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HOMOLOGIES ON PATH COMPLEXES

SIGVE LYSNE

Abstract. A path complex generalizes both simplicial complexes and
directed graphs. We use the definition of path homology established
by Grigor’yan, Lin, Muranov and Yau in [4], which grants a notion
of homology on directed graphs. We then construct examples of path
complexes that have torsion in their homology group with the goal of
studying these homology groups geometrically and demonstrating the
notion of torsion in path complexes.

Contents

1. Introduction 2
2. Simplicial Complexes 3
3. Paths 5
4. Path Complexes 8
5. Homologies on Path Complexes 10
6. Path Complexes with Torsion 14
References 18

1



2 SIGVE LYSNE

1. Introduction

The goal of this thesis is to establish the notion of path complexes and
study their homology groups. The thesis is heavily influenced by the work of
Grigor’yan, Lin, Muranov and Yau in [4] and [6], and the book on algebraic
topology by Hatcher [7]. We will consider some proofs and examples not
covered in these sources, particularly in the final section where we discuss
examples of complexes with torsion elements in their homology groups.

Path complexes were introduced by Grigor’yan, Lin, Muranov and Yau
in [4]. A path complex is regarded as a generalization of a simplicial com-
plex, as any simplicial complex is uniquely expressed as a path complex. By
defining a boundary operator much like the boundary operator on simpli-
cial complexes, the article establishes a homology and cohomology theory
on path complexes that is consistent with the well established theory of
homology on simplicial complexes.

The interest for path complexes mainly stem from their ability to easily
represent any directed graph, giving a concept of path homology of directed
graphs. Establishing a proper homology theory of directed graphs has been
tried many times before with mixed success as explained in the introduction
of [4]. There are however multiple advantages with path homology theory
compared to these earlier attempts. Path homologies are easy to compute
and allow non-trivial higher order homology groups when needed. With
the homotopy theory for directed graphs established by Grigor’yan, Lin,
Muranov and Yau in [5], we get homotopy invariance of path homologies
of directed graphs. The homology theory is also proven to be dual to the
cohomology theory of directed graphs established by Dimakis and Müller-
Hoissen in [1] and [2]. This proof was performed by Grigor’yan and Muranov
in [3].

Path complexes can concievably have many future applications in pure
and applied mathematics. Problems involving coverage verification in sensor
networks, such as the problem described by Tahbaz-Salehi and Jadbabaie
in [8], is an example of where this theory could potentialy see future ap-
plication. Path homologies were also used in a simple example of a graph
coloring problem in [5].

The focus of this thesis will be computing homologies of path complexes.
These results are applicable to any directed graph. The thesis starts with
a general introduction to simplicial complexes and their homologies, as this
theory has a lot of similarities to path homologies. In the next section
we discuss paths and their boundaries. We then define path complexes
and their homologies in the following two sections respectively. In the final
section we discuss expressing the real projective plane as a path complex and
calculate the corresponding homology groups. We will compute multiple
examples throughout the thesis to give a better understanding of how these
calculations are performed.

It could be of interest for future projects to explore the meaning of path
homologies on directed graphs further. It would also be interesting to do
further research into path cohomologies and their applications. This would
involve defining an exterior differential dual to the boundary operator and
exploring the concept of forms as defined in [4].
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2. Simplicial Complexes

The theory of simplicial complexes and their homologies bear many
similarities to the theory of path complexes. In this section we will estab-
lish some central concepts of this theory to have a point of reference when
discussing path complexes.

Let S be a finite set of points in a Euclidean space. The elements of S are
called vertices. We give every vertex in S a distinct natural number value i
and denote the vertex by vi.

Definition 2.1. Let i0 < i1 < ... < in be natural numbers. Consider a set
of n+ 1 vertices vi0 , vi1 , ..., vin ∈ S, such that all the vectors vi1 − vi0 , vi2 −
vi0 , ..., vin − vi0 are linearly independent. The smallest convex subset that
contain all these points is called an n−simplex.

We denote such an n−simplex by [vi0 , vi1 , ..., vin ] as any n−simplex is
uniquely determined by its vertices. We observe that a 0−simplex is a point,
a 1−simplex is a line, a 2−simplex is a filled triangle and a 3−simplex
is a filled tetrahedron. Any higher order simplex can be imagined as the
n−dimensional analog of a triangle.

Consider a set of n + 1 vertices v0, ..., vn that define an n−simplex k.
If we remove any m vertices from this set we get a generating set of an
(n−m)−simplex that is completely contained in k. We refer to this
(n−m)−simplex as the (n−m)−face of k.

Definition 2.2. A simplicial n−complex K is a set of simplices of order n
or lower such that if k1, k2 ∈ K:

• Every face of a simplex k1 in K is also in K.
• k1 ∩ k2 ∈ K if the intersection is non-empty.

We choose S to be all the 0−simplices in K to not consider any
unnecessary vertices. This also gives a well defined ordering of vertices for
all simplices in K.

Example 2.3. Let K1 be the simplicial complex in Figure 1.

Figure 1. A simplicial complex.

The simplices of K1 are

v0, v1, v2, v3, v4, v5, v6, v7, v8, [v0, v1], [v0, v2], [v0, v3], [v0, v4], [v1, v2],

[v1, v5], [v2, v3], [v2, v4], [v3, v4], [v5, v6], [v5, v7], [v6, v7], [v0, v1, v2],
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[v0, v2, v3], [v0, v2, v4], [v0, v3, v4], [v2, v3, v4], [v0, v2, v3, v4].

Note especially that every face of [v0, v2, v3, v4] is a simplex in K1. Note
also that [v5, v6, v7] is not in K1 although all its 1−faces are in K1.

A concept of boundary for an n−simplex is necessary when calculating
homology groups. The sum of all (n− 1)−faces is a natural choice for such
a boundary. It turns out that it is convenient to change the sign of each
term in the sum depending on which vertex we are removing because of
the strictly increasing indices of the faces. This is tied to the orientation of
simplices and how we want the boundary operator to act when calculating
our homology groups.

Definition 2.4. Consider an n−simplex [v0, ..., vn]. The boundary of such
a simplex is given by the boundary operator

∂s[v0, ..., vn] =

n∑
k=0

(−1)k[v0, ..., v̂k..., vn](1)

The hat denotes the exclusion of that element from the simplex. For
linear combinations of n−simplices we define the boundary operator linearly,
giving us a homomorphism. For n = 0, we define the boundary to be zero.

We omit the proof of the following lemma. This is because it is completely
analogous to the proof of Lemma 3.4. The proof can also be found in [7].

Lemma 2.5. ∂2
s = 0.

Consider the set of all linear combinations of n−simplices from some
simplicial complex K with whole number coefficients. We denote this set
Cn = Cn(K,Z). We observe that the boundary of an n−simplex is an
(n− 1)−simplex itself, which gives rise to the inclusion ∂s|Cn ⊂ Cn−1. This,
paired with Lemma 2.5, gives rise to the following chain complex:

0← C0 ← ...← Cn−1 ← Cn ← ...(2)

where the arrows represent the boundary operator on the simplices, ∂s.

Definition 2.6. Let K be a simplicial complex. The nth homology group
Hn(K) is defined as

Hn(K) = H(Cn(K))) = Zn/Bn = Ker∂|Cn/Im∂|Cn+1(3)

The homology groups are defined for each set in the chain complex (2). The
groups Zn and Bn are referred to as the n−cycles and n−boundaries of our
simplicial complex respectively.

Lemma 2.5 tells us that any boundary of an (n + 1)-simplex is also an
n−cycle. We can therefore look at a simplicial complex and observe which
cycles are boundaries, and then omit them from the generating sets. We
denote a generating set by ⟨·⟩.
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Example 2.7. We want to find the homology of the simplicial complex K1

in Figure 1. The boundary operator sends all 0−simplices to 0, so Z0 = C0.
Furthermore, we see that ∂s([v1, v2]) = ∂s([v0, v2] − [v0, v1]). We therefore
include [v0, v2] and [v0, v1] in the generating set of B0, but we do not include
the 1−simplex [v1, v2] as it does not change the generated set. This same
logic can be applied to many of the 1−simplices in K1, and we therefore
choose to not include these elements in the generating set of B0.

Adding a linear combination of elements from a generating set to another
element in the same generating set does not change the generated set. This
allows us to manipulate the generating sets of cycles and boundaries so that
some of their generating elements cancel out.

H0(K1) =
⟨v0, v1, v2, v3, v4, v5, v6, v7, v8⟩

⟨v1 − v0, v2 − v0, v3 − v0, v4 − v0, v5 − v1, v5 − v6, v5 − v7⟩

=
⟨v0, v1 − v0, v2 − v0, v3 − v0, v4 − v0, v5 − v1, v6 − v5, v7 − v5, v8⟩
⟨v1 − v0, v2 − v0, v3 − v0, v4 − v0, v5 − v1, v5 − v6, v5 − v7⟩

= ⟨v0, v8⟩ ∼= Z×Z

We do the same process to find the higher order homology groups. We
omit any cycle that corresponds to the boundary of a simplex as they will
cancel out. The only 1−cycle that is not removed is [v5, v6] + [v6, v7] −
[v5, v7], as [v5, v6, v7] is not a 2−simplex. The only 2−cycle is equivalent to
the 2−boundary generated by [v0, v2, v3, v4] and is therefore omitted. Since
there only exists one 3−simplex and no higher order simplices there are no
n−cycles for all n ≥ 3. We therefore get

H1(K1) = ⟨[v5, v6] + [v6, v7]− [v5, v7]⟩ ∼= Z

Hn(K1) = 0 for all n ≥ 2

3. Paths

Before we are able to discuss path complexes in detail we have to first un-
derstand the concepts of paths and path boundaries. All of these defintions
are established in [4]. They also bear a strong resemblance to equivalent
definitions on simplicies which we discussed in the previous section.

Let V be a finite set of arbitrary points. This set differs from S since the
points in V do not necessarily exist in a Euclidean space. The elements of
V are also called vertices, but in the context of paths.

Definition 3.1. Any ordered set of vertices from V is called an elementary
path on V . Such a set that contains n + 1 vertices is called an elementary
n−path on V , or simply an elementary n−path when there is no ambiguity.

For vertices i0, i1, ..., in ∈ V , let i0i1...in denote an elementary n−path
in V . An elementary 0−path is a vertex from V . The set of all linear
combinations of elementary n−paths on V with coefficients in F is denoted
Λn = Λn(V, F ). We consider F = Z unless otherwise specified. The elements
of Λn are called the n−paths in V , and can be written in the form
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v =
∑

i0i1...in

vi0i1...ini0i1...in(4)

where vi0i1...in ∈ F . The boundary operator on an elementary n−path
is defined the same way as the boundary operator on an n−simplex. It
naturally generalizes to any n−path as it is linear.

Definition 3.2. Consider an n−path v as in (4). Its boundary ∂v is

∂v =
∑

i0i1...in

vi0i1...in∂(i0i1...in)

=
∑

i0i1...in

n∑
q=0

(−1)qvi0i1...ini0i1..., îq, ..., in(5)

where îq denotes the exclusion of this element from the path. In this text
the boundary of a 0−path is defined to be 0.

Example 3.3. Consider a 2−simplex [v0, v1, v2]. Any ordered set of these
vertices is considered an elementary path on the simplex. Instead consider
only the ordered sets of vertices with strictly increasing indices. Only a
finite set of paths fulfill this criteria:

{v0, v1, v2, v0v1, v0v2, v1v2, v0v1v2}

We see that this is the set of all faces of [v0, v1, v2]. We also observe that
the boundary of any path from the set is also in the set.

Lemma 3.4. ∂2 = 0

Proof. Let v be a path as in (4). We take the boundary of this path twice.
As the boundary operator is linear, we can move the operator into our
summation as in (5) and apply it to the elementary paths:

∂2v = ∂

 ∑
i0i1...in

n∑
q=0

(−1)qvi0i1...ini0i1...îq...in


=

∑
i0i1...in

n∑
q=0

(−1)qvi0i1...in∂(i0i1...îq...in)(6)

Consider the elementary path i0i1...îq...in = i0i1...iq−1iq+1...in. We give this
path new indices saying

j0 = i0, j1 = i1, ..., jq−1 = iq−1, jq = iq+1, ..., jn−1 = in.
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This means that

∂(i0i1...îq...in) = ∂(j0j1...jn−1)

=
n−1∑
k=0

(−1)kj0j1...ĵk...jn−1

=

q−1∑
k=0

(−1)kj0j1...ĵk...jn−1 +
n−1∑
k=q

(−1)kj0j1...ĵk...jn−1

=

q−1∑
k=0

(−1)ki0i1...îk...îq...in +

n−1∑
k=q

(−1)ki0i1...îq... ˆik+1...in

=

q−1∑
k=0

(−1)ki0i1...îk...îq...in +
n∑

k=q+1

(−1)k−1i0i1...îq...îk...in(7)

Combining (6) and (7) we get

∂2v =
∑

i0i1...in

n∑
q=0

q−1∑
k=0

(−1)q+kvi0i1...ini0i1...îk...îq...in

+
∑

i0i1...in

n∑
q=0

n∑
k=q+1

(−1)q+k−1vi0i1...ini0i1...îq...îk...in

=
∑

i0i1...in

n∑
q=0

q−1∑
k=0

(−1)q+kvi0i1...ini0i1...îk...îq...in

+
∑

i0i1...in

n∑
k=0

k−1∑
q=0

(−1)q+k−1vi0i1...ini0i1...îq...îk...in

In the final sum we have used that taking the sum over every q and demand-
ing k greater than q gives the same terms as if we take the sum over every
k demanding q less than k. Switching the index names k and q then gives

∂2v =
∑

i0i1...in

n∑
q=0

q∑
k=0

(−1)q+kvi0i1...ini0i1...îk...îq...in

+
∑

i0i1...in

n∑
q=0

q∑
k=0

(−1)q+k−1vi0i1...ini0i1...îk...îq...in

=
∑

i0i1...in

n∑
q=0

q∑
k=0

(
(−1)q+k + (−1)q+k−1

)
vi0i1...ini0i1...îk...îq...in

= 0.

□

By definition of the boundary operator, the boundary of an n−path is a
(n− 1)−path. Combined with Lemma 3.4 this gives rise to a chain complex
of elementary n−paths on V :
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0← Λ0 ← ...← Λp−1 ← Λp ← ...(8)

where the arrows represent the boundary operator ∂.

Definition 3.5. An elementary n−path i0i1...in−1 is non-regular if ik = ik+1

for any k = 0, 1, ..., n− 2. The elementary path is otherwise called regular.

A regular path is a path as in (4), but only consisting of regular elementary
paths. The space of all such n−paths with coefficients in F is denoted by
Rn = Rn(V, F ).

The boundary of a regular path is not necessarily regular.Take for example
the path i0i1i0 which has i0i0 in its boundary despite being regular. We can
however consider an alternate boundary operator that sets the coefficient
of any non-regular term in the boundary to zero, giving us a regular path.
We denote this boundary operator ∂reg and name it the regular boundary
operator. It gives rise to a chain complex similar to (8), but with regular
spaces and the regular boundary operator.

4. Path Complexes

In this section we define the notion of path complexes and explore their
relation to simplicial complexes and directed graphs. We also lay the ground-
work for the next section, where we define the homology groups of a path
complex.

Definition 4.1. A path complex P over V is a non-empty collection of
elementary paths in V such that if i0i1...in ∈ P , then i1i2...in ∈ P and
i0i1...in−1 ∈ P .

The paths i1i2...in and i0i1...in−1 are called the truncated paths of i0i1...in.
We say that elementary paths in P are allowed, while elementary paths not
in P are non-allowed. Let Pn denote the set of allowed elementary n−paths.
The elements of P1 are called the edges of our path complex.

Consider a simplicial complex K with vertices v0, v1, ...vk ∈ S. K can be
expressed as a path complex by demanding that the path complex satisfy
the following criteria.

• An n−path vi0vi1 ...vin is only allowed if i0 < i1 < ... < in.
• An n−path is only allowed if its vertices are exactly the vertices of
an n−simplex in K.

Example 4.2. We see that the simplicial complexK1 in Figure 1 is uniquely
identified by the path complex P = P0 ∪ P1 ∪ P2 ∪ P3 where

P0 = {v0, v1, v2, v3, v4, v5, v6, v7, v8}
P1 = {v0v1, v0v2, v0v3, v0v4, v1v2, v1v5, v2v3, v2v4, v3v4, v5v6, v5v7, v6v7}

P2 = {v0v1v2, v0v2v3, v0v2v4, v0v3v4, v2v3v4}
P3 = {v0v2v3v4}

Note that v5v6v7 is not in the path complex as [v5, v6, v7] is not a 2−simplex
in K1.
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Consider a path complex P . This path complex is uniquely associated
with a simplicial complex if we can give every vertex a whole number value
i0, i1, ..., ik such that the following two criteria are satisfied:

• It’s perfect: Given an allowed elementary path, any subsequence
of vertices from the path with the same ordering is allowed. This
corresponds to the fact that every face of a simplex must be included
in the simplicial complex.
• It’s monotone: A path ij0ij1 ...ijn is only allowed if j0 < j1 < ... < jn.

We can also express any directed graph G as a path complex. Given a
directed graph, allow any elementary path that strictly follows the directions
of the graph, that is the path i0...in is only allowed if ik−1ik is a directed
edge in G for all k = 1, ..., n.

We denote the space that is spanned by all elementary n−paths in P
by An. We call the elements of An allowed n−paths. Note that ∂|An is
not necessarily a subset of An−1. As an example, consider a path i0i1i2
in some path complex with boundary ∂(i0i1i2) = i1i2 − i0i2 + i0i1. The
truncated paths i0i1 and i1i2 have to be allowed by Definition 4.1, but i0i2
is not necessarily allowed. We define a subspace of allowed paths with this
property.

Definition 4.3. For n ≥ 1, define a subspace Ωn of An as follows:

Ωn = Ωn(P ) = {v ∈ An|∂v ∈ An−1}
The elements of Ωn are called ∂-invariant n−paths of V .

It is easy to see that Ω0 = A0, Ω1 = A1 and Ωn ⊂ An for all n ∈ N.
Furthermore, we see that ∂|Ωn ⊂ Ωn−1. Combined with Lemma 3.4 we
therefore get a chain complex as in (8).

0← Ω0 ← ...← Ωp−1 ← Ωp ← ...(9)

The boundary of an arbitrary elementary path is a linear combination of
subsequences of the path with the same ordering as the original path. We
therefore get that in a perfect path complex, the boundary of any allowed
elementary path is an allowed path. Since the boundary operator is linear,
the boundary of an allowed path from a perfect path complex is allowed.
That is, if P is perfect, then Ωn = An for all n ∈ N. This is important as
it saves us the trouble of having to check if allowed paths are ∂−invariant
when working with perfect path complexes such as simplicial complexes.

Theorem 4.4. For any path complex P , if Ωn = 0, then Ωp = 0 for all
p > n.

Proof. We only need to prove that if Ωn = 0, then Ωn+1 = 0. The rest of
the proof follows by induction.

The case where An = 0 is trivial, as this gives Ap = 0 for all p > n by
the definition of a path complex. We therefore assume An ̸= 0 and want to
show that Ωn+1 = 0. Assume that there exists some v ∈ An+1, v ̸= 0. We
write
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v =
∑

i0i1...in+1

vi0i1...in+1i0i1...in+1

where at least one coefficient vi0i1...in+1 is non-zero. By the definition of a
path complex, the n−path

v′ =
∑

i0i1...in+1

vi0i1...in+1i0i1...in

is allowed as it is only built of allowed elementary n−paths, and it is not
equal to zero as at least one coefficient is non-zero. Since Ωn = 0, the
boundary ∂v′ is not in An−1. This means that at least one elementary path
in ∂v′ is non-allowed, has non-zero coefficient and cannot be cancelled by
any other term of ∂v′. Such an elementary path can be written i0i1...îq...in
for some allowed n−path i0i1...in. Since we chose our v arbitrarily from
An+1, such a non-allowed (n−1)−path exists in ∂v′ for every v′ constructed
as above.

Assume that v ∈ Ωn+1, that is ∂v ∈ An. Since i0i1...îq...in is a non-

allowed (n− 1)−path with non-zero coefficient in ∂v′, i0i1...îq...inin+1 must
be a non-allowed n−path with the same non-zero coefficient in ∂v. This
summand has to be eliminated by other summands in the boundary of v if
v ∈ Ωn+1. Any such summand that helps eliminate the non-allowed path
above must be on the form

i0...iq−1iq+1...ikJik+1...in+1 or i0...ikJik+1...iq−1iq+1...in+1(10)

where J is a vertex such that the (n+1)−path is allowed. We also see that
the coefficients of v in front of the terms in (10) exist in v′ in front of the
elementary paths

i0...iq−1iq+1...ikJik+1...in or i0...ikJik+1...iq−1iq+1...in.(11)

Since the indices of the elementary n−paths in (11) correspond directly to
the first n + 1 indices of the elementary (n + 1)−paths in (10) and their
coefficients are the same, the boundaries will cancel in the same manner.
This means that v ∈ Ωn+1 ⇒ v′ ∈ Ωn. This is a contradicition since Ωn = 0,
so v /∈ Ωn+1. Thus, Ωn+1 = 0. □

5. Homologies on Path Complexes

We are finally ready to define homologies on path complexes.

Definition 5.1. Let P be a path complex. The nth path homology group
Hn(P ) is defined as

Hn(P ) = H(Ωn(P ))) = Zp
n/B

p
n = Ker∂|Ωn/Im∂|Ωn+1(12)

The path homology groups are defined for each set in the chain complex (9).

We observe that Ker∂|Ω0 = Ω0 since ∂v = 0 for all v ∈ Ω0. Furthermore,
we observe that both Ker∂|Ωn and Im∂|Ωn+1 are F−linear spaces generated
by n−paths, and Im∂|Ωn+1 ⊆ Ker∂|Ωn .
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Example 5.2. Consider a path complex P connected to a simplicial com-
plex K. Any n−path i0i1...in ∈ P corresponds directly to an n−simplex
[vi0 , vi1 , ..., vin ] ∈ K. The spaces are therefore isomorphic, and the two
boundary operators give equal results up to isomorphism. As the boundary
operator and elements interact the same way both in K and P we get that
the generating sets in the homology groups are equal, thereby giving the
same homology groups. Homology theory on path complexes is therefore
consistent with simplicial homology theory.

Lemma 5.3. For any path complex P , if Ωn = 0, then Hn(P ) = 0.

Proof. We see that Im∂|Ωn+1 ⊆ Ker∂|Ωn ⊆ Ωn = 0. Thus,

Hn(P ) = Ker∂|Ωn/Im∂|Ωn+1 = 0.

□

The following important result follows directly from Theorem 4.4 and
Lemma 5.3.

Proposition 5.4. Consider any path complex P . If Ωn = 0 , Hp(P ) = 0
for every p ≥ n.

This means that if we discover a ∂-invariant space Ωn that is trivial we
don’t need to check any higher order ∂-invariant spaces or path homology
groups.

In the following example we consider the difference between using the
standard boundary operator ∂ and the regular boundary operator ∂reg.
Recall that the regular boundary operator sets the coefficient of any non-
regular term in the boundary to zero.

Example 5.5. Consider a path complex P associated with the directed
graph in Figure 2.

Figure 2

We construct An as the set of all regular n−paths on the directed graph
in Figure 2 for every n. ´

A0 = ⟨0, 1⟩
A1 = ⟨01, 10⟩
A2 = ⟨010, 101⟩
A3 = ⟨0101, 1010⟩

...

We observe that with the non-regular boundary operator we get ∂(010) =
10 − 00 + 01, ∂(101) = 01 − 11 + 10. These paths are not ∂−invariant as
00, 11 /∈ A1, and we get

Ω0 = A0 = ⟨0, 1⟩ , Ω1 = A1 = ⟨01, 10⟩ , Ωn = 0 for every n ≥ 2
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This gives

H0(P ) = ⟨0, 1⟩/⟨1− 0, 0− 1⟩ = ⟨0, 1− 0⟩/⟨1− 0⟩ = ⟨0⟩ ∼= Z
H1(P ) = ⟨01 + 10⟩ ∼= Z
Hn(P ) = 0 for every n ≥ 2

On the other hand, let us consider the same path complex with a regular
boundary operator. This way ∂reg(010) = 10 + 01 and ∂reg(101) = 01 +
10. All allowed 2−paths are therefore ∂reg−invariant. More generally we
see that omitting any vertex that is not the first or the last in an allowed
elementary path would give a non-regular elementary path. The coefficients
of these terms are all set to zero by ∂reg, making any boundary a linear
combination of truncated paths. As any truncated path is allowed by the
definition of a path complex, we get that Ωn = An for every n.

We observe that only multiples of one linear combination of two allowed
elementary n−paths give an element in Zp

n.

Z1 = ⟨10 + 01⟩ , Z2 = ⟨101− 010⟩ ,

Z3 = ⟨1010 + 0101⟩ , Z4 = ⟨10101− 01010⟩ ,

Z5 = ⟨101010 + 010101⟩ , Z6 = ⟨1010101− 0101010⟩ ,

...

All these cycles are also boundaries. As Bp
n ⊂ Zp

n, B
p
n = Zp

n. Hence,

H0(P ) = Z , Hn(P ) = 0 for all n ≥ 1

We see that ∂ and ∂reg give rise to different 1st
homology groups H1(P ). This difference stems
from the fact that the standard boundary ope-
rator ∂ counts such a two-directional edge as a
hole, illustrated in Figure 3, while the regular
boundary operator ∂reg does not. Whether or not
such an edge should qualify as a hole is a matter
of convention.

Figure 3

Example 5.6. Consider a path complex P associated with the directed
graph in Figure 4.

Figure 4

We allow all regular elementary paths along the directed edges in Figure
4.

A0 = ⟨0, 1, 2, 3⟩
A1 = ⟨01, 12, 23, 30⟩
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A2 = ⟨012, 123, 230, 301⟩
...

Both boundary operators, ∂ and ∂reg, give the same results in this example.
Let us look at the boundaries of all the allowed elementary 2−paths.

∂(012) = 12− 02 + 01

∂(123) = 23− 13 + 12

∂(230) = 30− 20 + 23

∂(301) = 01− 31 + 30

Each of these boundaries contain one of the non-allowed 1−paths 02, 13, 20
and 31 each. No non-zero linear combination of these boundaries could
therefore give an allowed 1−path as the non-allowed terms will not cancel.
We therefore get

Ω0 = A0 = ⟨0, 1, 2, 3⟩ , Ω1 = A1 = ⟨01, 12, 23, 30⟩ and
Ωn = 0 for every n ≥ 2.

We get the following homology groups:

H0(P ) = ⟨0, 1, 2, 3⟩/⟨1− 0, 2− 1, 3− 2, 0− 3⟩
= ⟨0, 1− 0, 2− 1, 3− 2⟩/⟨1− 0, 2− 1, 3− 2⟩ = ⟨0⟩ ∼= Z

H1(P ) = ⟨01 + 12 + 23 + 30⟩ ∼= Z
Hn(P ) = 0 for every n ≥ 2.

We often proceed as in Examples 5.5 and 5.6 by reducing the homology
groups to their generating elements. If we do not care about the generating
elements themselves we could instead discuss the dimension of the homology
groups.

Proposition 5.7. Consider a path complex P .

dim(Hn(P )) = dim(Ωn)− dim(Im∂|Ωn)− dim(Im∂|Ωn+1)

Proof. Since Hn(P ) is a quotient space,

dim(Hn(P )) = dim(Ker∂|Ωn/Im∂|Ωn+1) = dim(Ker∂|Ωn)− dim(Im∂|Ωn+1)

Since the boundary operator is linear, we use the rank-nullity theorem.

dim(Ωn) = dim(Im∂|Ωn) + dim(Ker∂|Ωn).

Hence,

dim(Hn(P )) = dim(Ωn)− dim(Im∂|Ωn)− dim(Im∂|Ωn+1)

□

Proposition 5.7 can be useful, but we need to be careful when using it
as it can lose some information that the generating elements give us. As
an example this proposition fails to discover torsion in some non-orientable
manifolds. We will therefore mostly avoid using this result.
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6. Path Complexes with Torsion

The goal of this section is to construct a path complex with torsion in
its homology group. We do this to get a better understanding of how such
torsion elements appear in path homology groups and to explore how path
complexes interact with cellular homology theory.

A CW-complex, as described in [7], is a more general complex than a
simplicial complex. A CW-complex consists of cells instead of simplices.
Any simplex can be regarded as a cell, but a cell is not required to be
uniquely defined by its vertices. This allows for some computations that
would be harder to do on simplicial complexes, such as finding the homology
groups of the real projective plane. Figure 5 visualizes a CW-complex C
that represents the real projective plane by gluing the edges a and b to their
counterpart in coherence with their direction.

Figure 5

The CW-complex in Figure 5 has vertices {0, 1}, edges {a, b, c} and 2−cells
{A,B}. The cellular homology groups of this CW-complex are calculated
in [7] and shown to be

H0(C) ∼= Z , H1(C) ∼= Z/2Z , Hn(C) = 0 for every n ≥ 2

We see that the first homology group H1(C) is isomorphic to a quotient
group, meaning that C has torsion. This quotient group appears because
the 1−boundaries, that is the boundaries of A and B, are different although
they have the same edges:

∂A = a+ b+ c , ∂B = a+ b− c

Combined with the 1−cycles ⟨a+ b, c⟩, the generating sets in the first
homology group reduce to

H1(C) = ⟨c⟩/⟨2c⟩ ∼= Z/2Z.

We will now see what happens if we try to create a path complex out of
Figure 5 as if it was a simplicial complex.

Example 6.1. Consider a path complex P based on Figure 6 with the
non-regular boundary operator.



HOMOLOGIES ON PATH COMPLEXES 15

Figure 6

We allow the following paths:

A0 = ⟨0, 1⟩
A1 = ⟨01, 10, 00⟩
A2 = ⟨001, 010⟩

All of these elementary paths are ∂−invariant. As an example,

∂(001) = 01− 01 + 00 = 00

∂(010) = 10− 00 + 01

are both allowed. This gives Ωn = An for all n. It is clear that no combina-
tion of the allowed elementary 2−paths can give a vanishing boundary. We
therefore get

H0(P ) = ⟨0, 1⟩/⟨1− 0, 0− 1, 0− 0⟩ = ⟨0, 1− 0⟩/⟨1− 0⟩ = ⟨0⟩ = Z
H1(P ) = ⟨01 + 10, 00⟩/⟨00, 10− 00 + 01⟩

= ⟨01 + 10− 00, 00⟩/⟨00, 01 + 10− 00⟩ = 0

Hn(P ) = 0 for every n ≥ 2

Hence, H1(P ) is different from the first homology group H1(C) of the CW-
complex in Figure 5. This difference occur because the boundary ∂(001) =
00 does not represent the boundary of A, ∂A = a + b + c, properly. The
only way an elementary 2−path v could represent A properly is if ∂v =
01 + 10 + 00, thereby giving rise to the path homology group H1(P ) =
⟨00⟩/⟨2(00)⟩. Unfortunately no such 2−path exist because of the way the
boundary operator is defined.

This shows that the simple way of creating a path complex corresponding
to a simplicial complex does not immediately generalize to CW-complexes.
The real projective plane can however be triangulated until it is a valid
simplicial complex, as in Figure 7. Let us show that the homology groups
of the path complex related to such a triangulation gives the homology of
the real projective plane.

Example 6.2. Consider a path complex P derived from Figure 7 as if it
was a simplicial complex consisting of 10 2−simplices. This gives

A0 = ⟨0, 1, 2, 3, 4, 5⟩
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Figure 7

A1 = ⟨01, 02, 03, 04, 05, 12, 13, 14, 15, 23, 24, 25, 34, 35, 45⟩

A2 = ⟨012, 015, 023, 034, 045, 124, 134, 135, 235, 245⟩

An = 0 for every n ≥ 3.

Since we are considering a path complex connected to a simplicial complex,
Ωn = An for every n.

As always, Zp
0 is equal to Ω0. We find Bp

0 by taking the boundary of
every allowed elementary 1−path, but remove any boundary that does not
add to the generated set. As an example ∂(15) = 5 − 1 = 5 − 0 + 0 − 1 =
∂(05)−∂(01), so ∂(15) does not have to be included if ∂(01) and ∂(05) are in
the generating set. The generating set of the 0−boundaries therefore reduce
to Bp

0 = ⟨1− 0, 2− 0, 3− 0, 4− 0, 5− 0⟩. This gives

H0(P ) = ⟨0, 1, 2, 3, 4, 5⟩/⟨1− 0, 2− 0, 3− 0, 4− 0, 5− 0⟩
= ⟨0, 1− 0, 2− 0, 3− 0, 4− 0, 5− 0⟩/⟨1− 0, 2− 0, 3− 0, 4− 0, 5− 0⟩
= ⟨0⟩ ∼= Z.

Since ∂2 = 0, all 1−boundaries are also 1−cycles. We also observe that
∂(34 + 45− 35) = 0, making 34 + 45− 35 a 1−cycle. Any other 1−cycle is
generated by the set of these 1−cycles. As an example, consider 02+25−05.
We can express this 1−cycle as

02 + 25− 05 = ∂(023) + ∂(045) + ∂(034)− ∂(235)− (34 + 45− 35).

Figure 8 helps illustrate the choice of signs in the expression above.
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Figure 8

We have found a generating set for the 1−cycles. We however observe
that this set is not linearly independent, as

∂(012)− ∂(015) + ∂(023) + ∂(034) + ∂(045)− ∂(124)

+∂(134)− ∂(135)− ∂(235) + ∂(245) = 2(34 + 45− 35)(13)

We can therefore remove one of the boundaries from the generating set, for
example ∂(245), as

∂(245) = 2(34 + 45− 35)− 2(34 + 45 + 35) + ∂(245)

= 2(34 + 45− 35)− (∂(012)− ∂(015) + ∂(023) + ∂(034)

+ ∂(045)− ∂(124) + ∂(134)− ∂(135)− ∂(235))

We therefore remove this element from the generating set of our 1−cycles.
In the generating set of our 1−boundaries we add the linear combination of
1−boundaries

∂(012)− ∂(015) + ∂(023) + ∂(034) + ∂(045)

−∂(124) + ∂(134)− ∂(135)− ∂(235)

to the element ∂(245) in the generating set. This element is therefore equal
to (13).

With all this in mind we write out the first homology group omitting the
remaining elements that correspons to the boundaries of 2−paths, as these
elements are both 1−boundaries and 1−cycles. This gives

H1(P ) = ⟨34 + 45− 35⟩/⟨2(34 + 45− 35)⟩ ∼= Z/2Z
This is equal to the first homology groupH1(C) of the CW-complex in Figure
5. The element 34 + 45− 35 corresponds to the edge c in the CW-complex.

Clearly Bp
2 = 0 as there are no allowed 3−paths. To see that Zp

2 = 0, con-
sider first that every allowed elementary 1−path only exist in the boundary
of exactly two allowed elementary 2−paths. An example is 01 which only
exists in the boundary of 012 and 015, or 02 which only exists in the bound-
ary of 012 and 023. This means that any allowed path v will have 01 in its
boundary unless v012 = v015. Similarly 02 will exist in the boundary unless
v012 = −v023. Similar results hold for every allowed elementary 1−path.

Now consider the following linear combination of every allowed 2−path.

012− 015 + 023 + 034 + 045− 124 + 134− 135− 235 + 245

The boundary of this linear combination corresponds to (13). The multi-
ples of this linear combination are the only allowed non-zero 2−paths where
every term contaning 01, 02, 03, 04, 05, 12, 13, 14, 15, 23, 24 or 25 are all can-
celled in the boundary. Changing any coefficient without changing all the
other coefficients correspondingly, as described in the previous paragraph,
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will lead to one of these term not being equal to zero. Since a multiple of
(13) has a non-zero boundary unless we multiply it by zero, there exist no
non-zero allowed 2−path with vanishing boundary. Thus,

H2(P ) = 0 and Hn(P ) = 0 for every n ≥ 3.

The path homology of P is therefore the same as the homology of the real
projective plane.

The torsion in Example 6.2 occur because we are able to construct an el-
ement in the generating set of the 1−boundaries that loops over an element
in the generating set of the 1−cycles twice. With this in mind we should
be able to create other path complexes with torsion elements in their ho-
mology groups that are not based on known triangulations of non-orientable
surfaces.
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