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ABSTRACT

Long-span cable-supported bridges are structures susceptible to high dynamic responses due to the buffeting
phenomenon. The current state-of-the-art method for buffeting response estimation is the buffeting theory.
However, previous research has shown discrepancies between buffeting theory estimates and full-scale measured
response, revealing a weakness in the theoretical models. In cases where wind and structural health monitoring
data are available, machine learning algorithms may enhance the buffeting response estimation speed with less
computational effort by bypassing the analytical model’s assumptions. In this paper, multilayer perceptron and
support vector regression models were trained with synthetic and full-scale measured data from the Hardanger
Bridge. The analytical response was also computed from buffeting theory applied to a finite element model of the
bridge, and the estimates are compared. The prediction accuracy was evaluated with the normalized root mean
square error, the mean absolute percent error and the coefficient of determination (R2). The machine learning
models trained with synthetic datasets achieved very high accuracy with normalized root mean square errors
ranging from 1.46E-04 to 7.21E-03 and are therefore suitable for efficient surrogate modeling. Further, the
support vector regression model trained with the full-scale measured dataset achieved the best accuracy compared

with the other methods.

1. Introduction

The current state-of-the-art method for buffeting response prediction
of long-span bridges is to use buffeting theory, which was first introduced
by (Davenport A., 1962). Since Davenport’s early works, the theory has
been further developed by many researchers. Current advanced models
are based on finite element formulations, which can account for unsteady
self-excited forces (Scanlan and Tomko, 1971) (Davenport A., 1962)
(Jain et al., 1996), nonlinearities (Diana et al., 2008) (Diana et al., 2005)
(Chen and Kareem, 2003), skew winds (Zhu and Xu, 2005) and
non-stationary winds (Hu, Xu, & Huang, Typhoon-induced non-sta-
tionary buffeting response of long-span bridges in complex terrain, 2013)
(Hu et al., 2017). However, owing to the recent emergence of a large
number of structural health monitoring (SHM) projects on prominent
suspension bridges around the world, researchers have reported dis-
crepancies in dynamic responses between their analytical predictions
based on buffeting theory and the SHM data (Bietry et al., 1995) (Mac-
donald, 2003) (Xu and Zhu, 2005) (Cheynet et al., 2016) (Fenerci and

* Corresponding author.
E-mail address: dario.r.f.castellon@ntnu.no (D.F. Castellon).

https://doi.org/10.1016/j.jweia.2020.104484

@iseth, 2017). Such discrepancies expose the weakness of analytical
modeling of the complex phenomenon, presumably due to several as-
sumptions inherent to buffeting theory.

In cases where monitoring data are present, an alternative solution
may be found in using data-driven models based on machine learning.
Machine learning is the scientific discipline of developing algorithms that
can learn from data, which allows prediction based on existing trends
within datasets. Therefore, such algorithms offer an approximation of a
process by bypassing the complexity of its physics (Bishop C. M., 2006)
(Alpaydin, 2020). The potential of machine learning algorithms in civil
engineering applications has been recognized by many researchers, and
their use is becoming increasingly common as more user-friendly soft-
ware is becoming available. For instance, machine learning algorithms
can be trained to replace the analytical load-response relationships by
means of surrogate models. Such a strategy saves significant computa-
tional effort when many simulations are needed. Recently, such suc-
cessful efforts have also been presented in the wind engineering
community, (Fang et al.,, 2020) compared the capabilities of three ma-
chine learning surrogate models trained with a simulated dataset of
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Nomenclature

Y Machine learning output dataset
X Machine learning Input dataset
y}‘ Output of a generic node

xk Input of a generic node

19_;-( Bias of a generic node

€ SVR tolerance margin

C Box constraint

a,a; Lagrange multipliers

W!(J- Weight of a generic connection between two nodes
&y .f; Slack variables

r Displacement vector in Cartesian coordinates

D, Vibration modes

1 Generalized coordinates

M, C, K Mass, damping and stiffness matrices, respectively
0, Wind load vector

Ei{EzEs  Unit vector of the global coordinates

ejeses Unit vector of the local beam element

evievoevs Unit vector of the wind element coordinates
Teaote Transformation from global to local beam element

Taotw Transformation from global to local wind element

TrwoLe Transformation from a local wind element to a local beam
element

Tos Assembly matrix from local DOF to global DOF

q Element wind load vector

B, Buffeting load coefficient matrix

Viw Local wind velocity vector

D, B Height and width of the girder
Cp C, Cy Force coefficients

R Autocorrelation function

S Auto or cross-spectral density matrix
Coh Square root of the coherence function
P Air density

A, Spectral quantities

z Height above the ground

H Frequency response matrix

oy 6, 65 RMS of the structural response

7, Ay Span-wise coordinate

v Mean wind speed

I Turbulence intensity

K, Decay coefficient

o Vertical angle of attack

o, fi, Rayleigh coefficients

w,f Circular and ordinary frequency

Subscripts

ae Aerodynamic

Buff Buffeting

Le Local beam element

Se Self-excited

Tot Total

0 Still-air

u, w Wind direction

r response

k Generic layer

ij Generic neuron or data sample index
y.2,0 Horizontal, vertical and torsional responses
Superscripts

[ 1 Model estimation

] Constant value, mean or specific for the case
[ Modal property

] Derivative with respect to time

) Derivative

m Complex conjugate

m! Matrix inverse

m Matrix transpose

Functions

g(m Activation function

f(m governing function

L(W) Loss or cost function

K(H) Kernel function

N(H) Shape function
Abbreviations

SVR Supporting vector regression
ANN Artificial neural network

MLP Multilayer perceptron
wIv Wind induced vibration

R2 Coefficient of determination

MAPE Mean average percentual error

RMS Root mean square

RMSE Root mean square error

NRMSE Normalized Root mean squared error
BFT Buffeting theory

CFD Computational fluid dynamics

KKT Karush-Kun-Tucker conditions
CLHS Correlated latin hypercube sampling
SD Standard Deviation

non-stationary wave and wind loads of a cable-stayed bridge to improve
the efficiency of the response estimation. (Bernardini et al., 2015) pro-
posed an alternative to wind tunnel testing based on surrogate models for
computational fluid dynamics (CFD)-based aerodynamic shape optimi-
zation of bidimensional profiles using an evolutionary algorithm to up-
date ordinary kriging surrogates. Furthermore (Wu and Kareem, 2011),
showed how machine learning can be used to simulate complex non-
linearities in aerodynamic behavior by developing an approach to model
aerodynamic nonlinearities in the time domain utilizing an artificial
neural network (ANN) framework with embedded cellular automata
(CA) applied to the hysteretic nonlinear behavior of aerodynamic sys-
tems, (Wang and Wu, 2020) proposed a knowledge-enhanced deep
learning (KEDL) algorithm to simulate wind-induced linear/nonlinear
structural dynamic responses in simulated dynamic systems. (Le and
Caracoglia, 2020) used simulated datasets of a tornado-like wind field to
develop an ANN-based surrogate model to approximate the structural

fragilities of vertical structures subjected to tornadic wind loads. Surro-
gate models of flutter derivatives with ANN models trained with wind
tunnel test data have been reported by (Chen et al., 2008) and (Rizzo and
Caracoglia, 2020), while (Cid Montoya et al., 2018) developed a kriging
surrogate model from CFD-based aeroelastic characterization of a bridge
cross section and validated it with wind tunnel test measurements. (Nieto
et al, 2020) extended the CFD-based kriging surrogate modeling
approach proposed by (Cid Montoya et al., 2018) to assess the flutter
response of bridges with twin-deck cross-sections. Additionally, the po-
tential of machine learning to enhance automated response prediction
tools from SHM systems is promising. Full-scale measurements of wind
responses in bridges have recently been used for training machine
learning algorithms, (Li et al., 2018) estimated vortex-induced vibrations
on full-scale measured data of a cable-stayed bridge with machine
learning, while (Wang et al.,, 2020) trained an ensemble model
comprising a random forest (RF), long-short term memory (LSTM), and
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Fig. 1. Architecture of an ANN
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Fig. 2. Schematic representation of SVR with slack variables.

Gaussian process regression (GPR) with measured wind data from the
cable-stayed Sutong Yangtze River Bridge in China to forecast wind gusts
affecting traffic operations. However, neither of these directly addressed
the effect of buffeting responses. Therefore, many uncertainties must be
explored as there are no relevant studies based on full-scale measure-
ments for buffeting response estimation in long-span bridges. The
deployment and operativity of machine learning algorithms in this field
are among the primary challenges to assess. Nonetheless, the effective-
ness of machine learning tools shall be explored in terms of which type of
algorithm yields better estimates and whether it can provide any
improvement with respect to the existing analytical models.

Therefore, this study intends to provide further insight toward un-
derstanding the buffeting phenomena of long-span bridges by imple-
menting machine learning algorithms trained with full-scale monitoring
data. To address this aim, long-term wind and acceleration monitoring
data from the Hardanger Bridge in Norway are used. Two different ma-
chine learning techniques, namely, support vector regression (SVR) and
multilayer perceptron (MLP) models, are used to model the wind-
response relationship. First, the models are trained using analytical
predictions to test their capabilities. The remarkable accuracy of these
models in predicting the analytical response suggests surrogate modeling
based on machine learning is certainly a viable option in cases where
many simulations are needed. Owing to the confidence gained from
synthetic data, the models are then trained using full-scale monitoring
data. The results show that reasonably accurate predictions of the dy-
namic response can be reached by using only wind characteristics data.
Finally, the predictions based on machine learning algorithms are
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compared to the analytical results based on buffeting theory.

2. Machine learning methods for buffeting response prediction
2.1. Modeling the wind-response relationship

The buffeting responses of long-span suspension bridges can be pre-
dicted analytically using buffeting theory. In the frequency domain, the
wind field is modeled by a cross-spectral density matrix defined by the
time-averaged wind speed and several turbulence-related parameters.
Then, by means of buffeting theory, the root mean square (RMS) of the
dynamic response components are obtained.

Here, an alternative data-driven approach using machine learning
algorithms will be used to estimate the dynamic response of a long-span
suspension bridge. The objective of machine learning is to find patterns
within a dataset to then make predictions based on the discovered pat-
terns. Applied to buffeting response estimation, machine learning can
approximate the unknown function, f(X), between the wind parameters
of the cross-spectral density function and the RMS of the bridge’s dy-
namic responses, defined as the input tensor (X) and the target tensor
(Y), respectively. Machine learning algorithms fit f(X) over a large
amount of data samples in the three different stages of the so-called
learning procedure: training, validation, and testing. Hence, the dataset
is divided into training, validation, and testing sets. The training dataset
comprises the samples used for fitting the model parameters (Ripley,
1996). The validation dataset comprises samples that are used to eval-
uate the performance of the fitted trained model (James et al., 2013) and
subsequently adjust the model hyperparameters (Ripley, 1996). Finally,
the test dataset comprises the samples that follows the same probabilistic
distribution of the training dataset but has not been fed into the model,
therefore evaluating the generalization ability of the model (Ripley,
1996).

Equation (1) shows the machine learning process for the wind-
response relationship.

Given X; and ¥; Find f(X) . ¥ 2f(X) ¥; = f (X)) m

The indexes iandj represent the training and testing datasets,
respectively.

Two different machine learning models were implemented. The first
model is an ANN called an MLP, which was use because of its simplicity
and common use in the literature. The second was SVR, which was used
because of its remarkable generalization ability and performance (Awad
and Khanna, 2015). Further details will be given in this section.

2.2. Artificial neural networks (ANN) — multilayer perceptron (MLP)
model

An ANN is an algorithm that mimics the functioning of biological
brains by assembling layered neurons connected to each other. A neuron
(also known as a unit or node) is an operational entity that stores and
distributes information (Rosenblatt, 1958). The neurons are organized in
sets called layers, and the neurons within one layer are connected to
those in the subsequent layer. The layer connections transmit informa-
tion within the neurons and, mathematically, are the arrays governing
the transformation relationships. The value of a neuron in an arbitrary
layer is the scalar product between its transformation array and the
output of the neurons in the previous layer; then, the neuron is activated
whenever its value surpasses a certain threshold (Rosenblatt, 1958). The
type of neural network used in this study is the so-called MLP (Rose-
nblatt, 1961), which is schematically shown in Fig. 1.

In Equation (2), _y;‘ is the output of the j -th node in the k -th arbitrary

layer of an MLP and is related to an activation bias 191‘-‘ and connection

weights wf; !, where x{! is the value of the i-th node of the previous
layer. Then, a nonlinear activation function, g(x), is applied to the result
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Fig. 3. Local coordinate system of the beam element: (a) DOF of the beam element. (b) Wind actions on the beam element.
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(Bishop C. M., 1994). The subsequent operations in matrix notation are

Table 1 ) ) o o presented in Equation (3). The feedforward mapping process (Equation
Range and intervals for the uniform grid simulated training dataset. (4)) is then obtained by assembling the abovementioned operations until
Wind Feature Minimum Maximum Number of Intervals the model’s final M layer is reached and by computing the model esti-
v 4 35 10 mation of the output ¥, where f(X) is the process-governing function.
Ou 0.2 5.2 10
Ow 0.1 2 10 N
K, 25 15 5 y]’f:g( S oowh ! +t9j") (2
Ky 1.5 25 5 i=Lj=i
vig{(we ) X e ®)
Table 2
Synthetic datasets features summary. . .
Vs M1 1 1
Dataset Simulation strategy Distribution Size Y=f { (“/‘ ) o 'g{ (“/‘ ) X } * {}M} 4)
Training uniform Uniform grid Uniform 25,000 The actual output of the process or target is known in the training
Training CLHS CIHS Observed 3500 stage. Thus, the ANN performance is obtained by comparing the target
Testing CLHS CLHS observed 500

with the model estimation with a “loss” function L(Yj, ¥i)-
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Fig. 4. Cross section of the Hardanger bridge.
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Table 3
Natural frequencies of the still-air mode.
Mode Frequency Circular Damping Characteristic
Hz Frequency Ratio

1 0.050 0.315 0.32% Symmetric lateral vibration
of the deck

2 0.098 0.616 0.41% Asymmetric lateral
vibration of the deck

3 0.110 0.694 0.45% Asymmetric vertical
vibration of the deck

4 0.141 0.884 0.54% Symmetric vertical
vibration of the deck

5 0.169 1.062 0.63% Symmetric lateral vibration
of the deck

6 0.197 1.239 0.72% Symmetric vertical
vibration of the deck

7 0.211 1.326 0.76% Asymmetric vertical
vibration of the deck

8 0.225 1.414 0.81% Symmetric lateral vibration
of the cables

9 0.233 1.461 0.84% Asymmetric lateral
vibration of the cables

10 0.234 1.468 0.84% Asymmetric lateral
vibration of the deck and
the cables

11 0.244 1.533 0.87% Symmetric lateral vibration
of the deck and the cables

12 0.272 1.709 0.97% Symmetric vertical
vibration of the deck

13 0.293 1.841 1.04% Asymmetric lateral
vibration of the deck

14 0.33 2.073 1.16% Asymmetric vertical
vibration of the deck

15 0.36 2.262 1.27% Symmetric torsional

vibration of the deck

Table 4

Load coefficients from wind tunnel testing
Load Coefficients Co C;, CL c;_ Cu C’M
Value 1.05 0.00 —0.363 2.2 -0.017 0.786

The mathematical objective of the learning process is to minimize the
loss function. This minimization is achieved by sending the estimation
error of Equation (4) through all the previous layers within the network;
this operation results in an iterative optimization procedure known as
backpropagation (Rumelhart et al., 1986). It is worth noting that the
backpropagation procedure refers to only the error feeding step and is
independent of the optimization algorithm used.

The original input signals are fixed to the dataset; therefore, the only
parameters to be updated in each iteration are the network weights and
biases. Thus, the optimization problem can be written as Equation (5).

find (W M1 g ()*‘?“:M’):.L(,Vj, yj) =min(L) (5)

2.3. Supporting vector regression (SVR) model

SVR is the application of the support vector approximation to a
regression problem using an e-insensitive loss function (Vapnik, 1995).
The objective of the tool is to find a function f(x) that, from a given
dataset of input and output features {x;.yi|...|xn,¥n }, approximates y; with
a certain tolerance e. The regression estimation can be obtained with the
linear function shown in Equation (6).

fx)=xw+9 (6)

Introducing the e-insensitive loss function L equal to zero when the
difference between the estimation f(x) and the target is less than ¢, a
constraint shown in Equation (7) is added to the problem.

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

. 0 ifly—flx,w)| <e
Lly=f(xew) = { [y —flx,w)| (-)[!‘I{em{i.ge 1= )

To make the solution more feasible, the tolerance margin is softened
by adding a set of slack variables &; and 5;, as shown in Fig. 2.

The optimization problem becomes Equation (8), where C is the so-
called box constraint, which is a positive-valued parameter that im-
poses a penalty on the estimations outside the e-margin and thus helps to
balance the accuracy of the model.

1,

minimize iw‘

N
+CY &+E
i=1

yi—flx,w) <e+§ 8)

with constraints flew)—yi<e+é&

£, >0

Solving this optimization problem with inequality constraints is
equivalent to finding the saddle point in the Lagrange function. By
introducing a, and «, as Lagrange multipliers, the weights (w parame-
ters) can be found by Equation (9), and the model estimation is computed
by expanding the so-called support vectors in Equation (10).

w= Z (rz,- - a; )x; 9)

flx)= Z(u, —o)(x'x) + 9 (10)

=1
The parameters 9 can be obtained by exploiting the Kar-
ush-Kun-Tucker (KKT) conditions (William, 1939) (Kuhn and Tuker,
1951), which state that at the optimal solution, the product between the
dual variables and constraints vanishes. Then the constraints of Equation
(11) are added to the optimization problem.

a(e+&—yi+xwt8) =0
a(e+& +y—xw—9)=0
E(C—a)=0
gC-a)=0

an

To extend the formulation to nonlinear regression problems, the dot
product (x;x) must be replaced with a nonlinear mapping function,
known as the kernel function K (x;x).

N

flx)= Z(a, —&)K(x/x) + 9 (12)

i=1
3. Training data
3.1. Synthetic data: analytical predictions

Before extending the model to full-scale measurements, it was tested
on an ideal case of simulated datasets. The datasets were obtained by
simulating random wind fields and calculating the corresponding RMS
dynamic response of the bridge using multimode buffeting theory in the
frequency domain.

3.1.1. Multimode buffeting theory in the frequency domain

The buffeting response of the bridge was computed in the frequency
domain following classical multimode theory (Chen et al., 2000) (Jain
et al., 1996) (Katsuchi et al., 1998). The theory requires the following
assumptions: The bridge is idealized as a line-like structure, the wind
field is approximated as homogenous and stationary, and the wind action
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Fig. 7. Uniform grid training dataset (simulated data).

and displacements are referred to as the shear center of the bridge girder
and can be separated into a time-invariant mean and a randomly fluc-
tuating part. For surrogate model trained with the synthetic datasets, the
aeroelastic forces were computed with the quasi-steady theory. In
contrast, aerodynamic derivatives were included in the formulation for
the case of comparison with full-scaled measurements. In both cases the
experimental data came from the wind tunnel test reported by (Siedziako

r(gt) = @Eme) @) = dy... i byl 0,0 = [y rorg) me) = [myc ) b= [ ab, b ]

et al., 2017).

Multimodal theory represents the structural quantities using the
mode shapes as generalized coordinates. Then, the structural displace-
ments due to buffeting, r, in a Cartesian coordinate system are repre-
sented by the sum of the products of the selected natural mode shapes, @,
and the respective generalized coordinatess, as in Equation (13).

13)
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Fig. 8. Random CLHS training dataset (simulated data).

Then, the system’s generalized equation of motion is as shown in
Equation (14).

i) + (€0 i) + (o)) = 0,00
Q1) = Qe (1) + Q. (1)
Here, M,,C, and K, represent the structural still-air generalized

mass, damping and stiffness matrices, respectively, which are diagonal
matrices. These structural matrices are obtained from a finite element

a

model of the Hardanger Bridge. Finally, the term Q,, stands for the total
generalized wind load including the buffeting and the self-excited forces.

3.1.2. Buffeting force using finite element discretization
Multimodal theory assumes that the structures are line-like. However,
suspension bridges have complex shapes; therefore, here, the use of a

beam finite element discretization approach is proposed to apply the
wind forces in Equation (14). Furthermore, the beam element forces can
be transformed into generalized coordinates using the multimodal
approach.

A generic structure can be discretized with beam finite elements with
12 degrees of freedom, as shown in Fig. 3 (a). Then, the wind action over
a generic beam element is shown in Fig. 3 (b). The three coordinate
systems shown in Fig. 3 are the global coordinate system defined by its
unit vector {Ej,Es, E3}, the beam element local coordinate system with
unit vector {es, ez, 3 } and the wind field system with unit vector {ev,evs,
evs}. The transformation scheme from the global coordinate system to
the local coordinate system of the beam element is shown in Equation
(15) and to the wind field local coordinate system is shown in Equation
(16). Hence, Equation (17) shows the transformation from the wind
system to the local coordinate system of the beam element.

The vector of nodal buffeting forces is obtained from the principle of
virtual work using the shape functions N(y) and denoting the wind forces
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Fig. 9. Testing dataset (simulated data).

H5E-H5W and A6 Location

in the beam element by gy (¥, t) (Equation (18)).

Fig. 10. Hardanger Bridge sensor layout.

Op () = /0 NGOGy O, 0x G (1) = By (0T are Vi (7, 1)

(18)

Viw=[n va v3 ]T is the vector containing the wind turbulence
component in the wind coordinate system, and thus, it shall be trans-
formed into the local coordinate system of the beam. Furthermore, ma-
trix Bycan be obtained from Equation (19).
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Fig. 11. Histogram of the incoming wind directions from the A6 midspan
anemometer of the Hardanger Bridge.

1 —
B,(w) =5 PBV (19)

0 2BCy BC,,

where p the density of the air, w the circular frequency, D and B the
effective depth and width of the girder cross section, respectively. V is the
mean wind speed. Cp, C; & Cy are the drag, lift and moment coefficients
at the linearization position from the wind tunnel test and C’p,C’;,C’ yare
their respective derivates with respect to the angle of attack, these co-
efficients are given in Table 4 from experimental data and the quantity 2
is introduced as a normalization term.

To assemble the complete vector of nodal buffeting forces, the
contribution of all the beam element local forces are transformed into the
global coordinate system and summed (Equation (20)). Furthermore, the
dependence of B, and Vy,, on the integration variable x is ignored by
assuming a uniform shape of the beam elements and that their length is
small compared to the spatial variations in the wind field.

N
Q5 (1) = Z Tinss Tiony s GiByiTnre: Visi(t) (20)

where Tpos is the assembly matrix from the local degrees of freedom of
beam element to the global degrees of freedom of the structure and G; =
Jo NG dz-
To express the quantities in the frequency domain, the cross-spectral
density of the buffeting force is obtained as the discrete Fourier transform
of its cross-correlation function

N

RQ}:KJI (T) =E [Qbuﬁ"(’) QTbuﬁ (t + T)] SQM ({1}) = Z
N
X Z Teosi T(T,vzu,,Gqu.iTszu.. Sy (Ax, ‘”)TI..,M,, B:_J GJTTc;zujT:Zg_j
i

2D

where Sy(Ay,) represents the cross-power spectral density (CPSD)
matrix of the wind field. Then, the cross-spectral density of the buffeting
force can be transformed into the generalized coordinate system:

S‘Q;,ug (T) = @(X)SQ;M; ((‘U)@T (/Y) (22)

Applying a similar approach to the self-excited forces, Equation (23)

10
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shows the nodal vector of self-excited forces and the wind forces g, (x, t)
in the beam element.

L
0L _\‘k(t) = /0 N(x)q\w (Zaf)d)( Gse = Caz";(Za l) + Kufru,', t) (23)

where C,, and K,, are the aeroelastic damping and stiffness matrices,
respectively, and are given in Equations (24) and (25). Equations (26)
and (27) present the matrices in the generalized coordinate system.

| P, P, BP,
Cac=5 P wB*|H, H, BH, (24)
BA; BA] BA]
| P, P, BP,
K=5p o'B’|H, H, BH, (25)
BA; BA, BA;
&ac:-/¢:.cuy((1)*)¢m de (26)
L
(27)

kﬂe - /‘¢:; Kae(af)¢m d‘,'t’
‘L

Were Py, ,H;, gandA}, , Denote the dimensionless aerodynamic
derivatives.

Finally, the cross-spectral density of the response in the global Car-
tesian coordinate system is:

S, (w,y,) = qb(z,){ {H(w)s%(w)]H*(w)}cp"(,y,) (28)
with the following transfer function:
H () = {7 Myw* + (C‘u — C'(,,_,)imqt (K’U — I?{,e)] (29)

By extracting the response spectrum at midspan and integrating over
the frequency, it is possible to obtain the standard deviation of the re-
sponses and thus the target output features:

Y, = [6,0, 060, =0, :/

o0

S, ((1) WX rmidi\'puﬂ) dm

©

(30

3.1.3. Wind field modeling

3.1.3.1. Cross spectral density function. The cross-spectral density func-
tion of the wind turbulent field, Sy (Ay, @), required in Equation (21) is
defined as:

| Su(Ax. @) S,.(Ay. @)
TR Pttt ron] Gy
Sum(Ay, @) = Cohyp, (Ay, @)/ S0 () S0 (f) (32)

The terms S,, nc {u,w} and S,, mc {u, w}represent the auto-
spectral density function of the turbulence components at an element
location x;.. The normalized cospectrum is represented by Cohum.
Furthermore, S,,n,mc {u, w} represents the cross-spectral density
function of the beam elements separated by a distance Ay.

The variability of Sy is considered in the wind model parameters.
Applied to buffeting response estimation with machine learning, the
chosen input features (X) are the incoming mean wind speed (V), the
along-wind and vertical turbulence standard deviation (o, 6w) and the
decay coefficients (K,K,). Furthermore, the auto-spectral density is



D.F. Castellon et al. Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

200

100

10 15 20
Vel m/s

10 15 20

0 0
10 15 20 0.2 04 0.04 0.1 0 2 4 6 4 8 12 5101520
Vel m/s | | o K K
u w u w
o 400
. 6
. B 4
g : 200 5 0
&

10 15 20
Vel mis

200
100
0 0
10 15 20 4 8 12 5101520
Vel m/is | | a K K
u w u W
500
0 d
10 15 20 5101520
Vel m/s KW

Fig. 12. Matrix plot of the histogram and correlations from the A6 midspan anemometer for the easterly winds dataset.

modeled as a Kaimal-type spectrum (Kaimal et al., 1972) Equation (33), with Cohpm and Sy when n # m are ignored, and thus, only the spatial
while the normalized co-spectrum is modeled as a Davenport-type coherence was considered.
(Davenport A. G., 1961) (Equation (34)).

S/ A o o 3.2. Synthetic datasets
= - =2 L= 33
(VL)' (1+ 1.5A,,fz)5”’f v 53

v The corresponding target output (Y) was chosen as the RMS of the

lateral, vertical and torsional response components (6, 65, 6y). Thus, a
Cohm(Ay, ) :exp( _K, v/ ) (34) sample point i in the dataset i represented by the pair X;,Y;, as shown in

Vv Equation (35).
where the subscripts n,m € {u,w} indicate the along-wind and vertical X,=[Ve,0,K,K,),and ¥, = [, 0, a,,]’, (35)
turbulence components, z is the reference height, f is the frequency and
Ay is the set of spectral peak parameters. For the Hardanger Bridge, To create the synthetic data using analytical predictions, two training
(Fenerci, 2018) determined that an A,of 30, an A,, of 3 and a z of 60 m are datasets and one testing dataset were created. Each input sample
acceptable spectral quantities. I, represents the turbulence intensities. X;contains the wind fentures applied homogenously to all the wind ele-

ments. Furthermore, two different strategies were implemented to

Furthermore, the cross-coherence and cross-spectral terms associated . .
simulate the input.

11



D.F. Castellon et al.
100
50

0
10152025
Vel m/s

0
10152025
Vel m/s

0
10152025
Vel m/s

0
10152025
Vel m/s

Vel m/s

o
10152025
Vel m/s

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

200

20 40

Fig. 13. Matrix plot of histogram and correlations from the A6 midspan anemometer for the westerly winds dataset.

The first strategy is to use a uniform grid of the wind parameters to
ensure complete coverage inside the range of the full-scale measure-
ments. Therefore, from the dataset collected by (Fenerci and @iseth,
2018), the maximum and minimum values bounding each of the wind
model parameters were extracted. The resulting discretization range and
number of intervals for each variable are reported in Table 1, and with
the reported discretization, 25,000 sample points were simulated.

The input from the uniform grid dataset from Table 1 covers the
parameter space in a regular manner, which is not the case in the full-
scale measurements, where the data are concentrated in certain regions
of the parameter space. Therefore, to mimic the real dataset and to
investigate how the machine learning algorithms handle such clustering
of data points, a second input dataset is generated. This set was created
using the extension of the standard Latin hypercube sampling approach
(McKay et al., 1979) to correlated variables, correlated Latin hypercube
sampling (CLHS) (Olsson et al., 2003). The average size of the directional

12

training datasets to be introduced in the following section is 3500 sam-
ples. Therefore, for this dataset, the same number of samples was
generated using the CLHS approach following the probability distribu-
tion functions and correlation coefficients from the full-scale measure-
ments reported by (Fenerci and (iseth, 2018).

Finally, following the CLHS generation scheme, a third dataset was
generated to test the models. This set allows the validation of the models’
generalization ability by examining their performance for the same task.
Five hundred samples were generated for this dataset. A summary of the
synthetic datasets features is reported in Table 2.

3.2.1. Analytical prediction of the dynamic response of the Hardanger Bridge

A schematic technical drawing of the Hardanger bridge’s cross sec-
tion is as shown in Fig. 4. Additionally, the eigenvalue analysis was
performed to obtain the still-air modes using a finite element model of
the Hardanger Bridge supplied by the Norwegian Public Roads
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Fig. 14. Training datasets.
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18.3 and 3.2 m,

Administration reported in (Fenerci et al., 2017). Both the girder and
cable modal displacements were extracted for this analysis. The first 100
modes were considered in the analysis. The natural frequencies of the
first 15 modes are reported in Table 3, the reader is referred to (Fenerci
etal., 2017) (Lystad et al., 2020) (Petersen et al., 2017) further details of
the bridge’s modal behavior. Structural damping was modeled with the
Rayleigh damping approach (Chopra, 2000) using the parameters a, =
0.0009 and f, = 0.01102. Furthermore, the effective width B and

height D of the Hardanger Bridge section
respectively.

The load coefficients used in the analysis were those reported by
(Fenerci and @iseth, 2018) from wind tunnel testing set up of (Siedziako
et al.,, 2017) and are shown in Table 4. The test was performed with
Reynolds number of 2.01x10°. The scaled cross section of the model was
equipped with handrails and the pedestrian path was located upstream.

Additionally (Siedziako et al., 2017), reported the aerodynamic

13
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Fig. 16. Flowchart of the model training and comparison steps.

Table 5
ANN settings.
Setting MLP
Activation function Rectified linear unit
Cost function Mean squared error
Optimization Bayesian-adaptative moment
Number of hidden layers 2
Sizes 8-8
Batch size 10% of the dataset
Learning rate Min = 1E-7
Number of epochs 1000
Table 6
Grid settings for the SVR hyperparameters.
Setting Minimum Maximum Number of Intervals
Box constraint 1E-5 100 10E14
€ o 1e?F 10E14
Polynomial degree 3 6 3

derivatives of the bridge cross section from the wind tunnel test. Fig. 5
and Fig. 6 show the experimental results of the 18 aerodynamic

14

derivatives fitted a polynomial function that tends constant values
outside the experimental data range. In the figures the reduced frequency
K = %% s introduced in the notation to enhance the presentation of the
aerodynamic derivatives. Nonetheless, for the purposes of the surrogate
modelling with synthetic datasets the use of the quasi steady theory
showed to be sufficient. Therefore, the aerodynamic derivatives formu-
lation was used just for the full-scaled measurements.

Finally, using the three simulated wind inputs described in the pre-
vious section (two inputs are used for training, one input is used for
testing), the dynamic response of the Hardanger Bridge, namely, the RMS
of the lateral, vertical and torsional components, was obtained using
multimodal buffeting theory. The scatter plots showing the resulting
input-output relationships are shown in Figs. 7-9 for the training uni-
form, training CLHS and testing CLHS datasets, respectevely.

3.3. Full-scale measurement data from the Hardanger Bridge

3.3.1. Overview of the measurements

The buffeting responses of the Hardanger Bridge were measured with
an extensive measurement system composed of 9 ultrasonic anemome-
ters that measure the wind speed in the range from 0 to 65 m/s with a
0.001 m/s resolution at a 32 Hz sampling frequency and 20 triaxial
accelerographs that measure accelerations on the interval of +4g at a
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200 Hz sampling frequency. More details on the Hardanger Bridge
measurement system and dataset management procedure are given in
(Fenerci, 2018), the dataset is available in open access (https://doi.or
2/10.21400/5ng8980s) (Fenerci et al., 2018). The installed anemome-
ters record the incoming wind velocity in polar coordinates, while the
coupled arrangement of the accelerometers register the triaxial bridge
response (Fenerci et al., 2017).

3.3.2. Wind field modeling and turbulence parameters

The wind parameters were extracted from the measurement system at
the A6 anemometer location (Fig. 10). Previous research campaigns at
the site (Fenerci and @iseth, 2018) (Fenerci et al., 2017) (Lystad et al.,

15

2018) reported two data clusters in the mean wind direction histogram
(Fig. 11). This phenomenon poses a challenge to the analysis due to the
topography-related difference between the wind features depending on
the incoming wind direction (Fenerci et al., 2017). Thus, in a similar
manner as the previous campaigns, the WIVs from both clusters were
studied separately.

Fig. 12 and Fig. 13 show the wind parameter matrix plots for the
easterly and westerly wind datasets; the subfigures on the diagonal
contain each input variable histogram, and the figures on the off-diagonal
show the scatter plots between the parameters. Furthermore, the angle of
attack, «, is introduced as an input parameter for this case, unlike the
synthetic data.
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3.3.3. Root mean square (RMS) of the responses at the midspan

The response of the Hardanger Bridge was measured at the same
location as the wind input using the accelerometer coupled sensors H5
shown in Fig. 10. The lateral and vertical components of the acceleration
were obtained as the average from the sensors at both sides of the girder,
while the torsional component was computed by dividing the difference
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between the two vertical signals by their distance (13 m). Fig. 14 shows
the panel plots of the training datasets for the westerly and easterly
winds. These plots contain the structural responses at the midspan of
Hardanger Bridge from the accelerometer coupled sensors H5 as
described in (Fenerci et al., 2017). The figures show quadratic trends
between the velocities and the responses, as expected. Fig. 15, on the
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Table 7
Comparison of the evaluation metrics on the simulated datasets.
Model NRMSE MAPE R2
ay [ Gy Gy 0y &y oy oy oy
Uniform grid MLP 1.02E-03 5.87E-03 7.21E-03 0.4751 1.7468 1.936 1.00 0.99 0.99
Uniform grid SVR 5.14E-04 1.66E-03 7.70E-04 0.1853 0.5748 0.303 1.00 1.00 1.00
Random CLHS MLP 1.46E-04 3.51E-04 1.76E-03 0.0092 0.0120 0.036 1.00 1.00 1.00
Random CLHS SVR 4.97E-04 8.90E-04 6.62E-04 0.1465 0.1233 0.115 1.00 1.00 1.00
0.0018 0.008
0.0016
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(a) NRMSEs for the different SVR models (b) NRMSEs for the different SVR models (outliers
only)
Fig. 19. (a) NRMSEs for the different SVR models (b) NRMSEs for the different SVR models (outliers only).
other hand, shows the variation in the structural responses as a function . ”
. . interquartile {range
of the complementary wind input parameters for the velocity range from = 4 {range(y)} (37)

15 to 16 m/s of the a) easterly and b) westerly winds. This figure shows
linear trends between the responses and the turbulence intensities, and
no apparent trend can be observed for the other parameters.

4. Training, validation and testing datasets

The training datasets correspond to the division of the data that will
be fed into the machine learning models; for this type of application, it is
deemed appropriate to take 65% of the dataset for training. Furthermore,
10% of the dataset was used as a validation dataset for tuning the model
hyperparameters and optimizing the global performance. Thus, an
additional 25% remained for the testing data. The schematic flowchart of
the analysis is shown in Fig. 16.

4.1. Model hyperparameters and settings

In ANN models, the network architecture, function selection and
optimization scheme affect the results. Thus, Equation (5) minimizes the
loss function for a given network setting. With the aim of avoiding
overtraining, the MLP model was trained using the batch training strat-
egy; i.e., every optimization cycle was performed on a different division
of the dataset. The configuration found to be appropriate for training the
MLP models is reported in Table 5.

Analogously, for the SVR model, Equation (12) will give rise to
different estimation functions if changes are made to the kernel function,
box constraint C, and slack parameters &, among other settings. For this
application, experience suggests the use of a polynomial function as the
kernel function, as given in Equation (36), and half the width of the
e-insensitive band, &, is computed by Equation (37). Then, a built-in grid
search optimization algorithm is used to find the configuration that
minimizes the loss functions with the grid setting reported in Table 6.
Further studies on hyperparameter optimization for buffeting response
modeling are beyond the scope of this paper but may be the objective of
future research.

K(x,—’x) = (1 + x,jxj)d (36)
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13.49
5. Performance assessment and comparison
5.1. Performance metrics

Three metrics were used to compare the estimates and targets: the
normalized root mean square error (NRMSE, Equation (38)) (Amstrong
and Collopy, 1992), the mean absolute percent error (MAPE, Equation
(39)) and the coefficient of determination (R2, Equation (40)). The
NRMSE (Amstrong and Collopy, 1992) becomes representative of the
modeling since it is the normalized version of the square root of the mean
squared error (MSE), which is used as the loss function for the MLP. On
the other hand, the MAPE results are more intuitive since they present
the deviation as a percent. Finally, R2 allows the weight of the deviation
of the estimates according to their variance.

(38)
1|5yl
MAPE=— S 121 (39)
N ; Vi
N 2
R2=1- ; (yj - yj) / (-3 (40)

5.2. Synthetic data

5.2.1. Uniform grid training dataset

The panels in Fig. 17 show the comparison between the targets from
the testing dataset and estimates for the machine learning models trained
with the linearly spaced dataset for the SVR response models and for the
MLP. In the figure, the X-axis is the velocity, and the Y-axis is the RMS of
the response component. The figures show a complete matching of the
estimation and target over the entire wind speed range. The satisfactory
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performance of the machine learning models on the simulated dataset
shows the effectiveness of the method in modeling the buffeting phe-
nomenon and encourages its application to the full-scale data.

5.2.2. Random training dataset

Analogously, the comparison of the scatter plots between the
randomly generated dataset target from the testing dataset and its cor-
responding machine learning estimates is shown in Fig. 18. Despite the
clustering of the data points around the moderate wind speeds, the al-
gorithm is successful in predicting the response in the entire wind speed
range.

Table 7 extends the graphical overview and reports the evaluation
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metrics of the three response components (i.e., 6,, ¢, and &) for the two
machine learning models (i.e., the MLP and SVR models) on the two
different datasets (i.e., the uniform grid and random CLHS datasets).
With the given evaluation metrics, the SVR models perform better than
MLP models in the uniform grid dataset, whereas the opposite occurs in
the random CLHS dataset. Nevertheless, the order of magnitude of the
NRMSE is approximately 10E-4, stating an appreciably good general
performance level, with the lowest error of 1.46E-04 for the MLP/CLHS/
o, response and the highest of 7.21E-03 in MLP/uniform grid/ey.
Moreover, the highest and lowest MAPE values of 1.936% and 0.0092%
agree with the NRMSE results.

Estimation of extreme responses is especially important for long-span
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bridge buffeting response modeling. Thus, a comparison limited to the
maximum values given by oy > 0.3, o; > 0.1 and oy > 0.018 is pre-
sented. To highlight the difference in the performance, Fig. 19 (a) reports
the NRMSE of the SVR models in the general case and (b) reports the
maximum values. Overall, the models trained with the random CLHS
dataset showed less error compared to their uniform grid counterparts.
However, for the outliers, the uniform grid models performed better
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because the CLHS dataset concentrates the data points in the central
region, leaving fewer data points in the maximum value region, resulting
in better predictions for moderate wind speeds and compromising the
accuracy of the extreme values. On the other hand, the uniform grid
dataset presents a better accuracy in the region of the outliers. It should
be noted that both methods provide reasonably accurate results.
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Table 8
Evaluation metrics for the directional models on real datasets.
Model NRMSE MAPE R2
oy Oy Gy Gy Oy oy oy Oy oy
West MLP 6.87E-02 5.39E-02 3.79E-02 26.8 10.7 19.5 0.89 0.95 0.92
West SVR 5.14E-02 3.06E-02 3.28E-02 21.6 14.1 22.2 0.84 0.94 0.92
East MLP 8.87E-02 1.06E-01 5.74E-02 42.0 36.4 29.1 0.44 0.59 0.72
East SVR 5.98E-02 5.65E-02 4.87E-02 22.9 13.9 19.4 0.69 0.84 0.80
Additionally, Table 8 shows the evaluation of the three response com-
Table 9

Constant input values for the directional model comparisons.

Wind feature Symbol Constant value
Along-turbulence SD Oy 0.1*V

Vertical turbulence SD Ow 0.06*V

Angle of attack o 2.9
Along-wind decay coefficient K, 8.6

Vertical decay coefficient Ky 10.7

5.3. Full-scale measurement data

The techniques verified with the synthetic data case were extended to
full-scale measurements. For this aim, the scatter plots the response
comparisons from the different models are shown in Figs. 20 and 21.

ponents (ay, 6; and ay) for the two machine learning models (MLP and
SVR) in the two different datasets (westerly and easterly winds).

The easterly and westerly wind model estimates were compared. The
input was varying mean wind speeds, with linearly dependent 5, o, (t0
retain the observed trend in the real data), and the other parameters were
held constant. Table 9 reports the input parameter settings. Fig. 22 shows
the plots comparing the predictions of both directional models for the
three response components 6,, 4, and 6, from the SVR algorithm, while
Fig. 23 reports a similar comparison for the MLP model.

Both figures show that the model trained with the easterly wind
dataset yields a higher response estimation for the same input conditions.
This is consistent with the behavior observed in the full-scale measure-
ments reported in Fig. 14.
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Table 10
Evaluation metrics for the estimates from buffeting theory.
Model NRMSE MAPE R2
oy Oy ay ay Oy oy oy Oy ay
West BFT 7.65E-02 6.27E-02 5.47E-02 38.68 19.13 34.17 0.82 0.85 0.83
East BFT 7.62E-02 1.12E-01 5.97E-02 33.58 35.41 24.81 0.54 0.73 0.72

21



D.F. Castellon et al.

45.0

40.0

35.0

30.0

25.0

MAPE %

20.0

15.0

10.0

5.0

ANAROOCOONRN

0.0

West BFT West MLP

West SVR

Journal of Wind Engineering & Industrial Aerodynamics 209 (2021) 104484

BsigY
BSigV
BSigt

NSO

East BFT

East MLP East SVR

Model Caption

Fig. 25. MAPEs computed with buffeting theory and machine learning.

5.4. Machine learning vs. buffeting theory

Finally, the response of the Hardanger Bridge was estimated analyt-
ically using buffeting theory and the wind input from the full-scale
measurements. The response comparison between the measured
response and the buffeting theory estimation is shown in Fig. 24, and the
corresponding evaluation metrics are reported in Table 10. A graphical
comparison in terms of the MAPE between the estimates obtained with
machine learning reported in Table 8 and the estimates obtained with
buffeting theory is shown in Fig. 25.

The SVR estimates yield more accurate results than the MLP and
buffeting theory on both directional datasets. Moreover, for the westerly
winds dataset, both machine learning models predicted more accurate
estimate than buffeting theory. Using the MAPE, the greater difference
between buffeting theory and the SVR model was 17% for 6, and the
lowest difference was approximately 5% for o, on the easterly winds’
dataset. In general, the estimates of the full-scale observations show a
slight decrease in the performance compared with the ideal case, mainly
because uncertainties in the dynamic behavior, such as the in-
homogeneities and non-stationarity of the wind field, traffic and tem-
perature effects are not completely captured by analytical models.

A difference in the error metrics between easterly and westerly wind
related responses is exposed for both cases, estimations with machine
learning (Table 8) and buffeting theory estimation (Table 10). For
example, R2 metrics for the ¢, responses in Table 8 vary from 0.44
(easterly) to 0.89 (westerly) for MLP and 0.69 (easterly) to 0.84 (west-
erly) for SVR whereas Table 10 shows a variation from 0.54 (easterly) to
0.82 (westerly) for the same response component. The main reason for
this behavior is that the aerodynamic properties of the bridge, namely the
steady-state force coefficients (Table 4) and the aerodynamic derivatives
(Figs. 5-6) were obtained for the case of winds approaching from the
west, which are the strongest. This partly explains the poor performance
of the analytical predictions for the easterly winds. Further, the easterly
winds are more affected by the more complex topography, which typi-
cally causes higher angles of attack. Such issues are handled implicitly by
the machine learning models, where the buffeting theory is more
challenging.

6. Conclusion

In this paper, accurate buffeting response estimations were computed
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from analytical and machine learning models. The wind input dataset
was obtained from full-scale measurements and simulated data following
the probabilistic model of the observed wind turbulence field. Then, the
quality of the estimates was evaluated, leading to the following
conclusions:

e Estimations from machine learning models (i.e., the SVR and MLP
models) on the synthetic datasets were reasonably accurate. There-
fore, the good quality of the estimates makes the technique suitable
for surrogate model development such as those required in reliability
analyses.

e The models trained with the full-scale datasets were less accurate

than the models trained with the synthetic datasets. The main reasons

for this are the various uncertainties in the dynamic behavior that are
not captured by the monitoring system, such as the inhomogeneities
and non-stationarity of the wind field, traffic and temperature effects.

However, as data-driven models bypass some of the limitations of

buffeting theory, machine learning-based estimates were more ac-

curate than the analytical predictions.

Considering the slightly different behavior observed under easterly

and westerly winds, two different machine learning models were

trained for the two directions. The models trained on the easterly
winds predicted higher responses under the same wind input,
capturing the observed behavior.

e The SVR model yielded better response predictions than the MLP
model on both the simulated and full-scale measurements. Further-
more, the method was more accurate that the analytical response
estimates with the multimodal approach.
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