
Journal of Functional Analysis 282 (2022) 109353
Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Orthogonal decomposition of composition operators 

on the H2 space of Dirichlet series ✩

Ole Fredrik Brevig a,∗, Karl-Mikael Perfekt b

a Department of Mathematics, University of Oslo, 0851 Oslo, Norway
b Department of Mathematical Sciences, Norwegian University of Science and 
Technology (NTNU), NO-7491 Trondheim, Norway

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 September 2021
Accepted 7 December 2021
Available online 14 December 2021
Communicated by Sophie Grivaux

MSC:
primary 47B33
secondary 30B50, 30H10

Keywords:
Dirichlet series
Hardy spaces
Composition operators

Let H 2 denote the Hilbert space of Dirichlet series with 
square-summable coefficients. We study composition opera-
tors Cϕ on H 2 which are generated by symbols of the form 
ϕ(s) = c0s +

∑
n≥1 cnn

−s, in the case that c0 ≥ 1. If only a 
subset P of prime numbers features in the Dirichlet series of 
ϕ, then the operator Cϕ admits an associated orthogonal de-
composition. Under sparseness assumptions on P we use this 
to asymptotically estimate the approximation numbers of Cϕ. 
Furthermore, in the case that ϕ is supported on a single prime 
number, we affirmatively settle the problem of describing the 
compactness of Cϕ in terms of the ordinary Nevanlinna count-
ing function. We give detailed applications of our results to 
affine symbols and to angle maps.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

✩ K.-M. Perfekt was partially supported by grant EP/S029486/1 of the UK Engineering and Physical 
Sciences Research Council (EPSRC).
* Corresponding author.

E-mail addresses: obrevig@math.uio.no (O.F. Brevig), karl-mikael.perfekt@ntnu.no (K.-M. Perfekt).
https://doi.org/10.1016/j.jfa.2021.109353
0022-1236/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC 
BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jfa.2021.109353
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2021.109353&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:obrevig@math.uio.no
mailto:karl-mikael.perfekt@ntnu.no
https://doi.org/10.1016/j.jfa.2021.109353
http://creativecommons.org/licenses/by/4.0/


2 O.F. Brevig, K.-M. Perfekt / Journal of Functional Analysis 282 (2022) 109353
1. Introduction

Let H 2 be the Hilbert space of Dirichlet series f(s) =
∑

n≥1 bnn
−s with square-

summable coefficients. For real numbers θ, set Cθ = {s ∈ C : Re s > θ}, and let 
ϕ : C1/2 → C1/2 be an analytic function. Gordon and Hedenmalm [10] established that 
the composition operator Cϕf = f ◦ ϕ defines a bounded composition operator on H 2

if and only if ϕ belongs to the Gordon–Hedenmalm class G .

Definition. The Gordon–Hedenmalm class G consists of the analytic functions ϕ : C1/2 →
C1/2 of the form

ϕ(s) = c0s +
∞∑

n=1
cnn

−s = c0s + ϕ0(s),

where c0 is a non-negative integer and the Dirichlet series ϕ0 converges uniformly in Cε

for every ε > 0 and satisfies the following mapping properties:

(a) If c0 = 0, then ϕ0(C0) ⊆ C1/2.
(b) If c0 ≥ 1, then either ϕ0(C0) ⊆ C0 or ϕ0 ≡ iτ for some τ ∈ R.

We will use the notation G0 and G≥1, respectively, for the subclasses (a) and (b).

Let T be a bounded operator on a Hilbert space. The nth approximation number 
an(T ) is the distance in the operator norm from T to the operators of rank < n. Studying 
the decay of approximation numbers is relevant for compact operators T . Indeed, T is 
compact if and only if an(T ) → 0 as n → ∞.

Previously, precise results for the approximation numbers of composition operators 
on H 2 have primarily been available for symbols ϕ ∈ G0, see [4,5,15]. For case (b) of 
the Gordon–Hedenmalm class, the following theorem, extracted from the proofs of [5, 
Thm. 1.2] and [5, Thm. 8.1], gives the best known estimates for general ϕ ∈ G≥1. Here, 
and throughout the paper, we define

ϑ = inf
s∈C0

Reϕ0(s) (1.1)

for symbols ϕ ∈ G .

Theorem 1.1 (Bayart–Queffélec–Seip [5]). Suppose that ϕ ∈ G≥1. Then

p−Re c1
n ≤ an(Cϕ) ≤ n−ϑ (1.2)

where pn denotes the nth prime number.
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Since the proof of Theorem 1.1 is fairly short, we will present it in our preliminary 
section. Note that the asymptotic estimate pn ∼ n log n as n → ∞ is a direct corollary 
of the prime number theorem.

To give an example, suppose that ϕ(s) = c0s + c1 for some c0 ≥ 1 and c1 ∈ C0. Then 
ϑ = Re c1, and if en(s) = n−s for n = 1, 2, 3, . . . denotes the standard basis of H 2, then

Cϕen = n−c1enc0 .

Hence an(Cϕ) = n−Re c1 = n−ϑ in this case, coinciding with the upper bound of (1.2). 
Note that for all other symbols, where ϕ0(s) �≡ c1, the maximum principle implies that 
ϑ < Re c1.

One of the main goals of the present paper is to improve on the estimates (1.2)
for certain symbols ϕ. Specifically, we shall place restrictions on the prime numbers 
appearing in the Dirichlet series ϕ0. Let P denote a set of prime numbers and set M (P ) =
{n ∈ N : p|n =⇒ p ∈ P}. We say that a Dirichlet series f is supported on P if

f(s) =
∑

n∈M (P)

bnn
−s.

A set of prime numbers P is called sparse if 
∑

p∈P p−1 < ∞. Our first main result is the 
following improvement of the lower bound in Theorem 1.1.

Theorem 1.2. Suppose that ϕ ∈ G≥1. If ϕ0 is supported on a sparse set of prime numbers, 
then for every ε > 0 there is a positive constant C = C(ϕ0, ε) such that

an(Cϕ) ≥ Cn−ϑ−ε.

Our proof of Theorem 1.2 relies on an orthogonal decomposition of Cϕ that is made 
available by the assumptions that c0 ≥ 1 and that ϕ0 is supported on P , see Lemma 3.1. 
Let P⊥ denote the set of prime numbers not in P . To apply the orthogonal decomposition 
effectively, we require that P is sparse, so that the set M (P⊥) has positive density in N.

We also have a more refined result. We say that a set of prime numbers P is ν-sparse
for some 0 < ν ≤ 1 if 

∑
p∈P p−ν < ∞. In particular, a set of prime numbers is 1-sparse

if and only if it is sparse.

Theorem 1.3. Consider a symbol ϕ ∈ G≥1 and suppose that ϕ0 is supported on P .

(a) If P is sparse, then there is a constant C1 = C1(ϕ0) such that

an(Cϕ) ≥ C1‖Cϕen‖H 2 .

(b) If P is ν-sparse for some 0 < ν < 1 and 2ϑ ≥ ν/(1 − ν), then there is a constant 
C2 = C2(ϕ0, ν) such that
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an(Cϕ) ≤ C2‖Cϕen‖H 2 .

To exemplify the type of estimates which can be obtained from Theorem 1.3, let P
be a set of prime numbers and consider the affine symbol

ϕ(s) = c0s + c1 +
∑
p∈P

cpp
−s. (1.3)

The approximation numbers of composition operators generated by affine symbols ϕ ∈ G0

have been investigated by Queffélec and Seip [15, Thm. 1.3] and by Muthukumar, Pon-
nusamy, and Queffélec [13, Thm. 4.1]. Using Theorem 1.3, we shall obtain the following 
estimate for the approximation numbers of composition operators generated by affine 
symbols ϕ ∈ G≥1.

Corollary 1.4. Suppose that ϕ is an affine symbol (1.3) with c0 ≥ 1, |P | = d < ∞, cp �= 0
and ϑ > 0. Then ϕ ∈ G and for n ≥ 2,

an(Cϕ) � n−ϑ(logn)− d
4 .

Note that the case ϑ = 0 is omitted from Corollary 1.4. In this case the estimate 
from Theorem 1.3 (a) fails to be sharp, since it follows from [4, Thm. 1] that Cϕ is not 
compact, and thus that an(Cϕ) � 1 for n ≥ 1. In Theorem 4.2 we shall also consider some 
examples of affine symbols supported on infinite but very sparse sets of prime numbers.

In the second part of the paper, we will investigate when the composition operator 
Cϕ is compact on H 2. Suppose that ϕ ∈ G≥1, and consider the Nevanlinna counting 
function

Nϕ(w) =
∑

s∈ϕ−1({w})
Re s, (1.4)

defined for every w ∈ C0. Bayart [3, Prop. 3] employed the classical Littlewood inequality 
for the Nevanlinna counting function in the unit disc to establish the Littlewood–type 
estimate

Nϕ(w) ≤ Rew
c0

. (1.5)

On account of J. Shapiro’s characterization of the compact composition operators on 
the Hardy space of the unit disc [17], and the Littlewood–type estimate (1.5), it seems 
plausible that the compactness of Cϕ on H 2 is related to the requirement that

lim Nϕ(w) = 0. (1.6)

Rew→0+ Rew
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Bayart [3, Thm. 2] proved that if Imϕ0 is bounded and (1.6) holds, then Cϕ is compact 
on H 2. Conversely, Bailleul [1, Thm. 6] established that if ϕ0 is supported on a finite 
set of prime numbers, ϕ is finitely valent, and Cϕ is compact on H 2, then (1.6) holds.

We give a complete description in the case that ϕ0 is supported on a single prime.

Theorem 1.5. Suppose that ϕ ∈ G≥1 and that ϕ0 is supported on P = {p}. Then Cϕ is 
compact on H 2 if and only if

lim
Rew→0+

Nϕ(w)
Rew = 0.

To prove this theorem, we will exploit the fact that such functions ϕ0 are periodic 
(with period 2πi/ log p), in addition to the orthogonal decomposition discussed earlier. 
Accordingly, we will decompose the Nevanlinna counting function (1.4) into an infinite 
number of restricted counting functions. To handle these restricted counting functions we 
will rely on some ideas and techniques from our recent paper [7], where the compactness 
of Cϕ was characterized in the case that ϕ ∈ G0. Each restricted counting function comes 
with a change of variable formula, also known as a Stanton formula, that allows us to 
express ‖Cϕf‖H 2 for Dirichlet series f of a certain form, see Lemma 6.2.

To conclude the paper we will provide a detailed study of angle maps. For c0 ≥ 1, 
ϑ ≥ 0 and 0 < α < 1, consider the symbol ϕα,ϑ(s) = c0s + ϑ + Φα(p−s), where

Φα(p−s) =
(

1 − p−s

1 + p−s

)α

.

If ϑ > 0, then Theorem 1.3 immediately implies that an(Cϕα,ϑ
) � n−ϑ(logn)− 1

2α for n ≥
2, see Corollary 8.1. Similarly to the case of affine maps discussed above, Theorem 1.3 (a) 
does not provide the correct lower bound when ϑ = 0. In this case we shall instead 
proceed via the change of variable formula of Lemma 6.2 and detailed analysis of the 
restricted counting function.

Theorem 1.6. For a positive integer c0 and a real number 0 < α < 1, let ϕα(s) =
c0s + Φα(p−s). Then ϕα is in G≥1 and

an(Cϕα
) � (logn)

α−1
2α

for n ≥ 2.

In the classical setting of H2(D), detailed studies of the approximation numbers of 
composition operators generated by symbols that map into an angle are carried out 
in [12] and [16]. Via the transference principle of [15, Sec. 9], these results also yield 
estimates for the approximation numbers of composition operators Cψα

: H 2 → H 2

generated by angle maps ψα(s) = 1/2 + Φα(p−s).
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Organization. In the preliminary Section 2 we give the proof of Theorem 1.1, and discuss 
the notion of vertical limit functions. In Section 3 we analyze the orthogonal decomposi-
tion of Cϕ and prove Theorem 1.2 and Theorem 1.3. In Section 4 we apply Theorem 1.3
to affine symbols, and in Section 5 to membership in the Schatten classes. In Section 6 we 
introduce and study restricted counting functions and their associated Stanton formulas. 
In Section 7 we provide the proof of Theorem 1.5. In Section 8 we study the example of 
angle maps.

Notation. We will sometimes use the notation f(x) � g(x) to indicate that there is a 
constant C such that f(x) ≤ Cg(x) for all relevant x. The notation � indicates the 
reverse estimate, and f(x) � g(x) means that f(x) � g(x) and g(x) � f(x).

Acknowledgments. The authors thank the anonymous referee for suggesting an improve-
ment to Theorem 1.3.

2. Preliminaries

We will have use for two additional characterizations of the approximation numbers 
of a bounded operator T on a Hilbert space H,

an(T ) = sup
E⊆H

dim(E)=n

inf
x∈E
‖x‖=1

‖Tx‖, (2.1)

an(T ) = inf
E⊆H

dim(E)=n−1

sup
x∈E⊥

‖x‖=1

‖Tx‖. (2.2)

See for example [9, Sec. II.7]. Recall also that approximation numbers satisfy the ideal 
property

an(S1TS2) ≤ ‖S1‖an(T )‖S2‖ (2.3)

for bounded operators S1, T , and S2 on a Hilbert space H.
The following demonstration of Theorem 1.1, adapted from [5], illustrates the use of 

(2.1) and (2.3). In the proof, we also make use of the following result from [10, p. 329].

Lemma 2.1. If ϕ ∈ G≥1, then ‖Cϕ‖ = 1.

Proof of Theorem 1.1. We begin with the upper bound in (1.2). Set ψ(s) = s +ϑ. Note, 
by the definition (1.1) of ϑ, that ϕ −ϑ is in G≥1. Since Cϕ−ϑCψ = Cϕ, the ideal property 
(2.3) with S1 = I, T = Cϕ−ϑ, and S2 = Cψ, therefore yields

an(Cϕ) ≤ ‖Cϕ−ϑ‖ an(Cψ) = n−ϑ,

where the final equality follows from Lemma 2.1 and the trivial analysis of Cψ presented 
in the introduction.
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For the lower bound in (1.2), we choose E = span({e2, e3, . . . , epn
}) as the n-

dimensional subspace of H 2 in (2.1). To estimate the infimum of ‖Cϕf‖H 2 , for 
f(s) =

∑n
j=1 bjp

−s
j of unit norm, we consider the auxiliary subspace

F = span({e2c0 , e3c0 , . . . , epc0
n
})

and deduce from the fundamental theorem of arithmetic, orthogonality, and the Cauchy–
Schwarz inequality that

‖Cϕf‖H 2 ≥ sup
g∈F

‖g‖H 2=1

∣∣〈Cϕf, g〉H 2
∣∣ =

(
n∑

j=1
|bj |2p−2 Re c1

j

) 1
2

.

Taking the infimum on the right-hand side, over all f ∈ E of unit norm, we obtain the 
stated lower bound an(Cϕ) ≥ p−Re c1

n . �
We will now briefly recall a few facts about vertical limit functions and generalized 

boundary values. Let T∞ denote the countable infinite Cartesian product of the unit cir-
cle T in the complex plane, endowed with its Haar measure μ∞. Via prime factorization, 
we may view any χ ∈ T∞ as a character,

χ(n) = χα1
1 χα2

2 · · ·χαd

d for n =
d∏

j=1
p
αj

j .

For a Dirichlet series f(s) =
∑

n≥1 bnn
−s and a character χ ∈ T∞, consider the vertical 

limit function

fχ(s) =
∞∑

n=1
bnχ(n)n−s.

If f converges uniformly in Cθ for some θ ∈ R, then {fχ}χ∈T∞ consists precisely of the 
functions which can be obtained as uniform limits in Cθ of vertical translates f(· + iτk), 
where (τk)k≥1 is a sequence of real numbers. Despite the fact that a function f ∈ H 2

need only converge in C1/2, the Dirichlet series fχ actually converges in C0 for almost 
every χ ∈ T∞ (see e.g. [11, Thm. 4.1]). Moreover, the generalized boundary value

f∗(χ) = lim
σ→0+

fχ(σ)

exists for almost every χ ∈ T∞, and

‖f‖H 2 = ‖f∗‖L2(T∞). (2.4)

The following result can be extracted from [6, Sec. 2].
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Lemma 2.2. Suppose that ϕ : C0 → C0 is a Dirichlet series which converges uniformly in 
Cε for every ε > 0. Then

(i) ϕχ(C0) = ϕ(C0) for every χ ∈ T∞, and
(ii) ϕ∗(χ) exists for almost every χ ∈ T∞.

In particular, we deduce from Lemma 2.2 that if ϕ(s) = c0s +ϕ0(s) is in G , then the 
expression (1.1) for ϑ has the reformulation

ϑ = ess inf
χ∈T∞

Reϕ∗
0(χ). (2.5)

Following [10], we extend the notion of vertical limit functions to symbols ϕ ∈ G by 
defining

ϕχ(s) = c0s + (ϕ0)χ(s).

The interaction between the composition operator Cϕ and vertical limits is given in [10, 
Prop. 4.3]:

(Cϕf)χ = Cϕχ
fχc0 , (2.6)

where f ∈ H 2, χ ∈ T∞, and χc0(n) = χ(n)c0 = χ(nc0). Combining Lemma 2.2 (ii), 
(2.4), and (2.6) yields the following result.

Lemma 2.3. If ϕ ∈ G and χ ∈ T∞, then Cϕ and Cϕχ
are unitarily equivalent.

3. Orthogonal decomposition and approximation numbers

We now fix a subset P of the full set of prime numbers. For each j ∈ M (P⊥), we let 
H 2

j denote the subspace of H 2 comprised of Dirichlet series of the form ejf , where f
is supported on P . Since H 2

j1
⊥ H 2

j2
if j1 �= j2, we have the orthogonal decomposition

H 2 =
⊕

j∈M (P⊥)

H 2
j . (3.1)

The following simple observation is the starting point of the present paper.

Lemma 3.1. Let ϕ ∈ G≥1 and suppose that ϕ0 is supported on P . For every j ∈ M (P⊥), 
let Cϕ,j denote the operator obtained by restricting Cϕ to H 2

j . Then

Cϕ =
⊕

⊥

Cϕ,j .
j∈M (P )
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Proof. In view of (3.1), it is sufficient to prove that Cϕ maps H 2
j to H 2

jc0 , since the 
map j �→ jc0 is injective on M (P⊥). Consider the action of Cϕ on en, where n = jk for 
j ∈ M (P⊥) and k ∈ M (P ):

Cϕen(s) = j−c0sk−c0sn−ϕ0(s).

We see that Cϕen ∈ H 2
jc0 , as a consequence of the assumption that ϕ0 is supported on 

P . �
In view of Lemma 3.1 there is for every n ≥ 1 some m ≥ 1 and j ∈ M (P⊥) such that 

an(Cϕ) = am(Cϕ,j). We first apply this to obtain a lower bound for the approximation 
numbers of Cϕ which will immediately imply our first main result.

Lemma 3.2. Let ϕ ∈ G≥1 and suppose that ϕ0 is supported on a sparse set of prime 
numbers P . There is then a positive integer m = m(P ) such that

an(Cϕ) ≥ ‖Cϕemn‖H 2 .

Proof. By definition, any fj ∈ H 2
j can be written fj = ejf for a function f supported 

on P , and ‖fj‖H 2 = ‖f‖H 2 . By Lemma 2.2 (ii) and the composition rule (2.6), we have 
that

(Cϕfj)∗(χ) = χc0(j)j−ϕ∗
0(χ)fχc0 (ϕ∗

0(χ))

for almost every χ ∈ T∞. This formula is at first valid for polynomials f , but by a density 
argument it continues to hold for general f supported on P , if we interpret fχc0 (ϕ∗

0(χ))
as a generalized boundary value when needed. By (2.4) we therefore have that

‖Cϕfj‖2
H 2 =

∫
T∞

j−2 Reϕ∗
0(χ) |fχc0 (ϕ∗

0(χ))|2 dμ∞(χ).

In particular, j �→ ‖Cϕ,j‖ = a1(Cϕ,j) is decreasing for j ∈ M (P⊥). Letting (jn)n≥1
denote the increasing sequence of integers in M (P⊥), we conclude that

an(Cϕ) ≥ a1(Cϕ,jn) = ‖Cϕ,jn‖ ≥ ‖Cϕejn‖H 2 ,

since ejn ∈ H 2
jn

and ‖ejn‖H 2 = 1. The hypothesis that P is sparse means that

lim
N→∞

1
N

card
{
j ∈ M (P⊥) : j ≤ N

}
=

∏
p∈P

(
1 − 1

p

)
= C(P ) �= 0,

and thus that there is a positive integer m such that jn ≤ mn for every n ≥ 1. Therefore
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‖Cϕejn‖2
H 2 ≥

∫
T∞

(mn)−2 Reϕ∗
0(χ) dμ∞(χ) = ‖Cϕemn‖2

H 2 . �

Proof of Theorem 1.2. Since ϕ0 is supported on a sparse set of prime numbers, 
Lemma 3.2 yields that

an(Cϕ) ≥ ‖Cϕemn‖H 2

for some positive integer m. Set Xε = {χ ∈ T∞ : ϑ ≤ Reϕ∗
0(χ) ≤ ϑ + ε}. Then 

μ∞(Xε) > 0, referring to (2.5), and accordingly

‖Cϕemn‖2
H 2 =

∫
T∞

(mn)−2 Reϕ∗
0(χ) dμ∞(χ) ≥ μ∞(Xε)(mn)−2(ϑ+ε).

This gives the stated estimate with C =
√
μ∞(Xε)m−ϑ−ε. �

We now turn toward proving Theorem 1.3 (a).

Lemma 3.3. Suppose that ϕ ∈ G≥1 and let m be a positive integer. There is a constant 
C = C(ϕ0, m) > 0 such that

‖Cϕen‖H 2 ≤ C‖Cϕemn‖H 2

for every integer n ≥ 1.

Proof. As before, we compute the norms on T∞, so that

‖Cϕen‖2
H 2 =

∫
T∞

n−2 Reϕ∗
0(χ) dμ∞(χ).

For any ε > 0, consider the set Xε = {χ ∈ T∞ : ϑ ≤ Reϕ∗
0(χ) ≤ ϑ + ε}. As in the proof 

of Theorem 1.2, we know that μ∞(Xε) > 0. Since x �→ n−x is non-increasing for x > 0, 
it follows, by interpreting each side of the inequality as an average, that

‖Cϕen‖2
H 2 ≤ 1

μ∞(Xε)

∫
Xε

n−2 Reϕ∗
0(χ) dμ∞(χ).

By the definition of Xε, we find that∫
Xε

n−2 Reϕ∗
0(χ) dμ∞(χ) ≤ m2(ϑ+ε)

∫
Xε

(mn)−2 Reϕ∗
0(χ) dμ∞(χ).

Extending the final integral from Xε to T∞, we conclude that
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‖Cϕen‖2
H 2 ≤ m2(ϑ+ε)

μ∞(Xε)
‖Cϕemn‖2

H 2 . �
Proof of Theorem 1.3 (a). Combining Lemma 3.2 and Lemma 3.3 yields that

an(Cϕ) ≥ ‖Cϕemn‖H 2 ≥ C−1‖Cϕen‖H 2 ,

where m is as in Lemma 3.2 and C is from Lemma 3.3. �
The remainder of this section is devoted to the proof of Theorem 1.3 (b). For notational 

reasons, we introduce the partial zeta function

ζP (s) =
∏
p∈P

1
1 − p−s

.

It is clear that if P is ν-sparse for some 0 < ν ≤ 1, then ζP (ν) < ∞.

Lemma 3.4. Suppose that P is a set of ν-sparse prime numbers for some 0 < ν ≤ 1. 
Then ∑

k∈M (P)
k≥K

k−2σ ≤ ζP (ν)Kν−2σ

for every K ∈ M (P ) and every 2σ ≥ ν.

Proof. We estimate∑
k∈M (P)
k≥K

k−2σ ≤ Kν−2σ
∑

k∈M (P)
k≥K

k−ν ≤ Kν−2σ
∑

k∈M (P)

k−ν = Kν−2σζP (ν). �

Lemma 3.5. Fix ϕ ∈ G≥1 and suppose that ϕ0 is supported on a ν-sparse set of prime 
numbers P for some 0 < ν ≤ 1. If 2ϑ ≥ ν, then

am(Cϕ,j) ≤
√

ζP (ν)kν/2m ‖Cϕejkm
‖H 2 ,

where (km)m≥1 are the integers of M (P ) in increasing order and j ∈ M (P⊥).

Proof. We apply the min-max principle (2.2), choosing E ⊆ H 2
j as

E = span
({

ejk1 , ejk2 , . . . , ejkm−1

})
.

This gives us that

am(Cϕ,j) ≤ sup
f∈E⊥

‖Cϕf‖H 2 .
‖f‖H 2=1
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Accordingly, suppose that f ∈ E⊥ with ‖f‖H 2 = 1. If Re s ≥ ϑ, the Cauchy–Schwarz 
inequality and Lemma 3.4 imply that f(s) converges absolutely, and that

|f(s)|2 ≤
∑

k∈M (P)
k≥km

(jk)−2 Re s = j−2 Re s
∑

k∈M (P)
k≥km

k−2 Re s ≤ ζP (ν)kνm(jkm)−2 Re s.

Of course the same estimate also holds if f is replaced by fχc0 for any χ ∈ T∞. Since 
s = Reϕ∗

0(χ) ≥ ϑ for almost every χ, we may therefore apply this estimate in conjunction 
with Lemma 2.2 (ii), (2.4) and (2.6) to see that

‖Cϕf‖2
H 2 =

∫
T∞

|fχc0 (ϕ∗
0(χ))|2 dμ∞(χ)

≤
∫

T∞

ζP (ν)kνm(jkm)−2 Reϕ∗
0(χ) dμ∞(χ) = ζP (ν)kνm‖Cϕejkm

‖2
H 2 .

Together with the min-max principle, this gives the claimed estimate. �
Proof of Theorem 1.3 (b). The function Φ: [1, ∞) → (0, 1] defined by

Φ(x) =

⎛⎝∫
T∞

x−2 Reϕ∗
0(χ) dμ∞(χ)

⎞⎠
1
2

is strictly decreasing, onto (by the assumption ϑ > 0), continuous and enjoys the estimate 
Φ(xy) ≤ y−ϑΦ(x) for every x, y ≥ 1. Hence Φ has an inverse function Φ−1 : (0, 1] →
[1, ∞) satisfying the same properties and enjoying the estimate

Φ−1(xy) ≤ y−1/ϑΦ−1(x) (3.2)

for every 0 < x, y ≤ 1. Fix some 0 < x ≤ 1. The orthogonal decomposition of Lemma 3.1
allows us to rewrite∣∣{n ∈ N : an(Cϕ) ≥

√
ζP (ν)x

}∣∣ =
∣∣{(j,m) ∈ M (P⊥) ×N : am(Cϕj

) ≥
√
ζP (ν)x

}∣∣.
We now apply Lemma 3.5 to bound the right-hand side from above. Note that the 
hypotheses of Lemma 3.5 certainly hold, since we are working under the stronger as-
sumptions that 0 < ν < 1 and 2ϑ ≥ ν/(1 − ν). We obtain that∣∣{n ∈ N : an(Cϕ) ≥

√
ζP (ν)x

}∣∣
≤

∣∣{(j,m) ∈ M (P⊥) ×N : kν/2m Φ(jkm) ≥ x
}∣∣

=
∣∣{(j,m) ∈ M (P⊥) ×N : j ≤ Φ−1(xk−ν/2

m )/km
}∣∣.
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Counting for each m the number of positive integers j (not only those in M (P⊥)) which 
satisfy the inequality j ≤ Φ−1(xk−ν/2

m )/km, we therefore have the upper bound

∣∣{n ∈ N : an(Cϕ) ≥
√

ζP (ν)x
}∣∣ ≤ ∞∑

m=1

Φ−1(xk−ν/2
m

)
km

≤ Φ−1(x)ζP (1 − ν/(2ϑ)),

where the second inequality comes from (3.2) applied with y = k
−ν/2
m ≤ 1. Since 2ϑ ≥

ν/(1 − ν), we conclude that the estimate

∣∣{n ∈ N : an(Cϕ) ≥
√

ζP (ν)x
}∣∣ ≤ ζP (ν) Φ−1(x) (3.3)

holds for every 0 < x ≤ 1.
Since ϑ > 0, there is a smallest positive integer N such that N2ϑ ≥ ζP (ν). By the 

upper bound in Theorem 1.1 it follows that an(Cϕ) ≤
√
ζP (ν) for every n ≥ N . Applying 

(3.3) with x = an(Cϕ)/
√
ζP (ν) ≤ 1 immediately gives us that

an(Cϕ) ≤
√
ζP (ν)Φ

(
n

ζP (ν)

)
(3.4)

for every n ≥ N . Following the proof of Lemma 3.3 verbatim with ε = ϑ yields that

Φ
(

n

ζP (ν)

)
≤

(
ζP (ν)

)2ϑ√
μ∞(X)

Φ(n), (3.5)

where the set X = {χ ∈ T∞ : ϑ ≤ Reϕ∗
0(χ) ≤ 2ϑ} satisfies μ∞(X) > 0. Combining 

(3.4) and (3.5), we conclude that

an(Cϕ) ≤
(
ζP (ν)

)1/2+2ϑ√
μ∞(X)

‖Cϕen‖H 2

for every n ≥ N , which completes the proof. �
4. Composition operators generated by affine symbols

To exemplify Theorem 1.3 we consider affine symbols, which we recall from (1.3) to 
have the form

ϕ(s) = c0s + c1 +
∑
p∈P

cpp
−s.

At first, we assume that ϕ is supported by a set of |P | = d < ∞ prime numbers. In 
particular, cp �= 0 for every p ∈ P . Note from (2.5) that
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ϑ = Re c1 −
∑
p∈P

|cp|.

Before proving Corollary 1.4, let us quickly recall the known results about an(Cϕ) in 
this setting. We begin with the case c0 = 0, in which case we must require that ϑ ≥ 1/2
in order for Cϕ to be bounded. Queffélec and Seip [15, Thm. 1.3] have established that 
if ϑ = 1/2, then

(
1
n

)(d−1)/2

� an(Cϕ) �
(

logn
n

)(d−1)/2

.

If ϑ > 1/2, then by [13, Thm. 4.1] we have that

an(Cϕ) �
(

Re c1 − ϑ

Re c1 − 1/2

)n

,

where the implied constant depends on Re c1 and ϑ > 1/2, but not on d. Actually, the 
estimate is stated and proved only for d = 1 in [13]. However, it can be extended to 
general d ≥ 1 by applying the max-min principle (2.1) and the subordination principle 
for affine symbols from [6, Thm. 5].

Suppose instead that c0 ≥ 1. If ϑ > 0, then the best previously known estimates were 
from Theorem 1.1. As mentioned in the introduction, if ϑ = 0 for an affine symbol ϕ, 
then an(Cϕ) � 1 for n ≥ 1, and so this case is not of interest.

To prove Corollary 1.4, we require the following version of Hankel’s asymptotic esti-
mate for the modified Bessel function of the second kind with parameter 0. It will be 
convenient for us to have explicit constants; we have made no attempt to optimize these.

Lemma 4.1. If x ≥ 1
8 , then

1
π
√

2e
1√
x
≤

π∫
−π

e−4x sin2(θ/2) dθ

2π ≤
√
π

4
1√
x
.

Proof. For the upper bound, we use that | sin(θ/2)| ≥ |θ/π| for −π ≤ θ ≤ π to conclude 
that

π∫
−π

e−4x sin2(θ/2) dθ

2π ≤
∞∫

−∞

e−
4x
π2 θ2 dθ

2π =
√
π

4
1√
x
.

For the lower bound, we suppose that 0 < ε ≤ 2
√
x. Then

π∫
e−4x sin2(θ/2) dθ

2π ≥ e−ε2

2π

∣∣∣∣{−π ≤ θ ≤ π : | sin(θ/2)| ≤ ε

2
√
x

}∣∣∣∣ ≥ εe−ε2

π

1√
x
,

−π
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where we used that | sin(θ/2)| ≤ |θ/2| for the final inequality. The stated lower bound is 
obtained by choosing ε = 1/

√
2, which is permissible by the assumption that x ≥ 1/8. �

Proof of Corollary 1.4. In view of Lemma 2.3 we may without loss of generality replace 
ϕ by ϕχ for any χ ∈ T∞ This allows us to assume that ϕ0 is of the form

ϕ0(s) = ϑ + iτ +
∑
p∈P

γp(1 − p−s),

where τ ∈ R and γp > 0 for p ∈ P . By Theorem 1.3 (a) and (b), we need to estimate

‖Cϕen‖2
H 2 =

∫
T∞

n−2 Reϕ∗
0(χ) dμ∞(χ) = n−2ϑ

∏
p∈P

π∫
−π

n−2γp(1−cos θp) dθp
2π

as n → ∞. Suppose that n is large enough that γp log n ≥ 1
8 for every p ∈ P . Then, by 

applying Lemma 4.1 with x = γp log n,

∏
p∈P

π∫
−π

n−2γp(1−cos θp) dθp
2π =

∏
p∈P

π∫
−π

n−4γp sin2(θp/2) dθp
2π � (logn)− d

2 . �

We finish this section by discussing a class of affine symbols with |P | = ∞. For any 
affine symbol with absolutely convergent coefficients, the image ϕ∗

0(T∞) is an annulus 
(see e.g. [19, Sec. XI.5]). Hence ϕ∗

0(T∞) touches the line Rew = ϑ tangentially. However, 
the examples of this section show that the interaction between different prime numbers 
is essential in determining the behavior of the approximation numbers an(Cϕ). When 
c0 = 0, symbols with |P | = ∞ have previously been considered in [15, Thm. 1.3].

Theorem 4.2. Let P = (pj)j≥1 be a set of prime numbers which is ν-sparse for every 
ν > 0. For fixed c0 ≥ 1, ϑ > 0, and β > 1, define

ϕ(s) = c0s + ϑ +
∞∑
j=1

1 − p−s
j

jβ
.

Then there are positive constants C1 = C1(β) and C2 = C2(β) such that

n−ϑe−C1(logn)1/β � an(Cϕ) � n−ϑe−C2(logn)1/β

for n ≥ 2.

Proof. Since P is ν-sparse for every ν > 0 and since ϑ > 0, we can use both parts of 
Theorem 1.3 to conclude that
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(an(Cϕ))2 � ‖Cϕen‖2
H 2 = n−2ϑ

∞∏
j=1

π∫
−π

n
− 2

jβ
(1−cos θj) dθj

2π .

We need to estimate the integrals

Ij,β(n) =
π∫

−π

n
− 2

jβ
(1−cos θj) dθj

2π

for n ≥ 2. Let J = �(logn)1/β�. When j > J we estimate roughly to obtain that 
n−4/jβ ≤ Ij,β(n) ≤ 1. Hence

exp
(
− 4
β − 1(logn)1/β

)
≤

∏
j>J

Ij,β(n) ≤ 1. (4.1)

Next we turn to 1 ≤ j ≤ J , applying Lemma 4.1 with x = (logn)/jβ to see that

(
1

π
√

2e

)J J∏
j=1

√
jβ

log n ≤
J∏

j=1
Ij,β(n) ≤

(√
π

4

)J J∏
j=1

√
jβ

log n. (4.2)

From Stirling’s formula we find that

J∏
j=1

√
jβ

log n � exp
(
β

2

((
J + 1

2

)
log(J) − J

)
− J

2 log logn
)
.

That is, since J = �(logn)1/β�,

J∏
j=1

√
jβ

log n � exp
(
−β

2 (logn)1/β + log logn
4

)
. (4.3)

Combining (4.1), (4.2), and (4.3), noting that 1
π
√

2e <
√
π

4 < 1, yields the desired esti-
mates. �
5. Schatten classes

For 1 ≤ q < ∞, a linear operator T on a Hilbert space H belongs to the Schatten 
class Sq if (an(T ))n≥1 ∈ �q, in which case its Schatten norm is given by

‖T‖qSq
=

∞∑
n=1

|an(T )|q.

Let (xn)n≥1 be an orthonormal basis of H. If T ∈ Sq, then
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∞∑
n=1

|〈Txn, xn〉|q ≤ ‖T‖qSq
. (5.1)

On the other hand, if 1 ≤ q ≤ 2 and 
∑

n≥1 ‖Txn‖q < ∞, then T ∈ Sq, and

‖T‖qSq
≤

∞∑
n=1

‖Txn‖q. (5.2)

The necessary and sufficient conditions (5.1) and (5.2) for Schatten membership can be 
found for example in [9, pp. 94–95].

Let us now return to composition operators Cϕ with symbols ϕ ∈ G≥1. Note from 
Theorem 1.1 that if ϑ > 1/q for some 1 ≤ q < ∞, then Cϕ ∈ Sq. We can use (5.1) to 
obtain the following converse.

Theorem 5.1. Let ϕ ∈ G≥1. If Cϕ ∈ Sq for some 1 ≤ q < ∞, then ϑ ≥ 1/q.

Proof. As in the proof of Theorem 1.1, we exploit that ϕ − ϑ also belongs to G≥1; by 
Lemma 2.1 we have that ‖C ∗

ϕ−ϑ‖ = ‖Cϕ−ϑ‖ = 1. Hence the ideal property (2.3) implies 
that ‖C ∗

ϕ−ϑCϕ‖Sq
≤ ‖Cϕ‖Sq

. We then apply (5.1) with T = C ∗
ϕ−ϑCϕ and xn = en as the 

standard basis of H 2 to conclude that

∞∑
n=1

∣∣〈C ∗
ϕ−ϑCϕen, en〉H 2

∣∣q < ∞.

Observing that

〈C ∗
ϕ−ϑCϕen, en〉H 2 = 〈Cϕen,Cϕ−ϑen〉H 2 =

∫
T∞

nϑ−2 Reϕ∗
0(χ) dμ∞(χ),

a measure-theoretic argument then shows that 2 Reϕ∗
0(χ) ≥ ϑ + 1/q for almost every 

χ ∈ T∞. Since ess infχ∈T∞ Reϕ∗
0(χ) = ϑ by (2.5), we conclude that ϑ ≥ 1/q. �

Therefore only the case ϑ = 1/q is of further interest. In this setting, we have the 
following corollary of Theorem 1.3.

Corollary 5.2. Let 1 ≤ q < ∞. Suppose that ϕ ∈ G≥1 with ϑ = 1/q and that ϕ0 is 
supported on a sparse set of prime numbers P .

(a) If 1 ≤ q ≤ 2, then Cϕ ∈ Sq if and only if 
(
‖Cϕen‖H 2

)
n≥1 ∈ �q.

(b) If 2 < q < ∞ and P is 2/(2 + q)-sparse, then again we have that Cϕ ∈ Sq if and 
only if 

(
‖Cϕen‖H 2

)
∈ �q.
n≥1
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Proof. If 1 ≤ q ≤ 2, then the statement is a consequence of Theorem 1.3 (a) and the 
general sufficient condition (5.2). If 2 < q < ∞, then the statement follows directly from 
Theorem 1.3. �

When q = 2, Theorem 5.1 has previously been observed by Finet, Queffélec and 
Volberg [8, p. 279]. We finish this section by pointing out the following curiosity of the 
Hilbert–Schmidt case. If ϕ ∈ G≥1, then

‖Cϕ‖2
S2

=
∞∑

n=1
‖Cϕen‖2

H 2 =
∞∑

n=1
‖Cϕ0en‖2

H 2 = ‖Cϕ0‖2
S2
.

In other words, Cϕ is Hilbert–Schmidt if and only if Cϕ0 is Hilbert–Schmidt. Note from 
the examples of Section 4 and Section 8 that the approximation numbers of Cϕ0 tend to 
have much more rapid decay than those of Cϕ, even when ϑ = 1/2. This is compensated 
for by the fact that if c0 ≥ 1, then a1(Cϕ) = ‖Cϕ‖ = 1, while it always holds that 
‖Cϕ‖ > 1 when c0 = 0.

6. Restricted counting functions

We shall now begin to work towards Theorem 1.5. For notational simplicity we will 
assume that p = 2 throughout. We therefore consider symbols

ϕ(s) = c0s + ϕ0(s)

where c0 ≥ 1 and ϕ0(s) = Φ(2−s) for some analytic function Φ: D → C0. Let O =
M ({2}⊥) denote the set of odd numbers. As in Section 3, H 2 orthogonally decomposes 
into the subspaces H 2

j , for j ∈ O. Each subspace H 2
j is comprised of elements f(s) =

j−sF (2−s), where F is in the Hardy space H2(D) of the unit disc. Note that H 2
j is 

a space of absolutely convergent Dirichlet series in C0, while the elements of H 2 are 
generally only convergent in the smaller half-plane C1/2. Moreover, the absolute values 
of functions in H 2

j are periodic: If s ∈ C0, then

|f(s + 2πi/ log 2)| = |f(s)|. (6.1)

From (6.1) it is easy to establish the Carlson–type formula

‖f‖2
H 2 = lim

σ→0+

log 2
2π

π
log 2∫

− π
log 2

|f(σ + it)|2 dt, (6.2)

valid for all f ∈ H 2
j and j ∈ O.

From (6.2) and a direct computation we obtain the following Littlewood–Paley for-
mula. The proof is very similar to those of [2, Prop. 2] and [7, Lem. 2.2].
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Lemma 6.1. Suppose that f ∈ H 2
j for some j ∈ O. Then

‖f‖2
H 2 = |f(+∞)|2 + 2 log 2

π

π
log 2∫

− π
log 2

∞∫
0

|f ′(σ + it)|2 σ dσdt. (6.3)

Proof. Swap the order of integration in (6.3) and then apply (6.2) for each σ > 0. The 
proof is finished by using the formula

4
∞∫
0

n−2σ σdσ = 1
(logn)2 . � (6.4)

Define the restricted counting function Nϕ by

Nϕ(w) =
∑

s∈ϕ−1({w})
−π/ log 2≤Im s<π/ log 2

Re s. (6.5)

For technical reasons, we have included Im s = −π/ log 2 in the definition of Nϕ (see 
(6.10) below). This only affects the value of Nϕ on a set of measure zero. The following 
version of the Stanton formula follows immediately from Lemma 6.1 and a change of 
variables.

Lemma 6.2. Suppose that ϕ ∈ G≥1 and that ϕ0 is supported on P = {2}. If f ∈ H 2
j for 

some j ∈ O, then

‖Cϕf‖2
H 2 = |f(+∞)|2 + 2 log 2

π

∫
C0

|f ′(w)|2 Nϕ(w) dw.

Proof. We can apply Lemma 6.1, since Cϕf ∈ H 2
jc0 by Lemma 3.1. One obtains the 

desired formula by making the non-injective change of variable w = ϕ(s) in the usual 
manner (see e.g. [18, Sec. 10.3]). Note also that ϕ(+∞) = +∞. �

Our next goal is to obtain a version of the Littlewood–type inequality (1.5) for the 
restricted counting function. Our main tool will be the classical Littlewood inequality for 
the Hardy space of the unit disc (see e.g. [18, Sec. 10.4]). Recall that if ψ is an analytic 
self-map of the unit disc D, then the Nevanlinna counting function is defined as

ND
ψ (η) =

∑
z∈ψ−1({η})

log 1
|z|

for η ∈ D \ {ψ(0)}. The Littlewood–type inequality for ND
ψ takes the form
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ND
ψ (η) ≤ log

∣∣∣∣1 − ηψ(0)
η − ψ(0)

∣∣∣∣ (6.6)

for η �= ϕ(0). The proof of the following result is inspired by [7, Lem. 2.4].

Lemma 6.3. Suppose that ϕ ∈ G≥1 and that ϕ0 is supported on P = {2}. There is a 
constant C = C(ϕ) such that

Nϕ(w) ≤ C
Rew

1 + (Imw)2

for 0 < Rew ≤ c0π/ log 2.

Proof. Let Θ: D → S denote the Riemann map of D onto the half-strip

S = {s = σ + it : σ > 0,−1 < t < 1},

normalized so that Θ(0) = 1, Θ′(0) > 0, and for T > 0, let ΘT = TΘ. For any w ∈ C0
and any T > 0, the function

ψ(z) = ϕ(ΘT (z)) − w

ϕ(ΘT (z)) + w

is an analytic map from D to D. Fix a number T ≥ 2 Rew/c0. Then

Reϕ(ΘT (0)) = Reϕ(T ) ≥ 2 Rew,

since Reϕ0(s) ≥ 0 for every s ∈ C0. Hence it is evident that ψ(0) �= 0. Using (6.6) with 
η = 0 we find that

∑
z∈ψ−1({0})

log 1
|z| ≤ log 1

|ψ(0)| .

Noting that ψ(z) = 0 if and only if ϕ(ΘT (z)) = w, and substituting s = ΘT (z), we 
rewrite this estimate as

∑
s∈ϕ−1({w})

log 1
|Θ−1

T (s)|
≤ log

∣∣∣∣ϕ(T ) + w

ϕ(T ) − w

∣∣∣∣ . (6.7)

By standard regularity results for conformal maps there is an absolute constant C > 0
such that

Re s ≤ CT log 1
−1
|ΘT (s)|
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whenever | Im s| ≤ T/2 and 0 < Re s ≤ T/2. Since Reϕ0(s) ≥ 0 for every s ∈ C0, 
we of course have that if ϕ(s) = w, then Re s ≤ Rew/c0. This implies that if T ≥
2 max(Rew/c0, π/ log 2), then

Nϕ(w) ≤
∑

s∈ϕ−1({w})
| Im s|≤T/2
0<Re s≤T/2

Re s ≤ CT
∑

s∈ϕ−1({w})
log 1

|Θ−1
T (s)|

. (6.8)

Noting that both ϕ(T ) and w are in the half-plane C0, a basic estimate for the pseudo-
hyperbolic metric (see e.g. [7, Lem. 2.3]) yields that

log
∣∣∣∣ϕ(T ) + w

ϕ(T ) − w

∣∣∣∣ ≤ 2 Reϕ(T ) Rew
|ϕ(T ) − w|2 . (6.9)

Combining (6.7), (6.8), and (6.9), and recalling that Reϕ(T ) ≥ 2 Rew, we conclude that

Nϕ(w) ≤ 2CT
Reϕ(T ) Rew

(Reϕ(T ))2
4 + (Imϕ(T ) − Imw)2 ,

as long as T ≥ 2 max(Rew/c0, π/ log 2). For the purposes of the present lemma, where we 
restrict our attention to 0 < Rew ≤ c0π/ log 2, it is sufficient to choose T = 2π/ log 2. �

While Theorem 1.5 is stated in terms of the Nevanlinna counting function Nϕ, we shall 
prove it via the restricted counting function Nϕ, which is natural in view of Lemma 6.2. 
To bridge the gap, the remainder of this section is devoted to the following result.

Theorem 6.4. Suppose that ϕ ∈ G≥1 and that ϕ0 is supported on P = {2}. Let Nϕ denote 
the Nevanlinna counting function (1.4) and Nϕ the restricted counting function (6.5). 
Then

lim
Rew→0+

Nϕ(w)
Rew = 0 ⇐⇒ lim

Rew→0+

Nϕ(w)
Rew = 0.

Three preliminary results are required for the proof of Theorem 6.4. We first decom-
pose the Nevanlinna counting function as

Nϕ(w) =
∑
k∈Z

Nϕ,k(w), (6.10)

where Nϕ,k(w) denotes the restricted counting function

Nϕ,k(w) =
∑

s∈ϕ−1({w})∩Sk

Re s

corresponding to the half-strip
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Sk =
{
s ∈ C0 : − π

log 2 ≤ Im s− 2πk
log 2 <

π

log 2

}
.

Note in particular that Nϕ,0 = Nϕ. We begin our study of Nϕ,k with the following 
Littlewood–type estimate.

Lemma 6.5. Suppose that ϕ ∈ G≥1 and that ϕ0 is supported on P = {2}. There is a 
constant C = C(ϕ) > 0 such that the estimate

Nϕ,k(w) ≤ C
Rew

1 +
∣∣ Imw − c0

2πk
log 2

∣∣2
holds uniformly for 0 < Rew ≤ c0π/ log 2 and k ∈ Z.

Proof. If ϕ(w) = s for some s ∈ Sk, then the periodicity of ϕ0 implies that

ϕ

(
s− 2πi

log 2k
)

= w − c0
2πi
log 2k = w̃.

Hence we get from Lemma 6.3 that

Nϕ,k(w) = Nϕ,0 (w̃) ≤ C
Re w̃

1 + | Im w̃|2 . �
For 0 < Rew ≤ c0π/ log 2, we can combine Lemma 6.5 and (6.10) to obtain a less 

precise version of Bayart’s estimate (1.5). Specifically,

Nϕ(w) =
∑
k∈Z

Nϕ,k(w) ≤ C
∑
k∈Z

Rew
1 +

∣∣ Imw − c0
2πk
log 2

∣∣2 ≤ C̃ Rew.

It is reasonable to expect that the main contribution to Nϕ(w) in the decomposition 
(6.10) arises from the k such that w/c0 ∈ Sk. This is the main idea in the proof of 
Theorem 6.4. Before proceeding, we record the following simple fact.

Lemma 6.6. Suppose that ϕ ∈ G≥1 and that ϕ0 is supported on P = {2}. Let j1, j2, k1, k2
be integers satisfying the equation k1 − j1 = k2 − j2. For every w1 such that w1/c0 ∈ Sj1 , 
there is a w2 such that w2/c0 ∈ Sj2 , Rew2 = Rew1, and

Nϕ,k1(w1) = Nϕ,k2(w2).

Proof. Given w1, define

w2 = w1 + c0(j2 − j1)
2πi
log 2 .

Clearly w2/c0 ∈ Sj2 and Rew2 = Rew1. Consider s1 ∈ Sk1 such that ϕ(s1) = w1. Define
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s2 = s1 + (k2 − k1)
2πi
log 2 .

If k1 − j1 = k2 − j2, then k2 − k1 = j2 − j1, and thus ϕ(s2) = w2 (with the same 
multiplicity as ϕ(s1) = w1), by the periodicity of ϕ0. This demonstrates that

Nϕ,k1(w1) ≤ Nϕ,k2(w2),

but by symmetry we also have the reverse estimate. �
A direct consequence of Lemma 6.6 is that the property Nϕ,k(w) = o(Rew) does not 

depend on k.

Lemma 6.7. Suppose that ϕ ∈ G with c0 ≥ 1 and that ϕ0 is supported on P = {2}. Fix 
k ∈ Z. Then

lim
Rew→0+

Nϕ,k(w)
Rew = 0 ⇐⇒ lim

Rew→0+

Nϕ(w)
Rew = 0.

We now prove the main result of this section.

Proof of Theorem 6.4. The implication =⇒ is trivial since Nϕ(w) ≤ Nϕ(w). For the 
converse implication ⇐= , we assume that

lim
j→∞

Nϕ(wj)
Rewj

= 0

for every sequence (wj)j≥1 in C0 such that Rewj → 0. We may without loss of generality 
assume that 0 < Rewj ≤ c0π/ log 2, so that Lemma 6.5 applies.

Fix ε > 0. We need to prove that there is some J > 0 such that

Nϕ(wj)
Rewj

≤ ε (6.11)

for every j ≥ J . For each j ≥ 1, define kj by the requirement that wj/c0 ∈ Skj
. By 

Lemma 6.5 and the decomposition (6.10) there is some non-negative integer K (which 
does not depend on j) such that

Nϕ(wj)
Rewj

≤
∑

|k−kj |≤K

Nϕ,k(wj)
Rewj

+ ε

2 =
∑

|k|≤K

Nϕ,k(w̃j)
Re w̃j

+ ε

2 ,

where the points w̃j arise from Lemma 6.6, whence Re w̃j = Rewj → 0 as j → ∞. We 
can now appeal to Lemma 6.7 to choose J so large that

Nϕ,k(w̃j)
Re w̃j

≤ ε

4K + 2

whenever |k| ≤ K and j ≥ J . Hence (6.11) holds for j ≥ J . �
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7. Proof of Theorem 1.5

By Theorem 6.4, it is sufficient to prove that Cϕ : H 2 → H 2 is compact if and only 
if Nϕ(w) = o(Rew) as Rew → 0+. To do so, we will adapt the proof of [7, Thm. 1.4]
to the present case, in an argument that relies on Lemma 6.2 and Lemma 6.3. Several 
preliminary results are required; the first two estimates are similar to those of [7, Lem. 7.1]
and [7, Lem. 7.3], respectively.

Lemma 7.1. Fix j ∈ O. Suppose that (fk)k≥1 is a sequence in H 2
j such that ‖fk‖H 2 ≤ 1

for every k ≥ 1 and which converges weakly to 0. For every ε > 0 and θ > 0 there is 
some constant K = K(ε, θ) such that

|fk(+∞)|2 + 2 log 2
π

∫
Rew≥θ

|f ′
k(w)|2 Nϕ(w) dw ≤ ε2 (7.1)

whenever k ≥ K.

Proof. We consider first the case j = 1 and write fk(s) =
∑

l≥0 bl(k)2−ls. The assump-
tion that (fk)k≥1 converges weakly to 0 implies that |bl(k)| → 0 as k → ∞, for every fixed 
l. Since fk(+∞) = b0(k), there is some K1 such that if k ≥ K1 then |fk(+∞)| ≤ ε/

√
2. 

Next we want to demonstrate that there is a constant K2 = K2(ε, θ, j) such that

|f ′
k(w)| ≤ ε√

2
|e′2(w)| (7.2)

for Rew ≥ θ >0 whenever k ≥ K2. Here we recall that e2(s) = 2−s. This would give the 
stated claim since then

2 log 2
π

∫
Rew≥θ

|f ′
k(w)|2 Nϕ(w) dw ≤ ε2

2
2 log 2

π

∫
Rew≥0

|e′2(w)|2 Nϕ(w) dw ≤ ε2

2

whenever k ≥ K2, where we used Lemma 6.2 in the final estimate. To establish the 
estimate (7.2), we first choose L = L(θ, ε) ≥ 2 so large that

∞∑
l=L

l2−lRew ≤ ε

2
√

2
2−Rew

whenever Rew ≥ θ > 0. We then choose K2 = K2(L, ε) so large that

|bl(k)| ≤ ε

2
√

2
2

L(L− 1)

for l = 1, . . . , L − 1 and k ≥ K2. Since ‖fk‖H 2 ≤ 1, we certainly have |bl(k)| ≤ 1 for 
l ≥ L. By the triangle inequality we obtain that
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|f ′
k(w)| ≤

L−1∑
l=1

ε

2
√

2
2

L(L− 1)(log 2l)2−lRew +
∞∑
l=L

log(2l)2−lRew ≤ ε√
2
|e′2(w)|

whenever k ≥ K2.
If j > 1, the same proof works with the following modifications. In this case fk(+∞) =

0. The sum for f ′
k now starts at l = 0, but taking this into account the same approach 

shows that

|f ′
k(w)| ≤ ε|e′j(w)|

for k ≥ K(ε, θ), yielding (7.1) by Lemma 6.2. �
Lemma 7.2. Fix δ > 0 and suppose that f(s) =

∑
n≥1 ann

−s is in H 2
j for some j ∈ O. 

Then there is a constant Cδ > 0 such that

∞∫
−∞

|f ′(σ + it)|2 dt

(1 + t2)(1+δ)/2 ≤ Cδ

∞∑
n=1

|an|2(logn)2n−2σ

for every σ > 0.

Proof. Since f is in H 2
j , we can use the periodicity condition (6.1) and (6.2) to see that

2πi(k+1)
log 2∫

2πik
log 2

|f ′(σ + it)|2 dt = 2π
log 2

∞∑
n=1

|an|2(logn)2n−2σ

for every k ∈ Z and every σ > 0. The estimate easily follows. �
We shall also require the following pointwise estimate for the derivative of a function 

in H 2
j .

Lemma 7.3. Suppose that j ∈ O \ {1}. If f(s) =
∑

k≥0 bkj
−s2−ks is in H 2

j , then

|f ′(w)|2 ≤ Cθ‖f‖2
H 2(log j)2j−2 Rew, Cθ = 1 + 4−θ

(1 − 4−θ)3 ,

for Rew ≥ θ > 0.

Proof. Applying the Cauchy–Schwarz inequality we find that

|f ′(w)|2 ≤ ‖f‖2
H 2

∞∑(
log(j2k)

)2
j−2 Rew4−k Rew
k=0
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= ‖f‖2
H 2(log j)2j−2 Rew

∞∑
k=0

(
1 + k log 2

log j

)2

4−k Rew

≤ ‖f‖2
H 2(log j)2j−2 Rew

∞∑
k=0

(1 + k)24−kθ

where we in the final estimate used that j ≥ 3 and Rew ≥ θ. �
Proof of Theorem 1.5: Sufficiency. We assume now that

lim
Rew→0+

Nϕ(w)
Rew = 0

where Nϕ is the Nevanlinna counting function (1.4). By Theorem 6.4 this is actually 
equivalent to the weaker assumption that

lim
Rew→0+

Nϕ(w)
Rew = 0, (7.3)

where Nϕ is the restricted counting function (6.5). Our goal is to prove that Cϕ is 
compact on H 2, which by Lemma 3.1 is equivalent to proving that

(i) Cϕ,j is compact for every j ∈ O,
(ii) ‖Cϕ,j‖ → 0 as j → ∞.

We begin by establishing an estimate that is of relevance to the proofs of both claims. 
Fix 0 < δ < 1. For every ε > 0, there is some 0 < θ = θ(ε) ≤ c0π/ log 2 such that if 
0 < Rew ≤ θ, then

Nϕ(w) ≤ ε2 Rew
(1 + (Imw)2)(1+δ)/2 . (7.4)

Suppose for the sake of contradiction that (7.4) does not hold along some sequence 
(wk)k≥1 in C0 with c0π/ log 2 ≥ Rewk → 0 as k → ∞. If | Imwk| is unbounded, we obtain 
a contradiction to Lemma 6.3. However, if | Imwk| is bounded we have a contradiction 
to (7.3).

Combining (7.4) with Lemma 7.2 we find that if f(s) =
∑

n≥1 ann
−s is any function 

in H 2
j with ‖f‖H 2 ≤ 1, then

∫
Rew≤θ

|f ′(w)|2 Nϕ(w) dw ≤ Cδε
2

∞∑
n=1

|an|2(logn)2
θ∫

0

n−2σσ dσ ≤ Cδε
2, (7.5)

where we made use of the identity (6.4) to assert the final inequality.
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Let us prove the validity of (i). Fix j ∈ O and suppose that (fk)k≥1 is a sequence in 
H 2

j which converges weakly to 0 and satisfies ‖fk‖H 2 ≤ 1 for every k. We then choose 
θ > 0 such that (7.5) holds for each fk. Next, appealing to Lemma 7.1, we choose K
such that

|fk(+∞)|2 + 2 log 2
π

∫
Rew≥θ

|f ′
k(w)|2 Nϕ(w) dw ≤ ε2 (7.6)

for k ≥ K. By Lemma 6.2, combining (7.5) and (7.6) yields that

‖Cϕfk‖2
H 2 ≤ (1 + Cδ)ε2

when k ≥ K. Since ε was arbitrary, we conclude that ‖Cϕfk‖H 2 → 0 as k → ∞, and 
thus that Cϕ,j is compact.

The proof of (ii) is similar. Fix ε > 0. Choosing θ > 0 so that (7.5) holds, it is by 
Lemma 6.2 sufficient to find J ≥ 3 such that

2 log 2
π

∫
Rew≥θ

|f ′
j(w)|2 Nϕ(w) dw ≤ ε (7.7)

whenever fj ∈ H 2
j , ‖fj‖H 2 = 1, and j ≥ J . Using Lemma 7.3 and that j ≥ 3, we have 

that ∫
Rew≥θ

|f ′
j(w)|2 Nϕ(w) dw ≤ Cθ

∫
Rew≥θ

|e′j(w)|2 Nϕ(w) dw

≤ Cθ
(log j)2

(log 2)2

(
j

2

)−2θ ∫
Rew≥θ

|e′2(w)|2 Nϕ(w) dw.

The final integral is less than π/(2 log 2)‖Cϕe2‖2
H 2 ≤ π/(2 log 2) by Lemma 6.2 and 

Lemma 2.1. We thus obtain (7.7) for sufficiently large j. �
For the proof of necessity, we require the following sub-mean value property of the 

Nevanlinna counting function for the unit disc. It is convenient to introduce the notation 
D(w, r) = {ξ ∈ C : |ξ − w| < r}.

Lemma 7.4. Suppose that ψ is an analytic self-map of the unit disc D and let ND
ψ denote 

the Nevanlinna counting function associated with ψ. If g is an analytic map from a 
domain Ω to D, D(w, r) ⊆ Ω, and ψ(0) /∈ g(D(w, r)), then

ND
ψ (g(w)) ≤ 1

πr2

∫
ND

ψ (g(ξ)) dξ.

D(w,r)
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Proof. For a short proof we refer to [17, Sec. 4.6]. �
Proof of Theorem 1.5: Necessity. We assume now that Cϕ is compact on H 2 and seek 
to establish that

lim
Rew→0+

Nϕ(w)
Rew = 0

where Nϕ is the Nevanlinna counting function (1.4). In view of Theorem 6.4, we may 
equivalently establish that

lim
Rew→0+

Nϕ(w)
Rew = 0,

where Nϕ is the restricted counting function (6.5).
Since Cϕ is compact on H 2, it is certainly compact on the subspace H 2

1 . We shall 
make use of a version of Lemma 6.2 adapted to a larger half-strip. If we first write down 
the Littlewood–Paley formula (6.3) with respect to the half-strip | Im s| < 2π/ log 2, and 
then make a change of variables, we obtain the formula

‖Cϕf‖2
H 2 = |f(+∞)|2 + log 2

π

∫
C0

|f ′(w)|2 Ñϕ(w) dw, (7.8)

for every f ∈ H 2
1 . Here the counting function has been restricted to the larger strip, so 

that

Ñϕ(w) =
∑

s∈ϕ−1({w})
| Im s|<2π/ log 2

Re s.

At every point in w ∈ C0, the subspace H 2
1 has a reproducing kernel which is bounded 

in C0. A direct computation shows that the normalized reproducing kernel at w ∈ C0 is 
given by

Kw(s) =
√

1 − 2−2 Rew

1 − 2−w−s
. (7.9)

If (wk)k≥1 is any sequence in C0 with Rewk → 0+, then (Kwk
)k≥1 converges weakly to 

0 in H 2
1 , and thus ‖CϕKwk

‖ → 0 as k → ∞, since Cϕ is compact. From (7.8) and (7.9)
we therefore conclude that

lim
k→∞

1
(Rewk)3

∫
D(wk,Rewk/2)

Ñϕ(ξ) dξ = 0. (7.10)

Let us for the moment restrict our attention to a single w = wk, assuming without loss 
of generality that 0 < Rew ≤ c0π/ log 2. As in the proof of Lemma 6.3, we define
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ψ(z) = ϕ(ΘT (z)) − w

ϕ(ΘT (z)) + w
,

where we now fix T = 2π/ log 2. We also let g(ξ) = (ξ − w)/(ξ + w), so that g is a 
conformal map from C0 to D. Clearly, ψ(z) = g(ξ) if and only if ϕ(ΘT (z)) = ξ. Hence

ND
ψ (g(ξ)) =

∑
z∈ψ−1({g(ξ)})

log 1
|z| =

∑
s∈ϕ−1({ξ})
| Im s|<T

log 1
|Θ−1

T (s)|
. (7.11)

If ξ ∈ D(w, Rew/2), then

Re ξ ≤ (3/2) Rew ≤ c0(3/4)T.

Since Reϕ0(s) ≥ 0, we see that if ϕ(s) = ξ, then certainly Re s ≤ (3/4)T . Set ST = {s ∈
C0 : | Im s| < T}. If s ∈ ST , then it follows from a Kellogg–Warschawski type theorem 
(see e.g. [14, Thm. 3.9]) that

log 1
|Θ−1

T (s)|
� 1 − |Θ−1

T (s)| � |(Θ−1
T )′(s)|dist(s, ∂ST ) � |s2 + T 2|Re s � Re s.

It is of course also possible to establish this estimate by direct computation. Since 
Reϕ(T ) ≥ c0T > Re ξ for every ξ ∈ D(w, Rew/2), we can use the estimate together 
with Lemma 7.4 for Ω = C0 to conclude that

ND
ψ (g(w)) ≤ 4

π(Rew)2

∫
D(w,Rew/2)

ND
ψ (g(ξ)) dξ � 1

(Rew)2

∫
D(w,Rew/2)

Ñϕ(ξ) dξ.

Next we recall that g(w) = 0 and return to formula (7.11). If we restrict ourselves to 
solutions of ϕ(s) = w satisfying | Im s| ≤ π/ log 2 = T/2, then (6.8) says that

Nϕ(w) � ND
ψ (0) = ND

ψ (g(w)).

Applying these two estimates for every w = wk, we have finally proven that (7.10) implies 
the desired conclusion,

lim
k→∞

Nϕ(wk)
Rewk

= 0. �
8. Approximation numbers for angle maps

As in Section 6 and Section 7, we will assume without loss of generality that we are 
working with the prime number p = 2. Fix a real number 0 < α < 1 and let

Φα(z) =
(

1 − z
)α

.
1 + z
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The function Φα is a univalent map from the unit disc D onto the angle

Aα =
{
s ∈ C : | Im s| < tan

(απ
2

)
Re s

}
.

The following result is an immediate consequence of Theorem 1.3.

Corollary 8.1. Fix a positive integer c0 and real numbers ϑ > 0 and 0 < α < 1. Let 
ϕα,ϑ(s) = c0s + ϑ + Φα(2−s). Then ϕα,ϑ is in G≥1 and

an(Cϕα,ϑ
) � n−ϑ(logn)− 1

2α

for n ≥ 2. The implied constants depend on α and ϑ.

Proof. It is evident that ϕα,ϑ is in G≥1. Appealing to both parts of Theorem 1.3 and 
computing the H 2-norm with (2.4), we get for n ≥ 2 that

an(Cϕα,ϑ
) � ‖Cϕα,ϑ

en‖H 2 = n−ϑ

⎛⎝∫
T

n−2 Re Φα(eiθ) dθ

2π

⎞⎠
1
2

� n−ϑ(logn)− 1
2α ,

where a straightforward estimate has been carried out in the final step. �
Theorem 1.3 (a) no longer yields the correct behavior of the approximation numbers 

in the more intricate case when ϑ = 0. To prove Theorem 1.6, we will instead base our 
analysis on the change of variables formula from Lemma 6.2 and on estimates of the 
restricted counting function.

We begin our study with a geometric analysis of ϕα. In this section, we mildly modify 
our notation by letting S = (0, ∞) × (−π/ log 2, π/ log 2).

Lemma 8.2. There is β = β(c0, α), α < β < 1, such that

ϕα(S) ⊆ Aβ .

Proof. In view of the maximum principle, it is sufficient to show that there is β such 
that

ϕα(∂S \ {±iπ/ log 2}) ⊆ Aβ . (8.1)

By explicit computation we have that

Reϕα(it) = cos
(απ

2

) ∣∣∣∣tan
(

log 2
2 t

)∣∣∣∣α ,

Imϕα(it) = c0t + sign(t) sin
(απ) ∣∣∣∣tan

(
log 2

t

)∣∣∣∣α ,

(8.2)
2 2
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5

Rew

Imw

Fig. 8.1. The corner of the domains Aα, ϕα(S), and Aβ , for c0 = 1, α = 2
π arctan

(√
5−1
2

)
, and a numerical 

choice of β.

for |t| < π/ log 2. Hence there is B < ∞ such that | Imϕα(t)|/ Reϕα(t) ≤ B for all such 
t, so that ϕα(i(−π/ log 2, π/ log 2)) ⊆ Aβ0 for β0 = 2

π arctan(B) < 1. If s = σ ± iπ/ log 2
for σ > 0, then

ϕα(s) = ±c0iπ/ log 2 + c0σ + Φα(−2−σ),

from which it is clear that ϕα(s) ∓ c0iπ/ log 2 ∈ [K, ∞), where

K = inf
σ>0

c0σ + Φα(−2−σ) > 0.

It follows that (8.1) holds if we choose β ≥ β0 sufficiently large. �
The next lemma is essentially a consequence of the fact that ϕα(S) looks very similar 

to Aα locally around w = 0. We refer to Fig. 8.1 for an illustration.

Lemma 8.3. There is a constant � = �(c0, α) > 0 such that

Nϕα
(w) � |w| 1

α−1 dist (w, ∂ϕα(C0 ∩D�)) (8.3)

for every w ∈ ϕα(C0 ∩D�/2), where D� = D(0, ρ). Moreover,

(i) there is a constant η1 > 0 such that if 0 < β1 < α is fixed, then

Nϕα
(w) � (Rew) 1

α

for every w ∈ Aβ1 ∩ {0 < Rew < η1}.
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(ii) there are constants η2 > 0 and α < β2 < 1 such that ϕα(S) ⊆ Aβ2 and

Nϕα
(w) � (Rew) 1

α

for every w ∈ Aβ2 ∩ {0 < Rew < η2}.

Proof. Clearly, Φα(2−s) is locally univalent around s = 0 (with Re s > 0). Since

lim
C0�s→0

s

Φα(2−s) = 0,

it follows from Rouché’s theorem that there is �̃ > 0 such that ϕα is univalent on C0∩D�̃. 
Since ϕα(s) → 0 as C0 � s → 0, we can also deduce that if δ > 0 is sufficiently small, 
then for any s ∈ C0 \D�̃,

(c0s + Aα) ∩ ϕα(C0 ∩Dδ�̃) = ∅.

Letting � = δ�̃, we therefore see that there is a uniquely defined inverse

ϕ−1
α : ϕα(C0 ∩D�) → C0 ∩D�.

Reparametrizing (8.2) by letting

t̃ = sign(t)
∣∣∣∣tan

(
log 2

2 t

)∣∣∣∣α ,

we see that in a small neighborhood of w = 0, ∂ϕα(C0 ∩ D�) consists of two 
C1,min(1/α−1,1)-smooth arcs making the angle απ at w = 0. Applying a Kellogg–
Warschawski theorem adapted to corners [14, Thm. 3.9], we thus conclude that

Nϕα
(w) = Reϕ−1

α (w) � dist(ϕ−1
α (w),C0 ∩D�) � |w| 1

α−1 dist (w, ∂ϕα(C0 ∩D�))

for every w ∈ ϕα(C0∩D�/2). Note here that we have made the restriction that ϕ−1
α (w) ∈

C0 ∩D�/2 in order to ensure the validity of the first equivalence. This establishes (8.3).
We now turn to the proof of (i). From (8.2) we have that

| Imϕα(it)|
Reϕα(it) = tan

(απ
2

)
+ c0|t|

cos
(
απ
2
) ∣∣∣tan

(
log 2

2 t
)∣∣∣α ≥ tan

(απ
2

)

for −π/ log 2 < t < π/ log 2. Therefore, for sufficiently small η1 > 0, we see by the 
maximum principle that

Aα ∩ {0 < Rew < η1} ⊆ ϕα(C0 ∩D�)
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and that if w ∈ Aα ∩ {0 < Rew < η1}, then

dist (w, ∂ϕα(C0 ∩D�)) = dist (w, ∂ϕα(C0)) .

Then, if w ∈ Aβ1 ∩ {0 < Rew < η1} for some fixed constant 0 < β1 < α, we find that

dist (w, ∂ϕα(C0 ∩D�)) ≥ dist (w, ∂Aα) � Rew,

where the implied constant depends on β1. Combined with (8.3), we conclude that 
Nϕα

(w) � (Rew) 1
α for w ∈ Aβ1 ∩ {0 < Rew < η1}.

The proof of (ii) is similar. We let α < β2 < 1 be as in Lemma 8.2, so that ϕα(S) ⊆
Aβ2 . If η2 > 0 is sufficiently small and if w ∈ Aβ2 ∩ {0 < Rew < η2}, then

Nϕα
(w) � |w| 1

α−1 dist (w, ∂Aβ2) � (Rew) 1
α . �

Proof of Theorem 1.6: Upper estimate. Let f(s) =
∑

m≥1 bmm−s be any function in 
H 2. Our goal is to establish that

‖Cϕα
f‖2

H 2 − |b1|2 �
∞∑

m=2

|bm|2
(logm)1/α−1 , (8.4)

which will yield the stated upper bound, seeing as

an(Cϕα
) =

√
an(C ∗

ϕα
Cϕα

).

By Lemma 3.1, it is sufficient to establish (8.4) for fj in H 2
j satisfying fj(+∞) = 0, as 

long as we do so uniformly for every j ∈ O.
To estimate ‖Cϕα

fj‖2
H 2 we use the change of variables formula from Lemma 6.2 and 

Lemma 8.3 (ii). Let η2 be as in the latter result and split the integral from Lemma 6.2
at Rew = η2 to obtain

I1 =
∫

Rew<η2

|f ′
j(w)|2Nϕα

(w) dw and I2 =
∫

η2≤Rew

|f ′
j(w)|2Nϕα

(w) dw.

We begin with I1. We appeal to Lemma 8.3 (ii), then extend the integral in σ from (0, η2)
to (0, ∞) to see that

I1 �
∞∫
0

∫
|t|≤σ tan(β2π/2)

|f ′
j(σ + it)|2 dt σ1/α dσ (8.5)

Expanding and using the triangle inequality, we have



34 O.F. Brevig, K.-M. Perfekt / Journal of Functional Analysis 282 (2022) 109353
|f ′
j(σ + it)|2 ≤

∞∑
m=2

∞∑
n=2

|bm||bn|(logm)(logn)(mn)−σ,

where of course bm = 0 unless m is of the form m = j2k. Inserting this into (8.5) and 
computing the resulting Gamma-integral yields

I1 �
∞∑

m=2

∞∑
n=2

|bm||bn|(logm)(logn)
(logm + log n)1/α+2 . (8.6)

By the estimate 
√
xy ≤ (x + y) for x, y > 0,

|bm||bn|(logm)(logn)
(logm + logn)1/α+2 ≤ |bm|

(logm)(1/α−1)/2
|bn|

(logn)(1/α−1)/2
1

logm + logn. (8.7)

Writing m = j2k ≥ 2 and n = j2l ≥ 2,

1
logm + logn ≤ 1

log 2

{
(k + l)−1 if j = 1,
(1 + k + l)−1 if j ∈ O \ {1}.

(8.8)

Note that if j = 1, we are only summing over k, l ≥ 1, while we need to consider k, l ≥ 0
if j ∈ O \ {1}. In either case, we insert (8.7) and (8.8) into (8.6) and appeal to Hilbert’s 
inequality to conclude that

I1 �
∞∑

m=2

|bm|2
(logm)1/α−1 .

The integral I2 is easier to estimate. We can for instance use the coarse upper bound 
Nϕα

(w) ≤ Nϕα
(w) ≤ Rew/c0 from (1.5) and argue as above to see that

I2 ≤ 2 tan(β2π/2)
c0

∞∑
m=2

∞∑
n=2

|bm||bn|(logm)(logn)
∞∫

η2

(mn)−σσ2 dσ.

Thus I2 clearly satisfies the same upper bound as I1 (up to a constant), since η2 > 0. �
Proof of Theorem 1.6: Lower estimate. By Lemma 3.1, it is sufficient to establish that

‖Cϕα,j‖ � (log j)
α−1
2α (8.9)

for j ∈ O \ {1}. For such j we define

fj(s) =
∞∑ 1

log(j2k) (j2k)−s,

k=0
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a function in H 2
j which satisfies that ‖fj‖2

H 2 � (log j)−1 as j → ∞. Let η1 be as in 
Lemma 8.3 (i) and let 0 < β1 < α be a fixed constant, to be further specified later. Using 
Lemma 6.2 and Lemma 8.3 (i), we find that

‖Cϕα
fj‖2

H 2 �
∫

Aβ1∩{0<Rew<η1}

|f ′
j(w)|2(Rew)1/α dw.

Expanding |f ′
j(w)|2, we obtain

‖Cϕα
fj‖2

H 2 �
∞∑
k=0

∞∑
l=0

η1∫
0

∫
|t|≤σ tan(β1π/2)

2−i(k−l)t dt (j22k+l)−σσ1/α dσ. (8.10)

With B = tan(β1π/2), we have the estimate

1
2σB

∫
|t|≤σB

2−i(k−l)t dt = sinc (σB(log 2)(k − l)) ≥ 1 − (σB(log 2)(k − l))2

6 .

We insert this estimate into the double integral in (8.10), then use the substitution 
σ = x/ log(j22k+l) and that (log 2)(k − l)/ log(j22k+l) ≤ 1 to obtain

‖Cϕα
fj‖2

H 2 � 2B(
log(j22k+l)

)1/α+2

η1 log(j22k+l)∫
0

e−xx1/α+1
(

1 − B2

6 x2
)

dx.

By choosing 0 < β1 < α sufficiently small, we can make B as small as we wish. In 
particular, we can ensure that

η1 log 9∫
0

e−xx1/α+1 dx ≥ B2

12

∞∫
0

e−xx1/α+3 dx,

giving us that

‖Cϕα
fj‖2

H 2 �
∞∑
k=0

∞∑
l=0

1(
log(j22k+l)

)1/α+2 � (log j)−1/α.

Hence ‖Cϕα
fj‖2

H 2/‖fj‖2
H 2 � (log j)1−1/α, completing the proof of (8.9). �
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