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Preface 
The International Workshop for Autonomous System Safety (IWASS) is a 

joint effort by the B. John Garrick Institute for the Risk Sciences at the University 

of California Los Angeles (UCLA) and the Norwegian University of Science and 

Technology (NTNU).  

IWASS is a platform for cross-industrial and interdisciplinary exchange of 

knowledge on autonomous systems' Safety, Reliability, and Security (SRS), by 

invited experts and observers. The workshop gathers experts from academia, 

industry, and regulatory agencies to discuss SRS challenges and their potential 

solutions for SRS of autonomous systems from different perspectives. It 

complements existing events that are organized around specific types of 

autonomous systems (e.g., cars, ships, aviation) or particular safety or security-

related aspects of such systems (e.g., cyber risk, software reliability, etc.). IWASS 

distinguishes itself from these events – and complements them – by addressing 

these topics together in an attempt to focus on proposing solutions for SRS 

challenges common to different types of autonomous systems.  

IWASS 2021 was held online on April 20th, 21st, and 28th 2021. The 

invitation-only events gathered 49 participants from 39 organizations from 

around the globe. This report summarizes the presentations and the results of 

the workshop's discussions. The results outline current challenges and future 

research directions that need to be addressed to make autonomous systems safe, 

reliable, and secure in the future.   
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Introduction 
IWASS 2021 is the second edition of the workshop series on Autonomous 

System Safety, Reliability, and Security, initiated in 2019. The first IWASS was 

held in March of 2019 in Trondheim, Norway. The event counted nearly 50 

participants from diverse industries, with different backgrounds and from eight 

countries. The proceedings published by NTNU1 summarizes the discussions held 

at the workshop, briefly described in the next section, in addition to six research 

papers on topics related to autonomous systems safety, reliability, and security. 

Initially planned as an in-person event in 2020 at UCLA, IWASS 2021 

switched to an online event in 2021 due to the COVID-19 pandemic and related 

travel restrictions. IWASS 2021 assembled 49 participants with diverse expertise 

from 39 different organizations and nine countries. The workshop program was 

distributed over three days. On the first day, five domain experts presented 

challenges concerning autonomous systems SRS from different perspectives. A 

keynote presentation opened the second day, followed by four parallel sessions 

discussing specific topics of autonomous systems. Finally, the findings of each 

session and the remaining challenges were summarized and discussed on the 

third day.  

The four topics discussed in dedicated breakout sessions included: (1) 

Demonstrating Safety of Autonomous Systems; (2) Verification & Validation, Risk 

Acceptance; Human on the Loop; (3) The Role of Humans in Autonomous Systems 

Operations; Modeling and Simulation for Understanding Complexity and 

Cascading Failures; and (4) Artificial Intelligence and Data Analytics in Resilient 

Autonomous Systems. The discussions of the four sessions are summarized in 

these proceedings. While solving the issues concerning these topics during a 

single workshop is not realistic, the findings constitute a path towards the safe 

development and operation of autonomous systems for researchers, developers, 

and regulatory agencies. 

Demonstrating Safety of Autonomous Systems is not a trivial task, as 

discussed by the first breakout session participants. Whether the risk associated 

with these systems is acceptable can be addressed only with the evidence that 

their performance assessments have been verified and validated. This group 

explored the topic from three different perspectives. First, the machine-centric 

verification and validation, e.g., how the operational codes that govern 

functionality are developed. While technical specialists are by nature optimistic, 

carrying out machine-centric verification and validation may be more challenging 

 
1 Available at: https://bit.ly/2SsPrLd 
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than one might expect. Second, the human-machine interface verification and 

validation, namely how "humans-in-the-loop" are represented. A general 

consensus emerged that the current methods for verification and validation in 

this realm are inadequate. Social requirements verification and validation 

present an additional challenge, for instance, how the "rules of the road" are 

established, what parameters are measured and what requirements are 

mandated. It is unescapable that autonomous systems will be deployed in an 

open environment whose actors and conditions may be shifting, sometimes 

slowly, sometimes rapidly. How can we be sure that societal aspects are 

adequately reflected in how our models are verified and validated?  

Concerning Human on the Loop, a consensual perception of the second 

discussion session participants was that the extent of human involvement in 

autonomous systems operations and its impact on safety is still not well 

established, in contrast with the development of software and hardware. For 

instance, levels of Autonomy (LoAs) tend to oversimply the role of humans in 

higher LoAs. Yet, while the task load may be reduced in higher LoAs, the tasks 

may demand significantly higher levels of interaction and effort and be critical for 

the system safety. The approach to LoAs must thus be revisited for clarifying the 

human role. An additional discussion point concerns the extent to which the 

method for analyzing human-system interaction (human reliability analysis, 

human factors engineering, etc) can be applied to different autonomous systems, 

given the differences and similarities between them. 

Autonomous systems features such as complexity and possible cascading 

failures pose several challenges concerning methods for risk assessment. The 

third session participants discussed the need for a "framework" with various 

methods for identifying, analyzing and evaluating different hazards and 

hazardous events. Such a framework requires qualitative and quantitative 

methods and approaches and should promote the combination and application 

of both simulation and more traditional "discrete logic" risk assessment 

methods. Furthermore, the complexity of autonomous systems could be 

addressed in risk assessment through the compartmentalization of the systems. 

A challenge lies in defining the subsystems' boundaries and the correct 

integration of the sub-models with each other. When choosing the assessment 

method, it is important to consider the objective and context, i.e., validation or 

verification. More effort is required to identify suitable methods.  

Autonomous systems rely heavily on Artificial intelligence (AI) and data 

analytics, as discussed by the fourth discussion session participants. AI and data 

analytics can be applied to autonomous systems in two ways: firstly, it can be 

applied as part of the systems' intelligence, i.e., information processing, decision-
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making, or motion control. Secondly, it can be used as part of the verification and 

safety assurance process of autonomous systems. Whatever the purpose of the 

application of AI methods is, AI should be used carefully, combining domain 

knowledge with reliable data. The AI method needs to suit its purpose in an 

autonomous system and should be combined with other suitable methods for 

control of the vehicle. When using AI methods an interdisciplinary approach is 

required.  

The issues discussed at IWASS extended beyond the above-mentioned 

topics, including the need for a multidisciplinary view, international cooperation, 

and assessment of the impact of possible regional differences. These discussions 

are summarized below, followed by the summaries of the presentations held at 

IWASS 2021 and an overview of IWASS 2019. 

Further Considerations on Autonomous Systems SRS  

The concluding session of IWASS 2021 was dedicated to an open 

discussion on points concerning autonomous systems SRS that were not directly 

addressed by the breakout session topics. These considerations are summarized 

below. 

Societal risk acceptance 

A feeling of control influences risk acceptance: There is a tendency of 

accepting a higher risk level when people feel in control of the system or perceive 

the system to be under control of another. Risk acceptance is also impacted by 

people's assumptions about the system behavior when confronted with a 

challenging choice. Some discussion revolved around the "Trolley Problem", 

where there is only a binary decision between harming one group to save another 

(e.g., a car passenger or a pedestrian standing in the way). Yet, this type of 

scenario is not expected to be encountered with a high frequency, and more 

attention should be directed to daily decisions. Hence, acceptance of a system 

goes beyond the question of "who to kill" and includes responsibility, reparation, 

fairness, explainability, social impact, and more. Responsibility is an essential 

factor when discussing possible accidents and liability. The issue of who should 

be found responsible in case of an accident – the operator, the manufacturer, the 

software developers, etc. – is still an open question that can also impact societal 

acceptance.  

Risk acceptance is different for different systems. Accidents involving 

some systems seem to be more tolerated than other systems. For instance, 

accidents involving self-driving cars seem to generate minor public outcry 

compared to airplane accidents 
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The need for a multidisciplinary view.  

Given the impact autonomous systems will have in several aspects of our 

lives, the development process should include a multi-disciplinary approach to 

cover ethical and societal aspects. Therefore, discussing interdisciplinary issues 

and among different fields of application has been highlighted as beneficial to 

safely advancing autonomous systems development. 

Accident behavior 

While most research focuses on preventing accidents, accident behavior 

and follow-up after an accident also need to be investigated. It is still unclear how 

to ensure that an autonomous system realizes that it has been involved in an 

accident and then takes the correct actions. For example, an autonomous car that 

has been involved in a crash should not start moving again as soon as the crash 

site is being cleaned. Similarly, accident data needs to be collected and analyzed 

to assess if it is a "behavioral" problem or just a coincidence. In the USA, this is 

already being done by the National Highway Transportation Safety Authority. In 

case statistics indicate a trend, recalls may need to be issued. 

International cooperation and regional differences 

Accident data from different regions need to be combined to assess the 

safety performance of autonomous systems being operated in these different 

regions and countries. This task is challenging since little international 

cooperation on the regulatory levels exists. Furthermore, while accidents with 

autonomous vehicles in the USA have attracted significant attention in the media, 

some similar accidents in other countries have received little attention so far.  

Assurance and related methods 

In general, methods should be scalable and able to treat system elements 

separably. A simulation approach is likely to be required, but the type of 

simulation depends on the autonomous system, its development stage, and the 

types of assurance needed. Currently, the assurance process for many 

autonomous systems seems to be testing, while (safety) modeling does not seem 

to be as widely adopted.  

Risk communication and regulatory agencies. 

Despite the considerable benefit, conversations between safety experts 

and regulators are still incipient. The safety community may be perceived as 

pessimistic; hence safety-related messages need to be formulated in a helpful and 

enabling way to create awareness. 
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Summary of the Presentations held at IWASS 20212 

 

Human Factors In The Design Of Autonomous 

Systems: What Can We Learn From The Boeing 737 

Max Accidents?  

Claire Blackett, Institute for Energy Technology (IFE), 

Norway 

In 2018 and 2019, two Boeing 737 Max airliners crashed, killing 346 

people. Investigations of both crashes revealed failures of sensors related to a 

newly installed system, the Maneuvering Characteristics Augmentation System 

(MCAS), which was meant to automatically regulate the pitch of the aircraft nose 

to avoid stalling, as the root cause of the accidents. Significant organizational, 

safety culture, and regulatory failures contributed to these tragic events. In my 

presentation, I will explore what we can learn from the Boeing 737 Max accidents 

when designing systems of the future, and whether our standard Human Factors 

methods and best practices are up to the task. 

 

Heterogeneous Verification Of Autonomous Robotic 

Systems  

Marie Farrell, Maynooth University, Ireland 

An analysis of the literature has revealed that, as 

autonomous robotic systems increase in complexity, it will 

become necessary to employ distinct verification techniques for individual 

system components in order to ensure the correctness of the entire system. This 

talk will summarise the approaches that have been used to formally specify and 

verify autonomous robotic systems as well as the challenges that emerge during 

this process. This talk will illustrate, via an example of an autonomous rover, how 

distinct techniques can be used to verify different system components. However, 

there is currently no holistic framework within which the results from the 

application of these various techniques can be combined in a meaningful way. 

This talk will discuss potential ways to link these results and discuss the notion 

of confidence in overall system verification. 

 
2 The presentations held at IWASS are available and can be downloaded at: 
https://www.risksciences.ucla.edu/iwass-presentations 
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Autonomous Driving Challenges: Toward Scenario-

Based Causal Models  

Stephen Thomas, Motional, United States 

Autonomous Vehicles offer some unique challenges 

that stretch the limits of traditional safety engineering 

practices. Most current safety standards and methodologies in the 

AV industry were not originally intended for application to autonomous vehicles. 

In this presentation, we discuss the challenges and limitations of current 

standards and methodologies. We provide a brief overview of a proposed 

advanced safety analysis framework which addresses these challenges by 

combining an operational scenario-based approach with advanced causal 

analysis using Bayesian Networks. 

 

NHTSA Human Factors Research Update  

Stacy Balk, National Highway Traffic Safety Administration 

(NHTSA), United States 

The role of human factors research is to provide an 

understanding of how drivers perform as a system component 

in the safe operation of vehicles. This role recognizes that driver performance is 

influenced by many environmental, psychological, and vehicle design factors. The 

focus of the research is to determine which aspects of vehicle design should be 

modified to improve driver performance and reduce unsafe behaviors. An 

additional focus is to evaluate driver's capabilities to benefit from existing or new 

in-vehicle technologies. An update of ongoing NHTSA's Human Factors Vehicle 

Safety Research will be provided. 

 

Why Verify Ethical Behaviour? 

Marija Slavkovik, University of Bergen, Norway 

Machines and software that share the environment 

with people need to not only accomplish their tasks, but also 

do so by not violating the norms of behaviour in that 

environment. Machine ethics studies how to automate moral and common sense 

reasoning. However, automating behaviour is not sufficient, one also needs to 

ensure the stakeholders that the intended behaviour is indeed exhibited. 

Furthermore, one needs to guarantee that unforeseen events do not happen 

within prescribed use. Can verification help? 
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Automated Driving Systems Safety  

Tim Johnson, National Highway Traffic Safety Administration 

(NHTSA), United States 

The discussion focused on providing an overview of 

activities underway at the National Highway Traffic Safety 

Administration in the area of Automated Driving Systems safety. 
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Summary of IWASS 2019 
IWASS 2019 was a three-day workshop and consisted of presentations by 

subjet matter experts, breakout sessions dedicated to specific topics, and open 

discussions. Four topics were discussed in the breakout sessions: Autonomous 

transportation technology: Society and Individuals in the Loop, Safety, Reliability 

and Security Modelling and Methods for Autonomous Systems, System 

Verification, Processes and Testing, and Autonomous Systems Intelligence and 

Decision Support. 

The key findings of the workshop discussions are summarized below. For 

the complete set of take-away messages and breakout session reports, please 

refer to the IWASS 2019 Proceedings3.  

For developers of autonomous systems and functionalities strategies and 

methods are needed for safer, reliable, and secure performance to ensure 

compliance with requirements. For operators, operations need to be executed 

supported by effective risk control to achieve safe and robust operations. 

Regulators and authorities need to create new standards and guidelines to 

perform regulatory and oversight activities efficiently. Systems need to be 

designed with safety as a key driver to gain customers and the public's 

confidence. This will require risk identification, risk assessment and modeling, 

testing and verification and validation of system design and operation. 

Trust is a driver for the acceptance of new technologies. Trust is required 

for the capabilities of the technology and the organizations that operate and 

regulate the technologies. This requires open and inclusive development 

processes, including and respecting societal values. 

Autonomous systems add to the complexity of a system, which also 

increases the complexity concerning SRS assessment and assurance. Currently, 

many of the existing methods are inadequate and lack integrated modeling of 

hardware, human, and software. Additionally, self-learning systems and data 

quality for training adds challenges to the SRS assessment. Therefore, new 

modeling techniques are required that capture interdependencies and 

connections. Simulations may assist in this assessment and provide input to 

decision-making during design and operation. Cyber security and software risk 

 
3 : Proceedings to the First International Workshop on Autonomous Systems Safety. Ramos, 

M.; Thieme, C.; Utne, I.; Mosleh, A. (Editors). 2018. ISBN: 978-82-691120-2-3. Available at  
https://www.ntnu.edu/documents/139785/1283738018/Proceedings+of+the+1st+IWASS.pdf/dadf6
629-ef88-4e48-9c2a-8576c0379da8 
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are different from traditional security issues and hardware failures. In these 

cases, past behavior cannot be used to predict future behavior. 

Verification and testing will play a vital role in the development of 

autonomous systems. Regulatory, ethical and societal requirements need to be 

addressed. However, it is of concern how to derive these requirements. 

Especially, a self-learning (artificial intelligence based) system needs continuous 

and integrated verification processes. The results of any verification process 

should be communicated openly to the public and regulators to build trust. 

Finally, the First IWASS proceedings also contains six articles that address 

some of the above-mentioned challenges. More specifically, Ramos and Thieme 

present the Human-System interaction method in autonomy (H-SIA) method to 

integrate software, hardware, and human failures in risk models. Luckuck 

discusses using several formal methods to engineer safe, trustworthy, and correct 

autonomous systems. Myklebust et al. discuss safety cases and operational 

software development in light of existing standards and practices. Ventikos and 

Louzis address the complex nature of risk assessments of autonomous ships from 

a systemic perspective. How humans, drivers, and pedestrians interact with 

autonomous cars is explored by Jafary et al. Basnet et al. turn again to the marine 

environment by investigating and identifying suitable risk assessment 

approaches for autonomous marine vessels. 

References  
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IWASS 2021 

Discussion Sessions Reports 
 

 

The following four reports summarize the discussions held during 

IWASS 2021 breakout sessions. The reports were written by the 

session chairs with contributions from the group participants. The 

discussions were partly guided by points concerning autonomous 

systems SRS raised by the organizing committee and the participants 

during the registration process. These points, i.e., "Main challenges 

with respect to autonomous systems SRS", are presented at the end of 

the report. Also listed are the names of the group participants.  
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Demonstrating safety of autonomous 

systems – verification & validation, risk 

acceptance 
Report of the Discussions of Breakout Session 

Authors: Metlay, D. ;Mosleh, A.  

Contributors: Carson, S.; Currie-Gregg, N.; Farrell, M.; Feather, M.; Gaither, M.; Glomsrud, 

J.; Harrison, C.; Hjørungnes, S.; Jones, A.; Lundteigen, M.; Porathe, T.; Rothmund, S.; 

Torben, T.; Valdez Banda, O. 

 

 

As autonomous vehicles begin to be widely deployed, questions 

surrounding the verification and validation of their performance increasingly 

come to the fore. In particular, concerns about how much risk these innovations 

pose and whether that risk is acceptable can only be addressed if persuasive 

evidence has been mustered that their performance assessments have been 

verified and validated. This group explored topics surrounding 

verification/validation from three different perspectives. 

 

Machine-centric verification and validation:  How operational codes 

that govern functionality are developed 

This type of verification and validation is the most familiar to technical 

specialists.  However, what is especially problematic is the concern:  Who decides 

what needs to be verified or validated?  On the one hand, developers are 

motivated by self-interest; the cost of failure can be extraordinarily high, both in 

terms of human casualties or ecological damage and missed opportunities and 

"wasted" resources.  For example, performance malfunctions in an autonomous 

car can lead to injuries and death.  Breakdowns in an autonomous helicopter on 

the surface of Mars can endanger a costly and long-planned mission. 

On the other hand, public demands for governmental intervention are 

likely to increase over time.  The ubiquitous presence of social media means that 

challenges for autonomous vehicles will sooner or later be uncovered and 

publicized.  The greater the difficulties, the more likely they will stimulate calls to 

rein in the errant technology.  Already a small number of states have adopted 

rules that restrain the deployment of autonomous vehicles.  It does not take much 

imagination to anticipate that others, as well as the federal government, will also 

become involved. 
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As an autonomous system engages in increasingly complex and 

differentiated environments, innovative and creative methods for verification 

and validation may need to be constructed.  In particular, it is unclear whether it 

will be possible to continue to rely exclusively on incremental learning.  This 

traditional approach for adjusting verification and validation methods appears to 

be burdened in at least three respects. 

First, "wheat must be separated from chaff".  Artificial intelligence 

techniques require a substantial amount of input data.  Programs must be devised 

to interrogate that data so that reliable inferences can be drawn.  Second, the 

situation is further complicated by the potentially long time-constant of feedback 

between the revisions and any determination whether the changes have had their 

expected effect.  Third, any changes to methods for validation and verification 

must be implemented by organizations populated with human beings.  Conflicts 

among those in charge can arise for the following reasons.  (1) Interpretations of 

the artificial intelligence may differ.  Those processes can open the door to 

disagreements about the conclusion's soundness.  (2) Debates may be sparked 

over the costs and benefits of making any change.  It is not unheard of for 

organizations to cover up errors rather than rectifying them.  (3) Getting 

agreement among the wide spectrum of stakeholders—including implementers, 

manufactures, and possibly regulators—may be hard to secure.  The modification 

of the 737MAX software illustrates well the obstacles standing in the face of 

attempting to improve the verification and validation methods. 

In sum, while technical specialists are by nature optimistic, carrying out 

machine-centric verification and validation may be more problematic than one 

might expect. 

 

Human-machine interface verification and validation:  How "humans-

in-the-loop" are represented 

Every participant in the breakout session recognized that significant 

challenges would have to be surmounted in this area. However, overall, most of 

them skewed positively.  They judged that with sufficient time and resources, the 

difficulties could be overcome.  Nonetheless, a general consensus emerged that 

the current methods for verification and validation in this realm are inadequate. 

Among the issues that must be resolved are the following: 

 

• Additional work needs to be done to quantify system requirements.  Typically 

very little examination has been given in advance to what level of 

performance should be demanded from the autonomous system.  This gap 
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may have important implications especially as autonomous system 

development moves away from scripting what needs to be done to simply 

specifying the goal the technology has to achieve. 

• For any new technology, you can never conceive of the problems that lie 

ahead, but once the technology is developed, it may be too late. Participants 

reacted to this dilemma differently.  Some remarked: "We don't have to solve 

all problems and issues in order to bring systems to society.  Systems are 

introduced even though we know that there are risks." This point of view may 

implicitly assume (1) that individuals' (stakeholders') risk profiles are 

similar; (2) that risk evaluations are persuasive; and (3) that incremental 

learning is timely and effective.  [See the discussion above for a more detailed 

discussion of this final point.] 

• Substantial social psychological research suggests that judgments under 

uncertainty may be suspect.  Studies exploring heuristics and cognitive biases 

demonstrate convincingly that people simplify complex decisions.  These 

short-cuts may be appropriate under certain circumstances and not others.  

Decision-aiding methodologies may be useful in mitigating the effects of 

simplification.  But it is not at all evident that they can fully compensate. 

 

Social requirements verification and validation:  How the "rules of the 

road" are established; what parameters are measured and what 

requirements are mandated 

When we use the term "system," it implies the existence of boundaries.  

These may be either implicit (often times) or explicit (less frequently).  It is, 

however, unescapable that these systems will be deployed in an open 

environment whose actors and conditions may be shifting, sometimes slowly or 

sometimes rapidly.  How can we be sure that societal aspects are adequately 

reflected in how our models are verified and validated? 

Participants noted that models would never be complete.  The central 

question is then how the choice is made about which factors can be "safely" 

eliminated?  This question is relevant for both developers and, at least in some 

cases, for the regulators as well. 

Two considerations seem to be pertinent in seeking answers.  First, those 

decision-makers may respond by asserting: "We have reduced the risk to "an 

acceptable level." Bundled into the claim, however, seems to be the presumption 

that their risk calculations are reliable.  Yet, given the challenges involved even in 

verification/validation perspectives considered above, how confident should one 

be in the performance assessments?  To be sure, some techniques could be used 
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to calculate risk distributions and to "quantify" uncertainty.  But whether the 

result is acceptable depends critically on whether the decision-makers are risk-

tolerant or risk-averse.  (It is particularly instructive to study when the decision-

makers acceptability levels differ.) 

Second, the behavior of those decision-makers may or may not be 

trustworthy.  Developers in particular have built-in preferences that may be at 

work as they define the system's scope.   To begin with, they all too frequently 

possess an unrealistically high regard for their wisdom and insightfulness.  As 

one participant aptly put it: "There is some arrogance. They know what they are 

doing and how to do it." This overconfidence is often directed at the uninitiated, 

whose views can then be discounted or completely dismissed.  (Only occasionally 

will the regulators' technical incapacity clearly stand out as it did the case of the 

737MAX software.) 

Further, developers and sometimes regulators tend to emphasize the 

benefits of an autonomous system and neglect to explore the negative 

downstream impacts fully.  For developers, this pattern of behavior is to be 

expected; autonomous system owners are reluctant to seriously question the 

utility of their efforts.  For regulators, the phenomenon of "capture" may erode 

their credibility.  Sustained contacts with developers almost naturally lead the 

officials to view the world through developers' eyes and sympathize with the 

developers' perspectives. 

Despite the challenges to verification and validation at the societal level, 

there is noteworthy too little funding available to address those concerns. 

An intellectually deep agenda lies ahead 

The breakout group participants were cautiously optimistic about the 

prospects for wide-scale deployment of vehicles at an autonomous Level 4 and 

perhaps at a Level 5 (see Table 1 at the following report, "Human on the Loop").  

Notwithstanding this point of view, no one underestimated the difficulty in 

realizing those goals in the short term. 

This optimism seems to be derived ultimately in a "faith" that incremental 

deployment choices guided by methods and models such as risk-benefit 

calculations are a prudent way to proceed.  Although disciplinary predispositions 

may color that view, it is at least consistent with how technologies have been 

implemented in the past. 
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Main challenges of autonomous systems SRS: Safety 

demonstration, verification & validation, risk 

acceptance 

• What are the similar challenges between the different autonomous 

systems, operations and industries with respect to verification and 

validation? 

• How to achieve trust in autonomous systems? How is this related to 

verification and validation processes? And to social and cultural aspects 

in a society? What factors will influence public trust of autonomous 

systems? 

• How can verification and the corresponding test scope for autonomous 

systems be managed dynamically? 

• Should risk acceptance be higher, similar or lower for autonomous 

systems? Do autonomous systems and operations need to be "as safe as" 

or safer than other types of systems? Should "acceptable risk" change 

with the level of autonomy (LoA)? 

• What is as safe as a conventional system? 

• How is verification and validation linked to the safe performance of 

autonomous systems? 

• How can machine learning and AI be used for verification of autonomous 

systems? 

• If a digital twin is to be used for verification, how can we be sure that the 

twin actually behaves similarly to the real system so that risks are 

detected? 

• How can AI methods be used to demonstrate safety and compliance? 

• Where are the regulatory gaps for adoption of autonomous systems? 

• What must risk models for software intensive and AI-based systems 

convey to convince users, regulators and standardization bodies? 

• How are the creation and economic incentives behind algorithms 

affecting safety? 

• How to handle the state space problem when validating an autonomous 

system? 

• What data is needed to assess the performance of autonomous systems? 

• How to map and balance the needs and requirements from a behavioral 

and operative perspective? 

• Do our current methods fully and adequately explore the changing role of 

the human in an increasingly automated and autonomous world 
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• How can we be sure that the models are complete and even discuss it, if 

the organizational issues are not taken into account or completely 

outside of the box? 
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Several aspects of software and hardware for autonomous systems are well 

established or developing at a fast pace. Yet, the research on how humans will be 

included in these systems is still developing. Human-system interaction can be 

analyzed through different perspectives and has many aspects (Figure 1). For 

instance, Human Factors Engineering or Ergonomics mainly analyzes the design 

of the system and its impact on human performance, Human Reliability Analysis 

models human-system interaction with a focus on human error and its 

influencing factors, often quantitively. Systems may be analyzed during different 

life stages, such as the design phase, the operation stage, or often after an 

incident. Further, while often applied to system operators, methods for assessing 

and/or modeling human-system interaction can also target system users, such as 

passengers of an autonomous bus, or people external to the system, such as 

pedestrians interacting with an autonomous vehicle. The discussion summarized 

in this report focuses on system operators.  

 

Figure 1: Breakout session participants' keywords for human role in autonomous systems 
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By autonomy we mean a system that is non-deterministic in that it has a 

freedom to make choices, and by automated we mean a system that is more 

deterministic in that it will do exactly what it is programmed to do. Automation 

can increase from a system that is human-controlled to a system that is fully 

autonomous, without human intervention. The Level of Automation (LoA) has 

been used to describe the degree of automation from the lowest level (i.e. total 

human control) to full autonomy. Different number of levels has been used to 

describe the responsibility between the humans and the automated system, as 

mentioned by Kaber (2018). 

Human operators may adopt different roles in autonomous systems, such 

as monitoring and supervision, remote control, or onboard control. While certain 

expectations are built around how humans should act in these roles (e.g., timely 

control for troubleshooting), many systems are not designed to ensure that these 

expectations are met. For instance, if the system is designed such that a human 

operator should take over control in case it runs into an unexpected, it should 

take into account the time needed for humans to not only detect an alert but also 

assess the situation, make a decision, and take action. Recent incidents with self-

driving cars illustrate how the reliance on a safety driver to take over control 

when needed does not always match the conditions given to the driver: in a 

collision between a developmental automated driving system and pedestrian in 

2018, the system provided an auditory alert only 0.2 seconds before the collision 

(National Transportation Safety Board 2019). The human takeover time varies 

from 2 to 26 sec., (Eriksson A & Stanton N A, 2017) challenging the design of 

autonomous systems to enable rapid (in-time) human intervention. 

This problem is also interesting for uncrewed ships where the ship's high 

value makes the concept of a remote control center (RCC) very relevant as the 

additional relative cost of the RCC is smaller than for, e.g., cars. This creates the 

possibility for developing new forms of cooperation between ship automation 

and remote ship operators. However, this area is still being researched, and 

conclusive results on how this cooperation should be organized and described 

are still in the draft stage (Rødseth, 2021; Ramos et al. 2019). 

The extent to which humans will (or should) be part of autonomous 

systems' operations depends on many factors that surpass technical constraints. 

For instance, regulations may demand that human operators should be onboard 

of the physical system, manufacturers may rely on a human controller for liability 

reasons, or society may feel more comfortable interacting with the system 

knowing that it is being monitored by a human. Humans' tasks on autonomous 

systems operations are also dependent on a realistic assessment of humans' 

abilities and limitations: How fast can humans react? What are humans' 
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limitations in supervision and control? In which tasks do humans excel? How can 

we ensure that humans will have meaningful control? There are no fast or easy 

responses to these questions. Not only may they vary with individuals, but they 

also depend on external factors. For instance, the probability of a fast reaction 

increases with continuous monitoring. How is effective monitoring affected by 

one's trust in the system performance? The example of self-driving cars points to 

a low vigilance that may result from, among other factors, an "overselling" of 

these cars' autonomous capabilities by the manufacturers or the news, leading to 

an overtrust in the system (automation complacency). 

The expectations on human tasks and possible influencing factors differ 

among autonomous systems. Appropriate training, for instance, is considered a 

crucial factor for ensuring safety4. Humans must be trained not only for regular 

operation, but also for recognizing hazardous situations and how to act to 

prevent or mitigate incidents. Some systems are operated by a highly trained 

crew, such as dynamic positioning vessels. One can expect operators to receive 

special training for monitoring or remote controlling the system once it operates 

with a higher level of autonomy (LoA)5. Autonomous cars, in contrast, can be 

driven by drivers that obtained their license with no special training for 

interacting with these vehicles' technologies.  

Given the differences between autonomous systems and to which extent 

they will include humans in their operations, can "human on the loop" be 

discussed using a common framework for all systems? As a first step, the meaning 

of "human on the loop" must be defined. Secondly, the LoA under which the 

system will operate – and its impact on human operators - must be understood. 

The following sub-sections briefly address these points, followed by proposals of 

research directions on the human role in autonomous systems' safety.  

What do we mean by "Human on the Loop"? 

While used interchangeably by some authors, it is important to 

differentiate between the terms "human in the loop", "human on the loop" and 

"human in control". According to the Ethics Guidelines for Trustworthy AI by the 

European Commission (European Commission 2019), Human in the Loop refers 

to the capability for human intervention in every decision cycle of the system, 

which in many cases is neither possible nor desirable. Human on the Loop refers 

to the capability for human intervention during the design cycle of the system and 

monitoring the system's operation. Human in Control refers to the capability to 

oversee the overall activity of the AI system (including its broader economic, 

 
4 It should be noted that for many systems, in particular those operating in a dynamic 

environment, training cannot cover ALL possible situations that may arise.  
5 The efficiency of this training is to be assessed.  
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societal, legal, and ethical impact) and the ability to decide when and how to use 

the system in any particular situation. It should be noted that these definitions 

are not entirely in line with the "out of the loop (OOTL) performance problems" 

as defined in the human factors literature before the introduction of highly 

automated or autonomous systems, and their adoption may need clarification to 

avoid confusion. 

Levels of Autonomy (LoA): What are the Implications in terms of 

Humans Roles? 

Autonomous systems are often classified according to their LoA. The LoA 

indicates the tasks that are responsibilities of the system, such as providing 

assistance to the operator or implementing actions without the need for operator 

approval. Many LoA tables have been proposed, either for specific systems or for 

more generic applications. While some tables also specify the role of humans for 

each of the LoA (e.g., Table 1), these are often simplified and are not sufficient to 

evaluate the human-system interactions. Furthermore, they may lead to a 

misunderstanding of the associated challenges. For instance, higher LoAs are 

generally defined by the technical system being responsible for the majority of 

the tasks - until reaching full autonomy, in which the system would operate 

without human supervision or intervention.  

At first glance, given that humans are responsible for fewer tasks, the 

human-system interaction may seem less demanding, and human tasks may seem 

less critical to the system performance in higher LoAs. Nevertheless, a lower task 

load does not imply a lower task complexity. The situation assessment and action 

following a long period of a monitoring role, the understanding of the state of a 

complex system, and the assessment of a dynamic environment and surrounding 

systems may demand a significant level of interaction and effort. Furthermore, 

these tasks may be critical to system safety, in particular in case of system failure.  

Another way to illustrate LoA is related to the need for an operator to be 

available at all times, although possibly only seldom engaged, as Table 1 implies 

for all but level 5. This is illustrated in Figure 2, where C0 to C3 indicates the 

human level of watchkeeping: 3 – continuous, 2 – away for shorter periods (some 

minutes), 1 – away for longer periods (tens of minutes), and 0 – not attending at 

all. A0 to A3 indicates the automation system's ability to control the process: 0 – 

always need human assistance, 1- can operate without human support, but is not 

able to calculate for how long, 2- can operate without human support for longer 

periods and can calculate the duration of the period, and 3- can operate 

completely without human assistance (Rødseth et al. 2021). 
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Table 1: Pilot's and aircraft's main tasks in different levels of autonomy (Johnsen and 
Evjemo, 2019) 

LoA level Human 
Pilot 

Aircraft 
System and control 

1:No automation All operations Warns 
Protect 

2:Limited assist; 
 Auto throttle 

Drives 
In-the-loop 

Guides 
Assist 

3:Assist, Tactical; 
Supervised 

On-the loop Pilot 
monitors all time 

Manage movement within defined 
limits 

4:Automated Assist 
Strategic 

Out-of-loop Asked by 
system 

Flies, but may give back control 

5: Autonomous Completely out-of-loop Flies with graceful degradation 

 

 

Figure 2: LoA defined as the human's need to be available 

This creates four types of LoA: OE – Operator Exclusive, where an operator 

is needed at all times; OA – Operator Assisted, where an operator can use own 

judgment as for long they can be away; AC – Autonomous Control where an 

operator can leave control station and will be alerted in time for safely retaking 

control; and FA – Full Autonomy, where no operator is attending at all. The 

unlabeled squares are impossible as operator attendance does not match 

automation capabilities (Rødseth 2021b). This type of classification says 

something about how long the operator can be away from controls, but does not 

say anything about how automation assists the human. 

The problem of LoA also gets more complicated when the system under 

consideration contains several more or less independent processes. An example 

at hand is again ships, where automation and humans must cooperate to control, 

e.g., stability and water ingress, cargo conditions, fire safety, and more, in addition 

to the more obvious lookout and navigation functions. Likewise, a ship on a 40-

day voyage from China to Europe will encounter a wide range of different 

operational conditions, which may require different LoA for the different 

processes and phases of the operation. 
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Adding other dimensions to the LoAs definition may be beneficial for 

better understanding humans' tasks and avoiding misconceptions, e.g., cognitive 

efforts of the tasks and responsibilities and environmental factors (Figure 3).  

 

Figure 3: Illustration of LoA dimensions 

 

Different Autonomous Systems, Same Framework? 

Research on human factors applied to automated systems is not new, and 

many frameworks and methods exist. Yet, many of these methods and ideas may 

be outdated and not relevant. Moreover, autonomous systems are more complex 

than highly automated ones, resulting in specific human factors issues unique to 

fully automated systems. Several issues can be common to different autonomous 

systems in general, such as automation complacency or boredom due to long 

monitoring time. Yet, distinct operational aspects of specific modes may lead to 

unique issues. For instance, the "lack of feel" of an operator remotely controlling 

a vessel from a control center onshore does not apply to a self-driving car in 

which the human is onboard the vehicle. Additional aspects include training, as 

mentioned in the introduction, and available time for reaction. While the 

available time for avoiding an imminent collision in a car may be one second only, 

operators of an autonomous ship would typically have a much longer horizon for 

acting. 

This problem is also very much linked to the many different "definitions" 

of autonomy. On the one hand, there are opinions that machine autonomy can 

only be achieved when the machine is entirely independent of a human, which in 

most cases will render it useless for practical use, as it cannot be instructed. On 

the other hand, automatic guided vehicles operating in a semi-controlled 
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environment with rudimentary anti-collision systems are also called 

autonomous. 

Observing the implementation of different automated systems in different 

modes and different areas, one concludes that automation is not perfect; the 

sensors can fail or misunderstand the environment. The consequences of these 

failures are dependent on the use-case (i.e., operational design domain). If the 

operations are simple and there is redundancy or focus on high-reliability 

operations, the probability of failure can be low. In addition, if we manage to 

ensure meaningful human control and a forgiving operational domain, then the 

consequences of automation failure will be reduced. However, a basis for 

successful automated systems is understanding user requirements and building 

on meaningful human control (see Johnsen et al. (2020).  

Given the differences between the various autonomous systems 

concerning LoAs, onboard or remote operation, and time constraints, do these 

systems need to be analyzed through different human factors/human reliability 

frameworks? Or can they be analyzed through the same framework, adapted for 

reflecting their unique aspects? There are indications supporting the latter. The 

community needs to identify systematic differences in how systems are being 

implemented, the different environments, the different times for action, and the 

type of people who use these systems (background, training, etc.).  

Research Directions 

The discussions on the human role in autonomous systems and human on 

the loop summarized in this report can form a foundation for future research on 

the topic. It is clear that autonomous systems design must address how humans 

will interact with the system and that this is crucial for reaching a safe operation. 

Further, while taxonomies need to be concise and straightforward, they are 

critical since they are used for developing policies and a shared understanding of 

the system. For instance, the term "cyber-physical systems" (CPS), often used to 

refer to autonomous systems, can be misleading for excluding the human element 

– still involved depending on the LoA. Terms such as cyber-physical-human 

systems (CPHS) or liveware may be more representative. Similarly, how the 

community is approaching LoAs must be re-discussed for clarifying human roles.  

Applying the same method/framework for analyzing human-system 

interaction across different autonomous systems may be possible. However, the 

differences and similarities between these systems mean in terms of human 

interaction modeling and methods must be further investigated. Finally, the field 

needs more interdisciplinary research and discussions on terminologies.  
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While the discussions summarized above have a primary focus on 

transportation systems, it should be noted that the considerations on the human 

role, human-system interaction and human error must be extended to other 

autonomous systems such as industrial processes and factories.  
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Main challenges with respect to autonomous systems 

SRS: Human on the loop 

• Are our current human factors methods compatible with these new 

technologies and the new pace of technology? 

• Do our current methods fully and adequately explore the changing role of 

the human in an increasingly automated and autonomous world 

• Do autonomous systems really reduce risk compared to conventional 

systems? How do risks change with higher autonomy levels? 

• Are humans as back-up for automation at all a good idea? Operations 

envelopes for the automation system and good criteria seem to be 

important. 

• What are the challenges and solutions related to shared autonomy? 

Shifting autonomy and responsibilities? 

• How should autonomous systems communicate in operation? How 

should they communicate with non-autonomous systems? How to 

validate and verify systems with respect to the interaction with the 

operators/users? 

• How should autonomous systems communicate safety to users and third-

party stakeholders? 

• What skills of human operators/supervisors are needed? 

• How will/should human operators be included in the operation and 

decision making of autonomous systems? 

• How should complex decision-making systems interact with humans 

operators/supervisors/ users? 

• How will/should autonomous systems interact with conventional 

systems and/or human operators? 

• What will be the role of the human operator during normal operation 

and in cases of emergency situations/failure of the autonomous system? 

• How can security training for users and operators be ensured? 
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General methodology 

Risk assessment of autonomous systems is a challenging task and 

therefore requires a "framework" consisting of various types of methods to 

identify, analyze and evaluate different hazards and hazardous events. This 

framework should consist of both qualitative and quantitative methods and 

approaches. Quantitative risk metrics, for example, are needed for autonomous 

systems to know how much safety is exceeded. 

In general, there is a need for bridging and exploring the gap between 

simulation and discrete logic methods. Binary logic trees are crude and cannot 

cope with the complexity of an autonomous system. Exploring methods that try 

to bridge the gap between traditional binary models and simulation is important. 

A simulation cannot process all the different ways a scenario can develop into. 

This territory hasn't been explored, especially in logic methods. In some cases, 

the Dynamic flowgraph methodology (DFM) may be feasible. Bayesian Networks 

(BN) could be used to "couple the gap". 

To some extent, dynamic probabilistic risk assessment (DPRA) methods 

have been implemented for autonomous systems. Simulation is partly used in 

Probabilistic Risk assessment (PRA) and Human Reliability Analysis (HRA). It is 

important to know which methods can be used for what purpose, for example, 

related to human behavior, because we may have to make a lot of assumptions 

and definitions of limitations/boundaries. We are not able to handle humans and 

nature to an acceptable extent in simulation, so should dynamic simulation be 

used for human interaction or only for the technical system?  

The Hybrid Causal Logic (HCL) provides one example of an existing 

framework, combining scenario-based models and risk assessment methods. 

HCL may be connected to a «safety case approach» used to check if a design works 

or not and how much safety is required. Simulation related to HCL could be linked 
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to the implemented Event Sequence Diagrams (ESD), where the ESDs are 

considered an in-between step to be converted into an executable simulation.  

Autonomous systems may be complex and challenging to analyze and 

model. Compartmentalization may be a way forward for decomposing complex 

systems. Then different models and methods can be used for each subsystem – in 

a hybrid approach for different problems and parts. A challenge is that methods 

that may work at a lower system level might struggle when attempting to 

implement the results at a higher level, due to scalability or prioritization issues. 

Defining system boundaries and interactions are crucial. 

A lot of work related to DPRA has been done in the nuclear industry, and 

at institutions, such as Idaho National Lab, Ohio State University and University 

of Maryland, but the methods have not been transferred to other applications 

such as autonomous systems, except in isolated cases, and infusion in other areas 

is slow. For example, the automotive and maritime industries rely more on failure 

mode and effect analysis (FMEA) than on fault trees. A challenge is that the 

nuclear plant is relatively static and stationary, which is different from operating 

autonomous vehicles. Also, in many industrial environments, a lot of 

uncertainties arise when trying to increase the operational envelope. 

An important question is related to what type of models are better suited 

as means of validating autonomous systems requirements (this is what 

"validation" is to systems engineers, i.e., demonstrating that functional 

requirements are correct); and what types are useful to show that a system 

design does indeed satisfy requirements ("verification"). More efforts should also 

be put into this area for clarification and further development. 

Software 

Incorporating software failures is the most challenging part of risk 

modeling. Hardware is easier to model, as its performance and impact from the 

environment can be predicted. However, we cannot predict how software 

behaves since it is not comparable to hardware failure for which we could collect 

failure data. Hence, it is challenging to incorporate software into the «traditional» 

risk and reliability models developed for hardware systems.  

Probability assignment to software is tricky. A software fault can be 

present in the code or not, when a software specification is not coded or 

implemented correctly, and therefore it's not stochastic, as such, so it is difficult 

to assign probabilities. Faults can also be caused by an incorrect or incomplete 

set of specifications. This means that the software does what it is designed to do, 

but the designed to do is "wrong". 
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It is not always the software itself that causes faults and failures. The 

hardware platform and memory can also cause a fault, which may seem like a 

software stochastic or random type of failure but is actually a random failure of 

the underlying electronics and its interaction with the software.  

Some would claim that software faults are a quality issue rather than a 

reliability issue. Others state that software quality relates to defects in the code, 

whereas software reliability relates to system failures that occur during 

execution. In general, there has been a disagreement for several decades on how 

to model software. 

Software depends on hardware, and hardware can change with impact 

from an environment, which adds complexity. Whether a fault is triggered 

(triggering event) or not by operation could be considered stochastic. In addition, 

the effect of a fault may also be considered stochastic, since it may depend on 

environmental conditions. 

Every time a software patch is released, re-analysis is needed, but it is 

impossible to go through millions of lines of code to check. Software may become 

so complex it might have to be treated as stochastics, also because the hardware 

surrounding is becoming so complex. Because of growth in software complexity 

and its multiple subtle interactions with the underlying computer and network 

environments, there are types of failures of highly complex software that are not 

deterministically identifiable and happen in a "pseudo-random" fashion. Perhaps 

we need separate approaches for dealing with the deterministic software logic 

specification errors or omissions, and the pseudo-random failures resulting from 

poorly understood and "unpredictable" interaction of software with its 

"environment." This may also mean that our traditional methods may become 

more relevant for software. 

It is difficult to compartmentalize software, since the software 

performance may be reduced or functions may be changed. 

Cybersecurity 

Cyber-security is an essential part of system safety. Safety is a requirement 

for security.  

Unknown unknowns are a challenge in all types of risk assessment, but 

cyber-security is a domain where this is highly relevant and important. From a 

cyber-security perspective, a challenge is that when you try to take the human 

into the loop, the modeling becomes too challenging to handle. From a 

cybersecurity perspective there is an infinite number of failure modes or zero, 

because people are so creative. There are too many ways to crash software. To 
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limit the number of failure modes for software (or ways software may fail), we 

may put more focus on their effect. 

A failure can be caused by human error, but some errors are undetected. 

It is hard to include everything in a model, because there are too many variables 

in nature and humans. For comparison: You don't deal with human reliability by 

going through every node in your brain. A similar approach may have to be soon 

used for software and cybersecurity as well.  

Since we cannot handle technology and consequences through existing 

risk assessment methods, more qualitative methods may be the only solution, or 

better solution.  

It may be questioned whether we know the limitations of simulations. For 

what kind of scenarios do we not have models? This is a general problem. 

Generally, a lot of behavior can be monitored and simulated, but may become 

very hard to explain. In some cases, the behavior «breaks» out of the models, for 

example, the Alpha-zero chess engine behaving unpredictably and a lot of chess 

players giving up explaining the behavior. For the Boeing 737-max incident, 

simulations and models were not able to predict the particular problem. 

AI and machine learning 

The automotive industry is the biggest human killer in the history of 

vehicles, and similar operational data of autonomous vehicles will not be 

accepted. Hence, it is necessary to prove that an autonomous vehicle is safer and 

better than a human-driven vehicle before the public will trust them. 

AI has potential to reduce the risk, but it is hard to control the evolution of 

AI and regulate it appropriately. Neural networks, for example, can potentially 

perform better than humans, for instance, in terms of identifying the presence of 

cancer cells. In the future, AI may become better than humans, for example, in 

determining whether pedestrians want to cross the road or not. Still, many 

different interactions and variables could make it difficult to predict for the AI. 

Further, neural networks, for example, are hard to verify.  

Currently, designers of vehicles are given large neural networks spitting 

out a prediction whether passengers will cross in front of the car and then they 

are asked to make the vehicles behave safely. A problem with machine learning 

is that if you haven't covered a particular area, you don't know what will happen. 

In addition, probabilities are changing in machine learning, and code is changing 

over time.  

There are no stochastic failures in AI because of its binary nature, which is 

a positive thing. On the other hand, sometimes AI failure is more like random 
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failure, as slightly different data can cause totally different results. The failure 

probability of "trained" autonomous system elements operating in different 

environments could be obtained by fusing neural networks into a BN and 

simulating different failures. One way to potentially improve system safety is to 

have a good system architecture that enables decomposition, and as previously 

mentioned – compartmentalization. 
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Main challenges with respect to autonomous systems 

SRS: Modeling and simulation, cascading failures 

• A challenge with hazard identification and risk analysis of novel systems 
is to identify everything that can go wrong. How can we deal with the 
unknown unknowns? 

• How to capture the large spectrum of potential risk scenarios and 
contexts? 

• What methods are feasible for analyzing and modeling cascading failures 
in systems? Between hardware, software, humanware etc.? What are 
important requirements to such methods? 

• How can we be sure that the models are complete and even discuss it, if 
the organizational issues are not taken into account or completely outside 
of the box? 

• How is software risk different from software reliability? 

• Are software failures deterministic or probabilistic? 

• What are the challenges related to simulation in probabilistic risk 
assessment? Can simulation increase the risks? 

• Uncertainty in sensor data is a challenge. How should this uncertainty be 
handled in risk assessments of autonomous systems? 

• How can risk assessments and risk models of autonomous systems take 
shared control and "adaptive autonomy" sufficiently into account in the 
identification of hazards and the analysis of risk?  

• How can vulnerabilities in the software and communication systems of 
autonomous systems be reduced to mitigate cyber-attacks and security 
problems?  

• What must risk models for software intensive and AI-based systems 
convey to convince users, regulators and standardization bodies? 

• How to handle the state space problem when validating an autonomous 
system? 

• What data is needed to assess the performance of autonomous systems? 
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Artificial intelligence (AI) and data analytics methods can be applied to 

autonomous systems in two ways; (i) as part of the autonomous system, and (ii) 

as part of the safety, reliability and security (SRS) assurance efforts. Two 

questions arise from this perspective that built the foundation of the discussion 

in this breakout session; 1) How can AI systems used in autonomous systems be 

made safe, and 2) how can AI methods be applied to support assurance efforts of 

autonomous systems. These relationships are depicted in Figure 4, developed 

during the breakout session with the participants. 

On the left side of the figure, we see typical components of an autonomous 

system, for instance, a self-driving car, a small unmanned arieal vehicle (UAV), or 

a big autonomous ship. Here we highlight the software that implements an AI-

based algorithm, e.g., a Convolutional Neural Network (CNN) that receives 

images from the camera of a car recognizing and classifying road signs. It is to be 

noted that the human element was added to the figure. As humans are the final 

decision-makers in most cases, their influence weighs heavily on autonomous 

operation. Humans may also interfere with autonomous systems as rogue or 

adversarial agents. On the right side, we see the classical methods for SRS 

assurance that can be applied to an autonomous system. Here we also highlight 

AI techniques that can be exploited to improve the performance and precision of 

the SRS methods. 
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Figure 4 Autonomous systems and their relationship with AI methods, developed during 

the breakout session. 

How to make Artificial Intelligence in autonomous systems safe? 

To answer the question "How to make AI safe?", it is necessary to identify 

what makes software employing artificial intelligence methods different from 

conventional (non-AI) software, and where this software is employed. 

Conventional software is often claimed to be deterministic, predictable, and 

explainable, i.e., that for a certain input one can determine what the output will 

be and explain why it is so. If faulty inputs are given (e.g. due to a faulty sensor), 

it is possible to determine what the expected output from the conventional 

software will be. For software with AI methods, this output is in some cases 

unpredictable, since it is not known how the AI's decisions are made, for example 

for deep neural networks and other "Blackbox approaches". This leads to 

uncertainty and increased difficulty when testing autonomous systems with AI, 

since deriving conclusions from limited edge cases may not hold true over the 

whole state space of input combinations. 

Regarding the application of AI methods in the software of autonomous 

systems, several applications are imaginable. AI may be used to generally analyze 

the environment, for example through image detection or evaluation of other 

system sensors to extract information. AI could also be used to detect abnormal 

system, software or environmental conditions that require a change of the 

current actions. Furthermore, AI can be used to control an autonomous system 

or parts of its actuators. AI can additionally be part of the entertainment system 

or human-machine interface of an autonomous system. These application areas 

show that AI may be applied in different layers of autonomous systems, and 

hence SRS efforts need to be tailored to the level of application. The interaction 

between the different layers of software are also of interest for SRS assessment 

as they may interfere with each other, potentially leading to undesired 

consequences. There are current research efforts to address these interactions - 

e.g., using an overall "supervisor", which monitors the software stack as a whole 
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and enacts emergency behaviors when it detects these potentially dangerous 

interactions. 

When AI software is used to make decisions regarding (emergency) 

control of an autonomous systems, the AI methods should have the following 

properties: 

• Explainability: Why was this decision or interpretation made? 

• Transparency: Is the decision made or interpretation made 

possible to make? 

• Interpretability: What does the decision/interpretation mean for 

the system, its future state and its environment? 

These are also important elements that form trust of users and operators 

of AI-based systems. They may be more inclined to accept decisions and risks 

associated with the decisions if they understand the reasoning and have the 

feeling of control or being on the loop. The role of humans in an autonomous 

system in general needs to be discussed for each system. The human's role will 

determine the information that the system needs to display. Important questions 

that arise from this discussion are; How similar should the reasoning of an AI-

based system be to human decision-making? What information should be 

presented to the user? If we could perfectly replicate human behavior in an AI-

based system, would we be able to trust this program fully? 

Reliability and resilience to disturbances of an AI-based autonomous 

system are important concepts with respect to trust and the three concepts 

mentioned above. Concerning the assurance of reliability and resilience, one 

issue is the assessment of hardware failure effects on the software, and vice versa. 

The assessment of the interactions among the physical and software components 

is far from trivial, due to the state space that needs to be covered. In addition, 

interactions among different hardware components and among different 

software components need to be taken into account. One software component 

may be robust to a hardware component failure, while another software 

component may not, leading to conflicting information and a resulting fault. 

Bit-flips in CPU, RAM, network components, or sensors are common 

examples of a hardware fault propagating to the software level and leading to so-

called silent data corruption. This happens in space systems because of the 

cosmic radiation as well as on the on-ground systems because of fluctuating 

voltage, heat, or induction. These effects are well-studied for non-AI software. 

Similar analysis has to be applied to deep-learning (DL)-based components 

because different neural network architectures exhibit different resilience levels 

to such kinds of faults. Thus, for AI-based systems, in particular DL systems, the 
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architectures' robustness against hardware faults should be assessed. One 

approach is to carry out extensive fault injection experiments. Another approach 

to solving this challenge could be "formal methods", AI methods and AI-based 

systems that help assuring the correctness of the system in different situations. 

Also, supervisors are needed that monitor the system and assist in resolving 

these situations. 

Security of AI-based autonomous systems is another key aspect of 

discussion. No clear definitions exist yet on what constitutes an attack on an AI-

based system. For example, a drawing on the road made by kids, may be 

interpreted by an autonomous car as an obstacle and thus the car stops. Will this 

constitute an attack? 

An additional aspect regarding the security of AI-based systems is the 

detection of attacks. Image recognition algorithms have been shown to be prone 

to tempering, where just a few parts of a traffic sign have been altered, leading to 

misinterpretation of the sign. More generally, even small changes in the data 

input may significantly affect the results of the AI algorithm. How will it be 

possible to detect these types of attacks, when the system is certain about its 

interpretation? This is just a starting point of the largely unsolved problem of how 

an autonomous system's security against, among others, tampering can be 

assessed. 

 

How to use artificial intelligence to make autonomous systems safe? 

Several possibilities are imaginable regarding how AI methods can 

contribute to SRS assessment of (autonomous) systems. Among these are: 

• Reading system code and technical documentation, e.g. structural and 

behavioral diagrams, (deep learning) for existing systems as a basis to 

automatically produce SRS models, e.g. fault trees. 

• Extraction of statistical data for use in SRS models. i.e., conditional 

probabilities for Bayesian Belief Networks. SRS models require a lot of 

statistical input data, e.g. the failure probabilities of specific 

components or failure scenarios. The more complex and precise an SRS 

model is, the more data it requires. 

• Text analysis to extract risk influencing factors and scenarios for risk 

assessment. 

• Optimization of SRS analytical and simulation models. AI can help to 

create more computationally efficient SRS models or reduce available 

models to more compact equivalents. 
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• Optimization and planning of maintenance of (autonomous) systems. 

DL-based predictive maintenance. 

• Detection of anomalies during operation to inform (automatic) 

decision-making. DL-based anomaly and error detection. 

One challenge when applying AI methods for SRS efforts with respect to 

quantification is the difference in accuracy/uncertainty. Typically, for an AI 

algorithm to be considered to give good predictions, 99 % accuracy or confidence 

in the results is needed; however, this depends highly on the application. Yet, in 

risk and reliability analysis, probabilities and certainties are needed that are 

several magnitudes lower when calculating the risk level. 

The detection of tampering or intrusion of a threat agent into a system 

with the help of AI is being explored. However, since AI methods rely on data, the 

detection can only capture scenarios that have been in the dataset. Hence, the 

multitude of possible attacks and limitations of the datasets make the current AI 

algorithms for security incident detection not useful. 

Conclusion and future research directions 

Concluding from the discussion; AI should be used intelligently, combining 

expertise with reliable data. AI methods should not be applied just for the sake of 

applying AI to build an autonomous system. AI methods need to be combined 

with suitable methods that are tailored to the case of the autonomous system 

being developed.  

When applying AI methods, ethical considerations have to be addressed. 

These considerations should not start and end with the often cited "Trolley-

Problem". Ethical considerations have to address critical issues, such as consent 

of third-party people, responsibilities and the socio-economic impact of the 

introduction of the autonomous systems. Therefore, broadly interdisciplinary 

work is necessary to develop ethical AI-based systems holistically. It was noted 

that the current research funding schemes are not sufficient to truly allow for a 

holistic approach. 

Finally, following from the discussion, several questions should be 

addressed by the research community to solve the challenges associated with AI-

based autonomous systems concerning safety, reliability, resilience, security: 

• What are or should be safety-critical and security-critical AI applications 

in autonomous systems? 

• Can classical risk, resilience, and security analysis methods be applied 

to make AI-based systems safe? 
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• What are the differences between conventional (non-AI) and AI 

software from a safety point of view? 

• How robust are different DL architectures against hardware faults? 

• What makes humans trust other humans, and how can AI be trusted? 

• How do AI-based systems interact with the environment, humans, and 

a combination of autonomous systems and non-autonomous systems? 

• How can AI be used to generate risk, resilience, and security models? 

• How can AI be employed to optimize classical risk, reliability, security 

models and their evaluations? 

• Can AI be used to generate data to feed probabilistic models? 

• How can AI-based anomaly detection and decision-making support 

safety and security of autonomous systems? 
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Main challenges with respect to autonomous systems 

SRS: Artificial Intelligence and Data Analytics in 

Resilient Autonomous Systems 

• How to make AI Safe? 

• What is the relationship between autonomy and AI? Common software 

and AI software? 

• What data is needed to assess the performance of autonomous 

systems? 

• How AI can help to make autonomous systems safe? 

• How can AI methods be used to demonstrate safety and compliance? 

How can risk assessment and modeling be coupled to AI?  

• Is AI accuracy low if we compare with the probability of failure? 

• How can we design resilience into autonomous systems by use of AI? 

• Resilient robots are needed for increased levels of autonomy. Suggested 

attributes of resilient robots are robustness, redundancy and 

resourcefulness. How can AI be used to achieve these? 

• What machine learning approaches are most feasible for providing 

input to risk assessment? 

• Improved intelligence and online decision-making capabilities are 

needed in autonomous systems. Risk assessments performed and 

utilized by robots means that risks have to be detected and quantified. 

What risks are not possible to identify by an autonomous system? 

• What risks cannot be quantified? How does this impact safety of 

autonomous systems? 

• Can risk really be translated into cost functions? 

• Who is responsible for decisions made by the autonomous system (in 

case of accidents)? How can dependable situational awareness systems 

be build? 

• Are AI systems suitable for making ethical decisions – what is necessary 

for ethical decision-making? 

• How is risk assessment and situation awareness linked for an 

autonomous system? 

• How are the creation and economic incentives behind algorithms 

affecting safety? 

• How to map and balance the needs and requirements from a behavioral 

and operative perspective? 
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• How should complex decision-making systems interact with human 

operators/supervisors/users? 
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