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Abstract. The computational cost of the design optimisation of wind turbines, as well as the
optimisation of the operation and maintenance of offshore wind farms represents a limitation
to the application of conventional simulation methods. New techniques such as reduced order
modelling (ROM) and technologies such as hybrid-analysis methods and digital twins have
increased in popularity due to their ability to deliver numerical results at a significant speed-
up with reasonable accuracy. This work presents a hybrid projection-based proper orthogonal
decomposition (POD) strategy applied to transient turbulent flow problems. Key feature of this
work is the applicability of the methodology to high Reynolds number cases and the stabilisation
of pressure in the online phase via the assembly of the so-called pressure Poisson equation.
Another significant part of this work is the implementation of an interpolation scheme for the
eddy viscosity field in the classical POD-Galerkin strategy. The sampling procedure and the
calculation of the reduced operators in the offline phase is carried out using the finite volume
method (FVM), OpenFOAM’s libraries specifically, while the construction of the reduced basis
and the solution of the online phase is carried out in Python. The capability of the resulting
ROM is tested using the two-dimensional flow around a NACA0015 airfoil at 17◦ angle of attack
with Reynolds number of approximately 300 000.

1. Introduction
The complexity of offshore wind aerodynamics, with varying external flow fields, platform
movement effects and upstream wakes requires the study of a large number of cases, making
the use of conventional (high-fidelity) methods prohibitive. On the other hand, reduced order
modelling (ROM) techniques provide an excellent alternative. ROM techniques aim to build
a simplified model that can efficiently approximate the behaviour of the high-fidelity one with
reasonable accuracy. A ROM generally consists of two distinct phases. The offline phase
describes the process of constructing the simplified model, a typically computationally intensive
procedure that is, however, carried out just once, while the online phase describes the solution,
or particularisation of the simplified model for given parameters. That could be the solution of
an algebraic problem or simply an interpolation, and can often be run in real-time.

This work focuses on what is known as Projection-Based ROM. Such ROM techniques
have been applied in several scientific contributions dealing with laminar fluid-dynamics
problems [1–5]. In [3] and [4] stabilisation of the online phase via the supremiser enrichment
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and the pressure Poisson equation is explored, for the solution of incompressible Navier-Stokes
problems, whereas [5] shows how divergence-free Isogeometric formulations [6] can enable faster
solution of the linear-algebra system in the online stage.

In contrast, applications on turbulent flows are limited due to issues with regard to the
stability of the methodology. ROM techniques generally aim to capture the most significant
information, i.e. high energy modes. However, smaller scales are responsible for the dissipation
of the turbulent kinetic energy. Various strategies have been proposed to create more dissipative
ROMs. One option would be the introduction of a turbulence model in the ROM stage. The
work in [7] offers an excellent introduction and contains a useful comparison of such strategies
applied in POD-Galerkin ROMs. However, the option that is presented in this work is the use of
a data-driven ROM, in this case POD-I, for the eddy viscosity as proposed in [8], giving rise to
a combined projection and data-driven POD, a hybrid, which allows for application to turbulent
problems, while being independent of the turbulence model used in the offline stage.

Aiming to build a methodology usable in industrial environments, we consider the most
commonly employed methodologies, i.e. the Finite Volume Method (FVM) [9–11] and the
Reynolds-Averaged Navier-Stokes (RANS) method for the resolution of turbulent effects. Most
offline computations are carried out employing OpenFOAM’s open-source libraries. In [12], the
FVM solution is mapped onto a conforming finite-element domain before constructing the ROM
and solving the online phase. In order to expand this work to turbulent flows, we use the FVM
framework for both ROM phases. Moreover the mixed-ROM for turbulent flows proposed in [8]
employs the supremizer enrichment. In this work, striving for consistency with the Full-Order
Model (FOM), we adapt the pressure Poisson equation to include turbulent effects.

Section 2 introduces the Full-Order Model, viz. the classical incompressible Reynolds-
Averaged Navier-Stokes equations. It also briefly describes the Finite Volume Method as
implemented in OpenFOAM. Section 3 introduces the affine representation of the approximation
and the Reduced Order Model as applied in the FOM of interest. Finally, section 4 uses
a numerical experiment to test the viability of the proposed methodology to problems of
moderately high Reynolds number. More precisely, we solve the two-dimensional flow around a
NACA0015 airfoil at 17◦ angle of attack with Reynolds number of approximately 300 000.

2. The Reynolds-averaged Navier-Stokes equations
For the simulation of the incompressible flow by means of RANS equations, the coupled variables
(u, p) are decomposed into their mean flow component, (u, p), from now on (u, p), and their
respective perturbations, (u′, p′). Given an open-bounded domain Ω with boundaries such that
∂Ω = ΓW ∪ ΓIn ∪ ΓOut, where the three distinct boundaries describe the walls, inlet and outlet
surfaces, respectively, the transient RANS equations for the mean flow components read

∂u

∂t
+ ∇·(u⊗u)−∇·((ν + νt)∇u) + ∇p = f in Ω× [0, T ],

∇·u = 0 in Ω× [0, T ],

u = ud on ΓIn × [0, T ],

u = 0 on ΓW × [0, T ],

−pn+ (ν + νt)(∇u)n = 0 on ΓOut × [0, T ],

u = u0 in Ω at t = 0.

(1)

Where ν, νt are the physical and turbulent viscosity, respectively, f , ud and u0 are the external
body forces, the imposed velocity datum on the inlet and the prescribed velocity initial condition.
We assume that ΓOut corresponds to a free traction outlet with, accordingly, homogeneous
traction. It should be noted that u · n should be non-negative on ΓOut for stability. The eddy
viscosity is computed using a turbulence model of choice. However, in accordance with the fact
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that the proposed methodology is independent of the closure model, no turbulence model is
specified in (1).

2.1. The finite volume method
Given a domain, physical properties, boundary conditions and initial conditions, the Navier-
Stokes equations are approximated using the finite-volume method as implemented in
OpenFOAM [13]. Here, for the sake of completeness, the finite-volume rationale is briefly
recalled. For more information the reader may refer to [13]. The computational domain Ω is

discretised in Nel cells Ωi, i = 1, ..., Nel, such that Ωi ∩ Ωj = ∅, for i 6= j and Ω
h

=
Nel⋃
i=1

Ω i,

where Ωh defines the discretised spatial domain, dependent on the characteristic mesh size h.
The Navier-Stokes equations (1) are integrated over each cell

∫
Ωi

∂u

∂t
dΩ +

∫
Ωi

∇·(u⊗u)dΩ −
∫
Ωi

∇·((ν + νt)∇u)dΩ +

∫
Ωi

∇pdΩ =

∫
Ωi

fdΩ in Ω,∫
Ωi

∇·udΩ = 0 in Ω,

(2)

where (u, p) are conceived of as piecewise constant functions, represented by degrees of freedom
(DOFs) that are located at cell centres.

The system is solved using the PIMPLE algorithm, an iterative solver that combines the
functionality of the SIMPLE [14] and PISO [15] algorithms. Employing Gauss’s theorem, the
integrals of (2) containing spatial differential operators are rewritten in terms of fluxes over the
respective cell faces. The transition from cell centres to cell faces is done via linear interpolation
and the approximation of the spatial operators is typically carried out using central differencing
schemes. Moreover, the convection term in (2) is linearised using a half-step velocity value. The
temporal term is discretised using the implicit Euler scheme, which is the default scheme in
early stage simulations. For a more detailed view of the discretisation schemes as implemented
in OpenFOAM, the interested reader is referred to [13].

Remark 1. The implicit Euler scheme is the default approach for initial stage simulations in
view of its stability and ease of use. However, it is important to note that is is only first order
accurate. Other options such as the Crank-Nicolson and 2nd order backward differencing scheme
generally provide better accuracy. Because the scope of this paper pertains to the ROM strategy,
more than the underlying high-fidelity model for the Navier-Stokes equations, we will also adopt
this baseline time-discretisation scheme.

3. The Reduced Order Model
Using reduced order modelling, we aim to decompose the transient solution vector (u , p) into
a set of (deterministic) functions that each capture part of the kinetic energy. More precisely,
using POD an approximation of said coupled variables is sought such that

u(t,x) ≈ uM
POD

(t,x) =

M∑
i=1

αi(t)u
r
i (x),

p(t,x) ≈ pM
POD

(t,x) =

M∑
i=1

βi(t)p
r
i (x),

(3)

where M is the number of terms required to capture enough of the kinetic energy, uri , p
r
i

are spatial functions (or modes) for velocity and pressure and αi , βi are their respective time
coefficients.
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The fundamental assumption behind all model reduction techniques, including the one
presented in this work, is that M � N without essentially compromising the accuracy of the
approximation. Effectively, the full-order solution manifold can be accurately approximated by a
reduced space whose dimension is much lower, thus allowing the rapid, even real-time, evaluation
of complex systems. There exist several techniques for the evaluation of the reduced basis
such as Proper Orthogonal Decomposition (POD), Reduced Basis (RB) methods and Proper
Generalised Decomposition (PGD). Interested readers are referred to the above methodologies
and some applications to computational fluid dynamics in Refs. [16–22].

3.1. Construction of the reduced basis via POD-Galerkin
The spatial functions in (3) are computed using the standard Proper Orthogonal Decomposition
strategy. POD proceeds by sampling the FOM in time and generating an ensemble of solutions
(snapshots) of (1). The following description uses the vector field of velocity, but it stands
similarly for the scalar field of pressure:

Φ = {φi = u(ti)}
N

i=1
, (4)

where N is the number of snapshots. At this stage a covariance matrix is constructed

Cij =
〈
φi,φj

〉
, (5)

where 〈· , ·〉 corresponds to the L2 inner product.
Given eigenpairs (λi,v

i) of C, with (λ1 ≥ λ2 ≥ ... ≥ λN ), the M basis functions are extracted
as:

uri =
1√
λi

N∑
j=1

Λijφj , (6)

where Λ = [v1|...|vN ] is the square matrix of eigenvectors. The resulting basis V r = {uri }
M
i=1

is, by construction, orthonormal and optimal (see [23], Proposition 6.1). Moreover, the
approximative power of the reduced model depends on the square of the relative amplitude
of the truncated modes as follows:

M∑
i=1

λi ≥ (1− ε2)
N∑
i=1

λi, (7)

where ε > 0 is the average lower error bound of interest.
Following the same procedure for pressure, we end up with the following two orthonormal

bases
V r = {uri }

Mu

i=1
,

Qr = {pri }
Mp

i=1
,

(8)

where it should be noted that the number of spatial modes for velocity and pressure (Mu, Mp) is
not necessarily equal. An approach to assembling a system in the online phase that satisfies the
inf-sup condition is to retain fewer modes for pressure than for velocity (Mu > Mp). However,
in our experience using the proposed methodology in the numerical experiment below, retaining
the same amount of modes for both pressure and velocity does not seem to cause instability.
Section 3.2 goes into further detail on pressure stabilisation.

At this stage, all that remains is for the time coefficients to be calculated. Considering, for
the sake of simplicity, the laminar problem and assuming, without loss of generality, vanishing
external body forces and substituting (3) in (1) we perform a Galerkin projection of the governing
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equations onto the reduced basis spaces of (8), which gives rise to the following algebraic system:

Arij α̇j +Brijkαjαk − Crijαj +Drijβj = 0 (9a)

Erijαj = 0 , (9b)

where α(t) := {αi(t)}
Mu

i=1
and β(t) := {βi(t)}

Mp

i=1
are the vectors of unknown time coefficients for

the time step t and the rest of the terms are defined as follows:

Arij = 〈uri ,urj〉 , Brijk = 〈uri ,∇ · (urj ⊗ urk)〉 , Crij = 〈uri ,∇ · (ν∇surj)〉 ,
Drij = 〈uri ,∇prj〉 , Erij = 〈pri ,∇ · urj〉.

(10)

The above matrices are expressions of V r and Qr and can be pre-computed in the offline stage.
It should be stressed that the quadratically non-linear convective form is represented by a tri-
linear operator whose size increases cubically in the number of basis functions, Mu. Therefore,
its computation and storage might become cumbersome for large systems.

3.2. The Pressure Poisson Equation
In the FVM we use a Chorin-type splitting, i.e. the so-called pressure Poisson equation for the
stabilisation of the full-order model. However, the reduced basis V r, Qr does not necessarily
inherit the stability of the FOM solution. Therefore, on the reduced-order level, we must
separately ensure that it is. Aiming to stay as consistent as possible to the underlying full-
order model, for the calculation of the pressure time coefficients, β, it is chosen to also assemble
the pressure Poisson equation, resulting in a well-posed system.

The pressure Poisson equation is effectively a reformulation of the incompressibility
constraint. Initially proposed by Chorin [24] and Temam [25], it is an approach that has been
studied extensively in literature [26–28]. Taking the divergence of the momentum equation and
exploiting the divergence free velocity modes, one can derive the following equation{∇ ·∇p = −∇ · (∇ · (u⊗ u)) + ∇ · (∇ · (ν∇su)) in Ω× [0, T ],

∇np = n · (−∇ · (u⊗ u) + ∇ · (ν(∇su))− u̇d) on Γ× [0, T ],
(11)

where the Neumann boundary condition is determined by projecting the momentum equation
onto the boundary faces.

Substituting the POD approximation into (11) and carrying out a Galerkin projection onto
the reduced basis spaces, we get the following algebraic problem for the pressure coefficients βj :

Frijβj +Grijkαjαk −Hrijαj −Kri = 0 (12)

where the coefficient vector α(t) is known from the solution of the momentum equation, (9a).
The new matrices are defined as follows:

Frij = 〈∇pri ,∇prj〉 , Grijk = 〈∇pri ,∇ · (urj ⊗ urk)〉 ,
Hrij = 〈∇pri ,∇ · (ν∇surj)〉 , Krij = 〈pri ,n · u̇d〉 .

(13)

Finally, for the laminar Navier-Stokes equations, the online stage can be summarised as
solving the algebraic system consisting of the momentum equation (9a), and the pressure Poisson
equation (12):

Arij α̇j +Brijkαjαk − Crijαj +Drijβj = 0 ,

Frijβj +Grijkαjαk −Hrijαj −Kri = 0 .
(14)

The system is solved by means of a segregated iterative solver. Initially, the momentum equation
is solved for α(t), followed by the solution of the pressure Poisson equation for β(t). For the
solution of the momentum equation, the term associated to the trilinear form is linearised,
B′rik = Brijkα

l−1
j , where the superscript l − 1 describes the previous iteration.
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3.3. Hybrid POD-Galerkin strategy for turbulent flows
Similar to the full-order model, when tackling flow problems of high Reynolds number, it is
required to resolve turbulent effects. In the RANS approach a diffusive term is introduced in
the momentum equation and an auxiliary turbulence model is solved for the eddy viscosity.

In this work a POD-I element is considered. Similar to (3), an approximation of the eddy
viscosity is sought as follows:

νMν
tPOD =

Mν∑
i=1

γi(t)ν
r
ti(x), (15)

where Mν is the number of modes, νrti are the spatial basis functions and γi are their time
coefficients. Following the strategy described in Sec. 3.1, we construct the reduced basis Y r

Y r =
{
νrti
}Mν
i=1

, (16)

and evaluate the time dependence matrix via projection of the solution matrix, Φν =

{φi = νt(ti)}
N

i=1
, on the reduced basis

Ξ = ΦνY
rᵀ . (17)

The jth row of Ξ contains the coefficients γi of the ROM approximation (15) at instance tj . In
the online phase, for any valid particularisation of time, the problem consists of calculating the
time coefficients for eddy viscosity, γi(t). In the scope of this work a piecewise linear interpolation
is employed, as follows:

γi(t) =

Mν∑
j=1

gjiχ
j(t− tj) , for 1 < i < Mν , (18)

where χj(t − tj) are piecewise linear interpolation functions centred around tj and supported

on (tj−1, tj+1) with range [0 , 1] and gji are weights. Owing to the fact that we use a piecewise

linear interpolation gji = γi(tj).
The turbulent contribution in (1) is expressed in the diffusive term. Focusing on the turbulent

part, substituting the POD approximations gives rise to the following term

∇·(νMν
tPOD∇

suMu
POD

) . (19)

Carrying out a Galerkin projection on the reduced basis V r, we derive the algebraic form

CTrijkγj(t)αk(t) , (20)

where CTrijk = 〈uri ,∇ · (νrtj∇
surk)〉. The enriched momentum equation (9a) that includes the

turbulent term reads:

Arij α̇j +Brijαjαk − Crijαj − CTrijkγjαk +Drijβj = 0 , (21a)

Similar contributions are derived for the pressure Poisson equation and its boundary conditions.
Solving (21) and the corresponding enriched Poisson equation for pressure in the online phase
returns the time coeficients (α, β) for turbulent flow problems. For a more detailed description
of the proposed strategy, the interested reader is referred to [29].
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(a) ur1 (b) ur2 (c) ur3

(d) pr1 (e) pr2 (f) pr3

Figure 1. NACA 0015 (Re = 320 000, θ = 17◦): Zoom-in view of the first three velocity (a-c)
and pressure (d-f) modes.

4. Numerical experiment
In this section the proposed methodology is tested on the two-dimensional NACA 0015 airfoil
suspended in a mesh. Aiming to capture the transient flow characteristics the airfoil is rotated
to 17◦ angle of attack, leading to an unsteady flow topology. The Reynolds number is chosen at
Re ≈ 320 000, so that it is comparable to experiments run in smaller wind tunnels.

The C-domain is discretised using 240 000 cells. The inlet extends 20c, where c = 1 m is the
chord length of the airfoil, while the outlet is 30c downstream and the total height of the domain
is 40c. The freestream velocity datum (ud = 5 m/s) is imposed on the inlet, top and bottom
boundaries, while a free traction is imposed on the outlet. Finally, a no-slip condition is imposed
on the airfoil walls. After the flow is developed (t ≈ 0.5 s), we observe an oscillatory behaviour,
which repeats itself with approximate period 2.5 s. Owing to the observed periodicity, a time
range from t0 = 1 s to T = 3.5 s is examined. The time step is set to 0.005 s.

The results of the Hybrid POD-Galerkin strategy will be compared to the full-order results,
measuring the relative L2-error for both velocity and pressure over time. The aforementioned
errors are evaluated on a control box that covers the airfoil and extends 1 chord length upstream,
5 chord lengths downstream and 1 chord length both above and below the airfoil (2 chord lengths
total height). The other quantities of interest for this case are the lift and drag coefficients Cl
and Cd, respectively.

4.1. Offline phase
We start by collecting a set of full-order snapshots, storing a solution on equal intervals. From
the resulting full-order solution matrix for velocity, pressure and eddy viscosity we construct
the spatial basis functions and pre-compute the reduced operators. The spatial modes (Fig.1)
represent significant flow structures.

The number of modes to be retained, Mu, Mp and Mt, is determined by the relative amplitude
of the truncated terms (Fig.2). Using Eq. (7) and considering a lower average error bound of
1%, we require approximately 30, 60 and 90 modes for pressure, velocity and eddy viscosity,
respectively.

4.2. Online results
The online phase consists of calculating the time-coefficients such that the solution fields can be
approximated using (3). We define the time-range and time-step of interest. Note that for the
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Figure 2. Relative amplitude of the truncated modes. Using ε = 0.01 in Eq.(7), a subset of
Mu = 60, Mp = 30 and Mν = 90 modes is chosen.

t = 1 s

t = 2 s

POD approximation FOM solution

Figure 3. NACA 0015 (Re = 320 000, θ = 17◦): Comparison of the Hybrid POD-Galerkin
velocity approximation (left) and the FOM solution (right) at two different time-steps (t =
1 s and t = 2 s).

proposed strategy, the time-range needs to be contained in that of the FOM.
Figure 3 displays a comparison between the online approximation of velocity and the full-order

solution using OpenFOAM at two time-steps. It is observed that the proposed methodology can
capture the drastic changes in the flow topology over time, which is quantified in Fig. 4 where
the relative L2-error for velocity and pressure over time is plotted. It should be noted that the
validation points include a combination of sample points and time instances that were not used
in the construction of the ROM. The average error is less than 5% for pressure and less than
2% for velocity, which is in line with the expected lower average error bound of 1%. Similar
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Figure 4. Plot of the relative velocity and pressure error over the examined time range. The
dash-lines correspond to the average error, less than 5% for pressure and less than 2% for velocity.

(a) CL (b) CD

Figure 5. Comparison of the lift (a) and drag (b) coefficients between FOM and ROM. The
ROM can accurately approximate the QoI with the maximum error being 3.5%.

observations can be made for the approximated force coefficients over time (Fig.5), where the
maximum relative error is approximately 3.5% for both Cl and Cd.

The approximative power of the ROM is tested for various bounds of the projection error
ε, i.e. various values of Mu, Mp and Mt. Figure 6 shows the mean error of the velocity and
pressure approximations as a function of the square of the the projection error, ε2. Both the
velocity and pressure approximation achieve the expected convergence rate until ε = 10−2.
We observe stagnation of the error at approximately 1%, which is assumed to be a limitation
derived from the mesh size. We also observe that the approximation error never reaches exactly
the error bound, as is expected due to truncation errors introduced by numerical schemes. That
is more prevalent for pressure, which also suffers from the induced velocity error and stagnates
at approximately 4% error.
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Figure 6. Plot of the mean relative L2-error of the velocity and pressure approximation as a
function of the square of the projection error bound, ε2.

5. Conclusion
The main goal of this work was to outline a POD strategy that can be employed in turbulent
flow problems using the finite volume method, namely OpenFOAM’s libraries. The proposed
approach is a hybrid combining interpolation- and projection-based POD introducing a non-
intrusive reduced-order model of the eddy viscosity in the POD-Galerkin approach, allowing a
more stream-lined use in industrial applications.

Initially, we formulated the fundamentals for the construction of a ROM for incompressible
transient Navier-Stokes equations. Aiming to stay as consistent as possible with the FOM
setting, we derived the pressure Poisson equation for the online evaluation of the reduced pressure
approximation. The resulting ROM is then modified to account for turbulent effects, while the
reduced model of the eddy viscosity employs a linear interpolation scheme.

The potential of the proposed strategy is finally tested using the flow around a NACA airfoil
at a moderately high Reynolds number (≈ 320 000) and an angle of attack of 17◦. The proposed
ROM strategy has proven to be able to approximate the high-fidelity results with good accuracy.
The average L2-errors are close to 1% and 5% for velocity and pressure, respectively. It showed
quantitatively great ability in closely following significant temporal effects of the flow topology,
as well as reliability in the approximation of industrially relevant quantities of interest with
maximum relative errors well below 5%.
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