see a lack of researchers looking at the intersection, which is what
motivated this thesis in the first place. And even if the value of stochastic solution is relatively
low, the value of developing high-quality, reliable price forecasts and using these in deterministic
optimization models is very large.

7.5 Critical reflection

7.5.1 Results validity

Because of the combination of a short time-horizon and end-of-horizon challenges in the subprob-
lem, the rolling horizon model sometimes makes some odd choices, such as delaying release of smolt
overly long in order to time for price seasonality. In other words, the rolling horizon model is not
perfect.

Furthermore, as we also showed in the project thesis, such quantitative experiments are very
sensitive to the length of the planning period and the start month of the planning period, because
small differences in the models’ choices might make it so that one model has time for one more
harvesting during the planning period. One batch harvesting alone brings in so much revenue that
this makes a large difference in the profits earned. Especially in the 2-tank problem, selecting
the appropriate planning period in order to exclude such errors and let all models have ”time for”
equally many batches harvested is challenging and an important source of error in such experiments.

For these two reasons in particular, both the VSS results and the stochastic benchmarking results
need to be taken not as definitive measures in any way, but as indicators. For the benchmarking
of the ADP/RL model, this is not very important as it was only ever meant to give an idea of how
good the ADP/RL model was performing. We have, as discussed throughout this chapter as well,
also qualitatively assessed the performance of the ADP/RL model, and the assessments are in line
with the quantitative results in chapter 6. For the VSS results however, this makes us unable to
draw definitive conclusions. Nevertheless, we have analyzed the results and tried to minimize such
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error sources and therefore believe the results’ implications for the VSS have merit.

Coming from the linear programming community, it is also important to point out how the
ADP/RL model is not like a typical or exact optimization model with a steady convergence that
runs until some optimality gap measure is reached and then returns a result where the quality
of the result is known. Instead, ADP/RL is a heuristic. As was discussed also earlier in this
chapter, convergence is (seemingly) highly random, and knowing how many iterations and other
hyper parameters are needed to give the best results is almost impossible. Any small change in
parameters might give a different result and require a different number of iterations to reach the
global optimum reachable by the ADP/RL agent, or cause the model to get stuck in some local
minimum. The performance of our ADP/RL model is hence not a fixed measure either. Rather,
the ADP/RL results presented here are some of the best results we have been able to produce, and
only a few more weeks of tuning and testing might have given even better results.

7.5.2 General reflections

In the development of the ADP/RL model for salmon production scheduling in this thesis, there
has been little literature and earlier research to lean on, as is often the case when working at the
frontier of an academic area. The authors have worked by first developing a relatively wide and
relatively deep knowledge on ADP and RL by deep diving into the works of field front figures such
as Warren Powell and David Silver and then combining this knowledge with a knowledge of land
based salmon production in order to design a novel solution method for the salmon production
scheduling problem. As is also the inherent nature of ADP/RL as a field, the work has to a
relatively large extent been based on trial and error. While efforts were made, amongst others
in cooperation with dynamic programming expert and professor Qing Li from the Hong Kong
University of Science and Technolgy, to e.g. develop theoretical derivations of the qualities of
the theoretically optimal value function and to build more solid theoretical basis for a solution
algorithm, this proved highly challenging. This is also perhaps the biggest weakness in our work.
This is due to the highly complex, non-linear value function and non-convex decision space in
the problem, as well as the fact that few have developed such theories before us so we had little
guidance. We would like to stress however, that in the case of large-scale sequential decision
making problems, there can be a significant difference between algorithms with theoretically proven
convergence and practically efficient and applicable models. ADP/RL as a field has many times
showed how convergence in a practical implementation will often require some element of trial and
error tuning no matter the theoretical foundation. In our case, implementing the different types
of value function approximations and deciding on their shape, finding the best algorithm hyper
parameters and deciding on an ”algorithmic” discount rate are examples of key modelling elements
where we have had to (systematically) test the different options. Looking back, there are certain
elements and alternatives that could have been tested even more thoroughly and systematically if
the ”plan” had been clearer at an earlier point. One example is more thoroughly testing the custom
value function approximation implementation, which we in retrospect see has further potential we
have not had time to investigate. There are other ”leads” we have not had the resources to follow up
as well, partly due to bad planning. In general, both the breadth and the depth of the ADP/RL
field leaves us with no possibility of exploring all potential solution strategies to the degree of
exhaustion we would have liked during a 6-month master thesis. This also presents the greatest
”source of error” in our findings as well, the risk that there are algorithmic improvements we have
not yet discovered, or algorithmic details which either prohibits or disturbs the convergence at
some point. ADP/RL modellers can typically refine, adjust and tune complex models for almost
indefinite time. However, we can safely say that we have opened the doors and started researching
all the primary solution strategies (some basic and some more advanced) within the ADP/RL field
that would be relevant to our problem, such as a problem-specific exploration strategy (exploring
the three key schedule decision dimensions, see 5.3.3), a custom value function approximation and
a decomposition model, as well as the go-to generalist neural network of the RL field. While we
do not deem the ADP/RL model developed here good enough for use in real world production in
its current state, future researchers might very well be able to achieve this.

While designing the trials and which algorithmic options to test however, we have to a large
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extent used our problem specific knowledge and intuition. Our largest successes and algorithmic
breakthroughs in terms of convergence have been where we have combined our now deep insight
into the salmon production scheduling optimization problem with a gradually increasing insight
into the nature of ADP/RL algorithms. Countless hours have been spent deep diving into solution
logs, understanding how each value function target is derived and how it affects the update of the
value function parameters and then adjusting the model sampling policy accordingly and other
algorithm hyper parameters accordingly given the knowledge of how the fish grow and the price
typically develops. This has been key to our work and will also likely be key to future research in
the application of ADP/RL to salmon production scheduling.
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Chapter 8

Conclusion

In the work with this master thesis we have built an ADP/Deep RL model based on n-step
Temporal Difference (TD(n)) learning, testing both custom functions and deep neural networks
as value function approximators and using a count-based, problem-specific exploration strategy
resembling the Upper Confidence Bound method. The ADP/RL agent ”plays the salmon farming
game”, exploring different numbers of fish released, different harvest weights and different tank
coordinations. It is then learning from its experiences and the reward signals it receives, by
iteratively improving its estimate of the true value of being in a given state and uses this value
to make better decisions. To be able to solve the salmon production scheduling problem with
respect to salmon price uncertainty, we have also developed a semi-parametric price model which
both generates random price development samples and is able to calculate forward curves based on
these samples. Finally, we have built a rolling horizon model based on mixed integer programming
which is used to benchmark the ADP/RL model for small problem instances.

This master thesis had three primary goals. The first was a general, ambitious goal of building
a scalable optimization model for producing high quality production schedules for the full-scale
salmon production scheduling problem, intended for use in real world production with real value
added. The second was related to the first and was about investigating whether approximate
dynamic programming/reinforcement learning can serve this purpose. The third goal was de-
termining the value of stochastic solution with respect to price uncertainty, or in other words,
determining whether a salmon producer should actively take into account price variations when
planning production.

The ADP/RL model is able to solve full-scale problem instances and scales better than the MIP
benchmark for large problem instances. Furthermore, while the MIP benchmark is already rather
optimized in terms of computational efficiency and runtime, there are a wide range of program-
ming and implementation related improvements we have discussed which could be made to our
ADP/RL model which would reduce computational time to a fraction of the current runtime. In
terms of solution performance and quality, the ADP/RL model is also able to generate production
schedules which are good enough that they exceed the level where the authors are able to visu-
ally, qualitatively say whether or not the schedule is optimal, at least for the single tank problem.
Professor Keith Downing of NTNU, an experienced RL practitioner, implied early in the process
that this application of RL is so complex compared to typical introductory RL models that merely
producing such descent results would be a success. Nevertheless, we must conclude that the model
performance is not good enough for practical real world application in its current state. The
ADP/RL model earns ≈ 80% of the optimal production schedule for both 1- and 2-tank instances
in the deterministic problem, which we consider the most relevant benchmark. We consider this
gap too large and the model performance too varying for an actual salmon farmer to use the model
as it is. The primary reason for this is that the ADP/RL model is less able to exploit the density
and MAB restrictions of the facility than the MIP model and is therefore less accurate in the
number of fish it releases in each batch and in the coordination of the different tanks, which in
turn is the most significant influence on the overall profit earned. While it has less absolute impact
on overall profit earned, the ADP/RL model also has trouble determining the optimal harvesting
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weight with precision, which is the second most important reason for the optimality gap.

Zooming out and looking broadly at the application of ADP/RL to salmon production scheduling,
we are nevertheless convinced of the potential for such methods in not only this field, but also
in other biological herd management problems. With more resources, more time and more ex-
perience in the use and implementation of both custom function approximators, advanced neural
networks and exploration strategies, future researchers can surely produce more high-performing,
robust ADP/RL models than we have been able to. Especially when combining ADP/RL with the
knowledge of the natural decomposed structure of our problem and possibly with hybrid methods
integrating mixed integer programs, which we will discuss further in the future research section,
models with high performance and real value added to an actual salmon producer can be built.
Still, we would like to explain how we, like many others, have been partly victim to the hype sur-
rounding reinforcement learning. The authors’ key learning and takeaway regarding RL from this
work is, like field experts like W. Powell (2011) and Irpan (2018) also proclaim, that RL in many
ways is as much an art as a science. The largest and most famous successes of RL for extremely
complex problems, such as Google DeepMind’s AlphaZero, are so impressive that it is hard not to
see RL as a group of methods which will bring profound breakthroughs to many fields in the years
to come. While this vast potential, also for salmon production scheduling, can surely be realized,
we are merely realizing that actually building such successful models are far more difficult and
resource-consuming than one might get the impression of.

For the more isolated matter of determining the value of stochastic solution for the salmon pro-
duction scheduling problem with respect to price uncertainty, our results suggest that the value of
stochastic solution is relatively low, even for the multitank problem. On the other hand, depending
on the amplitude of the price seasonality, planning deterministically with respect to a high-quality
price forecast, i.e. harvesting as much as possible during the high price seasons, can be of great
value compared to simply assuming a constant price. The value of generating high-quality price
forecasts and applying these during scheduling is therefore large. The reader is referred to our pre-
ceding project thesis for in-depth discussions regarding the effect on optimal production scheduling
of price seasonality.

Future research

During our work we have discovered several promising leads for future research with respect to
solving the salmon production scheduling problem.

The first and most problem specific lead is about exploiting the decomposed nature of the salmon
production scheduling problem. As explained earlier, the different tanks in a facility are identical
from an optimization perspective and the problem is easily seen as decomposed into a master prob-
lem coordinating the different tanks’ production cycles and subproblems for each tank determining
the specifics for each batch. While we have built an algorithm version (explained in 5.3.2) which
exploits this structure by assuming that the value of the state of the full facility is nothing more
than the sum of the values of the individual tank states, we have not devoted significant time to
this, and several other options exist. This structure of the problem is so prevalent it is hard to
ignore, and especially in terms of short runtimes, the exploitation of this structure would be one
of the first places to start. Deep insight into the specifics and dynamics of salmon production is
however required.

As mentioned in section 3.3, this thesis has focused on what Warren Powell calls a value func-
tion approximation policy, which both is what ADP/RL typically refers to and what people mean
when they talk about ADP/RL and also is the most common solution strategy therein (W. Powell
(2011)). Another important lead for future research is about using other types of policies, in the
general sense as used by W. B. Powell (2016). Especially what Powell has named cost function ap-
proximations and lookahead policies might be worth investigating, since we believe policy function
approximations would probably be overly complex and constraining for the multitank problem (see
also section 7.1.2). Designing clever algorithms which combine ADP/RL capabilities like estimat-
ing the true value of the standing biomass and the ability to adapt to stochasticity with mixed
integer programming subproblems which are more fine-grained and better at exploiting production
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restrictions appears to be one of the most promising ways to solve the salmon production schedul-
ing problem when modeled as a Markov Decision Process. By finding clever ways to iteratively
improve the state valuation, short horizon mixed integer programs with either one or a few time
steps can be solved. Currently, the end-of-horizon valuation and ensuring production constraints
are respected also for the last batch in the horizon is one of the primary challenges of using MIP
alone, along with computational intractability, and this is why the merger of ADP/RL with MIP
appears highly promising. This is among the options the authors would have explored themselves
if more time was available and the model was to be improved in order to be of use to actual salmon
producers.

Looking back at the problem description in chapter 2, there are certain problem features which
have been left out of the work with this thesis. Further research efforts should also look into how to
incorporate these. The first is about including different smolt types (smolt weights) and letting the
model choose between each type to be released for each batch. This is rather straight forward, and
while it has not been tested in our work, our model is perfectly capable of handling this already.
The second, which is slightly more on the side, is about how some land based salmon producers
plan to build facilities with the option to move fish between different tanks to better utilize total
facility capacities. This greatly increases the complexity from an optimization perspective, but is
also of high interest for future research.

Once again referring to how RL in many ways is as much an art as a science, future research will
also be about simply building on the knowledge presented here and applying more time, more
resources and more experience to the problem. The authors hope to have planted seeds for a new
line of research applying ADP/RL methods to not only salmon production scheduling but also to
other animal production and biological hard management problems as well. As land based salmon
farmers face tighter margins and machine learning is further developed, both in terms of hardware
capabilities and software capabilities, we expect the commercial interests in doing exactly this will
only rise in the coming years.
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Appendix A

Appendix

A.1 Skretting growth table

Figure A.1: Skretting growth table for atlantic salmon. Daily percentage growth for given tem-
peratures and weights
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A.2 Numerical illustrative examples to optimal harvesting.

Here, we provide numerical practical examples of decisions faced by a salmon producer, and apply
the theory of optimal harvesting discussed in 2.5.3 to these. In the first examples, we consider a
constant salmon price for all sales classes, meaning the salmon price is the same at all times for
all fish weights. We then move on to including price variations with both seasonality and fish size.

First, say we now consider a single batch rotation problem which takes the following form: Should
the salmon producer harvest the batch of fish now or wait a time ∆t? Harvesting now gives the
value of V (t) (given that we are at time t), or incur extra feeding cost and harvest at t + ∆t for
the value of V (t + ∆t). The feeding cost is represented by Cf (t)∆t, where Cf (t) is defined as
above. We here assume we can use discrete rather than continuous discounting. In this single
batch rotation problem, we will then delay harvesting until ∆t if

1

(1 + r)∆t
V (t+ ∆t)− 1

(1 + r)
∆t
2

Cf (t)∆t > V (t) (A.1)

where r is the discounting factor and, as before, V (t) = B(t)P (t) = Nw(t)P (t). Feed costs are,
simplified, discounted halfway into the time interval because these arise continuously. We restate
that we only consider feed costs in this case, not harvesting costs or insurance costs, as these have
a relatively small impact on the problem.

We will now see what this means in practical, numerical terms, when, as stated above, the salmon
price is constant P (t) = P . The following is a numerical example intended to explore the optimal
harvesting point at different discounting rates. Say we are at time t̃ in the production, and we
have a batch of 200,000 (N) fish in the tank, all weighing 4,500 grams (w). At 10 degree Celsius, it
takes approximately 45 days to grow salmon 1 kg from 4,500g to 5,500g. Then the total biomass
in the tank is equal to B = Nw. Say all the fish can either be harvested today (at t̃) or after 45
days (∆t), when the fish have grown 1 kg. Then ∆t in equation A.1 is 45 days. Say the feed costs
accumulated during these 45 days are Cf . Finally, say we have a mortality of around 3% each
year, which is a realistic number for a land based facility. The relative value of delaying harvesting
of the fish until 45 days has passed, i.e. the relative change in the present value of the batch is
then

Vdelay =

1
(1+r)∆t (V (t̃+ ∆t)− 1

(1+r)
∆t
2
Cf

V (t̃)
(A.2)

If this value is positive, then it is profitable to delay harvesting. If it is negative, the salmon
producer should harvest now.

The feed costs Cf is set using a feed cost of 15 NOK/kg and a FCR of 1.12 to be 16.8 NOK per
fish (per kg) in the time interval [t̃, t̃+ ∆t]. The situation then is as follows:

t = t̃ t = t̃+ ∆t = t̃+ 45

P 50 NOK 50 NOK
Weight per fish (w) 4.5 kg 5.5 kg
Number of fish (N) 200,000 199,300
Biomass (B) 850 tonnes 1,050 tonnes
Nominal V (t) 42.5 MNOK 52.5 MNOK
Nominal feedcost
accumulatd from last
time point

- 3.30 MNOK

Table A.1: Single rotation numerical example input parameters

Let us now calculate what this decision looks like for different discount rates for one tank and one
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single rotation.

Yearly discount rate r

Vdelay = Relative change in present
value by delaying harvest compared to
V (t̃), absolute change in paranthesis

(positive means delaying is profitable)
0% 14.4% (6.5 MNOK)
5% 13.7% (6.2 MNOK)

7.5% 13.4% (6.0 MNOK)
10% 13.1% (5.8 MNOK)

12.5% 12.7% (5.7 MNOK)
15% 12.4% (5.6 MNOK)

17.5% 12.1% (5.4 MNOK)
20% 11.8% (5.2 MNOK)

Table A.2: Value of delaying harvest as a function of different yearly discount rates in one single
rotation example

All values are positive, meaning in each case it is positive to delay harvesting for 45 days until the
fish have grown to 5.5 kg. In other words, the optimal harvesting weight in the single batch rotation
problem with the parameters assumed here is larger than 4.5 kg, which is expected. The numbers
are also positive with a good margin, meaning it is with great certainty more profitable to wait
with the harvesting. As mentioned earlier, Mistiaen and Strand (1998) found that discount rates
has implications for optimal harvesting value. We see here, however, as confirmed by Bjørndal
(1988), that the effect is not very large, relatively speaking. However, the theory confirms that dif-
ferent salmon producers applying different discount rates will come to slightly different conclusions
regarding optimal harvest times.

Now we will move into the much more interesting and much more realistic problem of a multiple
batch rotation problem. We still only consider one tank/cage of fish. This means we will keep the
parameters in this first example unchanged, but now the salmon producer has to take into account
that delaying harvest will also delay the time until a new batch can be released and thus the time
until all future cash flows are received. In other words, we must take into account the opportunity
cost of the fish tank ! We therefore now get the relative value of delaying harvest compared to
harvesting now equal to (a rather simplified calculation admittedly)

Vdelay =

1
(1+r)∆t (V (t̃+ ∆t)− 1

(1+r)
∆t
2
Cf − (1− 1

(1+r)∆t )FV

V (t̃)
(A.3)

Where FV is the perpetuity of all future cash flows from producing salmon in the given tank, where
we simply assume that for all future batches the nominal value of harvesting will be equal to the
average of the value at time t̃, V (t̃) and the value at time t̃ ∆t will be V (t̃ ∆t) (i.e. the fish are
harvested at 5.0 kg in the ”4.5 kg or 5.5 kg decision”, see below). The last term thus is a simple
measure of the effect on the present value of delaying all future harvests. The equation as a whole
simply states that, under the assumptions made here, the salmon producer should compare (the
discounted cash flow from harvesting at a later point minus the discounted accumulated feedcosts
that will arise minus the cost of an additional discounting/delay of all future harvests from this
tank) with the cash flow received from harvesting now. This is admittedly a very stylized example
and a simple calculation, but it serves the purpose of showing the theory of optimal harvesting of
a batch of fish in a single tank in the eyes of a salmon producer.

We will consider two decisions. First, say we have 200,000 fish in the tank at 3.5 kg at time t̃,
and the decision is whether to harvest now or to wait until the fish have grown to 4.5 kg. This
takes approximately 50 days at 10 degrees Celsius, as calculated by the Skretting SGR-table (see
appendix A.1). Then, second, we will consider the case of either harvesting when the fish have
reached 4.5 kg or delaying even longer until the fish have reached 5.5 kg weight. This will take
approximately additional 45 days. The reason that the second time step is a few days shorter is
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that, while daily weight gain in percentage is slightly higher for the first time period, the daily
weight gain in absolute numbers is still a bit higher for the second time period. We still assume a
constant price.

t0 = t̃ t1 = t0 + 50 t2 = t1 + 45

P 50 NOK 50 NOK 50 NOK
Weight per fish (w) 3.5 kg 4.5 kg 5.5 kg
Number of fish (N) 200,000 199,200 198,400
Biomass (B) 700 tonnes 896 tonnes 1,091 tonnes
Nominal V(t) 35 MNOK 44.82 MNOK 54.56 MNOK
Nominal feedcost
accumulated from last
time point

- 3.30 MNOK 3.27 MNOK

Table A.3: Multiple rotation numerical example input parameters

The results now look as follows for the most relevant discount factors

Yearly
discount rate

r

”3.5 kg or 4.5 kg” Vdelay = Relative
change in present value by delaying
harvest compared to V (t̃), absolute

change in paranthesis (positive means
delaying is profitable)

”4.5 kg or 5.5 kg” Vdelay = Relative
change in present value by delaying
harvest compared to V (t̃), absolute

change in paranthesis (positive means
delaying is profitable)

5% 2.6% (0.92 MNOK) 0.4% (0.19 MNOK)
7.5% 2.4% (0.84 MNOK) 0.2% (0.12 MNOK)
10% 2.2% (0.78 MNOK) 0.1% (0.05 MNOK)

12.5% 2.0% (0.72 MNOK) -0.1% (-0.03 MNOK)
15% 1.9% (0.66 MNOK) -0.2% (-0.1 MNOK)

Table A.4: Value of delaying harvest as a function of different yearly discount rates in multiple
rotation example

These results are rather interesting, because they actually show that subject to the parameter
values we have chosen (as realistic as possible) and the assumptions we have made, that if a 12.5%
yearly discount rate is applied (which is a value called acceptable by a salmon producer we have
talked to), the optimal harvesting weight for this batch is around 4.5 kg. The logic showing this is
that the numbers show a positive change in present value by delaying harvest from 3.5 kg to 4.5
kg, but a negative change from 4.5 kg to 5.5 kg, meaning it is profitable to delay until 4.5 kg but
not until 5.5 kg. If a salmon producer considering a single tank of fish and when to harvest this
batch finds himself in this particular situation illustrated here, then our results suggest optimal
harvesting weight is somewhere around 4.5 kg. We also note that if the producer chose a discount
rate of 10%, the optimal decision would be to harvest at 5.5 kg. This is interesting, as discount
rates might be slightly different between firms, as discussed in 2.5.3. With our stylized example
situation here, we have thus shown that the discount rate might make a significant difference
between firms’ operations.

We restate once more that these calculations are subject to amongst others assumptions that
harvesting costs and smolt release costs can be omitted due to restricted relevance to the results
and that the cost of delaying all future harvests can be correctly calculated the way we have done
here, as shown by equation A.3. We will note however, that adding harvesting costs and smolt
release costs to the problem would effectively work to increase the optimal harvesting weight (push
the optimal harvesting time later in time), although not much.

In the practical examples considered so far, the salmon price has been assumed to be constant at
50 NOK/kg for all sales classes and times. This is far from true in reality, as discussed previously.
We will now move on to study the effect of price variations on these simplified versions of the
optimal harvesting problem.
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A.2.1 Expected price variations - seasonality and fish size

As previously discussed, the salmon price primarily varies along two dimensions, looking apart
from the stochastic variation. These two dimensions are a cyclical seasonality in the price with a
price peak somewhere in Q1 as well as a price differentiation between different weight classes of
sold fish, typically divided into sales classes of 3-4 kg, 4-5 kg and 5-6 kg. So, in a more realistic
version of the optimal harvesting problem than what has been discussed so far in this chapter, when
delaying harvesting the salmon producer can also expect a change in the price/kg she receives when
harvesting.

Say we look at the same situation in the multiple batch rotation problem as in the previous section.
Only now we will also include that the expected price will change during these time intervals. The
change in price might be both because the fish reach a higher sales class, or because we for an
example are in Q4 and the price is expected to rise due to seasonality. Larger fish are generally
higher priced, although the opposite has occurced, as discussed in section 2.5.1. Thus, at certain
times there might be no or even a negative price change when moving to a higher sales class, or
we might be in a time of year when prices are stable or even declining. That means the effects of
seasonality and price gaps between weight classes might work in the same direction or in opposite
directions and they might theoretically work in both directions (price going up or down).

Which effect of seasonality or price gap between sales classes cause the price change is not strictly
relevant for the sort of numerical calculations we are performing here. What matters is how large
the effect of the price variation is in sum, and thus what is the total change in price/kg the salmon
producer will receive. We will therefore now look at a range of price changes that might occur
during the ”harvest or wait” decisions we are considering.

Say we stick to the same parameters and the same decisions faced by the salmon producer as
before, i.e. harvest at 3.5 kg or wait for 4.5 kg and subsequently, harvest at 4.5 kg or wait for
5.5 kg. We are still considering the optimal harvesting time in a multiple batch rotation setting,
meaning we include both feed costs and the delay of future cash flows in the calculation. Equation
A.3 is then still unchanged, only now the nominal value V (t) changes not only due to an increase
in biomass but also due to a change in price. To make it even more interesting, lets also add yet
another step. Once 5.5 kg is reached, the salmon producer can choose to harvest or to wait for the
fish to reach 6.5 kg. This takes approximately 45 days at 10 degrees Celsius. In this situation, we
have adjusted the feed costs slightly up to 18 kg and see how this affects the problem as well. The
situation then looks as follows:

t0 t1 = t0 + 50 t2 = t1 + 45 t3 = t2 + 45

P(t) 50 NOK P (t0)(1± δ) P (t1)(1± δ) P (t2)(1± δ)
Weight per fish
(w)

3.5 kg 4.5 kg 5.5 kg 6.5 kg

Number of fish
(N)

200,000 199,200 198,400 197,600

Biomass (B) 700 tonnes 896 tonnes 1,091 tonnes 1,284 tonnes
Nominal V(t) 35 MNOK BP (t) BP (t) BP (t)
Nominal
feedcost
accumulated
from last time
point

- 3.53 MNOK 3.50 MNOK 3.48 MNOK

Table A.5: Value of delaying harvest with different price changes in multiple rotation example
input parameters

We will in the following calculations proceed with a yearly discount rate of 12.5%. This will be
discussed further in the next section, but is mainly because this seems appropriate in terms of the
capital risk land based salmon farmers face and because we have confirmed that this is an acceptable
value with salmon producers we have discussed with. We saw, however, in the previous examples
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that although the discount factor has an effect on the optimal timing, the effect is relatively small.

The price change scenarios analysed will be a range reflecting the most likely outcomes. We repeat
that stochastic/random price variations are ignored in our calculations. A 45 or 50 day period
is not a long period, hence a very large price variation due to seasonality is unlikely. However,
moving up a sales class, the average over the last five years yields a price increase of almost 3%
as presented in chapter 2. Extreme cases over the last year yield around 13% price gap from one
sales class to another. As this is considered a rather extreme case, we test a range of price change
in each time interval from -5% to +10%. Again, the important here is to see how price changes
affect optimal harvest timing, not to test for all possible values. The results are presented in table
A.6.

Price change
per time
interval

”Harvest at 3.5 kg or
wait until 4.5 kg”,

relative change in present
value by waiting

”Harvest at 4.5 kg or
wait until 5.5 kg”,

relative change in present
value by waiting

”Harvest at 5.5 kg or
wait until 6.5 kg”,

relative change in present
value by waiting

−5% -4.5% (-1.6 MNOK) -6.4% (-2.8 MNOK) -9.0% (-4.4 MNOK)
−3% -2.1% (-0.8 MNOK) -4.2% (-1.8 MNOK) -6.5% (-3.4 MNOK)
−2% -1.0% (-0.3 MNOK) -3.0% (-1.3 MNOK) -5.3% (-2.8 MNOK)
−1% 0.2% (0.07 MNOK) -1.8% (-0.8 MNOK) -4.1% (-2.2 MNOK)
0% 1.4% (0.5 MNOK) -0.6% (-0.3 MNOK) -2.9% (-1.6 MNOK)
1% 2.6% (0.9 MNOK) 0.6% (0.3 MNOK) -1.7% (-0.9 MNOK)
2% 3.7% (1.3 MNOK) 1.8% (0.8 MNOK) -0.4% (-0.3 MNOK)
3% 4.9% (1.7 MNOK) 3.0% (1.4 MNOK) 0.7% (0.4 MNOK)
5% 7.2% (2.5 MNOK) 5.4% (2.6 MNOK) 3.2% (1.9 MNOK)

7.5% 10.2% (3.6 MNOK) 8.4% (4.1 MNOK) 6.2% (3.9 MNOK)
10% 13.2% (4.6 MNOK) 11.4% (5.6 MNOK) 9.2% (6.0 MNOK)

Table A.6: Value of delaying harvest as a function of percentage change in price per time period

As before, a positive change means the optimal choice is to delay harvest. As expected, in the most
negative price change case, it is never profitable to delay harvesting, and in the most positive price
change case, it is always profitable to delay harvesting. What is more interesting, is that in the
−1% price change case, it is still optimal to delay harvesting from 3.5 kg to 4.5 kg, even though the
producer will get a lower price/kg of biomass harvested. This can be understood as the percentage
growth in biomass outweighing the percentage decline in price. In this case of −1% price change,
which for example can represent a situation where we are in spring and approaching the low price
season and there is no price difference between 3-4 kg fish and 4-5 kg fish, the optimal harvesting
weight is around 4.5 kg. That is because it is not profitable to delay harvesting further when 4.5 kg
is reached. Looking at the 1% price change case, the results suggest the optimal harvesting weight
is when the fish is around 5.5 kg, by the same logic. The same is true in the 2% case, which means
that when the fish have reached 5.5 kg, even though the salmon producer knows she will get up to
2% higher price per kg of biomass, she should harvest the fish now rather than wait. Finally, we
see that the changes in profitable decisions with price variations are large, suggesting that when a
salmon producer finds him/herself in this particular situation, wondering whether to harvest now
or to let the fish grow further, the expected price increase or decrease is a very significant part of
the decision.

Admittedly, these are stylized examples relying on several simplifications and assumptions and they
only take into account what we deem the most impactful elements of the decision, which are feed
costs and the delay of future harvests. For example, in reality the salmon producer’s decision is not
as simple as only harvesting at 1 kg intervals and in modern salmon production, partial harvesting
is typically done, meaning the harvesting of a batch is done in several turns. Furthermore, in reality,
several additional aspects of the decisions must be taken into account. This will be discussed in
the last part of this chapter. We will nonetheless argue that these calculations provide meaningful
insight to a salmon producer. Surely, any experienced salmon production planner have a gut-feel
regarding this numbers, that might or might not correspond with the results above.
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Our main point in presenting the theory and the numerical examples above have been to highlight
the different relevant elements to take into account when deciding the optimal harvesting time of a
batch of fish in a tank, and to explain in detail the salmon producer’s decision problem. Although
stylized, our examples are not especially unrealistic in terms of parameter values, meaning that
the numbers calculated here might actually be applicable to real production subject to certain
assumptions. It is even possible for each individual salmon producer to set up their own elaborate,
specific calculations such as the above, to decide optimal harvesting times, involving more factors
than done here. Following the example of Bjørndal (1988), it is even possible to calculate the
globally optimal harvesting time exactly if one has an empirical weight function w(t) to base the
calculations on.

A.3 Seasonal component

Figure A.2: Plot of mean adjusted log prices of Salmon forwards and seasonal component repre-
sented with a sine/cosine function
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