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5.1 Introduction

Hyperspectral imaging (HSI) is an optical technique combining high spectral
and spatial resolutions into one modality. HSI is noninvasive, label-free (does
not require dyes), and flexible and adaptable—which allows for imaging across
a wide wavelength range.1 The data are collected in the form of a hypercube
consisting of one spectral and two spatial dimensions (Fig. 5.1). Occasionally,
time or depth might be a fourth axis, adding to the multidimensionality of the
data. Technical realization of a hyperspectral system and the data collection
approach will depend on the application, as will the choice of tools for data
analysis. A hyperspectral datacube can be collected using a variety of imaging
geometries and systems, ranging from simple, as in using band-pass filters to
image a portion of the spectrum, to more sophisticated, as in using Fourier
imagers and imaging spectrometers.1–14 The technology, which was originally
developed for remote sensing, is now being adopted and adapted into fields
that require spatially resolved spectroscopic information. This idea of
combining high spectral resolution with imaging can be further combined
with almost any other imaging technique and measurement geometry,
including wide-field imaging of larger objects and endoscopic imaging.1,15–20

As a result, HSI has recently been explored for a variety of medical
applications and is slowly becoming a part of the standard biomedical toolbox.

By employing adequate optical elements and detectors, HSI can be used
with light at wavelengths in the ultraviolet (UV) to thermal infrared
range.1,13,21,22 The short-wavelength infrared (SWIR) spectral range, covering
~900–2500 nm (Fig. 5.2), has been used in research and industrial fields
such as geology and mining, materials recycling, food quality monitoring,
solar cell inspection, and thin-film deposition.13,23–25 This spectral range has

Figure 5.1 A hyperspectral datacube consists of at least two spatial dimensions and one
spectral dimension. In some cases, time or depth might be added as a fourth coordinate,
adding to the multidimensionality of the data.
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also been utilized in biomedical applications and has several advantages.
Typically, the interactions of SWIR and biological tissue result in lower
autofluorescence, less scattering of light, and longer penetration depth
compared to visible (VIS) and near-infrared (NIR) light ranges. The
absorption of hemoglobin is far less in the SWIR than in the VIS/NIR part
of the spectrum.

All hyperspectral information has a similar structure, which consists of
spatially distributed spectral information. The data from different sources can be
analyzed using the same or similar analytic tools,13,23–25 regardless of the
application. In addition, the imaging technologies are typically flexible and
adaptable. Although there are hyperspectral instruments for specific clinical and
research applications, most scientific-grade instruments from the major vendors
can be used across a variety of disciplines, including biomedical research.
Currently, HSI is more frequently incorporated as an additional feature to other
imaging techniques—such as spatial frequency domain imaging (SFDI),
coherent anti-Stokes Raman scattering (CARS) microscopy, and optical
coherence tomography (OCT).15,26–33

Despite the trend of combining HSI with other imaging modalities, the
available literature has not focused on SWIR optical imaging as such. Instead,
HSI is associated with medical applications in general1 or specific applica-
tions5,21 such as cancer diagnostics. Several authors have explored the
available SWIR hyperspectral hardware, including available detectors and
other experimental details.1,9,10,13,21,25,34 On the analysis side, the complexity
and variety of the applied methods have increased.35–55

In this chapter, we give a brief overview of the technology and the field of
HSI. We highlight the use of HSI in the SWIR spectral range (900–2500 nm)
for biomedical applications. We focus on HSI data collection, acquisition, and
processing, with an emphasis on chemometric and deep-learning methods.
Some general guidelines and suggestions for selecting an adequate HSI
imaging setup are also provided, together with some recommendations for
improving the data acquisition process.

Figure 5.2 Electromagnetic spectrum, from left to right: VIS (380–780 nm), NIR (780–
900 nm), SWIR (900–2500 nm), mid-wave infrared (MIR: 2500–5000 nm), and long-wave
infrared (LWIR: 8000–12,000 nm). The wavelength range 5000–8000 nm is defined as a stop
band due to very high absorption and is therefore omitted.
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5.2 Medical Hyperspectral Imaging

HSI techniques have shown clinical potential in characterizing and detecting
near-surface structures and anomalies.22,56–58 The number of published papers
on HSI has increased substantially recently as the technology has advanced.
Currently, approximately two-thirds of the papers in the PubMed database
mentioning the term hyperspectral or HSI were published after 2018 despite
the fact that the first medical articles on HSI were published as early as the
late 1990s and early 2000s.59–72

Traditionally, the VIS (380–780 nm) and NIR (780–1100 nm) spectral
ranges were used for medical HSI, even though an increasing number of
examples of SWIR (above 1100 nm) applications had been published.73–83

Recently, SWIR cameras and detectors have become more available, and our
understanding of tissue optical properties in this range has also increased.56,84–86

Figure 5.3 shows some examples of SWIR-HSI for biomedical applications.
The published work in the literature can be classified and grouped

according to various principles. It can be grouped according to imaging
technology, i.e., microscopy, endoscopy, or wide-field imaging. It can also be
grouped according to the purpose of the measurement: whether it aims at
tissue characterization, diagnosis, surgical guidance, or treatment monitoring.
Alternatively, the literature can also be grouped according to the physiology,
anatomy, or biological system being studied. The latter presentation is the
system used in Fig. 5.3.

Due to the optical properties of biological tissues, HSI is limited to
surfaces, near-surface structures, or samples/tissues of penetrable thicknesses.

Figure 5.3 Examples of biomedical applications using SWIR-HSI.1,5,21,38,48,81,87–95
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Thus, HSI is not a direct competitor of other medical imaging modalities such
as ultrasound, magnetic resonance imaging, or X-rays; it is a complementary
or additional technique.

Lu and Fei1 give a good overview of the first 10–15 years of medical HSI.
In their review, they discuss eight examples of HSI in the SWIR to MWIR
spectral ranges from 1000 nm up to 5500 nm.73,77–80,96–99 In one of their
examples, they show how HSI can be utilized in the detection of intestinal
ischemia and gastric cancer.78,79 They also give examples of the characteriza-
tion of dental caries, characterization of pharmaceuticals, and studies on
breast cancer and cervical pathology in the MWIR range.80,98,99

Application of HSI to cancer diagnostics has grown substantially since
2014, as shown by Halicek et al.21 In their article, they consider the spectral
range from 390–2500 nm and discuss ex vivo classification of colon cancer,79

in vivo classification of brain cancer,100 and ex vivo classification and
delineation of gastric cancer within the SWIR. Similarly, Baltussen et al.81

show that a combination of VIS–NIR and SWIR imaging provides better
results from classifying fatty tissue, colorectal wall tissue, and tumor tissue
compared to imaging each wavelength region separately, when measured
through a laparoscope (Fig. 5.4).

Other authors, such as Gao and Smith,9 provide an overview of HSI in
microscopy, with an emphasis on technology. In 2020, Ortega et al. presented
a comprehensive review of digital and computational pathology.5 In their
review, they present “methods and uses of HSI/MSI for staining and color
correction, immunohistochemistry, autofluorescence, and histopathological
diagnostic research. Studies include hematology, breast cancer, head and neck
cancer, skin cancer, and diseases of central nervous, gastrointestinal, and

Figure 5.4 Identification of fatty tissue, colorectal tissue, and tumor tissue using HSI (RGB:
red–green–blue). (Reprinted from Baltussen et al.81)
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genitourinary systems.”However, despite their extensive review, Ortega et al.5

and Gao and Smith9 list few papers on SWIR, leaving SWIR as a relativity
unexplored area of HSI and an area for future efforts.

Gowen et al.19 review applications of HSI in microbiology and cover
several applications in the SWIR range, but the applications are mainly
related to food science. However, applications such as detection of fungi on
surfaces and pathogenic bacteria (such as Staphylococcus epidermidis and
Enterobacteria in water, and biofilms from Escherichia coli on microfluidic
cells) are highly relevant for biomedical applications.101–105 In general, food
sciences have provided a large number of relevant studies on characterization
and detection of bacteria that could be adapted to a medical context.

Skin—the most accessible organ on the human body and one of the largest
organs—is the organ most explored by HSI, including characterization of
healthy tissue and conditions of pathologies affecting the skin. Initial studies
include examples on circulatory changes and skin oxygenation in diabetic
feet.93 Allergic contact dermatitis, burns, and ulcers are more recent examples
of HSI of skin75,93,94 (Fig. 5.5). Randeberg75 presents hyperspectral data in the
SWIR range, discusses spectral characteristics of spectra from a burn model,
and shows that unsupervised classification methods such as k-means could be
applied for burn classification.

In the field of forensics, HSI has been used to investigate crime scenes, to
identify stains of biological fluids and blood on soft materials such as clothing,
and for characterizing skin bruises.73,74,106–108 Bruises are caused by ruptured
blood vessels and leakage of blood into the tissue. Immediately after the
trauma, there will be a wheal and flare reaction, which is characterized by
swelling and fluid accumulation.109 It has been shown that, in the SWIR
spectral range, it is possible to differentiate between blood and other fluids
accumulating in the injured area74 (Figs. 5.6 and 5.7 show the spectra from
bruised skin in subjects with skin types II and IV). These spectra clearly show
that the influence from pigmentation is limited in the SWIR spectral range.
Paintballs induce circular bruises with an undamaged central spot, due to
central compression of the skin directly underneath the paintball, and the
shear force at the edge of the paintball causes vessel rupture. When imaging a
fresh paintball bruise in the SWIR, the central area will appear swollen, while
a rapidly developing hemorrhage can be seen at the edges.

5.3 Hyperspectral Instrumentation and Setup

HSI was initially developed for remote sensing and satellite imaging. In 2005,
Sellar and Boreman classified imaging spectrometers for HSI34 and defined a
taxonomy for imaging spectrometers. According to Boreman’s definitions,
and highlighted in an overview provided by Wu and Sun,13 hyperspectral
instrumentation and data collection is divided into four types. The first type is
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whisk broom scanning, which operates by first collecting all of the
wavelengths from one pixel, then repeating the process and scanning—pixel
by pixel—to collect spatial data. The second type is push broom scanning,
where all wavelengths and spatial information in one row of spatial pixels are
collected simultaneously, then the scene is scanned line by line. The third type
is wavelength scanning, where the entire scene is collected one wavelength at

Figure 5.5 Hyperspectral burn severity assessment. (a) Spectra from the locations shown
in part (b). (b) Locations for spectra shown in part (a). (c) Burn severity classification using
unsupervised k-means classification. (d) Photograph of the induced burn injuries. [Data and
part (d) from Paluchowski et al.53 Parts (a), (b), and (c) reprinted from Randeberg.75]
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Figure 5.7 Reflectance spectra derived from bruised skin in volunteers having Fitzpatrick
skin types II and IV. (Reprinted from Randeberg and Hernandez-Palacios.96)

Figure 5.6 Hyperspectral visualization of paintball bruises in the SWIR spectral range.
(a) Photo of paintball injuries shortly after infliction. (b) HSI setup consisting of a camera and
a light source attached to a translation stage. (c) Synthetic RBG image constructed from the
first three bands of a minimum noise fraction (MNF) transform of a SWIR hyperspectral
image of a fresh paintball injury. The pink color indicates hemorrhaging, and the yellow
indicates accumulating tissue fluid. (d) Synthetic RBG image constructed from the first three
bands of a MNF transform of a SWIR hyperspectral image of a paint ball bruise a few days
after infliction. The pink area is the location of the bruise. (Adapted from Randeberg and
Hernandez-Palacios.74)
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the time, then the wavelengths are scanned. In this case, the wavelength
scanning might take place on either the sensor or illumination side of the
system. The fourth type is snapshot imaging, where both spectral and spatial
coordinates are collected at the same time. These scanning modes are
illustrated in Fig. 5.8.

Most hyperspectral scanning systems use one of these basic scanning
configurations, even if they are combined with other imaging modalities or
optical systems. All of these configurations have strengths and weaknesses. In
summary, pixel scanning and push broom systems are vulnerable to motion
artifacts between pixels/lines. Effects such as breathing and movement might
affect the spatial image, but not the spectral data. Wavelength-scanning
devices might suffer from movement artifacts between the wavelength bands
but not between the spatial pixels. The snapshot imagers should not in

Figure 5.8 Scanning modes. Top left: snapshot, collecting all the spatial and spectral
information from all pixels at the same time; top right: wavelength scanning, collecting all
spatial information at the same time, but scanning the wavelengths; lower left: push broom,
collecting all information for one spatial row of pixels, and scanning row by row; lower right:
whisk broom, spatially scanning pixel by pixel, collecting all spectral data for each pixel.
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principle be prone to movement artifacts but may have other issues, such as
spectral resolution and spectral-band density.

Several detector technologies are relevant for the SWIR spectral range.
Technical systems used in HSI and medicine are described in Refs. 1, 13, and
25. According to Adão,25 indium arsenide (InAs), gallium arsenide (GaAs),
indium gallium arsenide (InGaAs), and mercury cadmium telluride (MCT or
HgCdTe) are the dominant semiconductor materials used as detectors in the
SWIR range (refer to Fig. 5.9 for further details). In contrast, silicon-based
detectors are used for VIS/NIR imaging with wavelengths up to approxi-
mately 1100 nm. However, silicon-based detectors cannot be used with
infrared light due to the bandgap of the material (i.e., silicon-based detectors
are not sensitive to photons with wavelengths longer than 1100 nm). The
processes for manufacturing SWIR detectors are more demanding and
complex, and the sensors are typically more expensive and of lower
specifications than VIS/NIR counterparts.

Experimentally, there are two different, basic configurations for hyper-
spectral data acquisition: light transmission and light reflection (Fig. 5.10). For
materials that are semitransparent to one or more wavelengths in the SWIR
range, and with a sufficiently thin thickness, a measurement to collect the light
transmitted through the sample can be implemented. In this modality, a light
source emitting photons of adequate wavelengths is placed on one side of the
sample, and the camera is placed on the other side of the sample. The camera

Figure 5.9 Materials involved in hyperspectral sensor fabrication: Si is used for acquiring
UV, VIS, and shortwave NIR regions; InAs and GaAs have a spectral response between 900
and 1700 nm; InGaAs and GaAs have a spectral response between 900 and 1700 nm
(InGaAs extends the previous range to 2600 nm, and MCT in InGaAs extends the previous
range to 2600 nm); and MCT is characterized by a large spectral range and high quantum
efficiency that enables reaching the MWIR region (approximately 2500–5000 nm) and NIR
region (approximately 800–2500 nm). [Reprinted from Adão et al.25 Published under a
creative commons 4.0 license.]
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then captures the photons that emerge on the other side of the sample after
interacting with the sample, revealing information on the material.

However, in reflection mode, the light source and the camera are placed
on the same side of the sample. As the light impinges on the surface of the
sample, the signal is reflected either specularly or diffusely, depending on the
texture and materials present on the surface. To a lesser extent, there can be a
contribution to the reflected signal from the light that penetrates the sample
and is backscattered to the surface. Usually, the reflected signal collected by
the hyperspectral sensor is a combination of all of these interactions.

In cases where the specular reflection dominates, the reflected signals can
complicate interpretation of the data; the system can be set up in a cross-
polarized configuration, where the angle of the incoming light plus polarizers
on the light sources and on the camera can be used to remove or reduce the
surface glare.14 This configuration, or a variant involving other states of
polarization, can also be implemented to investigate materials and structures
with a reflectivity response affected by the polarization of light. It should be
noted that the polarizers used for this type of assessment are also wavelength
dependent: in the same way that detectors in the VIS/NIR region are not
suitable for the SWIR range, polarizers for the VIS/NIR such as those used in
photography and standard microscopy may not be suitable for polarizing
light in the SWIR.

An additional imaging modality known as transflection is a combination
of transmission and reflection. This mode, also termed transillumination or
interactance, utilizes a light source to illuminate a section of a sample, while
the hyperspectral sensor is focused on a different region—away from that in
which the light impinges. The signal, which is measured by the camera as the
light that penetrates the sample, diffuses in the direction of the section being
imaged—and is then backscattered to the surface of the sample.

Point scanning and push broom HSI systems, which have a dispersive
element to gather the spectral information, need strong illumination to return
proper signal-to-noise ratios (SNRs), as the light is distributed into
wavelength bins on the detector. The choice of light source must match the

Figure 5.10 Measurement configurations.
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camera system, optics, measurement geometry, and sample. Choice of
illumination is thus one of the most important decisions to ensure a successful
measurement. Biological samples can become damaged by high irradiances
from the light source. The scanning geometry, scanning time, and nature of
the sample determine the highest advisable irradiance. In the SWIR, halogen
lamps are still frequently used, as well as lasers and light-emitting diodes
(LEDs). Halogen lamps tend to have a high infrared contribution, creating
extended problems with drying and heating of the samples. If possible, the
lamps should be fitted with infrared filters to remove heat. During all work
with live animals or humans, International Commission on Nonionizing
Radiation Protection (ICNIRP) guidelines for exposure should be kept. These
guidelines are valid for lasers, LEDs, and other continuous sources.

One of the main shortcomings of biomedical HSI is the limited optical
penetration depth in tissue. Even though the penetration depth is substantially
larger in the SWIR spectral region, it is challenging to acquire good data with
a sufficient SNR. This is especially challenging with thick tissues and large
samples. Due to the complexity of the optical system, focusing of a
hyperspectral system can be challenging. Focusing depends on the measure-
ment configuration and the depth of focus of the optics.

In microscopic and endoscopic systems, focusing is handled by the
endoscope or microscope optics, while in a wide-field system, closeup lenses of
variable- or fixed-focus distance and different aperture sizes can be used.
A hyperspectral camera using adjustable optics (lenses, typically C-mount-
based, with variable aperture size and working distance, and attached directly
to the entrance aperture of the camera) allows for manual or automatic
adjustment of focus. Although flexible and relatively inexpensive, adjustable
closeup lenses introduce optical aberrations to the system that may impact the
data quality.110

The optical elements in the camera have transmissive and reflective
properties that are wavelength dependent. The light traveling through the
optical system may follow different paths or have different magnifications or
depths of focus, depending on the wavelengths of the incoming signal. While the
most common aberrations in a traditional optical system (e.g., astigmatism,
chromatic aberration, coma, distortion, field curvature, and spherical aberration
in scientific photography) can be reduced or eliminated using high-end lenses,
HSI systems are affected differently, as the necessary corrections must act over
the entire spectral range in very narrow bandwidths. The most substantial
distortions affecting imaging spectrometers are the keystone and smile effects.
Keystone is nonuniform, wavelength-dependent magnification that effectively
introduces a spatial misregistration of the light signal from a scene pixel on the
detector. On the other hand, the smile effect is a nonuniform shift of the center of
gravity of the spectral bands along the field of view (FOV) of the camera; it is
responsible for spectral misregistration of the image from the instantaneous
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FOV of the camera. These effects are present in some form in most hyperspectral
cameras, and a distinction between high-end and low-end systems can be made
based on the degree to which they affect the quality of the data. Adding focusing
lenses to a given camera will most likely increase the deviations from both types
of aberrations, especially if the lenses are not designed for the system. The
selection of lenses for an application should consider the potential repercussions
on the distortions, and the user should keep in mind that spatial sharpness does
not ensure spectral fidelity.

Depending on the depth of field of the lens, the differences in height across
the sample may pose a challenge for achieving a sharp image. In other words,
when imaging samples with a varying topography at the scale of the depth of
field or larger, some regions may appear sharp while others could be out of
focus. A method to overcome such challenges could be to collect a stack
of images with different focuses and combine the images in postprocessing. It
is also important to notice that spatial sharpness does not necessarily ensure
spectral sharpness. The optical elements in the camera have transmissive and
reflective properties that are wavelength dependent. Light traveling through
the optical system may follow different paths and have different magnifica-
tions and depths of focus—depending on the wavelengths of the incoming
signal.

Alternatively, the hyperspectral system may be fitted with a fixed-focus
lens designed to limit the effects of optical aberrations at the expense of a
limited focal range. When designed carefully, custom closeup lenses may
be used to maintain the spectral fidelity of the imaging system while working
at different focal distances, magnifications, and f-number values. The depth
of field will also limit the usability as previously described, and layered
imaging can be implemented by moving the camera away from and closer
to the sample to change the focusing plane of the camera. For more-complex
configurations, the process of adjusting the working distance of the system
to scan the different levels of the focal plane can be automated by combining
the hyperspectral scanning with a working distance scanning following,
e.g., a trajectory along a three-dimensional (3D) surface model of the
sample.111

5.4 Hyperspectral Data Collection

Selection of the imaging mode, camera specifications, and illumination source
depend on the application of interest. With a setup in place, the data
acquisition can be a straightforward process, but several considerations must
be taken into account. Push broom imagers offer high spatial resolution and
high spectral band density, and can be used in a variety of configurations. For
information on multispectral snapshot cameras or Fourier-transform
hyperspectral imagers, refer to, e.g., Cao et al.112 or Su and Sun.113
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The most critical parameter for data acquisition is the integration time
(IT), which is equivalent to the exposure time in traditional photography. The
IT defines the time during which the sensor collects the light signal coming
from the sample at a given position of the scanning process. After this period,
the sensor transfers the collected data to an internal readout module, resets the
pixels in the detector, moves to the next position of the scanning, i.e., the next
line of the image, and repeats the light acquisition process until the entire
sample has been imaged. In high-sensitivity cameras, typical values for the IT
are on the order of milliseconds. All detectors used in hyperspectral sensors
have intrinsic noise parameters (e.g., electronic, thermal, and dark current)
that are typically low for high-end instruments but are not negligible,
especially in the SWIR range. The SNR is a measure of the expected quality
of an image and, given that there is noise intrinsic to the sensor, one way to
increase the SNR is by increasing the signal intensity, which is a function of
the IT. An alternative way to increase the SNR without increasing the IT is by
using a more powerful light source to illuminate the samples. However,
because biological tissue is susceptible to damage by light of high intensity,
this approach is not always feasible. Another option to increase the SNR
consists of scanning the same line in an image multiple times and averaging
the signal. This reduces the photon noise but increases the duration of the
acquisition. Finally, the noise in an image should also be quantified for each
scan such that the data can be corrected during postprocessing. An image of
the dark signal, i.e., the image recorded by the camera when no light is coming
through the sample, should be part of every image acquisition. Some cameras
require the user to manually cover the entrance aperture of the camera, while
others do this automatically using an internal shutter.

Another operational parameter of relevance for image acquisition is the
scanning speed. The speed at which the sample or the camera moves must be
set such that the geometry of the sample is accurately imaged by the sensor. If
the scanning speed is too high, i.e., the IT is longer than the time it takes the
scanning system to cover a distance equivalent to the lateral size of one scene
pixel, then the data in each pixel will be undersampled and the image will look
compressed. In contrast, if the speed is too slow, the image will be stretched,
and the data size will be higher than at slower speeds. A simple test to validate
the speed used for a given IT consists of imaging objects of known geometrical
proportions and verifying that the measured size corresponds to the imaged
size in two dimensions.

Setting the illumination in the optimal position is also an important task
of image acquisition. The light sources used may be of different types
(as mentioned in Section 5.3) and may use lenses, waveguides, or optical fibers
to direct the light onto the samples. It is important to arrange the sources in
such a way that the FOV of the camera is uniformly illuminated. The
variations on the topography of the samples may create shadowed areas in the
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scene that will have a lower SNR; this should be avoided whenever possible by
optimizing the orientation and distribution of the illumination sources.

Finally, whenever the data is to be compared to other existing data or
used to define spectral libraries to be used as references, it should be possible
to transform the acquired data from the native format of the camera to
absolute reflectance, absorbance, or transmittance values. For this transfor-
mation, it is necessary to process the data using a reference pattern of known
reflectivity, absorbance, or transmissivity as a function of wavelength.

5.5 Hyperspectral Data Analysis

A hyperspectral image may contain hundreds of wavelengths, where each
wavelength can be considered as a separate image and each pixel as a separate
spectrum. Thus, the images contain more information than it is possible for the
human brain to process. Hyperspectral data can be analyzed using different
methods; the high spectral resolution requires methods from spectroscopy and
chemometrics, while the spatial resolution requires methods from computer
vision. Figure 5.11 shows a typical workflow in hyperspectral data analysis.
Basically, the processing chain starts with the raw datacube, which is then
preprocessed into the desired form before image analysis is applied to identify a
structure or signature, or for quantification or classification.

Calibration of hyperspectral images was already covered in a previous
section, and dimensionality reduction, noise removal, and other preprocessing
tools are described in Section 5.7. From a biomedical optics perspective, light
transport simulations have been an important tool; this aspect is covered in
Section 5.6. Machine learning methods and chemometric tools are covered in
Section 5.7, and deep learning methods in Section 5.8.

5.6 Data Analysis and Simulations

Knowledge of the optical properties of tissue can reveal important
information, including whether the tissue is benign or malignant. This
information can be obtained using spectroscopic data and mathematical

Figure 5.11 Typical workflow for hyperspectral processing. If deep learning is applied,
some of this work might be reduced.
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modeling. There are numerous studies on modeling the optical properties of
tissues—which can depend on the available data—using the VIS/NIR spectral
range, while there are fewer studies on modeling in the SWIR region. This
lack of data limits use of optical modeling (e.g., Monte Carlo modeling or
diffusion theory), although the availability and number of datasets have
improved.56,84–86 Spectroscopic studies and modeling have facilitated more-
extensive modeling using SWIR-HSI.18,93,114,115 Zhang et al.115 explore the
penetration depth of light in biological tissues from 900–1650 nm using Monte
Carlo simulations and a HSI system, with the Michelson spatial contrast as a
metric of light penetration. Wang et al.93 present a method to estimate full-
field burn depth based on HSI in the wavelength range of 950–1650 nm. They
employed a method based on regression models to obtain the estimate, but
also present Monte Carlo data on estimated light penetration in burns.
Milanic et al.116 used Monte Carlo simulations to estimate the transmittance
and reflectance from human hands in order to investigate if HSI could be used
to diagnose arthritis. They found that there is an optical window of high
transmission in the vicinity of 1100 nm, where the penetration is at its
maximum and there is minimal influence of water and melanin absorption
(Fig. 5.12). Wrobel et al.18 simulated a noise-free hyperspectral Fourier-
transform infrared imaging dataset of a pancreatic tissue core based on
experimental data to test the performance of a selection of processing
algorithms in a controlled manner. The simulated dataset allowed for
controlled addition of noise with a given characteristic.

Modeling can also be utilized in interpretation and unmixing of data from
turbid and thick samples. In a high-scattering tissue, the reflectance measured
at the surface will contain information from structures and tissues located at
various depths into the tissue. This is also the case in the SWIR spectral range.
The surface signals will be modulated due to the scattering properties of the
sample; this modulation might complicate use of standard machine learning
and chemometric tools to detect and quantify the composition of a biological
sample. Application of machine learning methods will require use of
scattering correction models in turbid media; as machine learning increases
in popularity, physics-based methods might find a new role in hybrid
approaches where such methods are used both for scattering corrections and
to explain the physical and biological context behind the results.

5.7 Chemometric Tools and Methods from Spectroscopy

Chemometric data processing can be utilized in spectroscopy (i.e., Raman and
infrared)117 to reveal information on variables that may be intercorrelated
within the spectra.118,119 Using chemometrics, it is possible to disclose the
relationships among the variables and efficiently identify patterns in the data.
Chemometric methods are based on multivariate analysis, which exploits the
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Figure 5.12 Monte Carlo simulation of light transmission through a human finger.
(a) Transmission through the joint at 1080 nm. (b) Transmission along the finger.
(c) Transmission through a joint at 850 and 1080 nm. [Figures reprinted from Milanic
et al.116]
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intercorrelation of the data to build a more straightforward and condensed
representation of the information contained therein.24 Chemometrics is
especially developed to extract the chemical information contained in complex
data and is applied in many fields such as medicine,120 pharmaceutics,121,122

food science,24 and forensics.123

Among the various spectroscopic techniques, SWIR spectroscopy in the
wavelength range of 900–2500 nm has substantially benefited from chemo-
metric methods because the signals—such as vibrational features, overtones,
and combination bands—usually overlap and are difficult to interpret.124,125

Preprocessing of the data is a required and essential step to remove spurious
information and unwanted variations.126 Conventionally, chemometric
methods and tools are applied to matrices of data with dimensions (N � l),
where N represents the samples or objects (observations) organized in rows,
and l represents the variables (wavelengths) organized in columns.127

Over the last 10 years, chemometrics has moved with ease from a two-
dimensional (2D) dataset (N � l) to a 3D dataset (N � M � l) after
introduction of HSI technologies. Corresponding applications of multivariate
image analysis have effectively contributed to interpretation of data by
obtaining images that show the distribution of chemical (or physical)
properties of the system under study.128 The majority of chemometric
algorithms can efficiently work on 3D data by reorganizing the 3D datacube
into a 2D matrix. This procedure is called unfolding and leads to a matrix
reorganized with pixels in the rows and wavelengths in the columns. The
critical point is to unfold the data following a particular order such that it is
possible to reinstate each pixel in the correct position and display the results of
the processed data [i.e., by principal component analysis or cluster analysis] in
the original image space128 (Fig. 5.13).

Chemometric methods are basically machine learning methods and can be
divided into unsupervised and supervised methods. Unsupervised methods are
aimed at exploring the data and disclosing patterns naturally present in the
dataset without a defined ground truth to aid analysis. Conversely, supervised
methods require a priori knowledge of the collected data and help to make
predictions of new variables or to collocate them in defined classes.129 The
following sections discuss the most common unsupervised and supervised
methods applied to analyze spectral data, focusing on SWIR spectroscopy
and HSI applications.

5.7.1 Spectral preprocessing

Preprocessing is a fundamental step in spectroscopy that is taken before
applying any chemometric method. First, preprocessing can remove undesired
variation in the data,129 leaving mainly the chemical information. Second, it
can enhance weak, but important, signals by redistributing the variables’
weight.124,130 Spectral preprocessing is usually applied before unsupervised or
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supervised methods, as it has proved to be capable of improving the
performance of chemometric models in terms of interpretability and
prediction, and/or classification properties.131 However, preprocessing meth-
ods should be used carefully as they might cause misleading results.132

All of the commonly known preprocessing methods from spectroscopy
can be easily extended to HSI, as the procedure is applied along the spectral
dimension.133

Noise removal is often the first preprocessing step to be applied to
spectroscopic data. Noise can be removed in various ways, using different
filtering methods. The most common of these uses smoothing filters, where a
moving window—simple or combined with a fitting polynomial (i.e., the
Savitzky–Golay134 method)—is moved along the signal to be filtered.126

Scattering effects are common and may be the cause of the nonlinear
behavior of the data, especially in the NIR/SWIR region.135 The effect of
scattering is usually evident when spectra show vertical baseline shifts or
different intensity effects in the bands, i.e., general band amplification or
decrease.132,135 If the desire is to extract chemical information, the scattering
effects should be removed, as they cause high variability. Multiplicative
scatter corrections and standard normal variate (SNV) can be successfully
applied for this purpose. Scattering can also cause—together with instrumen-
tal factors and spectroscopy effects (i.e., fluorescence)—distortion of the
spectral baseline. As baseline distortion can lead to the loss of linearity in the

Figure 5.13 Procedure followed by chemometrics to operate on hyperspectral data. The
datacube is unfolded in a 2D data matrix.
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spectra, it is advisable to correct the spectral shape before applying
chemometric methods. Usually, baseline correction is performed with
detrending methods, where a trend in the spectra is modeled as a polynormal
and successively subtracted from the data.126 Scattering removal can also be
carried out using physics-informed methods and photon transfer modeling.136

Mean centering and scaling are common preprocessing operations that
occur before multivariate data analysis. Mean centering brings the data to the
center of the coordinate system, simplifying the interpretation of the
multivariate model.130 Data scaling is useful as it allows one to readjust the
importance of the variables, especially in the presence of heterogeneous
parameters collected from different techniques. Scaling can also be used to
enhance the contribution of specific variables that are important for
construction of the model.126

Use of derivative filters is a common but complicated filtering method
that can be applied as preprocessing. The main advantage of performing a
derivative is that it allows for—in a simple operation—the removal of vertical
shifts or both shifts and drifts, depending on whether the first or second
derivative is applied.132 Moreover, it is possible to highlight spectral
features133 or resolve and visualize overlapping bands in complex spectral
profiles, bringing emphasis to the smallest differences in the data.126 A
problem in applying derivatives is noise, which is usually amplified together
with the signal. In this case, the derivation should be undertaken using the
Savitzky–Golay method, which implies a preliminary smoothing step that
improves the output of the derivative signal.134

5.7.2 Unsupervised methods

5.7.2.1 Principal component analysis

The most well-known unsupervised technique for exploratory data analysis is
principal component analysis (PCA). PCA reduces the data into a set of a few
uncorrelated orthogonal variables [called latent variables (LVs) or principal
components (PCs)] that contain the relevant information of the dataset. The
new variables capture the data’s variance such that the first variable describes
the largest variance, followed by the other variables in decreasing order of
importance. PCA decomposes the matrix X following a bilinear model, which
can be mathematically represented by137

X ¼ TPT þ E, (5.1)

where X (N � l) is the preprocessed (mean-centered, scaled, and so on) data
matrix, T (N � A) is the matrix of scores, P (l � A) is the matrix of loadings
(superscript T denotes transpose), and E (N � l) is the matrix of residuals. The
value of A is the optimum number of PCs that best captures the relevant
information of the data. Each column in the score matrix TA (and each
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column in the loading matrix PA) captures the variability of a single PC that is
uncorrelated with the variability of the other columns or PCs. The scores are
the coordinates of the new variables in the PC space, while the loadings
represent the importance of each original variable for each PC.137

A useful way to interpret information in the scores and loadings is to
create 2D or 3D scatter plots, where each PC is plotted against one other.
Score plots usually highlight similarities/dissimilarity of samples, revealing the
presence of clusters or specific trends in the data. Loading plots, inspected
jointly with score plots, using the same pair of PCs, allow for identifying the
most relevant variables responsible for forming the clusters in the scores, with
the variables pointing to each corresponding cluster.138

Score and loading plots have been widely exploited in spectroscopy to find
naturally occurring structures associated with similarities and dissimilarities in
the spectral signals. Additionally, by plotting each loading vector as a
function of wavelength, a spectral-like visualization of the loadings can be
obtained—known as loading profiles. Loading profiles can be used to
interpret the data because a high positive or negative band intensity denotes
meaningful wavelengths. Positive loadings are associated with with positive
scores, while negative loadings are associated with negative scores.139

However, bands with negative values (due to the loadings’ orthogonality
property) may sometimes increase the difficulty in interpreting the loading
profiles.138

PCA applied to hyperspectral images also gives score and loading plots
and loading profiles. Since, in this case, we are dealing with thousands or even
millions of objects (spectral pixels), it is useful to inspect scatter plots where
the pixel density is represented. In this way, identification of agglomerates and
their distribution in the PC space is immediate [Fig. 5.14 (b)]. In some cases, it
is interesting to know whether a particular cluster in the score plot
corresponds to a specific segment in the original image. This information
can be obtained by segmentation, where it is possible to manually select the
pixels clusters in the score plots and have them highlighted with a color in the
original image by using dedicated tools such as brushing [Figs. 5.14(b) and
(d)].140 This tool is useful as it allows one to group and visualize pixel spectra
that may be clustered by similar spectral shapes and possibly chemical
properties.128,138 The reverse possibility, namely, selecting a segment of the
image and visualizing its correspondence in the score plot, is also possible. A
useful improvement of this tool allows for extracting the averaged spectrum
from the selected cluster of pixels, rendering it even more straightforward to
identify spectral profiles that are characteristic of specific areas.141,142

Another possibility allowed by PCA on hyperspectral images is to
represent the information retained by each score vector in the form of an
image. Each score vector has the number of rows equal to the total number of
pixels of the image (Fig. 5.13) and can be conveniently refolded into the
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Figure 5.14 Common tools for inspecting data after applying PCA140 (data were
preprocessed using Savitzky–Golay smoothing and SNV). (a) RGB photo of the four
pharmaceuticals that were scanned (naproxen, paracetamol, ibuprofen, and loratadine).
(b) Score plot PC1 versus PC2, where a particular cluster (red) has been selected. (c) PC1
score image (64.99%). (d) Highlighted pixels (red) corresponding to the selected pixels in the
score plot. (e) Loading profile for PC1. [Data were processed using the software Hypertools
(https://www.hypertools.org/). Hyperspectral data were collected using a Hyspex SWIR 320-
me camera (Hyspex, Oslo, Norway).]
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original image space (N � M), preserving the original pixel position. This
representation is particularly convenient for enhancing the similarities and
dissimilarities between pixels (similarities that are possibly linked to similar
chemical properties) for each PC. A grayscale or false-color code can
represent each pixel’s score values and provide an intuitive visualization of
pixel similarities in the score images.

A critical problem related to PCA is selecting the optimal number A of
PCs. There are several methods, but generally the selection is made by
inspecting the eigenvalues or residual variance plot against the number of
PCs, known as a scree plot. The scree plot usually shows a line with a large
negative slope for the PCs that contain relevant information, and then
becomes flat where the PCs do not contain any more useful information.
Researchers base their choice of how many PCs to retain according to the PC
value that indicates a marked change in the slope of the curve, keeping all of
the PCs before that selected point.

Besides the possibilities offered by the aforementioned tools to clarify
PCA results, the dimensionality reduction capability offered by this technique
represents an enormous advantage. Data compression performed by PCA can
facilitate more-informative data processing methods applied only to the
relevant information. It should be mentioned that several other filtering
techniques such as minimum noise fraction (MNF) or independent compo-
nent analysis (ICA) also can be used for dimensionality reduction and feature
extraction.

5.7.2.2 Cluster analysis

Unsupervised cluster analysis is designed to group objects according to the
similarity of their spectral properties based on the information retained in the
data. Objects that belong to a particular group share similar features, whereas
they differ from other groups/objects.143 In spectroscopy, cluster analysis is
applied to group spectra with similar spectral profiles, which share common
chemical properties or information. Cluster analysis has been widely used to
search for interesting patterns or as a starting point for further, more-complex
data processing. The family of clustering methods is wide and sometimes
confusing, but a well-established distinction is made, which determines whether
clustering methods are hierarchically, partitionally, or density-based.143,144

Hierarchical clustering progressively groups objects according to a given
definition of similarity or dissimilarity. The common representation of this
agglomerative-based (bottom-up) approach is a cluster tree or dendrogram,
which shows at which level the objects and/or groups are merged. In the
opposite way (top-down), the data structure is considered as one cluster and is
progressively split into smaller clusters.143

Alternatively, partitional clustering divides the dataset into a defined
number of clusters, where each object is allocated to only a single cluster.
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Partitional clustering uses an iterative algorithm to optimize certain
parameters (i.e., the centroids of the clusters) and to obtain the best
membership of objects to a cluster, as well as the estimated number of clusters.
Finally, density-based methods cluster objects by looking preferentially at the
high-density regions that characterize them. A density threshold and the
volume to be inspected around each object are the two critical parameters that
must be set from the beginning. Afterward, the method proceeds automati-
cally to find the optimal number of clusters.144

Since similarity is the key point of clustering, an important step is defining
a set of metrics that can measure the distance between the objects and between
clusters of objects. The distance measures between objects (x) can be
summarized with the general Minkowski formula:

dij ¼
�XN
k¼1

ðxik � xjkÞa
�1∕a

, (5.2)

where dij is the distance between object i and j. When a = 1, the measure is the
Manhattan distance, and when a = 2, the measure is Euclidean.

Several methods have been proposed to measure distances between
clusters, considering the previous formula; examples are single linkage,
complete linkage, and group average (unweighted pair group methods).
Single-linkage groups clusters according to the smallest distance between their
closest objects. Conversely, complete linkage uses the smallest distance
between the most distant objects. Group average uses the small distance
between the centroids. Hierarchical clustering makes extensive use of distances
between clusters, as it proceeds by measuring and grouping clusters until only
one cluster is reached. Hierarchical clustering has been applied in medicine to
cluster data characterized by different properties.143

One of the most commonly used clustering methods is k-means clustering,
which is unsupervised; i.e., the number of k clusters should be given by the
user before starting. The algorithm will find the centers of k clusters and
iteratively improve their positions until a stable situation is achieved and the
centroids no longer move. The k-means technique is a hard-clustering method,
meaning that each object is unequivocally assigned to only one cluster. There
is also a fuzzy version of k-means, which assigns the objects a fraction of
cluster membership represented by a value between 0 and 1. An object can
thus belong simultaneously to different clusters, and the clusters can overlap.
This is a suitable method to use in applied sciences as there may be some
overlap between clusters. A problem in using k-means is determining the
number of clusters, which is not usually known in advance.143 Several
methods have been developed to find the most suitable number of clusters.
One interesting method was proposed by Hastie et al.,145 where different
values of k are tested, and the correspondent within-sum of squares for each k
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is plotted against the number of clusters. An abrupt slope change in the sum of
squares curve may be used as a marker to identify the optimum number of
clusters.

Cluster analysis has been applied to hyperspectral data in fields such as
pharmaceutics146 and remote sensing.147 Since cluster analysis can easily
process many pixels but decreases in performance with a large number of
variables, useful results can be achieved by applying cluster analysis to
multivariate images where a small number of latent variables (images) are
created by using PCA, MNF, or similar transforms.138,144 This has been
applied to SWIR hyperspectral in medicine, where MNF was performed
before applying k-means clustering of data.75 As the image representation
of the results is important in cluster analysis, there are several ways to
bidimensionally display the results. In k-means, the output vector—which
contains the cluster integer for every pixel—can be easily refolded into a
matrix C with the same dimensions as the original image. In this case,
every pixel’s membership can be viewed with a color in the original image
space.

5.7.2.3 Methods for purest spectra extraction

A common problem in spectroscopy and HSI is identification and isolation of
spectral signatures that are unique to a single compound. This is difficult to
achieve since spectra collected from different samples are often a mixture of
different compounds. Separating (i.e., resolving) the mixed spectral signals—in
pure spectral profiles and relative concentrations—is a challenging field of
research, and several methods have been proposed.148,149 Among other
methods, self-modeling mixture analysis approaches are unsupervised techni-
ques aimed at finding—without any previous knowledge of the mixture—the
pure/purest variables and their concentration profiles in a series of measured
spectra. By definition, a pure variable accounts for one component and has an
intensity proportional to its concentration. For example, consider a series of
SWIR spectra organized in a matrixD of dimensions N � l, where N represents
the spectra, and l represents the wavelengths. Finding the pure variables with
self-modeling mixture analysis approaches involves operating along the
columns of D and extracting only the variables 1446, 1710, and 1945 nm,
each one accounting specifically for only one component. To each variable an
associated concentration profile is given. Finding the pure variables is
interesting in all branches of spectroscopy, as these variables can eventually
be used to calculate the spectra of pure compounds in the mixture.150

Nevertheless, having a single pure variable instead of a spectrum might also be
a bit limiting, especially for spectroscopies that use the simultaneous presence of
several characteristic bands to correctly characterize a compound.

An interesting solution to this problem is offered by the same
aforementioned self-modeling methods by applying the selection method
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along the rows instead of the columns of the matrix D. In this case, we obtain
a set of spectra extracted directly from the original data matrix, with each
spectrum containing the highest contribution of one component. These
spectra rarely correspond to the spectra of pure compounds since bands of
other compounds might also be present, but they represent the best set of
purest spectra for the compounds present in the mixture. Extraction of the
purest spectra may offer a valid contribution in spectral interpretation as the
user analyzes a spectrum that contains the most substantial spectral bands of a
specific compound.

The main idea that unites the self-modeling techniques is that the purest
spectra (or pure variables) are the most diverse, especially in their
corresponding mixtures. The most common techniques for extracting the
purest spectra (or pure variables) are key set factor analysis (KSFA),
orthogonal projection approach (OPA), and simple-to-use interactive self-
modeling mixture analysis (SIMPLISMA).150 All of these techniques share
some common steps, namely, (1) an initial estimation of the first purest
spectrum (or variable) and (2) use of the determinant to find the most-diverse
spectra from the first and successive spectra (or variables) selected. When the
purest spectra (variables) are individuated, their row (column) position is
determined and easily recovered from the original matrix. Besides these
general common steps, the algorithms were developed quite differently by
following their own criteria.

Before initiating the algorithms, the number of purest spectra to extract
should be determined. This value is usually obtained by calculating the
original matrix’s rank (typically by PCA or SVD), considering that each
meaningful component (large variance) will be equivalent to a purest
spectrum of the diverse substances contained in the mixture. Here we briefly
describe the three aforementioned self-modeling techniques, with an emphasis
on the problem of extracting the purest spectral profiles.

KSFA is a technique developed by Malinowski151 that searches the
minimum spectra set that best characterizes the dataset. In this method, the
purest spectra are identified based on the concept that the purest are the most
diverse and thus the most orthogonal. To achieve this, PCA is first applied to
the data matrix to obtain score and loading matrices. Second, the score
vectors (or loading if we are interested in pure variables) are normalized to the
unit length (as we are mostly interested in the vectors’ directions and not their
magnitudes). To find the first purest spectrum, the smallest absolute value
along the first score vector (column) is considered. Its row position
corresponds to the position of the first purest spectrum in the original data
matrix. To find the second purest spectrum, a matrix C of dimensions N � 2,
which contains the first and second score vectors, is considered. Now two
score values [va1 va2] from the row of the first purest spectrum are extracted
and compared with all pairs of score values taken along the rows r of the

186 Chapter 5



C matrix. For each combination, a 2 � 2 matrix M is constructed, and the
absolute value of the determinant of this matrix is computed as

A ¼ j detðMÞj ¼
����det

�
va1 va2
vj1 vj2

�����, (5.3)

where [va1va2] are the two score values of the matrix C corresponding to the
first purest spectrum, while [vj1vj2], with j = number of rows of the matrix, are
all other pairs of score values of the reduced-score C matrix. The determinant
measures the degree of orthogonality between the set of values and can find
the most-diverse values (spectra) from the highest determinant. The pairs of
score values that maximize the determinant will define a new row position,
which corresponds to the second purest spectrum in the original matrix. The
algorithm proceeds by increasing the number of score vectors (for component
3, C is of dimensions N � 3) and inserting new rows in the determinant
calculation; then, again, the new spectrum is selected when the maximum
determinant is reached. The algorithm stops when the k rows corresponding
to the number of k purest spectra selected by the user are reached. Schostack
and Malinoski152 propose an iterative development of the previous KSFA
algorithm to solve the problem of possible lack of orthogonality in the set of
spectra. In the iterative version of KSFA (IKSFA), the determinant is
recalculated by iteratively replacing the key rows with all of the key rows not
tested in the previous algorithm. If the determinant is improved during one of
the substitutions, the new key set replaces the old one. The main steps in
KSFA are presented in Table 5.1.

IKSFA was applied mainly in the field of chromatography to extract pure
chromatographic profiles.153 However, in the field of vibrational spectros-
copy/HSI, very few applications exist; these are mainly reported by Catelli
et al.,154 where IKSFA has been used to extract the set of purest spectra from
SWIR-HSI data collected from the surface of a highly corroded bronze

Table 5.1 Main steps in KSFA.

Step
number Step Description

1 Analysis of matrix X by PCA
2 Normalization of score vectors (columns)
3 Individuation of the first purest spectrum from the absolute value of the lowest score
4 Calculation of the absolute value of the determinant of pairs of score vectors taken along the

rows, using two columns of the score matrix
5 Identification of the pairs of vectors that gave the highest determinant
6 Individuation of the second purest spectrum
7 Repeat of steps 4–6 in increments of 1 for the number of score vectors along the rows and

columns
8 Halt of the analysis when the k number of the purest spectra is obtained
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sculpture. The extracted purest spectra were interpreted, then the spatial
distribution of the corresponding compounds were displaced using a spectral
angle mapper tool.154

The OPA developed by Cuesta Sánchez et al.155 calculates the purest
spectra based on the highest dissimilarity principle among the purest spectra.
A reference spectrum is initially computed by taking the mean spectrum,
normalized to a length equal to 1. The first purest spectrum is obtained by
finding the spectrum that has the highest dissimilarity with the mean. To this
aim, the mean spectrum is combined iteratively with all other spectra in the
matrix inside a matrix F of dimensions 2 � l, where the first row contains the
mean spectrum and the second row contains, sequentially, all other spectra.
The dissimilarity between the two spectra is obtained by calculating the
determinant of the correlation matrix of F, detðFFTÞ. The candidate spectrum
that gives the highest determinant is the most dissimilar and is selected as the
first purest spectrum. In a second step, the first purest spectrum is used as a
reference spectrum, and the previous procedure is repeated to calculate the
most dissimilar spectrum, which gives the second purest spectrum. All of
the purest spectra found are included at each new step in matrix F, and the
aforementioned procedure is repeated until the k values are reached.

In SIMPLISMA,150,156 the position of the purest spectra in the original
matrix is obtained by calculating the purity value pi. The purity value is
computed using two common statistical tools—the mean m and standard
deviation s:

pi ¼
si

mi þ a
, (5.4)

where i is the number of the spectra. Estimation of noise is included in the
calculation of the purity value (offset value = a) to compensate for the fact
that high purity might be given to a variable that consists of only noise.
Initially, the row with the highest pi values corresponds to the row with the
first purest spectrum. Several subsequent steps are taken to calculate the
second purest spectrum, but these steps are basically designed to remove
everything related to the first purest spectrum. In practice, this is achieved by
scaling the original data matrix and then by computing the correlation matrix
D = ZZT of a pair of spectra (Z is a 2 � l matrix), where one spectrum is the
first purest spectrum, and the other spectrum is selected iteratively inside the
scaled matrix. The highest value of the determinant of D identifies the second
purest spectrum. Similar to OPA, the procedure is again iterated to find the set
of k purest spectra. The determinant values are also called weights w, and the
values will be close to zero for those rows related to the purest spectra but will
be highest for rows with no relation to the purest.150 Thus, the purity
parameter for each purest spectrum at each step can be rewritten as
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pi ¼ wi
si

mi þ a
: (5.5)

OPA and SIMPLISMA were largely applied in the fields of spectros-
copy157,158 and HSI,159 often combined with advanced multivariate curve
resolution methods.160–162 Recently, several alternatives to SIMPLISMA were
also applied to hyperspectral data.163

5.7.3 Supervised method: regression

Regression analysis comprises a series of techniques that aim to find a
relationship between a variable of y, called the response or dependent
variable, and other variables x, called predictors or independent variables.
Finding the best relationship between y and x variables means that we must
find the best values of unknown coefficients b, associated with the predictors,
which satisfy the following equation:

y ¼ b1x1 þ b2x2 þ : : : þ bMxM þ e: (5.6)

The b coefficients are called regression coefficients and can be estimated from
recorded data using the least-squares method in a common regression
problem.164 The variable y is the response, and e is the residual. In the
spectroscopy field, Eq. (5.6) may represent the possibility of relating the
concentration of an analyte y and its corresponding spectrum (with x
variables). If multiple measurements of concentrations and spectra are
produced, Eq. (5.6) can be rewritten in a condensed matrix form:

y ¼ Xbþ e, (5.7)

where y is an (N � 1) vector, X is an (N � l) matrix with N spectra and l
wavelengths, b is an (l � 1) vector of coefficients, and e is an (N � 1) vector.
Our goal is to determine the best values of b to construct a relationship
(model) that can best predict future y values, starting from freshly acquired
variables X (spectra). This is also known as a calibration problem. The reason
for the wide range of regression methods is that the variables X are easy or
straightforward to acquire (such as spectroscopic measurements), while the
variables y are difficult and complicated to obtain (i.e., the concentration of
analytes). The aforementioned method, called multiple linear regression,
shows some limitations if the number of samples is lower than the number of
variables and the variables are highly correlated, which are common features
of spectroscopy.139

Multivariate regression methods were developed to solve the regression
problem by using multivariate analysis. Multivariate methods are generally
applied when we want to find a relationship between y and a high number of
variables in X. In this way, instead of using the full X matrix, we construct a
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regression model exploiting a small number of uncorrelated latent variables
that capture the best variability of the data. This was quite an improvement,
especially in spectroscopy, as it is possible to solve the common problem of the
usually high number of variables compared to the samples.165

The most common multivariate regression methods are principal compo-
nent regression (PCR) and partial least-squares regression (PLSR). PCR finds
the best LVs for X, and their directions are used to construct the regression
model for y. However, the direction of the PCs in X might not represent the
highly relevant information for prediction of y. For this reason, PLSR, or
simply PLS, was introduced and elaborated on to find the LVs in X that best
represent the variability in y. Thus, the multivariate modeling was transformed
into a more-efficient predictive ability of the technique. The PLS method is
usually divided into PLS1, where the y matrix has only one column (one
response per measurement), and PLS2, where the Y matrix has more than one
column (multiple responses per measurement). The PLS2 model generally is
useful when there is a correlation between the Y variables. A key point in PCR
and PLS is determining the correct number of LVs or PLS components. This is
usually obtained by inspecting the prediction error [root mean-square error
prediction (RMSEP)] calculated on predicted yp and experimentally sampled ye
values, starting from a new matrix Xe of the following values:

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðye � ypÞ2
n

s
: (5.8)

The prediction error plot as a function of the number of PLS components
follows a U shape in which the minimum corresponds to the optimal number
of PLS components. If we exceed the number of components, we have an
overfitted model or a model strongly dependent on the specific properties of
the data used to construct the model. If the number of components is too low,
we have an underfitted model that loses some of the data’s important
information.166

A fundamental step in regression is the model’s validation, which is
necessary to estimate the model’s future predictive ability. We refer to Xcal
and ycal as the matrices used to obtain regression parameters (calibration
model), while Xval and yval are the matrices of validation. The best method to
validate a model is using an independent test set, meaning an extensive group
of new Xval and yval. The data set used to build the calibration model is known
as a training set, while the data used for the validation is known as a test set.
However, there is often not enough data for the validation test, as the
acquisition of y variables is rather complex. Therefore, the test set should be
constructed internally from the calibration set by splitting it into training and
test sets. In such a case, we need to resample from the original dataset to
create a test set of objects. Among the most common resampling techniques,
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cross-validation (CV) temporarily removes part of the data to simulate an
independent test set.166

With either a new validation test set or an independent validation test set,
we can evaluate the results of the calibration model using two equations: the
root mean-square error (RMSE) equation and the R2 coefficient, both of
which are terms for the calibration, cross-validation, and predictive ability.
Low values of the RMSE with an R2 coefficient close to 1 indicate good
performances of the model in terms of predictive ability:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyi � ŷiÞ2

n

vuuut
(5.9)

R2 ¼ 1�

Xn
i¼1

ðyi � ŷiÞ2

Xn
i¼1

ðyi � ȳiÞ2
, (5.10)

where y and ȳ (mean) are experimental, ŷ is the predicted value for sample i,
and n is the total number of samples.

5.8 Machine Learning and Artificial Intelligence

It is no doubt that machine learning [a form of artificial intelligence (AI)] and
especially deep learning can greatly enhance HSI. By using appropriate
auto-encoders, the algorithms can work on data without dimensionality
reduction, noise removal, or separate feature extraction. However, there are
disadvantages. In 2018, a workshop was held to develop a roadmap for
foundational research on AI in medical imaging.167 Researchers highlighted
several state-of-the-art applications of AI in medicine, which are as follows:

1. New image reconstruction methods that efficiently produce images
suitable for human interpretation from source data.

2. Automated image labeling and annotation methods—including
information extraction from the imaging report, electronic phenotyp-
ing, and prospective structured image reporting.

3. New machine-learning methods for clinical imaging data—such as
tailored, pretrained model architectures, and federated machine
learning methods.

4. Machine-learning methods that can explain the advice they provide to
human users (i.e., explainable AI).
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5. Validated methods for image de-identification and data sharing to
facilitate wide availability of clinical imaging data sets.

The increase in the accuracy and performance of AI systems—especially
deep neural networks—comes with more-complex models, rendering them
harder to interpret.168,169 Recent studies have shown that an explanation of
the model is important and allows the user to trust algorithmic advice and
decisions.170–172 Currently, the main focus is on adapting existing algorithms
and developing new algorithms to achieve segmentation, classification,
detection, and quantification. However, typically, AI requires large and
almost unrealistic amounts of data to ensure a smooth performance. The lack
of sufficient data hinders full utilization of the strength of AI for data analysis.
This requires use of techniques such as data augmentation and transfer
learning to strengthen the dataset for training. Hyperspectral data are
complex and deep, but not necessarily big in terms of numbers. Another
challenge in the biomedical field is the lack of an established ground truth for
training algorithms. Quite often there are no other comparable techniques or
established benchmarks, implying that the ground truth depends on human
observation or selection—which is inherently subjective and uncertain. An
error of 20% per human observation will propagate through the system and
result in incorrectly trained algorithms. Unsupervised clustering can be a
valuable technique in cases where it is challenging to use or interpret results
from physics-based models, or where the ground truth is lacking or not well
defined.

Despite all of these drawbacks, tasks such as classification, detection, and
segmentation have seen tremendous progress.52 Khan et al.52 discuss different
types of neural networks and deep learning methods, and give examples on
how these approaches have been applied to medical HSI. Halicek et al.21

present an overview of analyses applied in cancer studies. However,
this overview is a mixture of deep learning and more-traditional machine
learning.

Trajanovski et al.167 claim “the first study using deep learning semantic
segmentation for tumor detection in HSI data using channel selection, and
accounting for more spatial tissue context, and global comparison between the
prediction map, and the annotation per sample. Accurate deep learning
algorithms have a huge potential to be a promising alternative to digital
pathology or a doctors’ supportive tool in real-time surgeries.” Their results
show good segmentation of cancerous and normal tissue. In general, it seems
that cancer research is ahead of the rest of the biomedical community with
respect to adapting AI into research; de Koning et al.48 and Baltussen et al.81

also applied such methods.1 Readers who seek a well-written, concise
introduction to the possibilities for applying deep learning to hyperspectral
data should read Audebert et al.174
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