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Abstract

Understanding the interplay between superconductivity and magnetism is
of crucial importance for e.g. the field of superconducting spintronics. An
attractive playground for investigation of this interplay is heterostructures
of superconductors and magnetic materials. Much research has been per-
formed on such heterostructures, revealing that interesting features can
arise. Such features include Andreev reflections, the proximity effect, as
well as the possibility of realizing spin-split superconductors. Through the
proximity effect, superconducting pair correlations can leak into neighboring
materials. The proximity effect is closely related to the existence of Andreev
reflections where an electron approaching a superconductor is reflected as a
hole, leading to creation of a Cooper pair in the superconductor. Moreover,
a ferromagnet can induce a homogeneous spin-splitting field inside a neigh-
boring thin-film superconductor. In this thesis, we present results from four
research papers concerning systems where magnetism and superconductiv-
ity interact. We also present the background material which is necessary in
order to understand the results of these papers.

The first paper included in this thesis [1] investigates indirect interaction
between magnetic materials mediated by a superconductor. The considered
system is a superconducting spin-valve consisting of a superconductor sand-
wiched between two metallic ferromagnets. Whether the magnetization in
the two ferromagnets prefer to be aligned or anti-aligned then depends on
both the indirect interaction between the ferromagnets mediated by itiner-
ant carriers in the superconductor as well as the influence of the ferromag-
nets on the superconducting condensation energy. In the second paper [2],
a similar system is considered. In this case, a d-wave superconductor medi-
ates the indirect interaction between two metallic ferromagnets located at a
diagonal edge of the superconductor. The structure of the superconductor
leads to generation of zero-energy bound states at the diagonal edge, which
influences the indirect interaction between the ferromagnets.

The third paper included in this thesis [3] studies the RKKY inter-
action between localized magnetic impurities mediated by the quasiparti-
cles of an isotropic s-wave superconductor which is subjected to a uniform
spin-splitting field. In such a spin-split superconductor the quasiparticle
excitation energies become spin dependent, which influences the indirect
interaction mediated by these quasiparticles. One should in this case make
sure that the spin-splitting field is not too strong as this will lead to a tran-
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sition from a superconducting to a normal state. The spin-splitting field
that a spin-singlet superconductor can coexist with is normally tied to the
magnitude of the superconducting gap, meaning that there for a given su-
perconducting gap is a limit on the critical field. This lead us to the topic of
the fourth paper [4] included in this thesis. There, we investigate whether
it is possible to surpass this limit in a two-band system consisting of one
dispersive and one flat energy band.
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1
Introduction

What will you read in this chapter? Starting with a short introduction to spin-
tronics, we move on to a brief summary of the importance of superconductors
for spintronics.

1.1 Spintronics

In electronic devices, electrical currents can be used to perform logic opera-
tions and store information. Electrical currents consists of moving electrons
that carry charge through the system. While flowing, the electrons collide
with each other as well as their environment, generating heat. This heat
is often lost to the surroundings, representing a loss of useful energy, or it
might even require us to spend additional energy to cool down our electri-
cal devices. Finding ways to reduce or reuse this waste heat is therefore an
important step towards a more energy efficient future.

While electronics exploit the charge of electrons to represent and trans-
port information, electrons also have other properties. One of these is spin.
An alternative to traditional electronics is therefore to attempt to utilize
the spin of electrons, rather than the charge. This idea introduced a new
field within physics called spintronics.

The term spintronics first appeared around the turn of the millennium
as the title of a research project concerning magnetic sensors and magnetic
random access memories [5, 6]. Spintronics can, however, be traced all the
way back to 1936 when, for the itinerant electrons in the metallic ferromag-
net Nickel (Ni), Mott introduced different relaxation times for spins parallel
and anti-parallel to the magnetization [7], giving rise to spin polarized cur-
rents. His model, where the current is treated as carried by two independent
spin components, is known in the literature as the two current conduction
model. This model has been further investigated by e.g. Campbell et al. in
1967 [8] and in 1968 by Fert and Campbell [9].
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Figure 1.1: Schematic illustration of a GMR structure consisting of a normal
metal (NM) layer sandwiched between two ferromagnetic metal (FM) layers.
The magnetization of the two ferromagnets are aligned in (a), and anti-
aligned in (b).

A breakthrough for spintronics came with the observation of giant mag-
netoresistance (GMR) in Iron-Chromium (Fe/Cr) superlattices [10] and in
trilayers of Iron-Chromium-Iron (Fe/Cr/Fe) [11], introducing the possibility
of exploiting the spin properties of electrons in memory devices. This dis-
covery lead to Fert and Grünberg being awarded the Nobel Prize in physics
in 2007. GMR can be realized in structures where a nonmagnetic metal is
sandwiched between two ferromagnetic metals. A current flowing through
this system will face different resistance depending on the magnetization
alignment of the ferromagnets. If the two ferromagnets have parallel mag-
netization, the resistance is low. On the other hand, if the magnetization
of the ferromagnets are antiparallel, the electrical resistance of the sys-
tem will be high. A simple picture displaying the motion of electrons in a
GMR structure is presented in Fig. 1.1. An electron with spin antiparallel
to the magnetization of the ferromagnet it is passing through is here as-
sumed to experience stronger scattering than an electron with spin parallel
to the magnetization. Therefore, when the ferromagnets are anti-aligned,
as shown in Fig. 1.1 (b), electrons with both spin up and spin down experi-
ence strong scattering on their way through the trilayer structure. On the
other hand, when the ferromagnets are aligned, as shown in Fig. 1.1 (a),
electrons with spin parallel to the magnetization of the ferromagnets expe-
rience only weak scattering, leading to a lower electrical resistance. The
electrical resistance of the system can, in other words, be magnetically con-
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trolled. Soon after the discovery of GMR, magneto-resistive random access
memories (MRAMs) based on GMR were developed [12–14].

Later, in 1994, a new layered structure that could give rise to large
magnetoresistance (MR) was proposed by Miyazaki and Tezuka [15], as
well as Moodera et al. [16]. They substituted the central nonmagnetic
metal with an insulator. This layered structure, known as a magnetic tunnel
junction (MTJ), improved the signal in MRAM at room temperature. It is
worth noting that the foundation for these observations was laid already in
1975 by Julliere [17]. He considered a trilayer of Fe/Ge/Co (Ferromagnet-
insulator-ferromagnet) at a temperature of 4.2 K. For the first time, he
observed that the tunneling conductance in this system depends on the
relative orientation of the magnetic moments of the two magnets. The
values that he obtained for the relative change of conductance was up to
14%.

Today, spintronics is a broad field with many branches, but with a com-
mon objective to pave the way for new spin-based devices. Some crucial fac-
tors in realizing such spin-based devices is to be able to generate, transport,
and detect spin-currents. Spin currents can be generated in TMR or GMR
structures, as well as through the spin Hall effect [18] and the spin Seebeck
effect [19]. Detection of spin-currents can similarly be achieved e.g. through
inverse spin Hall effect [20]. The spin-currents can for instance be carried
by electrons in metallic magnetic materials or by spin-waves (magnons) [21]
in magnetic insulators such as yttrium iron garnet (YIG) [22]. The latter
alternative opens up the possibility for transferring a spin-current without
any movement of electrons, making low energy information transfer possi-
ble. Superconductors, as materials with dissipationless currents, also turn
out to be good candidates for transport of spin-currents. The subfield of
superspintronics will be further discussed in the next section.

1.2 Superconductors in spintronics

Long before GMR was observed in layered structures, de Gennes proposed
in 1966 the idea that superconductivity can be controlled by magnetism
[23]. He considered a thin film superconductor, with thickness smaller than
the superconducting coherence length, sandwiched between two ferromag-
netic insulators (FMI). The temperature was assumed to be well below the
critical temperature for the superconducting phase transition. For this sys-
tem, he showed that the central layer could be either in a superconducting



Chapter 1. Introduction 4

or normal state depending on the relative angle between the magnetiza-
tion of the two ferromagnets. For anti-aligned ferromagnets, the induced
homogeneous exchange field inside the superconductor vanishes, while for
aligned ferromagnets, the induced field is maximized. If this maximal in-
duced exchange field is larger than the critical field of the superconductor,
the superconductor transitions to the normal state when the relative an-
gle between the magnetization of the two ferromagnets is made sufficiently
small. The system proposed by de Gennes is, in fact, a spintronic storage
device based on supercondutors, featuring either zero resistance or finite
resistance depending on whether the magnetization of the ferromagnets is
parallel or antiparallel. In subsequent experiments performed by Deutscher
and Meunier [24], and Hauser [25], it was observed that the superconducting
transition temperature of a superconductor sandwiched between two ferro-
magnets was higher when the ferromagnets were anti-aligned than when
they were aligned.

Nowadays, the field of superconducting spintronics [26] is attracting
much attention due to the possibility of dissipationless transport of spin
currents. A central question is then how such superconducting spin cur-
rents can be generated. Bergeret et al. first predicted leakage of long rang
spin-triplet Cooper pairs into a ferromagnet with inhomogeneous magneti-
zation in proximity to a spin-singlet superconductor [27]. Ever since then,
a lot of studies on generation of spin-polarized supercurrents in different
multilayers of superconductors and ferromagnets have been performed. Ex-
amples include studies of Josephson junctions (superconductor-ferromagnet-
superconductor) [28–30], and superconductor-ferromagnet-ferromagnet struc-
tures [31].

Despite of all the progress that has been made within the field of su-
perconducting spintronics there is still much left to explore. In this thesis,
we focus on broadening the understanding of the interplay between mag-
netism and superconductivity. Understanding this interplay is essential for
successful integration of superconductivity and spintronics, which relies on
both stability of superconductivity in the presence of magnetism as well as
taking advantage of the fascinating phenomena that can arise when these
two types of order meet. We start with introducing a theoretical description
of superconductivity in chapter 2. In chapter 3, we describe the combination
of superconductivity and magnetism, either introduced through a supercon-
ductor exposed to an external magnetic field, or proximity coupling between
superconducting and magnetic materials. This chapter forms the basis for
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discussion of paper [4], which is concerned with the critical magnetic field
where the system transitions from a superconducting to a normal state.
In chapter 4, we introduce the concept of indirect interaction between lo-
calized magnetic moments mediated by itinerant electrons. We then turn
to how this indirect interaction is influenced by spin-splitting of the elec-
trons mediating the interaction. This leads us to the discussion of paper [3],
which is concerned with indirect interaction between magnetic impurities
mediated by the quasiparticles in a spin-split superconductor. After having
covered indirect interaction between magnetic impurities, we move on to in-
direct interaction between larger collections of spins such as ferromagnets.
Specifically, we are interested in indirect interaction between ferromagnets
mediated by different types of superconductors, which is the topic of pa-
pers [1] and [2]. To this end, chapter 5 discusses theoretical treatment of
superconductors without continuous boundary conditions, while chapter 6
considers systems where superconductors and ferromagnets are coupled to-
gether, leading us to the discussion of the two first papers.





2
The superconducting state

We start with a brief introduction to superconductivity and the origin of the
attractive interaction between electrons in conventional superconductors. We
then move on to the first microscopic theory explaining superconductivity in
conventional superconductors know as BCS theory. Following this, we then
transition to unconventional superconductors and the extended BCS theory
that can be used to model them.

2.1 Introduction to superconductivity

When cooled down, certain materials enter a phase called superconductiv-
ity. This phase is radically different from the normal metal phase that is
typically displayed by these systems at higher temperatures. The two main
features that distinguish a superconductor from a normal metal are zero
electrical resistivity and the Meissner effect. The temperature where these
features set in is referred to as the superconducting critical temperature Tc.
As a result of their special properties, and especially their ability to conduct
electricity without resistive energy loss, superconductors are attractive for
a wide range of applications. However, as superconductivity typically arises
at low temperatures, the applications of superconductors are constrained
to cases where the benefits of the superconducting properties outweigh the
cost of cooling down the material [32]. The most popular usage of su-
perconductors is for generation of strong magnetic fields by driving large
currents through superconductors without suffering resistive losses. Such
superconductor-based electromagnets are used in e.g. MRI [33] (magnetic
resonance imaging) and NMR (nuclear magnetic resonance) machines. They
are also used in CERN to bend beams of particles [34]. Superconductors are
also used in electronics, where the Josephson effect [35] has made supercon-
ducting quantum interference devices (SQUIDs) possible, such as SQUIDs
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magnetometers [36–38]. Josephson junctions could also be used in transis-
tors [39, 40]. Further technological exploitation of superconductors relies on
an improved understanding of their properties and microscopic origin.

In order to categorize different types of superconductors, one can divide
them into groups based on their microscopic and macroscopic properties.
Superconductors can e.g. be categorized as conventional or unconventional
based on the symmetry properties of the superconducting pairing, or as
low Tc or high Tc depending on the superconducting critical temperature.
We will discuss these classification schemes briefly in the upcoming sections
in this chapter. Superconductors are also referred to as type I or type II
depending on their response to an external magnetic field. We will get back
to this in chapter 3.

2.2 Electron-phonon interaction and Coulomb re-
pulsion

In a crystal, the ions vibrate around their equilibrium positions. The quan-
tized lattice vibrations are referred to as phonos. Electrons living in the
system can interact with these phonons. The Fröhlich Hamiltonian describ-
ing a system of electrons and phonons that interact with each other using
the second quantization notation is

HF =∑
k,α

εkc
†
k,αck,α +∑

q

~ωq(b
†
qbq +

1

2
)+

∑
k,q

gk,qc
†
k+q,αck,α(bq + b

†
−q).

(2.1)

The first-term in the above Hamiltonian represents the kinetic energy of
the electrons. Here the operator c†k,α (ck,α) creates (annihilates) an elec-
tron with momentum k and spin α. The second term represents the phonos,
where b†q (bq) is a bosonic creation (annihilation) operator. We treat the
first two terms as the unperturbed part of the Hamiltonian and the last
term as a small perturbation to the system ηH1, where η is a smallness pa-
rameter. Then, in order to obtain an effective electron-electron interaction,
we perform a canonical transformation named the Schrieffer-Wolff transfor-
mation, which is discussed in Appendix E. The effective electron-electron
interaction mediated by phonons then takes the form
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Heff = ∑
α,α′

∑
k,k′,q

Veff(k,k
′,q)c†k+q,αck,αc

†
k′−q,α′ck′,α′ . (2.2)

Here, Veff(k,k
′,q) is an effective potential expressed as

Veff =gk,qgk′,−q
~ωq

(εk′ − εk′−q)2 − (~ωq)
2
. (2.3)

This is an interesting result as it represents that, as a consequence of the
interaction between the electrons and phonons, there will be an effective
electron-electron interaction which can be attractive. An attractive inter-
action is, as we will see in the coming sections, what we need in order
for electrons to pair up and give rise to superconductivity. The above in-
teraction is attractive when ∣εk′ − εk′−q ∣ < ~ωq and vanishes quickly if the
difference between the electron energies becomes too large as the electron
energy scale typically is much larger than the phonon energy scale. For
an electron with momentum k′ situated at the Fermi level, the interaction
strength is small unless the outgoing electron with momentum k′ −q is also
close to the Fermi level. The width of the shell around the Fermi level
where the interaction is active is typically assumed to be of the order of the
maximum energy of the phonon spectrum ~ωc. Within this thin shell, the
interaction potential is often taken to be a constant.

Further, the electrons also interact with each other through the repul-
sive Coulomb interaction. The second-quantised Hamiltonian describing the
Coulomb interaction between the electrons is

HC = ∑
α,α′

∑
k,k′,q

VC(q)c
†
k+q,αc

†
k′−q,α′ck′,α′ck,α. (2.4)

The above expression describes the scattering processes in which one elec-
tron with momentum k and spin α scatters from another electron with mo-
mentum k′ and spin α′. During this scattering a momentum q is transferred
from one electron to the other. Further, VC(q) = 4π e

2

q2 is the Fourier trans-
form of the normal expression for the Coulomb interaction between two elec-
trons VC(r) =

e2

∣r∣ [41], where e is the electron charge and ∣r∣ is the distance
between the two electrons. Taking into account screening of the Coulomb
interaction due to the presence of the rest of the electrons in the system,
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the renormalized Coulomb interaction takes the form VC(q) =
4πe2

q2+4πe2N(εF )
[41], where N(εF ) is the density of the states at Fermi-level. Importantly,
the screening increases with the density of states at the Fermi level so that
the Coulomb interaction typically is significantly weakened in good metals
with a large density of states at the Fermi level.

The Coulomb interaction still represents a repulsive interaction between
electrons, which is harmful for superconductivity. However, unlike the
phonon-mediated electron-electron interaction, the Coulomb interaction is
not quickly suppressed when electrons at the Fermi level are scattered away
from the Fermi level. In the Green’s function formalism, working with fre-
quencies, this would correspond to the phonon-mediated interaction, active
only at small frequencies, acting over larger time-scales than the Coulomb
interaction. It has then been shown that the effect of Coulomb interaction
on superconductivity is further reduced due to the time-scale differences
between the interactions [42]. We will return to a simple picture for this
effect in one of the coming sections.

2.3 Conventional superconductors and BCS the-
ory

Superconductivity was first discovered in 1911 when H. Kamerlingh Onnes
observed that, below a temperature of 4.1 K, the electrical resistivity of Mer-
cury (Hg) vanished. However, it would take 46 years until a microscopic
theory of superconductivity was developed. This theory was proposed in
an article by J. Bardeen, L. N. Cooper, and J. R. Schrieffer [43]. Their
theory, referred to as the BCS theory, was found to be able to explain the
superconductivity in most elemental superconductors such as Aluminum
(Al), Tin (Sn) and Niobium (Nb). This type of superconductivity is called
conventional superconductivity, usually featuring a relatively low transition
temperature. Niobium with Tc ≈ 9 K [44] has one of the highest transi-
tion temperatures among conventional superconductors. According to the
BCS theory, superconductivity arises from attractive interaction between
electrons. Such attractive interaction can, as shown in the previous section,
arise from electron-phonon coupling, which is responsible for giving rise to
superconductivity in conventional superconductors.

Above the superconducting transition temperature, conventional super-
conductors are in a metallic state where the electron states below the Fermi
level are mostly filled and the states above the Fermi level are mostly unoc-
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Figure 2.1: (a) An incoming electron polarizes the ionic lattice, leaving
behind a larger density of positive charge. Another electron moving in the
lattice is attracted to this polarization. (b) Attractive interaction mediated
by phonons gives rise to formation of Cooper pairs composed of electrons
with opposite spins and momenta.

cupied. BCS theory then states that attractive interaction between electrons
leads to electrons close to the Fermi level pairing up into so-called Cooper
pairs, named after Leon Cooper, forming a condensate. The Cooper pairs
are formed between electrons with opposite spins (↑ and ↓) and opposite mo-
mentum (k and −k). In the presence of Cooper pairing, the single-particle
excitations are combinations of electron and hole excitations and the single-
particle excitation spectrum contains a gap around the Fermi level.

2.4 BCS Hamiltonian

We here start out from a real-space Hamiltonian involving attractive on-site
interaction between electrons. This Hamiltonian leads us to a momentum
space Hamiltonian similar to the one considered in the original formulation
of BCS theory. Our real-space Hamiltonian takes the form

H = − t ∑
⟨i,j⟩,α

c†i,αcj,α −∑
i,α

µini,α −∑
i

Vini,↑ni,↓. (2.5)

Here, c†iα (ciα) creates (annihilates) an electron with spin α at lattice site i.

Further µi is the chemical potential at lattice site i and ni,α = c
†
i,αci,α is the
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number operator. This Hamiltonian represents an intuitive picture describ-
ing the mechanism for superconductivity in real-space. A metallic system
consists of itinerant electrons that can hop around on a lattice of ions which
can vibrate around their equilibrium positions. An incoming electron will,
due to its negative charge, pull ions towards itself, as displayed in Fig. 2.1
(a). This leads to a region of increased density of positive charge in the
system. This charge polarization remains long after the electron has left
due to the ion dynamics being much slower than the electron dynamics.
Another electron can then be attracted to this region with increased den-
sity of positive charge. As the ions relax slowly back to their equilibrium
positions, the two incoming electrons do not have to ever be close to each
other, avoiding strong Coulomb interaction. The electrons are therefore
able to interact attractively despite the presence of Coulomb interaction, as
introduced earlier. The physics contained in this simple picture is in our
real-space Hamiltonian captured through an attractive on-site interaction
between electrons with strength Vi > 0.

Considering continuous boundary conditions, we can do the Fourier
transformation ci,α = 1√

N
∑k e

−ik⋅rick,α. Implementing this into Eq. (2.5)

leads to

H = −
1

N
∑

k1,k2
k3,k4

V δk1−k2+k3−k4c
†
k1,↑ck2,↑c

†
k3,↓ck4,↓+

+∑
k,α

εkc
†
k,αck,α,

(2.6)

where we have assumed that the chemical potential and on-site interac-
tion does not vary spatially (µi = µ and Vi = V ). The above equation
describes a system of electrons that are able to interact through an effec-
tive potential. For our simple real-space model, the resulting interaction
is constant with respect to momentum. In general, the effective interac-
tion could have a momentum dependence. For generality, we will there-
fore in the following consider an interaction potential Vk1,k2,k3,k4 . For our
real-space Hamiltonian, the resulting electron dispersion takes the form

εk = −2t ( cos(kx) + cos(ky)) − µ, in two dimension and considering the lat-

tice constant to be one. The detailed form of this dispersion relation will,
however, not matter in the following.

Following the usual BCS approach, we will consider Cooper pairing be-
tween electrons with opposite spins and momenta as illustrated in Fig. 2.1
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(b). In the above equation, we then restrict the considered scattering pro-
cesses to those with k1 = −k3. Using fermionic anticommutation relations
and renaming the momentum indices, we then obtain the BCS Hamiltonian

HBCS =∑
k,α

εkc
†
k,αck,α −

1

N
∑
k,k′

Vk,k′c
†
k,↑c

†
−k,↓c−k′,↓ck′,↑. (2.7)

2.5 Mean-field approximation

In order to deal with the Hamiltonian in Eq. (2.7), we will apply a mean-
field approximation. If we have an operator A, we can express it as a sum
over its expectation value and its deviation from the expectation value. The
deviation can then be expressed as δA = A− ⟨A⟩. Similarly, for an operator
B, we have δB = B − ⟨B⟩. We then write

δAδB = AB −A⟨B⟩ −B⟨A⟩ + ⟨A⟩⟨B⟩. (2.8)

Considering the deviations from the expectation values to be small, we can
approximate AB as follows

AB ≈ A⟨B⟩ +B⟨A⟩ − ⟨A⟩⟨B⟩. (2.9)

Setting A = c†k,↑c
†
−k,↓ and B = c−k′,↓ck′,↑, the mean-field form of the BCS

Hamiltonian becomes

HMF
BCS = −

1

N
∑
k,k′

Vk,k′(c
†
k,↑c

†
−k,↓⟨c−k′,↓ck′,↑⟩ + ⟨c†k,↑c

†
−k,↓⟩c−k′,↓ck′,↑−

⟨c†k,↑c
†
−k,↓⟩⟨c−k′,↓ck′,↑⟩) +∑

k,α

εkc
†
k,αck,α.

.

(2.10)

We next define the gap function

∆k =
1

N
∑
k′
Vk,k′⟨c−k′,↓ck′,↑⟩, (2.11)
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so that

∆∗
k =

1

N
∑
k′
Vk,k′⟨c

†
k,↑c

†
−k,↓⟩. (2.12)

The mean field BCS Hamiltonian can then be expressed as

HMF
BCS =∑

k,α

εkc
†
k,αck,α −∑

k

(∆kc
†
k,↑c

†
−k,↓ +∆∗

kc−k,↓ck,↑) +H
0
BCS (2.13)

Here, H0
BCS =

1
N∑k,k′ Vk,k′⟨c

†
k,↑c

†
−k,↓⟩⟨c−k′,↓ck′,↑⟩. In order to diagonalize this

Hamiltonian, we use a transformation named the Bogoliubov transforma-
tion. Defining new fermionic operators (γ and γ†) and using the following
linear relation between these new operators and the normal creation and
annihilation operators (c and c†)

(
ck,α
c†−k,−α

) = (
υk ανk
−ανk υk

)(
γk,α
γ†
−k,−α

) , (2.14)

where

υk =
1

√
2

¿
Á
ÁÀ1 +

εk
√
ε2
k + ∣∆k∣

2
, νk =

1
√

2

¿
Á
ÁÀ1 −

εk
√
ε2
k + ∣∆k∣

2
, (2.15)

the diagonalized form of the Hamiltonian is

H0 =H
0
BCS +∑

k

εk −∑
k

Ek +∑
k,α

Ekγ
†
k,αγk,α. (2.16)

Here, Ek =
√
ε2
k + ∣∆k∣

2 is the excitation energy of a quasiparticle with

momentum k. The quasiparticle energies ±Ek are presented in Fig. 2.2 (b)
as a function of momentum. This spectrum features a gap around the Fermi
level which is referred to as the superconducting gap. This means that there
is a minimum energy required in order to create excitations in the system.

2.6 BCS gap equation

The gap around the Fermi level in the band structure is determined by the
superconducting gap function defined in Eq. (2.11). We can use the Bogoli-
ubov transformation that we introduced in the previous section to obtain a
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Figure 2.2: (a) Skematic illustration of a circular Fermi-surface with a thin
shell of ~ωc around it where the attractive interaction between electrons is
active. The s-wave superconducting gap takes on a constant value within
this thin shell, leading to a gap around the Fermi level in the band structure.
(b) Quasiparticle spectrum of an s-wave superconductor, displaying the
gap in the spectrum. To more clearly display the effect of the gap on the
spectrum, the gap has here been taken to be very large.

self-consistent equation for this gap function. Starting from Eq. (2.11) and
using the transformation ck,α = υkγk,α + ανkγ

†
−k,−α, produces

∆k =
1

N
∑
k′
Vk,k′⟨(υ−k′γ−k′,↓ − ν−k′γ

†
k′,↑)(υk′γk′,↑ + νk′γ

†
−k′,↓)⟩ =

1

N
∑
k′
Vk,k′⟨υ−k′γ−k′,↓νk′γ

†
−k′,↓⟩ − ⟨ν−k′γ

†
k′,↑υk′γk′,↑⟩ =

1

N
∑
k′
Vk,k′υ−k′νk′(1 − n(E−k′,↓)) − ν−k′υk′n(Ek′,↑).

(2.17)

Here, n(Ek′,α) =
1

1+eβEk′,α
is the Fermi-Dirac distribution function. Using

tanh(x) = e2x−1
e2x+1

, setting Ek′,α = Ek′ , and inserting the expressions for the
Bogoliuov transformation coefficients, we obtain for the BCS gap equation

∆k =
1

2N
∑
k′
Vk,k′

∆k′
√
ε2
k′ + ∣∆k′ ∣

2
tanh(

β

2

√

ε2
k′ + ∣∆k′ ∣

2). (2.18)
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Figure 2.3: Example calculation of superconducting gap as a function of
temperature based on Eq. (2.20).

2.7 Constant potential

The next step in the conventional BCS approach to superconductivity is
to take the interaction potential to be constant in a thin shell around the
Fermi level and zero otherwise

Vk,k′ =

⎧⎪⎪
⎨
⎪⎪⎩

V > 0, ∣εk∣, ∣εk′ ∣ ≤ ~ωc,
0, otherwise.

(2.19)

Here, 2~ωc represents the width of the thin shell around the Fermi-surface,
as motivated by the previous discussion of the phonon-mediated interaction
potential. If one instead uses the interaction potential arising from our
initial real-space Hamiltonian, the difference is that there would no longer
be a cutoff on the interaction. This real-space model featuring a constant
potential is often used when studying finite systems where the boundaries
of the system need to be taken into account, and/or the focus is on the
effect of the presence of a superconductor rather than the origin of the
superconductivity itself.

Regardless of whether there is a cutoff on the interaction, an interaction
potential without any angular dependence on momentum will, based on
the gap function definition, give rise to a gap function without angular
dependence on momentum, i.e. a gap function with s-wave symmetry. For
the dependence with respect to radial momentum, we see from Eq. (2.18),
keeping the cutoff on the interaction, that the gap function vanishes for
momenta k where ∣εk∣ > ~ωc. For momenta k where ∣εk∣ < ~ωc, on the other
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hand, the gap function can be taken as a constant ∆, and the gap equation
can now be written as

1 =
V

2N

∣εk∣<~ωc
∑
k

1

Ek
tanh (

β

2
Ek). (2.20)

The central quantities involved in this equation are illustrated in Fig. 2.2
(a). The above self-consistent equation can be solved in order to find the su-
perconducting gap as a function of e.g. temperature or interaction strength.
An example of the dependence of the gap on the temperature is displayed
in Fig. 2.3. What we will focus on, for the time being, is determining the
critical temperature, Tc, where the system transitions from a superconduct-
ing state to a normal state. At the critical temperature, the gap function
vanishes. The critical temperature can therefore be obtained from the gap
equation by taking ∆ = 0 in the expression for the quasiparticle energies and
solving the equation for temperature. Going to the thermodynamic limit,
we can write

1 =
V

2N
∫

~ωc

−~ωc
dε
N(ε)

∣ε∣
tanh (

∣ε∣

2kBTc
). (2.21)

Here, N(ε) is the density of the states, which we can approximate by the
density of states at the Fermi level, N0, as the cutoff ~ωc is assumed to be
much smaller than the bandwidth of the system. The density of states is
then not expected to vary significantly within the integration region. The
gap equation then takes the form

1 =
V N0

N
∫

~ωc

0
dε

1

ε
tanh (

ε

2kBTc
). (2.22)

Evaluating the integral, as detailed in Appendix A under the assumption
that kBTc ≪ ~ωc, leads to the following expression for the critical tempera-
ture

kBTc =1.13~ωc e
− 1
V N0/N . (2.23)

Notably, we see from this equation that the critical temperature increases
with the density of states at the Fermi level. This has motivated the study
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of superconductivity in systems with flat energy bands, potentially featuring
very large density of states at the Fermi level. We will return to the topic
of flat-band superconductivity in the next chapter.

2.8 BCS coherence length

An important characteristic length for a superconductor is the supercon-
ducting coherence length. Loosely speaking, it represents the average sep-
aration of the particles forming a Cooper pair, and it varies for different
superconducting materials. Within BCS theory, the coherence length can
be expressed on the simple form [45]

ξBCS =
~vf

π∆(T = 0)
. (2.24)

Here, ~ is the reduced Planck constant, and vf = 1
~
∂εk
∂k ∣k=kf

is the Fermi
velocity. The coherence length is e.g. important for distinguishing between
type I and type II superconductors which we will get back to it in next
chapter. A list of conventional superconductors and their coherence lengths
is presented in Table x.

Table 2.1: Coherence length and Tc in some elemental conventional super-
conductors. The values are taken from [44, 46–49]

Al Cd Nb Sn Pb

ξBCS (nm) 1600 760 38 230 83

Tc (K) 1.2 0.52 9.2 3.72 7.19

2.9 Unconventional superconductivity

So far, we have considered isotropic s-wave superconductors arising from
phonon-mediated electron-electron interactions. In 1972, superfluiditity was
obsereved in liquid He3 [50]. An interesting aspect of this new discovery
was that the pairing in He3 does not have isotropic s-wave symmetry. This
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opened up possibilities for new types of superconductors with different pair-
ing symmetries and/or different pairing mechanisms, broadly referred to as
unconventional superconductors.

Superconductors within this class have a broad range of critical tem-
peratures. The early unconventional superconductors were heavy fermion
superconductors. The first one that was discovered was CeCu2Si2, which has
a critical temperature of Tc = 0.5 K [51]. Other heavy fermion superconduc-
tors with slightly higher critical temperatures include UNi2Al3, UPd2Al3,
and CeCoIn5 with critical temperatures Tc = 1 K [52], Tc = 2 K [53], and
Tc = 2.3 K [54], respectively. Organic materials, such as (TMTSF)2PF6

[55], can also host unconventional superconductivity at relatively low tem-
peratures.

The discovery of superconductivity in Lanthanum-barium-copper-oxide
(LaBaCuO4) was a breakthrough in high-Tc superconductivity. The criti-
cal temperature was observed to be Tc ≈ 30 K [56], which was the highest
so far. Ever since then, cuprate-based superconductors have been of high
interest. A famous example is Yttrium-barium-copper-oxide (YBCO) with
Tc ≈ 90 K [57], while the current record for highest critical temperature
at atmospheric pressure is held by mercury barium calcium copper oxide
(HgBa2Ca2Cu3Ox) with a critical temperature slightly below 140 K [58].
In more recent years, high critical temperatures up to around 100 K have
been observed in Iron-based superconductors [59].

Unconventional superconductors feature a wide variety of, often strongly
debated, pairing symmetries. Many studies support that cuprate based
superconductors feature d-wave pairing [60], while e.g. iron-based super-
conductors seem to have some kind of extended s-wave pairing symmetry
[61, 62]. It was long thought that Sr2RuO4 features p-wave pairing [63],
while recent studies indicate that this might not be the case [64, 65].

Within the BCS framework, the pairing symmetries of the order param-
eter are dictated by the symmetry properties of the interaction potential.
Unconventional superconductivity can then be introduced by an interaction
potential with suitable properties. An interaction potential that changes
sign when k → −k can e.g. give rise to p-wave pairing. Although it is possi-
ble to describe unconventional superconductivity within a generalized BCS
formalism, unconventional superconductors can often not be well described
using this framework. Understanding the superconductivity in the cuprates
has e.g. proved to be a difficult challenge. Many different pairing mech-
anisms have been proposed, including attractive interactions mediated by
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spin-fluctuations. Understanding the superconductivity in unconventional
superconductors is often difficult because the systems can be complicated
and hard to describe also above the critical temperature. Nevertheless, we
introduce the generalized BCS formalism, able to describe unconventional
superconductivity, in the next section.

2.10 Extended BCS theory

In order to showcase how the BCS theory can be generalized to describe
unconventional superconductors, we will start out from a real-space model
that can give rise to unconventional superconductivity. This tight-binding
Hamiltonian is used in the second paper [2] included in this thesis and in-
troduces attractive interaction between electrons on nearest-neighbor lattice
sites. The Hamiltonian, referred to as an extended BCS Hamiltonian, takes
the form

HEBCS = − ∑
⟨i,j⟩,α

tijc
†
i,αcj,α −∑

i,α

µini,α −
1

2
∑

⟨ij⟩,α,α′
V α,α′
ij ni,αnj,α′ . (2.25)

The first and second terms in the above Hamiltonian are the hopping and
chemical potential terms, respectively. The final term represents the at-
tractive interaction between electrons on neighboring lattice sites with both
equal and opposite spins. The microscopic origin of such nearest neighbour
attractive interactions could e.g. be long-range electron-phonon interactions
[66]. This term can give rise to both spin-singlet and spin-triplet pairing
symmetries, including anisotropic s-wave, d-wave and p-wave pairing. De-
pending on the value of chemical potential [67], as well as the strength of the
attractive interaction, one pairing symmetry will dominate over the others.

In the following, we consider a thin-film system with periodic boundary
conditions in both in-plane directions. Implementing the Fourier trans-
formation ciα = 1√

N
∑k e

−ik⋅rick,α, the k-space form of the extended BCS

Hamiltonian is

HEBCS = −
1

2N
∑
α≠α′

∑
k1,k2
k3,k4

V α,α′(eik3⋅x̂e−ik4⋅x̂ + e−ik3⋅x̂eik4⋅x̂ + eik3⋅ŷe−ik4⋅ŷ+

e−ik3⋅ŷeik4⋅ŷ)δk1−k2+k3−k4c
†
k1,α

ck2,αc
†
k3,α′ck4,α′ +∑

k,α

εkc
†
k,αck,α,

(2.26)
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where we have assumed that the interaction potential is spatially uniform
(V αα′
ij = V αα′ for nearest neighbors). Focusing on scattering processes that

can give rise to pairing between electrons with opposite momenta, we further
write

HEBCS = −
1

2N
∑
k,k′

α,α′

V α,α′(e−ik⋅x̂eik
′⋅x̂
+ eik⋅x̂e−ik

′⋅x̂
+ e−ik⋅ŷeik

′⋅ŷ
+ eik⋅ŷe−ik

′⋅ŷ)×

c†k,αc
†
−k,α′c−k′,α′ck′,α +∑

k,α

εkc
†
k,αck,α.

(2.27)

2.11 Pairing amplitudes and mean−field extended
Hamiltonian

Similar to the treatment of the normal BCS Hamiltonian, we introduce a
mean-field approximation

HMF
EBCS = −

1

2N
∑
k,k′

α,α′

V α,α′(e−ik⋅x̂eik
′⋅x̂
+ eik⋅x̂e−ik

′⋅x̂
+ e−ik⋅ŷeik

′⋅ŷ
+ eik⋅ŷe−ik

′⋅ŷ)×

(⟨c†k,αc
†
−k,α′⟩c−k′,α′ck′,α + c

†
k,αc

†
−k,α′⟨c−k′,α′ck′,α⟩ − ⟨c†k,αc

†
−k,α′⟩×

⟨c−k′,α′ck′,α⟩) +∑
k,α

εkc
†
k,αck,α.

(2.28)

We then define the pairing amplitudes

F x±α,α′(k) = −
1

N
∑
k′
e∓ik

′⋅x̂
⟨c−k′,α′ck′,α⟩,

F y±α,α′(k) = −
1

N
∑
k′
e∓ik

′⋅ŷ
⟨c−k′,α′ck′,α⟩,

(2.29)

together with
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Aα,α′(k) = V
α,α′

(eik⋅x̂F x+α,α′(k) + e
−ik⋅x̂F x−α,α′(k)

+eik⋅ŷF y+α,α′(k) + F
y−
α,α′(k)e

−ik⋅ŷ
),

(2.30)

the mean-field Hamiltonian then takes the form

HMF
EBCS =

1

2
∑

k,α,α′
(A∗

α,α′(k)c−k,α′ck,α +Aα,α′(k)c
†
k,αc

†
−k,α′)+

∑
k,α

εkc
†
k,αck,α +H

0
EBCS,

(2.31)

where,

H0
EBCS =

1

N
∑
k,k′

α,α′

V α,α′(e−ik⋅x̂eik
′⋅x̂
+ eik⋅x̂e−ik

′⋅x̂
+ e−ik⋅ŷeik

′⋅ŷ
+ eik⋅ŷe−ik

′⋅ŷ)×

⟨c†k,αc
†
−k,α′⟩⟨c−k′,α′ck′,α⟩.

(2.32)

The definitions are here chosen to match the definitions of the second paper
[2] included in this thesis. The spin dependent interaction strength as well
as the momentum dependent exponential functions could be combined to a
spin and momentum dependent interaction potential

V α,α′
k,k′ = V

α,α′(e−ik⋅x̂eik
′⋅x̂
+ eik⋅x̂e−ik

′⋅x̂
+ e−ik⋅ŷeik

′⋅ŷ
+ eik⋅ŷe−ik

′⋅ŷ), (2.33)

producing

Aα,α′(k) = −
1

N
∑
k′
V α,α′
k,k′ ⟨c−k′,α′ck′,α⟩. (2.34)

In general, varying the starting model, this interaction potential could have
an arbitrary spin and momentum dependence, giving rise to pairing am-
plitudes Aα,α′(k) with different spin and momentum symmetries. Writing
out the pairing amplitudes Aα,α′(k) as a momentum dependent matrix,we
obtain
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A(k) = (
A↑,↑(k) A↑,↓(k)

A↓,↑(k) A↓,↓(k)
) . (2.35)

From fermionic anticommutation relations, it follows that the spin and
momentum dependent interaction potential V αα′

kk′ needs to be even under
the combined operation of inversion of momentum and exchange of spin
(V α,α′

k,k′ = V α′,α
−k,−k′). From their definitions, the pairing amplitudes Aα,α′(k)

then become odd under the combined operation of inversion of momentum
and exchange of spin, representing that they are odd with respect to ex-
change of the fermionic particles that go into the Cooper pairs. We can
write this compactly as A(k) = −A(−k)T , where T is the matrix transpose,
or write out explicitly

⎧⎪⎪
⎨
⎪⎪⎩

Aα,α′(k) = −Aα′,α(−k) = Aα,α′(−k) = −Aα′,α(k), EP → spin-singlet,

Aα,α′(k) = −Aα′,α(−k) = −Aα,α′(−k) = Aα′,α(k), OP → spin-triplet,

(2.36)
Here, EP stands for even under parity, and OP stands for odd under parity.
It is common to rewrite A(k) by means of a three dimensional vector d(k)
[68] and a scalar ∆0(k). Then,

A(k) = (
−dx(k) + idy(k) dz(k) +∆0(k)

dz(k) −∆0(k) dx(k) + idy(k)
) , (2.37)

where

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

dx(k) =
1
2( −A↑,↑(k) +A↓,↓(k)),

dy(k) =
1
2i(A↑,↑(k) +A↓,↓(k)),

dz(k) = A↑,↓(k) −∆0(k).

(2.38)

The Cooper pairs which are described by the vector d(k) form a spin-triplet
state, while ∆0(k) is the pairing amplitude for spin-singlet Cooper pairs.

2.12 Unconventional quasiparticles

Starting from Eq. (2.31) and defining Heff =HMF
EBCS −H

0
EBCS, we can write
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Heff =
1

2
∑
k

Ψ†
k (

εkσ0 A(k)

A†(k) −εkσ0
)Ψk +∑

k

εk, (2.39)

where, σ0 = (
1 0

0 1
) , and Ψ†

k = (c†k,↑ c†k,↓ c−k,↑ c−k,↓). The eigenvalues

of the above 4 × 4 matrix are the qusiparticle energies. In order to calcu-
late them, we limite ourselves to the case of so-called unitary pairing with
A(k)A(k)† = ∣Ak∣

2σ0, where ∣Ak∣
2 = ∣∆0(k)∣

2 or Ak = ∣d(k)∣2. Then, the

eigenvalues of the above matrix become E±
k = ±

√
ε2
k + ∣Ak∣2. Further, the

Bogoliubov transformation used to diagonalize this matrix is of the form

Ψk = (
υ̂k ν̂k
−ν̂†

k υ̂k
)Φk, (2.40)

where, Φ†
k = (γ†

k,↑ γ†
k,↓ γ−k,↑ γ−k,↓) is a vector of quasiparticle operators.

The Bogoliubov transformation matrices are

υ̂k =
Ek + εk

√
(Ek + εk)2 + ∣Ak∣

2
σ0, ν̂k =

−1
√

(Ek + εk)2 + ∣Ak∣
2
A(k), (2.41)

where Ek = ∣E±
k∣. Finally, the diagonalized form of the full Hamiltonian is

HMF
EBCS =

1

2
∑
k

Φ†
kEΦk +H

0
EBCS +∑

k

εk, (2.42)

where E is the qusiparticle energies matrix of the form

E =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ek 0 0 0

0 Ek 0 0

0 0 −Ek 0

0 0 0 −Ek

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2.43)
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A detailed derivation of the eigenvalues and the Bogoliubov transformation
can be found in Appendix B. Later in chapter 5, will return to obtaining
eigenvalues and transformation matrices from a more numerical point of
view.





3
Superconductivity and
magnetism

Superconductivity and magnetism are two phenomena that typically do not go
well together. Superconductors tend to expel applied magnetic fields and any
magnetic field that makes it way into a superconductor tends to tear Cooper
pairs apart. In this chapter, we will first discuss the effect of an external
magnetic field on a bulk superconductor and then briefly introduce proximity
effects in superconducting heterostructures. We then proceed to discussing the
Chandrasekhar-Clogston limit, which normally limits the spin-splitting field a
spin-singlet superconductor can coexist with. Finally, we propose a mechanism
for surpassing the Chandrasekhar-Clogston limit in multi-band systems.

3.1 Effect of magnetic field on bulk superconduc-
tors

When applying an external magnetic field to a superconductor, interesting
phenomena can take place. Twenty-two years after the zero resistance prop-
erty of superconductors was discovered, Meissner and Ochsenfeld observed
that a material cooled down below its superconducting critical temperature
in the presence of an applied magnetic field expels the magnetic flux at
the superconducting transition point [69]. This effect, called the Meissner
effect, causes the magnetic field inside a superconductor to vanish, as il-
lustrated in Fig. 3.1 (b). The screening of the magnetic field is caused by
formation of supercurrents in the superconductor, setting up an opposing
magnetic field (B = 0). Increasing the magnetic field, it eventually becomes
more energetically favorable to break the superconductivity and let mag-
netic flux penetrate the material. This represents a phase transition from a
superconducting state to a normal state. A direct phase transition from a
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Figure 3.1: A superconductor in an external magnetic field. (a) When the
system is in its normal state, magnetic flux penetrates the system. (b) In
the superconducting state, the magnetic field is normally screened so that
no magnetic flux penetrates the system. (c) In a type II superconductor,
there exists an intermediate superconducting phase where magnetic flux is
able to penetrate the system at specific points.

superconducting state without magnetic flux penetration to a normal state
categorizes type I superconductors. Most of the elemental superconductors
such as aluminium (Al), mercury (Hg), lead (Pb), and zinc (Zn) are type
I superconductors. Type II superconductors such as niobium (Nb), vana-
dium (V) and Yttrium-Barium-Copper-Oxide (YBCO), are superconduc-
tors featuring an additional intermediate superconducting phase between
two critical magnetic fields Hc1 and Hc2. In this intermediate phase, the
system features vortices, i.e. non-superconducting regions surrounded by
circulating supercurrents, where magnetic flux penetrates the system. This
phase, illustrated in Fig.3.1 (c), is referred to as the vortex phase, while the
phase below Hc1 is referred to as the the Meissner phase. Evidence of the
presence of a vortex phase was observed in early experiments on niobium
(Nb) [70] and vanadium (V) [71]. This phase was described by Abrikosov as
a formation of a lattice of vortices [72], which was directly observed through
electron microscopy performed on lead and indium alloys in 1967 [73].

Although there is typically no magnetic flux penetrating the bulk of a
superconductor in the Meissner phase, magnetic fields are still able to pene-
trate some finite length into such a superconductor. The characteristic decay
length for this penetration is referred to as the penetration depth λm. In the
case of type II superconductors, the penetration depth is equal to the Lon-
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don penetration depth (λL), arising from the London equation [74]. Type
II superconductors are therefore sometimes referred to as London supercon-
ductors. In this type of superconductors, the London penetration depth is
typically much larger than the coherence length (ξBCS). Type I supercon-
ductors, also called Pippard superconductors [75], typically have coherence
lengths that are much larger than their London penetration depths, in which
case the London equation no longer holds [76]. In this type of superconduc-
tors, the penetration depth is larger than the London penetration depth,
and it can be expressed as λm ∼ (λ2

L ξBCS)
1/3 [76]. For both type I and type

II superconductors, the strength of the magnetic field decays approximately
exponentially with the penetration z as B(z) = B(0)e−z/λm [76].

Although, magnetic fields are normally screened in bulk superconduc-
tors, it is under certain conditions possible to combine magnetism and super-
conductivity. While an inhomogeneous magnetization can e.g. be induced
in somewhat thick superconductors through proximity to ferromagnets, ho-
mogeneous spin-splitting of the single-particle states can be achieved in
thin-film superconductors through either proximity to a ferromagnet or the
application of a magnetic field. In the following, we will focus on these types
of systems, where the interplay between superconductivity and magnetism
can be studied.

3.2 Ferromagnetism

Magnetic materials are often divided into groups such as paramagnets, dia-
magnets, and ferromagnets. In paramagnets, magnetic moments in the ma-
terial align themselves with an external field. In diamagnets, the dominant
effect in the presence of a magnetic field is instead induced orbital motion
of charged particles, setting up an opposing magnetic field. Ferromagnets
are materials with magnetic moments that can align themselves, giving rise
to magnetism, even at zero applied magnetic field. This takes place below
a critical temperature TC , referred to as the Curie temperature. Above this
temperature, the system is usually in a paramagnetic state. In the presence
of an applied field, ferromagnets exhibit hysterisis, meaning that the state
of the system depends on the history of the system. At a large applied mag-
netic field, the magnetization of the system takes on its saturation value
MS(T ). Lowering the magnetic field to zero, the magnetization decreases,
but it does not vanish. When applying a negative magnetic field, the magne-
tization eventually vanishes, changes sign and saturates at −MS(T ). Then,



Chapter 3. Superconductivity and magnetism 30

(a) (b)

B

M

MS(T)

T

m

TC

Figure 3.2: Schematic illustrations of (a) hysteresis loop of a ferromagnet,
(b) the dependence of the magnetization of a domain with respect to tem-
perature.

when performing the whole procedure in the opposite direction, the magne-
tization once again ends up at its positive saturation value. However, along
the way, the magnetization now traces out a different path than what it did
on the way from MS(T ) to −MS(T ), giving rise to the loop displayed in
Fig. 3.2 (a).

Both the hysteresis loop and the Curie temperature can be understood
from the assumptions of Weiss [77]. These assumptions include: the forma-
tion of domains, and the presence of molecular or background fields giving
rise to magnetization of the domains. Each domain was taken to be mag-
netized up to a value m(T ), with varying direction of the magnetization
from one domain to another. The total magnetization is then the sum of
the magnetization of all these domains, which can be zero if the domains
are randomly oriented. If one applies an external magnetic field to the
system, the domains will start aligning themselves with the field until the
system reaches its saturation magnetization MS(T ) when all the domains
are aligned. When lowering the magnetic field to zero, the domains tend
to stay aligned, giving rise to the hysteresis effect. Moreover, in order to
ensure magnetic ordering within a domain, the background field needs to
defeat the effect of temperature, which acts to destroy the ordering. The
magnetization of a domain therefore decreases with temperature until it
vanishes at some critical temperature, as displayed in Fig. 3.2 (b).

Ferromagnetic materials can be insulators, featuring localized magnetic
moments, or metals where the electrons can move, more or less freely, around



3.2. Ferromagnetism 31

in the system. For the case of localized magnetic moments, giving rise to
a ferromagnetic state, Heisenberg introduced, in 1928, a model that could
explains the origin of the Weiss background field [78]. He related the ori-
gin of the background field to exchange interaction between the magnetic
moments. In the next chapter we will get back to this exchange interaction
between the magnetic moments. For now, we just present the Heisenberg
model

Heff = −∑
i≠j
JijSi ⋅Sj , (3.1)

where Si is a localized magnetic moment at lattice point i which interacts
with another localized magnetic moment at lattice point j in the system.
Further, Jij is the exchange integral, and Jij = Jji so that we can limit the
summation

Heff = − 2∑
i<j
JijSi ⋅Si. (3.2)

As mentioned above, the physical origin of Jij will be discussed in next
chapter. For Jij > 0, the Heisenberg model describes ferromagnetism. The
localized spins then prefer to align themselves with their neighbors. The
Heisenberg model is, however, able to also describe different magnetic states.
If one e.g. takes Jij < 0, neighboring spins, which typically interact the
strongest, will prefer to anti-align, potentially giving rise to antiferromag-
netism. Focusing on ferromagnetism, we perform a mean-field treatment of
the Heisenberg Hamiltonian, producing

HMF
eff = − 2∑

i<j
Jij(⟨Si⟩ ⋅Sj + ⟨Sj⟩ ⋅Si − ⟨Si⟩ ⋅ ⟨Sj⟩), (3.3)

describing individual localized spins interacting with a background field set
up by the localized spins themselves. This background field is similar to the
background field assumed by Weiss, giving rise to magnetization within a
domain.

In metallic ferromagnets, such as Iron (Fe) and Cobalt (Co), the mag-
netization can originate with the itinerant electrons through e.g. the Stoner
mechanism. An effective model for metallic ferromagnetism can, however,
be achieved through a Heisenberg Hamiltonian involving exchange inter-
action between electron spins, similar to the insulating case. Once again,
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Figure 3.3: Superconductor located next to (a) normal metal and (b) fer-
romagnet, the solid line in both figures represent the spatial dependence of
the superconducting pair correlations.

performing a mean-field treatment then leads to itinerant electrons inter-
acting with a background field

HMF
eff = ∑

iαβ

(hi ⋅σ)αβc
†
iαciβ, (3.4)

giving rise to a magnetization in the system. The background field h is
here proportional to the magnetization of the electrons. The strength of
the background field can be taken as an input parameter to the theory or
be determined self-consistently.

3.3 Proximity effect

In the previous chapter, we discussed the interesting properties of super-
conducting materials. In this chapter, we touch on the physics arising when
another material is brought into contact with a superconductor, allowing
the two materials to affect each other. A simple example of such a hy-
brid structure is a superconductor-normal metal (SC/N) bilayer. In such
a system, some superconducting pair correlations will leak into the normal
metal. This is often referred to as the proximity effect. As the normal metal
does not support superconducting pair correlations, the amplitude of the
correlations leaking into the normal metal decays with the distance from
the interface, as displayed in Fig. 3.3 (a). In case of a clean normal metal,
the decay length of the pair correlations is ξT ∼ vF /T [79], where vF is the
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Fermi-velocity and T is temperature. As a result of the leaking across the
interface, the superconducting gap and Tc on the superconductor side are
reduced close to the interface. This is called the inverse proximity effect.

In a superconductor-ferromagnet (SC/FM) bilayer, the amplitude of the
pair correlations leaking into the ferromagnet is damped, as was the case
for the normal metal. However, there is also an additional oscillatory be-
havior, as displayed in Fig. 3.3 (b). A simple intuitive picture explaining
the origin of these oscillations is provided by Demler et al. [80]. Consider
an s-wave superconductor in proximity with a metallic ferromagnet. The
electrons forming a Cooper pair have opposite spins, making the singlet
state ⟨↑↓ − ↓↑⟩. We consider a Cooper pair where the spin up electron has
momentum k and the spin down electron has momentum −k. When en-
tering the ferromagnet, we assume that the energies of the electrons are
conserved while the momenta normal to the interface are not. Due to the
magnetization of the ferromagnet, the potential energy of the spin up elec-
tron is lowered by h, while the potential energy of the spin down electron is
increased by h. In order to conserve its energy, the momentum of the spin
up electron is shifted k → k+q, leading to an increased kinetic energy. Sim-
ilarly, the spin down electron has its momentum shifted −k+q, lowering its
kinetic energy. Inside the ferromagnet, we then have a pair correlation with
center of mass momentum 2q ∼ 2h/vF . If we exchange the spins of the elec-
trons, we instead end up with correlations with center of mass momentum
2q ∼ −2h/vF . Finite-momentum pairing is well known to give rise to spatial
modulation of the amplitude of the pairing correlations [81, 82], which gives
rise to the oscillations in Fig. 3.3 (b). In order to see how finite momentum
Cooper pairing gives rise to spatial modulation of the pair correlations, we
consider

⟨ci,↑ci,↓⟩ =
1

N
∫ dk′ dk′′ ⟨ck′,↑ck′′,↓⟩ e

ik′⋅rieik
′′⋅ri . (3.5)

Normally, ⟨ck′,↑ck′′,↓⟩ = δk′,−k′′ ⟨ck′,↑ck′′,↓⟩, leading to a cancellation of the
spatial dependence on the right-hand-side of the equation. In order to con-
sider finite-momentum pairing, we instead take ⟨ck′,↑ck′′,↓⟩ = ⟨ck+p,↑c−k+p,↓⟩,
where we e.g. consider pairing correlations for specific momenta p = ±q,
leading to δp,±q ⟨ck+p,↑c−k+p,↓⟩. We then obtain
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⟨ci,↑ci,↓⟩ =
1

N
∫ dkdp δp,±q ⟨ck+p,↑c−k+p,↓⟩ e

i(k+p)⋅riei(−k+p)⋅ri

=
1

N
∫ dk ( ⟨ck+q,↑c−k+q,↓⟩ e

i(k+q)⋅riei(−k+q)⋅ri+

⟨ck−q,↑c−k−q,↓⟩ e
i(k−q)⋅riei(−k−q)⋅ri) .

(3.6)

Assuming e.g. that ⟨ck+q,↑c−k+q,↓⟩ = ⟨ck−q,↑c−k−q,↓⟩, we then obtain

⟨ci,↑ci,↓⟩ =
2 cos(2q ⋅ ri)

N
∫ dk ⟨ck+q,↑c−k+q,↓⟩ . (3.7)

We then see that the pair correlations have a periodic spatial dependence
determined by the center of mass momentum 2q.

3.4 Spin−split superconductor

It is in thin-film superconductors possible to induce a uniform spin-splitting
of the single-particle states. Such superconductors are referred to as spin-
split superconductors. Further, the spin-splitting can be induced through
proximity to a ferromagnet, as a result of the exchange interaction between
the spins of the quasiparticles and the spins in the ferromagnet [83], which
can give rise to a homogeneous spin-splitting for superconducting thin-films
with thickness smaller than the superconducting coherence length. The
spin-splitting field induced by coupling to a ferromagnetic insulator can
then be expressed as h ≈ J m a

dS
[23]. Here J is the strength of the coupling

between itinerant electrons in the superconductor and magnetic moments
in the ferromagnet, dS is the thickness of the superconducting thin-film, a
is the lattice constant inside the superconductor, and m = ⟨Si⟩ is the mag-
netization of the lattice site spins in the ferromagnet. A potential benefit of
using a ferromagnetic insulator rather than a metallic one is that in the lat-
ter case Cooper pairs will not be able to leak into the ferromagnet, avoiding
the associated modification of the superconducting gap close to the inter-
face. Similarly, the induced spin-splitting can also be introduced through
an external magnetic field.

Normally, an external magnetic field (or a stray field arising from a
neighboring ferromagnet) would give rise to orbital motion in the super-
conductor, attempting to screen the magnetic field. Although the screening
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will be weak when the superconductor is much thinner than the penetration
depth, such orbital effects can still cause superconductivity to break down if
the field becomes too large. However, if the field is directed in-plane, it will
typically not be able to induce orbital motion [83]. The only effect on the
superconductor is then the induced spin-splitting, which also becomes the
factor that determines the critical magnetic field the superconductor can
coexist with. Starting from our description of a spin-singlet superconduc-
tor from chapter 2, taking into account the effect of spin-splitting, we then
obtain the Hamiltonian

H0 =
1

2
∑
k,α

( c†k,α c−k,−α )(
εk − αh −α∆

−α∆ −εk − αh
)
⎛

⎝

ck,α
c†−k,−α

⎞

⎠

−
∣∆∣2

V
+∑

k

εk.

(3.8)

where h is the induced homogeneous spin-splitting field inside the super-
conductor. Performing the usual Bogoliubov transformation Eq. 2.14, the
diagonalized form of the Hamiltonian is

H0 = −
∣∆∣2

V
+∑

k

εk −∑
k

Ek +∑
k,α

Ek,αγ
†
k,αγk,α. (3.9)

The quasiparticle energies are now Ek,α = Ek − αh with Ek =
√
ε2
k +∆2,

showing a spin-splitting of the quasiparticle states. This splitting leads to
a modification of the self-consistent equation for the superconducting gap

1 = −
V

2
∑
k

1

2

1
√
ε2
k +∆2

[ tanh(
β

2
(

√

ε2
k +∆2 − h))

+ tanh(
β

2
(

√

ε2
k +∆2 + h)].

(3.10)

3.5 Chandrasekhar-Clogston limit

As we introduced in the previous section, in the absence of orbital effects,
spin-splitting effects determine the critical magnetic field that a supercon-
ductor can coexist with. For a spin-singlet superconductor, in the absence
of spin-orbit coupling and spin-flip scattering [83], the critical magnetic field
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Figure 3.4: Single-band model for a normal metal (a) in the absence of spin-
splitting, and (b) immediately after a spin-splitting field h is applied to the
system. The spin degeneracy of the bands is then broken. (c) Spin down
electrons are then converted into spin up electrons via relaxation mecha-
nisms, spin-polarizing the system and lowering the energy.

is given by the so-called Chandrasekhar-Clogston limit [84, 85]. This limit
is derived by considering how the free energy (which, at zero temperature, is
simply the energy of the system) of the normal and superconducting state
varies with a spin-splitting field. A detailed derivation can be found in
Appendix D.

We begin by considering how the free energy of the normal state is
affected by a spin-splitting field. Starting from the free energy of the super-
conducting state and setting ∆ = 0, the free energy of the normal state can
be expressed as

FN =∑
k

(εk − ∣εk∣) −
1

β
∑
k,α

ln(1 + e−β(∣εk∣−αh)). (3.11)

In the absence of a spin−splitting field, the two spin-bands are degenerate,
as illustrated in Fig. 3.4 (a). In the presence of a spin-splitting field, the
states in the spin up band are e.g. shifted down in energy, while the states
in the spin down band are shifted up. As displayed in Fig. 3.4 (b), this
leads to some occupied states being shifted above the Fermi level, while
some unoccupied states are shifted below the Fermi level. Redistributing
themselves, spin down electrons are then flipped into spin up electrons in
order to fill the states below the Fermi level. The system then becomes
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spin-polarized and lowers its energy, which can be seen from Fig. 3.4 (c).
The magnitude of the change in free energy at zero temperature is then, as
detailed in Appendix D,

FN(h = 0) − FN(h ≠ 0) = N0h
2. (3.12)

Reinstating ∆ ≠ 0, the free energy of the superconducting state is

FS =N
∆2

V
+∑

k

(εk −Ek) −
1

β
∑
k,α

ln(1 + e−βEk,α). (3.13)

At zero temperature, this expression is not affected by a spin-splitting field
smaller than the superconducting gap. No states are shifted above the
Fermi level and the energy gain of the occupied spin up states is therefore
compensated by the increased cost of the occupied spin down states.

At zero field, still working at zero temperature, the free energy of the
superconducting state is lower than the free energy of the normal state by
an amount referred to as the condensation energy FN(h = 0) − FS(h = 0) =
N0∆2

0/2, as outlined in the Appendix D. Here, ∆0 is the superconducting gap
at zero field and temperature. As the normal state free energy is lowered in
the presence of a spin-splitting field, the system will eventually transition to
the normal state when the spin-splitting field is increased. At the transition
point, the free energy of the normal state is equal to the free energy of the
superconducting state, FN(h ≠ 0) = FS(h ≠ 0). As the free energy of the
superconducting state typically is not affected by the spin-splitting field, we
can instead write FN(h ≠ 0) = FS(h = 0). Subtracting the zero field free
energy of the normal state on both sides of the equation, we then obtain

FN(h = 0) − FN(h ≠ 0) = FN(h = 0) − FS(h = 0). (3.14)

This means that when the transition to normal state happens, the para-
magnetic energy gain in the normal state is equal to the superconducting
condensation energy, i.e. when

N0h
2
c =N0

∆2
0

2
. (3.15)
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We then directly obtain the Chandrasekhar-Clogston limit, restricting the
spin-splitting field that the superconductor can coexist with

hc =
∆0
√

2
. (3.16)

In the above calculation, we see that the density of states at the Fermi level
enters on both sides of the final equation. In fermionic systems, especially at
low temperatures, it is indeed the case that much of the physics is dominated
by the particles that are close to the Fermi level and that the density of
states often varies little in the relevant region. There do, however, exist
systems featuring significant variations in the density of states around the
Fermi level. For such systems, the above derivation of the critical spin-
splitting field does not apply. One could therefore wonder if it is then
possible to go beyond the Chandrasekhar-Clogston limit. An example of
systems that could feature rapid variations in the electronic density of states
around the Fermi level is multi-band systems containing so-called flat-bands,
i.e. energy bands with little or no dispersion. In the following, we give a
brief introduction to such flat-band systems, as well as the topic of flat-
band superconductivity, before we discuss whether it could be possible to
go beyond the Chandrasekhar-Clogston limit in flat-band superconductors.

3.6 Flat-band systems

As explained above, flat-band systems are systems containing one or more
energy bands with little or no dispersion, meaning that these energy spectra
have little or no dependence on momentum. Theoretical studies of flat-band
systems goes back to the 1980s. Sutherland, in 1986, presented a model fea-
turing localized states with zero-energy [86]. The system he considered was
a bipartite lattice, consisting of two sublattices, known as the Dice lattice.
Later, in 1989, Lieb was investigating the magnetic ground state of the
Hubbard model for both attractive and repulsive interaction. For certain
bipartite lattices hosting flat-bands, now known as Lieb lattices, he found
that the repulsive Hubbard model could give rise to a net magnetization
at half-filling [87]. Since then, flat-band ferromagnetism in multi-band sys-
tems has been further investigated [88–91]. Lately, the possibility of instead
realizing superconductivity in such multi-band systems featuring flat-bands
has attracted much attention.



3.7. Going beyond the Chandrasekhar-Clogston limit 39

As mentioned earlier, increasing the density of states at the Fermi level
can be a way to enhance the critical temperature of a superconductor, mak-
ing flat-band systems interesting from the perspective of superconductivity.
Theoretical studies have found that the dependence of the critical tempera-
ture on the interaction strength in such systems can be linear [92, 93], rather
than the typical exponential behavior resulting from normal BCS theory. A
breakthrough for flat-band superconductivity came with the discovery of
superconductivity in twisted bilayer graphene. Twisted bilayer graphene
consists of two graphene layers which are grown on top of each other with
a relative twist angle. For certain twist angles, referred to as magic angles,
the band structure of the system features flat-bands giving rise to a strongly
peaked density of states [94]. In this material, at certain doping levels, it
was discovered that superconductivity can be realized up to a temperature
of Tc = 1.7 K [95]. Although the critical temperature is not that impres-
sive, the discovery has received much attention due to the combination of
the strongly correlated nature and tunability of the system. Due to these
properties, twisted bilayer graphene, as well as similar systems, might e.g.
be able to shed some light on the physics of high-Tc superconductors.

3.7 Going beyond the Chandrasekhar-Clogston limit

Motivated by the above discussion of the Chandrasekhar-Clogston limit and
systems with rapidly varying density of states around the Fermi level, we
consider a simple model for such a system. Our model contains a dispersive
band crossing the Fermi level and a flat-band that is located µ0 below the
Fermi level. The superconductivity in this system is assumed to originate
from an attractive interaction on the form c†i,k,↑ c

†
i,−k,↓ cj,−k′,↓ cj,k′,↑, where

i and j are band-indices, allowing for intraband and interband scattering
[92, 96]. We assume that the interaction is active in a thin shell 2~ωc around
the Fermi level. Therefore, in order for the flat band to contribute to the
pairing we need µ0 < ~ωc.

Performing the usual mean-field approach leads to two coupled gap equa-
tions

∆i(k) =
1

N
∑
j,k′

Vij(k,k
′
)
∆j(k

′)

2Ej,k′
×

1

2
[ tanh (

β

2
Ej,k′,↑) + tanh(

β

2
Ej,k′,↓)],

(3.17)
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Figure 3.5: Example of superconducting gap as a function of spin-splitting
field for our model system featuring both a dispersive and a flat band. It
has been checked that the superconducting state minimizes the free energy
for ∆ ≠ 0.

for the order parameters associated with the two bands. Here Ei,k′,α =

Ei,k′ − αh is the quasiparticle energy for band i in the presence of a spin-
splitting field h. For simplicity, we here consider the interaction strength
to be independent of the band-indices. The more general case is dicussed
in paper [4] contained in this thesis. The gaps associated with the two
bands then become equal such that we are left with a single self-consistent
equation for the gap ∆ = ∆1 = ∆2,

∆ =
1

N

∣εj,k′ ∣≤~ωc
∑
j,k′

V
∆

2Ej,k′
×

1

2
[ tanh (

β

2
Ej,k′,↑) + tanh (

β

2
Ej,k′,↓)], (3.18)

where we have assumed that the interaction strength is constant within the
thin shell around the Fermi level.

As we are dealing with a spin-split superconductor, it is not enough
to find a nontrivial solution to the gap equation in order to conclude that
the system is in a superconducting state. We also have to check that the
superconducting state has lowered free energy than the normal state. The
free energy is expressed as

F =
1

4
∑
i,k,α

∆2
i (k)

Ei,k
tanh (

β

2
Ei,k,α) +∑

i,k

(εi,k −Ei,k) −
1

β
∑
i,k,α

ln(1 + e−βEi,k,α).

(3.19)
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Solving the gap equation and setting the gap to the value that minimizes
the free energy, we obtain the curve in Fig.3.5 for a given set of parameters.
This figure shows that superconductivity in this case can coexist with a
spin-splitting field considerably larger than the critical field arising from the
Chandrasekhar-Clogston limit hc/∆0 ≈ 0.7. This result can be understood
from the above equations. From Eq. (3.18), we see that when h < ∆ and the
temperature is zero, the contributions from both the dispersive band and the

flat-band are unaffected by the spin-splitting field as still tanh (
β
2Ej,k′,α)→

1. However, as soon as h > ∆, some contributions from the dispersive band
are lost as the two tanh terms cancel each other. The first contributions
that are lost are the most important contributions where εk → 0, allowing
the spin-splitting field to change the sign of the spin-up quasiparticle energy.
This effect causes the decrease in the gap with respect to spin-splitting field
which is observed in Fig. 3.4 when the strength of the spin-splitting field
surpasses ∆0. On the other hand, the contributions from the flat-band are
robust towards spin-splitting fields smaller than µ0. The flat-band can then
guarantee a nontrivial solution to the gap equation for h < µ0, as long as V
is sufficiently large. For µ0 > ∆0, solutions to the gap equation can then be
obtained for h > ∆0.

As mentioned above, it is not sufficient to have a nontrivial solution to
the gap equation, the superconducting state must also minimize the free
energy. Inspecting the free energy in Eq. (3.19), the term εi,k is the same
for the superconducting and normal state. The combination of the first
term and the term −Ei,k decreases with increasing magnitude of the su-
perconducting gap, giving rise to the condensation energy which favors the
superconducting state at zero field. Importantly, the flat-band contributes
significantly to the condensation energy due to its large density of states
close to the Fermi level. Inspecting the free energy in Eq. (3.19), the term
εi,k is the same for the superconducting and normal state. The combination
of the first term and the term −Ei,k decreases with increasing magnitude
of the superconducting gap, giving rise to the condensation energy which
favors the superconducting state at zero field. Importantly, the flat-band
contributes significantly to the condensation energy due to its large density
of states close to the Fermi level. In the presence of a spin-splitting field, the
quasiparticle energies in the last logarithmic term can, for the normal state,
turn negative, lowering the free energy of the normal state. This does, how-
ever, only apply to the quasiparticle energies associated with the dispersive
band as long as h < µ0. For h < µ0, the presence of the flat-band there-
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fore only increases the condensation energy without affecting how much the
normal state lowers its free energy. Superconductivity can therefore survive
beyond the Chandrasekhar-Clogston limit.

Above, we have introduced a general mechanism for how spin-singlet
superconductivity can survive beyond the Chandrasekhar-Clogston limit.
Future studies should attempt to identify real systems where this mech-
anism can be realized by performing more detailed calculations. Possible
candidates for real systems are twisted multi-layered materials or artificial
electronic lattice systems realizing some specific lattice model giving rise to
a suitable band structure.



4
Magnetic impurities and
interaction between them

Two spins located close to each other can constitute an interacting spin system.
Even if the direct interaction between the two spins is negligible, the spins can
interact indirectly if they are part of a bigger system that can mediate interaction
between them. In this chapter, we discuss different types of interactions between
localized spins, ending with a discussion of RKKY interaction mediated by
itinerant particles. We then consider the RKKY interaction between localized
spins in a spin-split superconductor and introduce a potential experimental
method for measurement of RKKY interaction in such a system.

4.1 Origin of exchange interaction

In the previous chapter, we explained that ferromagnetism can originate
with the exchange interaction between localized or itinerant spins. In this
section, we will further discuss the origin of exchange interaction between
localized spins.

The Hamiltonian we introduced in Eq. (3.1) as the effective Heisenberg
Hamiltonian is actually the generalized form of the first two-spin Hamilto-
nian that Heisenberg presented for the hydrogen molecule, H2, in 1928 [78].
We consider the two electrons in the Hydrogen molecule to be identical
particles, having r1 and r2 as their spatial coordinates. They further have
spins s1 =

1
2 and s2 =

1
2 . The total wave function of this fermionic two-spin

system should be antisymmetric under exchange of the two particles. This
wave function consists of a spatial part and a spin part. If the electron
spins form a spin-singlet state with s = 0, which is odd under exchange of
the particles, the spatial part should be symmetric. On the other hand, if
the spins are in the spin-triplet state with total spin s = 1, the spatial part
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needs to be antisymmetric. We therefore express the wave function for the
singlet and triplet state as

ΨS =
∣↑↓⟩ − ∣↓↑⟩

√
2

×
φ1(r1)φ2(r2) + φ1(r2)φ2(r1)

√
2

, (4.1)

and

ΨT = χT ×
φ1(r1)φ2(r2) − φ1(r2)φ2(r1)

√
2

, (4.2)

where

χT =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

∣↑↑⟩ ,
∣↑↓⟩+∣↓↑⟩√

2
,

∣↓↓⟩ .

(4.3)

We further express the energy of the singlet state as

ES =∫ dr1 dr2Ψ∗
SH12ΨS, (4.4)

where H12 is the Hamiltonian of the two-electron system, including e.g.
Coulomb repulsion. This Hamiltonian is assumed to not depend explicitly
on the spins of the electrons. Due to the requirement that the wave function
needs to be antisymmetric under exchange of particles, we will however see
that the energy of the system still ends up depending on the spin-state.
Further, the energy of the triplet state is

ET =∫ dr1 dr2Ψ∗
TH12ΨT. (4.5)

As the Hamiltonian does not care about the spin-state of the system, the
difference between the energies of the singlet and triplet states only depends
on the spatial part of the wave function. Using that the Hamiltonian is
Hermitian, H†

12 =H12, the energy difference is obtained from

ES −ET =2∫ dr1 dr2φ1(r1)
∗φ2(r2)

∗H12φ1(r2)φ2(r1). (4.6)
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We can then use this expression to obtain an effective Hamiltonian express-
ing the energy of the system in terms of the product of the two spin operators
s1 ⋅ s2. To do this, we use that stot = s1 + s2, leading to

(stot)
2
=(s1)

2
+ (s2)

2
+ 2s1 ⋅ s2. (4.7)

The eigenvalue of stot is s(s+ 1), which is 0 for the spin-singlet state and 2
for spin-triplet state. Further, the eigenvalue of (si)

2 is si(si+1) = 3
4 for the

case of spin-1
2 . We then obtain that s1 ⋅s2 = −

3
4 for the spin-singlet case, and

that s1 ⋅ s2 =
1
4 for the spin-triplet case. We can then introduce an effective

Hamiltonian

Heff =
1

4
(ES +ET) − (ES −ET)s1 ⋅ s2, (4.8)

expressing the energy of the system in the spin-singlet and spin-triplet case.
From above, we already have the expression for ES − ET, while the first
term is just a constant term. The exchange integral that we discussed in
the previous chapter can then be obtained from

J12 =
ES −ET

2
= ∫ dr1 dr2φ1(r1)

∗φ2(r2)
∗H12φ1(r2)φ2(r1). (4.9)

4.2 Indirect exchange interaction

What we have have discussed above for a hydrogen molecule is a direct ex-
change interaction between the spins of the two electrons associated with
the two hydrogen atoms in the hydrogen molecule. In general, exchange in-
teraction can also take place between two spins via a third component which
mediates the interaction between them. This type of exchange interaction
is called an indirect exchange interaction. Three types of indirect exchange
interaction are superexchange, double exchange, and RKKY exchange in-
teraction.

If the interaction between two magnetic ions is mediated by an inter-
mediate non-magnetic ion, the interaction is referred to as a superexchange
interaction. A famous example of a material featuring this type of interac-
tion is Manganese oxide (MnO) which is a magnetic insulator. Existence of
superexchange interaction in MnO crystals was first proposed by Kramer
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Figure 4.1: (a) An O2− ion sandwiched between two Mn2+ ions. Two 2p-
orbital electrons associated with the O2− ion that can potentially hop to the
neighboring Mn2+ ions are displayed. In order for such hopping processes
to be possible, there needs to be suitable unoccupied 3d-orbital states asso-
ciated with the Mn2+ ions. For the configuration in the upper half of the
figure, hopping is possible in both directions, while for the configuration in
the lower half, hopping is only possible in one direction. (b) The RKKY
energy coefficient E = J(rij) of Eq. (4.13), expressing the interaction be-
tween two localized magnetic impurities mediated by the itinerant electrons
of a normal metal, as a function of the distance between the impurity spins.
The results are presented for some set of parameters used in the third paper
included in this thesis [3].

in 1934 [97], and later expanded on in 1950 by Anderson [98]. In MnO, the
magnetic ions are Mn2+ and the non-magnetic ions are O2−. An interaction
takes place between the spins associated with the 3d-orbital of Mn2+ and
the spin associated with the 2p-orbital of O2−. Here, four electrons take part
in the interaction, two from O2− and one from each Mn2+ ion. Depending
on the filling of the orbitals, as well as spatial location of the Mn2+ ions, the
interaction between the spins associated with the two Mn2+ ions can prefer
alignment or anti-alignment of the spins.

We can e.g. consider two Mn2+ ions located on opposite sides of a O2−

ion (forming a 180° angle). The system can lower its kinetic energy by al-
lowing the 2p electrons of the O2− ion to hop to the neighboring Mn2+ ions.
However, for this to be possible, the 3d-orbital electrons of the magnetic
ions need to be in a suitable configuration. For hopping to our two consid-
ered Mn2+ ions, there will be two relevant 2p electrons with opposite spins.
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If there then e.g. are 3d electrons with parallel spins on the two sides of
the O2− ion, only one of the 2p electrons will be able to hop over to the
neighboring ions due to the Pauli principle. An anti-alignment of the two
3d electrons will therefore be favored. This is illustrated in Fig.4.1 (a). One
can similarly also discuss interaction between two Mn2+ ions that form a
90° angle with the neighboring O2− ion, rather than a 180° angle, as well as
different filling of the 3d-orbitals. The overall conclusion is then that this
type of superexchange interaction gives rise to antiferromagnetism in MnO.

During the above process no charge transfer happens as the Mn2+ ions
all have the same number of electrons. The double exchange interaction is
another type of indirect exchange interaction which can take place when the
two magnetic ions that interact with each other via a non-magnetic ion do
not have the same number of electrons. A transfer of charge can then take
place. This type of interaction was first proposed by Zener in 1951 [99]. A
famous example is La1−xSrxMnO3, which is a metallic ferromagnet. One
electron from a Mn3+ ion can in this case hop to a Mn4+ ion via a O2− ion
if the spins of the two Mn atoms are aligned.

Indirect exchange interaction can also be mediated by conduction elec-
trons, referred to as RKKY interaction. Below we discuss RKKY interaction
in more detail as it is the subject of the third paper [3] included in this thesis.

4.3 Ruderman–Kittel–Kasuya–Yosida interaction

In 1954, Ruderman and Kittel calculated the indirect interaction between
local magnetic moments, originating with nuclei in a metal mediated by
itinerant electrons [100]. Later, in 1956, Kasuya performed a similar study
for indirect interaction between inner shell electrons [101] which have a weak
direct interaction as they are strongly localized, leading to a small overlap
of their wavefunctions. In 1957, Yoshida investigated the same effect as
Kasuya in CuMn alloys [102]. All these studies found that two localized
magnetic moments in a metal can interact with each other indirectly via
spin polarizing the conductance electrons around themselves. This indirect
exchange interaction is known as the RKKY interaction in honor of these
four researchers. The famous characteristic of this interaction is that it,
in a normal metal, exhibits a damped oscillatory behaviour as a function
of the distance between the localized magnetic moments. The oscillations
are caused by interference effects possible due to the dual particle-wave
nature of electrons. Itinerant electrons approaching a localized magnetic
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moment can scatter from it. The wave functions of the scattered electrons
then interfere with each other either constructively or destructively, creating
regions in the space that have higher density of spin up electrons than spin
down electrons, as well as regions with higher density of spin down. This
gives rise to an oscillatory pattern of electron spin density which leads to
a spatial variation in the preferred direction of a second, nearby, localized
spin. The resulting, spatially dependent, interaction between the localized
spins is what we refer to as the RKKY interaction.

We proceed by showing how the interaction between local magnetic mo-
ments in a metal can be calculated through the Schrieffer-Wolff transforma-
tion, presented in AppendixE. A normal metal with localized magnetic mo-
ments interacting with the conductance electrons can be described through
a Hamiltonian

H = − t ∑
⟨i,j⟩,α

c†i,αcj,α − µ∑
i,α

c†i,αci,α + J∑
i

Si ⋅ si. (4.10)

The final term is here treated as a perturbation to a system of non-interacting
electrons and lattice site spins. The lattice site spins are treated as classi-
cal spins, and their coupling strength J to the conduction electrons spins
si = ∑αβc

†
iασα,βci,β is assumed to not be too strong. Performing the Fourier

transformation ci,α =
1√
N
∑k e

−ik⋅rjck,α, the Hamiltonian takes the form

H =∑
k,α

εkc
†
k,αck,α +

J

N
∑
i

Si ⋅ ∑
k,k′

α,α′

[σαβe
i(k−k′)⋅rjc†k,αck′,β]. (4.11)

We then consider the following Ansatz in the Schrieffer-Wolff transformation

S = ∑
k,k′

α,α′

Ak,k′

α,α′
c†k,αck′,α. (4.12)

Following the steps in Appendix E, we end up with an effective Hamilto-
nian representing the indirect interaction between localized spins. Further
calculating the expectation value of this effective Hamiltonian, we obtain
the RKKY energy

ERKKY =∑
i,j

J(rij)(Si ⋅Sj), (4.13)
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where

J(rij) = − (
J

N
)

2
∑
k,k′

ei(k−k
′)⋅(ri−rj)

εk − εk′
(n(εk) − n(εk′)). (4.14)

Here, rij = ri − rj is the distance between the two localized spins. The
electron energies are even under k → −k, making the Fermi-Dirac distri-
bution function n(εk) also even under inversion of momentum. Therefore,
only the part of the exponential function which is even under k → −k and
k′ → −k′ will survive in the summation. This gives rise to a an oscillatory
factor cos((k − k′) ⋅ (ri − rj)). For large rij , this factor oscillates rapidly
when the momenta are summed over, leading to the contributions to the
sums cancelling out and the result becoming small. Whether the result ends
up as positive or negative depends on the specific value of rij . The overall
behavior of the RKKY interaction is therefore that it exhibits damped os-
cillations as a function of increasing distance between the localized spins as
displayed in Fig 4.1 (b).

4.3.1 Collinear and non-collinear RKKY interaction

What we calculated above represents a collinear symmetric type of RKKY
interaction known as Heisenberg-like RKKY interaction. Such an interac-
tion prefers alignment or anti-alignment of the interacting spins, without
any preference for alignment or anti-alignment along any specific direction.
This type of interaction is usually present in systems with spin-degeneracy,
where we e.g. can mention graphene [103, 104], topological insulators [105]
and superconducting materials [106–109].

In a spin-polarized system, i.e. a system without spin-degeneracy, the
RKKY interaction is no longer collinear symmetric, but rather what is re-
ferred to as collinear nonsymmetric. In addition to a Heisenberg term, the
RKKY interaction then features an Ising term. The Ising term represents
that a specific direction in spin-space is special, meaning that the interaction
is no longer isotropic in spin-space. Examples of such system which have
been studied in the literature is a one-dimensional spin-polarized electron
gas [110] or spin-polarized graphene [111].

In systems with spin-orbit interactions, however, the RKKY interaction
can become more complicated and exhibit non-collinear features [112, 113].
In this case, the RKKY interaction between localized spins has been shown
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Figure 4.2: (a) A thin film superconductor is located on top of a ferromag-
netic insulator (FMI). The FMI induces a homogeneous exchange field (h)
inside the superconductor. Two impurity spins S1 and S2 in the supercon-
ductor are separated by a distance R21. (b) The superconducting gap for
an s-wave spin-split superconductor as a function of the spin-spiltting field
for two different values of the temperature.

to include Dzyaloshinksii-Moriya interaction[114, 115], which favours twist-
ing of the localized spins away from a collinear orientation.

All in all, RKKY interaction between two localized spins, S1 and S2, can
typically be summarized as αHS1 ⋅S2 +αI(S

i
1 S

i
2)+αD ⋅S1 ×S2. Where the

first term is a Heisenberg term, the second one is an Ising term and the last
one represents a Dzyaloshinskii-Moriya type interaction. In the following
section, we will investigate the RKKY interaction between magnetic impuri-
ties in a spin-split superconductor. The relevant types of RKKY interaction
will then be the Heisenberg and Ising types.

4.4 RKKY in a spin−split superconductor

In the previous chapter, we discussed how one can induce a homogeneous
spin-splitting field inside a superconductor. The aim of this section is to
discuss the RKKY interaction between impurity spins mediated by the
quasiparticles of an s-wave spin-split superconductor, considered in paper
[3]. One possible experimental realization of such a system is illustrated in
Fig. 4.2 (a), where a superconductor is located on top of a ferromagnetic
insulator (FMI). The tight-binding Hamiltonian describing our system con-
sists of two terms: a non-perturbative term, and a perturbative term. The
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non-perturbative part is simply the mean-field Hamiltonian in Eq. (3.8)
describing a spin-split superconductor. Rather than going to the thermody-
namic limit, we here consider a finite system with continuous boundary con-
ditions in-plane. The interaction potential is taken to be constant, without
any momentum-space structure, arising from a constant attractive on-site
interaction. Fig. 4.2 (b) shows the solution to the gap equation that mini-
mizes the free energy for different spin-splitting fields, as well as the tem-
perature dependence of the curves. At low temperatures, the gap equation
is barely affected by the spin-splitting field. The gap is then almost con-
stant until the spin-splitting field approaches the Chandrasekhar-Clogston
limit. At higher temperatures, closer to the critical temperature, the spin-
splitting field is able to affect the gap equation, leading to a gap that more
gradually decreases until it vanishes at some field value smaller than the
Chandrasekhar-Clogston limit.

The perturbative part of the Hamiltonian includes the interaction be-
tween localized impurity spins, Si and the itinerant electrons inside the
superconductor with spin si = ∑αβ ciασαβciβ where σ is the Pauli matrix.
The localized impurity spins are treated as classical spins. The pertubative
term in the Hamiltonian takes the form

∆H = J
2

∑
i=1

Si ⋅ si, (4.15)

where J is the strength of the interaction between a localized impurity spin
and an itinerant electron at site i. In order to calculate the indirect interac-
tion between one impurity spin and the other impurity spin, we perform a
Schrieffer-Wolff transformation, as detailed in Appendix E. After perform-
ing this transformation, we are left with an effective interaction between
impurity spins mediated by the quasiparticles in the superconductor. When
the quasiparticles are affected by a spin-splitting field, this effective interac-
tion is not isotropic in spin-space. The effective interaction has one term for
the interaction between the component of the spins in the direction of the
spin-splitting field, which we refer to as an Ising term with RKKY energy
EI determining whether the RKKY interaction prefers this component of
the spins to be aligned or anti-aligned. The effective interaction also has a
term for the plane perpendicular to the direction of the spin-splitting field,
which we refer to as a Heisenberg term with RKKY energy EH . The to-
tal RKKY energy, representing the interaction between two impurity spins,
then takes the form
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ERKKY = E0 + 2EH(R21)(S
x
1S

x
2 + S

y
1S

y
2) + 2EI(R21)(S

z
1S

z
2). (4.16)

Here, E0 is a term which does not depend on the relative orientation of the
two impurity spins. It contains e.g. ∑k,αEk,αn(Ek,α), where Ek,α is the
excitation energy of a quasiparticle affected by the spin-splitting field and
n(Ek,α) is the Fermi-Dirac distribution function. More importantly, E0 also
includes anisotropy terms of the form EI[(S

z
1)

2 + (Sz2)
2] and EH[(Sx1 )

2 +

(Sx2 )
2 + (Sy1)

2 + (Sy2)
2], which can influence the preferred direction of the

impurity spins. Moreover, in our Schrieffer-Wolff transformation, we ignored
another term which can also influence the preferred direction of the impurity
spins. This term is a first-order term on the form ⟨∆H⟩ = ∑i⟨Si⟩ ⋅ ⟨si⟩
leading to a coupling between the impurity spins and the spin-splitting field.
This coupling can be quite strong, dictating the preferred direction of the
impurity spins. However, despite the fact that the RKKY interaction might
not be the dominant effect, it will still be present in these types of systems
and should therefore be understood. Measuring the RKKY interaction in
such systems could also still be possible, as introduced in the next section.

4.5 Experimental realization

We here introduce a potential method that could be used in order to measure
RRKY interaction between two impurity spins in a spin-polarized system.
We consider the system presented in Fig. 4.2 (a), where a thin film super-
conductor is placed on top a ferromagnetic insulator. The ferromagnet will
induce an exchange field h inside the superconductor. We consider two im-
purity spins (S1 and S2) in the superconductor. As discussed above, the
presence of the uniform exchange field is likely to dictate the direction of the
impurity spins, leading to an aligned configuration. In this case, the direc-
tionally dependent energy of the impurity spin subsystem will be the sum
of the coupling between the two individual impurity spins and the back-
ground field, as well as the RKKY interaction between the two impurity
spins. This energy can, assuming that the impurity spins are aligned due
to the background field, be expressed as

E1 = − ζS1h − ζS2h +ERKKY. (4.17)
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Here, the RKKY term is then of the from ERKKY = J(R21), where R21 is the
distance between the two impurity spins, and the spins are normalized to
1. With spins aligned with the background field we further have J(R21) =

2EI(R21). Moreover, ζ is some constant determining the strength of the
interaction between the impurities and h. Using e.g. spin-polarized scanning
tunneling microscopy (STM), as discussed in [116, 117], we flip one of the
spins (e.g. S2). The impurity spin energy then becomes

E2 = − ζS1h + ζS2h − J(R21). (4.18)

The first term is the same as in E1, but the second and third term have
changed sign as the two impurity spins are now anti-aligned. The energy
cost to flip S2, which can be related to the current that is applied through
the STM-tip to provide the spin-transfer torque, is the energy difference
between E1 and E2. We then have that

Eflip =E2 −E1 = 2ζS2h − 2J(R21). (4.19)

In order to determine the RKKY interaction J(R21), we consider an addi-
tional measurement where the impurity spins are far away form each other
so that the RKKY interaction can be neglected. The spin-flip energy is
in this case named E′

flip which is simply equal to 2ζS2h. The strength of
the RKKY interaction at a specific separation distance R21 can then be
calculated from

J(R21) =
E′

flip −Eflip

2
. (4.20)

Reaping this process for different separation distances leads to knowledge
of the distance dependence of the RKKY interaction.

The above outlined method should be viewed as a proof of principle,
showing that it could be possible to extract information about the RKKY
interaction in experiments despite the fact that the RKKY interaction is
masked by interaction between the impurity spins and the background field.





5
Bogoliubov-de Gennes
method for lattice models

The purpose of this chapter is to go through the method which has been
used in the first two papers. First, the Bogoliubov-de Gennes (BdG) equations
for a normal metal on a square lattice will be derived, treating the problem
in real-space. We then generalize this derivation to the case of an s-wave
superconductor as well as a d-wave superconductor. We end the chapter by
going to momentum space and mapping out the phase diagram of the model
used to describe d-wave pairing.

5.1 Normal Metal

5.1.1 Hamiltonian

We first consider a Hamiltonian describing a normal metal on a square
lattice

H = − ∑
⟨ij⟩,α

tijc
†
i,αcj,α −∑

i,α

µic
†
i,αci,α. (5.1)

This simple Hamiltonian includes no interaction between electrons, and it
can therefore be numerically diagonalized without any further treatment.
We will, however, take some extra steps in the treatment of this simple
Hamiltonian in order to establish a method that can also be applied in
more complicated cases such as for s-wave and d-wave superconductors.
We begin by introducing a basis B†

i = (c†i,↑ c
†
i,↓ ci,↑ ci,↓) where i = (ix, iy) in

the xy plane of an assumed two-dimensional structure. This basis is chosen
with future application to superconductivity in mind. Using this basis the
Hamiltonian is rewritten as H =H0 +

1
2 ∑i,j B

†
i hi,jBj =H0 +

1
2W

†SW . Here,
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W is a 4N -dimensional vector of electron operators, where N = NxNy is the
number of lattice sites in the system. Further, S is a 4N × 4N -dimensional
matrix which should be diagonalized. The vector W is expressed as

W †
= ( D†

1⋯D
†
iy
⋯D†

Ny
) , (5.2)

where

D†
iy
= ( B†

1,iy
⋯B†

ix,iy
⋯B†

Nx,iy
) , (5.3)

and Bix,iy = Bi. Further, the matrix S is expressed as

S =

⎛
⎜
⎜
⎝

S1,1 . . . S1,Ny

⋮ ⋱ ⋮

SNy ,1 . . . SNy ,Ny

⎞
⎟
⎟
⎠

, (5.4)

where

Siy ,jy =

⎛
⎜
⎜
⎝

h(1,iy),(1,jy) . . . h(1,iy),(Nx,jy)
⋮ ⋱ ⋮

h(Nx,iy),(1,jy) . . . h(Nx,iy),(Nx,jy)

⎞
⎟
⎟
⎠

. (5.5)

Here, h(ix,iy),(jx,jy) = hi,j , which has the form

hi,j =

⎛
⎜
⎜
⎜
⎜
⎝

ai,j 0 0 0

0 ai,j 0 0

0 0 −ai,j 0

0 0 0 −ai,j

⎞
⎟
⎟
⎟
⎟
⎠

, (5.6)

with ai,j = −µδi,j − t(δi,j+1 + δi,j−1).

5.1.2 BdG equations

In order to diagonalize the matrix S, we introduce a unitary matrix P such
that Sd = PSP

† becomes a diagonal matrix. Then, H =H0+
1
2W

†P †PSP †×

PW = H0 +
1
2W̃

†SdW̃ , where Sd now contains the eigenvalues of S, i.e.
the quasiparticle energies Em with m ∈ [1,4NxNy]. Further, the vector
W̃ is a vector which contains the quasiparticle creation and annihilation
operators (γ and γ†), which are linear combinations of the original electron
operators.We write out Sd and W̃ † as
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Sd =

⎛
⎜
⎜
⎝

E1 . . . 0

⋮ ⋱ ⋮

0 . . . E4NxNy

⎞
⎟
⎟
⎠

, (5.7)

and

W̃ †
= ( γ†

1 γ†
2 γ†

3 . . . γ†
4NxNy

) . (5.8)

In order to determine the unitary matrix P , we need the eigenstates of S
which we express as

Φ†
m = ( φ†

1,m . . . φ†
iy ,m

. . . φ†
Ny ,m

) , (5.9)

where

φ†
iy ,m

= ( ϕ†
(1,iy),m . . . ϕ†

(ix,iy),m . . . ϕ†
(Nx,iy),m ) , (5.10)

and with ϕ(ix,iy),m = ϕi,m, where

ϕ†
i,m = ( υ∗i,m ν∗i,m ω∗i,m χ∗i,m ) . (5.11)

These eigenstates, together with their corresponding eigenvalues, can be
obtained by numerically diagonalizing the matrix S. Then, for the matrix
P , represents the transformation from normal creation and annihilation
operators (ciα and c†iα) into quasiparticle operators (γmα and γ†

mα), we can
write

P †
= ( Φ1 Φ2 . . . Φ4NxNy ) . (5.12)

Using that P †W̃ =W , we further have that

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ1,1 . . . φ1,m . . . φ1,4NxNy

⋮ ⋱ ⋮ ⋱ ⋮

φiy ,1 . . . φiy ,m . . . φiy ,4NxNy
⋮ ⋱ ⋮ ⋱ ⋮

φNy ,1 . . . φNy ,m . . . φNy ,4NxNy

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

W̃ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1

⋮

Diy

⋮

DNy

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5.13)

From this equation, the original creation and annihilation operators can be
written in terms of quasiparticle operators as
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ci↑ =
4NxNy

∑
m=1

υi,mγm , ci↓ =
4NxNy

∑
m=1

νi,mγm ,

c†i↑ =
4NxNy

∑
m=1

ωi,mγm , c†i↓ =
4NxNy

∑
m=1

χi,mγm .

(5.14)

By means of W̃ = PW , the reverse relation between the c (c†) operators and
γ (γ†) is

γm =∑
i

υ∗i,mci,↑ + ν
∗
i,mci,↓ + ω

∗
i,mc

†
i,↑ + χ

∗
i,mc

†
i,↓. (5.15)

In the above equations for the quasiparticle operators, only half of the op-
erators are independent as the system only contains 2NxNy independent
single particle states. The other half of the operators can be related to
the first half, meaning that some of the coefficients υ∗i,m with ω∗i,m, and ν∗i,m
with χ∗i,m are related to each other. To show this, we consider the eigenvalue
problem associated with S, giving rise to an equation for the ith row

∑
j

⎛
⎜
⎜
⎜
⎜
⎝

ai,j 0 0 0

0 ai,j 0 0

0 0 −ai,j 0

0 0 0 −ai,j

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

υj,m
νj,m
ωj,m
χj,m

⎞
⎟
⎟
⎟
⎟
⎠

= Em

⎛
⎜
⎜
⎜
⎜
⎝

υi,m
νi,m
ωi,m
χi,m

⎞
⎟
⎟
⎟
⎟
⎠

. (5.16)

We start from

∑
j

⎛
⎜
⎜
⎜
⎜
⎝

ai,jυj,m
ai,jνj,m
−ai,jωj,m
−ai,jχj,m

⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

Emυi,m
Emνi,m
Emωi,m
Emχi,m

⎞
⎟
⎟
⎟
⎟
⎠

, (5.17)

multiply each row with −1, and then take the complex conjugate. Next, we
swap the first row with the third row and the second row with the fourth
row. We then obtain a new equation

∑
j

⎛
⎜
⎜
⎜
⎜
⎝

ai,j 0 0 0

0 ai,j 0 0

0 0 −ai,j 0

0 0 0 −ai,j

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

ω∗j,m
χ∗j,m
υ∗j,m
ν∗j,m

⎞
⎟
⎟
⎟
⎟
⎠

= −Em

⎛
⎜
⎜
⎜
⎜
⎝

ω∗i,m
χ∗i,m
υ∗i,m
ν∗i,m

⎞
⎟
⎟
⎟
⎟
⎠

. (5.18)
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This equation implies the existence of an eigenvector with elements related
to the elements of our original eigenvector and opposite eigenvalue. We can
then e.g. write

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

υ1,m+2

ν1,m+2

ω1,m+2

χ1,m+2

⋮

υNxNy ,m+2

νNxNy ,m+2

ωNxNy ,m+2

χNxNy ,m+2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω∗1,m
χ∗1,m
υ∗1,m
ν∗1,m
⋮

ω∗NxNy ,m
χ∗NxNy ,m
υ∗NxNy ,m
ν∗NxNy ,m

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.19)

where the eigenvalue associated with this eigenvector is Em+2 = −Em. Using
the above relationship between the elements of the eigenvectors, we can then
show directly that γm+2 = (γm)†. We then obtain the final expressions for
the original electron operators in therms of the quasiparticle operators

ci↑ =
2NxNy

∑
m=1

(υi,mγm + ω
∗
i,mγ

†
m),

ci↓ =
2NxNy

∑
m=1

(νi,mγm + χ
∗
i,mγ

†
m),

c†i↑ =
2NxNy

∑
m=1

(ωi,mγm + υ
∗
i,mγ

†
m),

c†i↓ =
2NxNy

∑
m=1

(χi,mγm + ν
∗
i,mγ

†
m).

(5.20)

5.1.3 Diagonalized Hamiltonian

The diagonalized form of the Hamiltonian can now, using Eqs. (5.7) and
(5.8), be written out as

H =H0 +
1

2
∑
m

[Emγ
†
mγm +Em+2γ

†
m+2γm+2]. (5.21)
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In the previous section, we concluded that Em+2 = −Em and γm+2 = (γm)†.
Inserting these relations in the above equation, and using the fermionic anti-
commutation relations, provides us with the final diagonalized form of the
Hamiltonian

H = H0 −
1

2

2NxNy

∑
m=1

Em +
2NxNy

∑
m=1

Emγ
†
mγm. (5.22)

From this Hamiltonian, we then see that the expression for the expectation
value of the number operators for the quasiparticles will be ⟨γ†

mγm⟩ = n(Em),
where n(Em) is the Fermi-Dirac distribution function. Moreover, the free
energy of the system, using the expression for the free energy derived in
Appendix C, is

F =H0 −
1

2

2NxNy

∑
m=1

Em −
1

β

2NxNy

∑
m=1

ln(1 + e−βEm). (5.23)

5.2 s-wave pairing

5.2.1 Hamiltonian

As explained previously, the tight-binding Hamiltonian in Eq. (2.5), fea-
turing an attractive on-site interaction, can give rise to isotropic s-wave
pairing. Applying mean-field theory together with the real-space definition
of the superconducting gap ∆i = −Vi⟨ci↓ci↑⟩, hi,j takes the following form

hi,j =

⎛
⎜
⎜
⎜
⎜
⎝

ai,j 0 0 di,j
0 ai,j −di,j 0

0 −d∗i,j −ai,j 0

d∗i,j 0 0 −ai,j

⎞
⎟
⎟
⎟
⎟
⎠

. (5.24)

We have here defined di,j = ∆iδi,j , and the definition of ai,j is as in the
normal metal case. Following the outlined method, we start by investigating
the ith row of eigenvalue equation for the mth eigenvector of S

∑
j

⎛
⎜
⎜
⎜
⎜
⎝

ai,j 0 0 di,j
0 ai,j −di,j 0

0 −d∗i,j −ai,j 0

d∗i,j 0 0 −ai,j

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

υj,m
νj,m
ωj,m
χj,m

⎞
⎟
⎟
⎟
⎟
⎠

= Em

⎛
⎜
⎜
⎜
⎜
⎝

υi,m
νi,m
ωi,m
χi,m

⎞
⎟
⎟
⎟
⎟
⎠

. (5.25)
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As before, this expression can be rewritten in order to obtain an equation
for an eigenvector with a corresponding eigenvalue which has the opposite
sign of the original eigenvalue

∑
j

⎛
⎜
⎜
⎜
⎜
⎝

ai,j 0 0 di,j
0 ai,j −di,j 0

0 −d∗i,j −ai,j 0

d∗i,j 0 0 −ai,j

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

ω∗j,m
χ∗j,m
υ∗j,m
ν∗j,m

⎞
⎟
⎟
⎟
⎟
⎠

= −Em

⎛
⎜
⎜
⎜
⎜
⎝

ω∗i,m
χ∗i,m
υ∗i,m
ν∗i,m

⎞
⎟
⎟
⎟
⎟
⎠

. (5.26)

A relationship can therefore be established between the elements of the
mth and (m+2)th eigenvectors. A similar relationship can also be obtained
for the elements of the (m + 1)th and (m + 3)th eigenvectors. As before,
with help of these relations, we can express the original electron operators
in terms of the new quasiparticle operators, obtaining the expressions in
Eq. (5.20). Similarly, the diagonalized Hamiltonian and free energy takes
the same form as in Eqs. (5.22) and (5.23). The difference is that, since the
matrix hi,j is now modified, the eigenvector elements and eigenvalues will be
different from the normal metal case. We now also need to self-consistently
determine the superconducting gap. Starting out from the definition of the
gap, we then use the expressions for the original electron operators in terms
of the new quasiparticle operators to obtain

∆i = − Vi

2NxNy

∑
m=1

[νi,mω
∗
i,m + (χ∗i,mυi,m − νi,mω

∗
i,m)n(Em)]. (5.27)

5.2.2 Magnetization and local density of states

An important quantity in the two first papers [1, 2] included in this thesis
is the local magnetization Mi = ⟨Si⟩. Here Si = ∑αβ c

†
iασαβciβ. Using

the BdG equations in Eq. (5.20), we obtain for the different directions in
spin-space

Mx
i =⟨Sxi ⟩ = ⟨c†i↑ci↓ + c

†
i↓ci↑⟩ =∑

m

[χi,mω
∗
i,m + ωi,mχ

∗
i,m+

(υ∗i,mνi,m − ωi,mχ
∗
i,m − χi,mω

∗
i,m + υi,mν

∗
i,m)n(Em)],

(5.28)
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My
i =⟨Syi ⟩ = ⟨−ic†i↑ci↓ + ic

†
i↓ci↑⟩ = i∑

m

[χi,mω
∗
i,m − ωi,mχ

∗
i,m+

(ωi,mχ
∗
i,m − υ

∗
i,mνi,m − χi,mω

∗
i,m + υi,mν

∗
i,m)n(Em)],

(5.29)

M z
i =⟨S

z
i ⟩ = ⟨c†i↑ci↑ − c

†
i↓ci↓⟩ =∑

m

[∣ωi,m∣
2
− ∣χi,m∣

2
+

(∣υi,m∣
2
− ∣νi,m∣

2
− ∣ωi,m∣

2
+ ∣χi,m∣

2
)n(Em)].

(5.30)

Another important quantity is the local density of states (LDOS), which
represents the density of states associated with a specific lattice site. In
order to derive this quantity, we start with the expression for the charge at
a given lattice site

ρi =∑
α

⟨c†i,αci,α⟩ =∑
m

[(∣ωi,m∣
2
+ ∣χi,m∣

2
)(1 − n(Em))+

(∣υi,m∣
2
+ ∣νi,m∣

2
)n(Em)].

(5.31)

The charge density at a lattice site can be expressed as the local density of
states, Di(E), multiplied by the probability that a state with energy E is
occupied, integrated over all energies. In equation form, we write this as ρi =

∫
+∞
−∞ Di(E)n(E)dE. When working at low temperatures, which is often

necessary when considering superconductivity, the Fermi-Dirac distribution
can be approximated by a step function. Then, ρi = ∫

0
−∞Di(E)dE, and the

charge density in Eq. (5.31) can be written as

∑
m

[(∣ωi,m∣
2
+ ∣χi,m∣

2
)Θ(Em) + (∣υi,m∣

2
+ ∣νi,m∣

2
)Θ(−Em)]

= ∫

0

−∞
Ni(E)dE,

(5.32)

where Θ(Em) is the Heaviside step function. We can then obtain an ex-
pression for the local density of states
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Di(E) =∑
m

[(∣ωi,m∣
2
+ ∣χi,m∣

2
)δ(E +Em) + (∣υi,m∣

2
+ ∣νi,m∣

2
)δ(E −Em)].

(5.33)

5.3 d-wave pairing

5.3.1 Hamiltonian

In order to describe d-wave superconductivity, we start from the tight-
binding Hamiltonian in Eq. (2.25). We limit ourselves to nearest-neighbor
interaction between electrons with opposite spins and work with a thin-film
system. The possibility of interaction between electrons with spins point-
ing in the same direction can give rise to polarized spin-triplet, which we
will not consider in the following. Using the fermionic anticommutation
relations, we can rewrite the Hamiltonian on the form

HEBCS = − ∑
⟨i,j⟩,α

tijc
†
i,αcj,α −∑

i,α

µini,α − 2V∑
⟨ij⟩

ni,↑nj,↓, (5.34)

where V = V α,α′
ij /2. After doing the usual mean-field approximation, we

obtain for hi,j

hi,j =

⎛
⎜
⎜
⎜
⎜
⎝

ai,j 0 0 −ni,j
0 ai,j mi,j 0

0 n∗i,j −ai,j 0

−m∗
i,j 0 0 −ai,j

⎞
⎟
⎟
⎟
⎟
⎠

, (5.35)

where

ai,j = − µδij − t(δi,j+1 + δi,j−1),

ni,j =2V Fi,j(δij+1 + δij−1),

mi,j =2V Fj,i(δij+1 + δij−1).

(5.36)

The pairing amplitudes are now defined as

Fi,j = F
↑↓
i,j = ⟨ci↑cj↓⟩. (5.37)
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Following the method outlined above, and using the BdG transformation
Eq.(5.20), we need to evaluate eight pairing amplitudes relating to different
directions in the plane of the thin-film. They are

F x±i =

2NxNy

∑
m=1

[(ω∗i,mνi±x̂,m − υi,mχ
∗
i±x̂,m)n(Em) + υi,mχ

∗
i±x̂,m],

F±x
i =

2NxNy

∑
m=1

[(ω∗i±x̂,mνi,m − υi±x̂,mχ
∗
i,m)n(Em) + υi±x̂,mχ

∗
i,m],

F y±i =

2NxNy

∑
m=1

[(ω∗i,mνi±ŷ,m − υi,mχ
∗
i±ŷ,m)n(Em) + υi,mχ

∗
i±ŷ,m],

F±y
i =

2NxNy

∑
m=1

[(ω∗i±ŷ,mνi,m − υi±ŷ,mχ
∗
i,m)n(Em) + υi±ŷ,mχ

∗
i,m],

(5.38)

where we have used the notation Fi+x̂,i ≡ F
+x̂
i and similarly Fi,i+x̂ ≡ F

x̂+
i . As

before, we diagonalize the system numerically to obtain the eigenenergies
Em as well as the BdG transformation coefficients υi,m, νi,m, ωi,m and χi,m.
Further, we calculate the pairing amplitudes self-consistently. This is done
by starting from some set of initial values for the pairing amplitudes, diag-
onalizing the system, calculating the pairing amplitudes in Eq. (5.38), and
diagonalizing the system with updated values for the pairing amplitudes.
This procedure is repeated until convergence is achieved. The relevant BdG
transformation coefficients and eigenenergies that give rise to the converged
values for the pairing amplitudes are then used to obtain the free energy,
LDOS, and magnetization if necessary.

5.3.2 Phase diagram

The above discussed model for a d-wave superconductor is used in the second
paper [2] contained in this thesis. In order to make sure that the parameters
are chosen so that the considered model actually features d-wave supercon-
ductivity, we in this section consider a system with continuous boundary
conditions and map out the phase diagram of the model. We start out from
Eq. (2.31) where now, again, restrict ourselves to interaction between



5.3. d-wave pairing 65

Figure 5.1: (a) Phase diagram for the model introduced in this chapter for
nearest-neighbour attractive interaction between opposite spins. (b) Super-
conducting gap pairing symmetries appearing in the phase diagram, which,
starting from the top, represent px-wave, extended s-wave, and dx2−y2-wave
symmetries. Red color and blue colors are used to show a sign change of
the superconducting gap as we move around the Fermi surface.

electrons with opposite spins, setting V = V α,α′
ij /2 in this case. Using the

fermionic anticommutation relations together with Aα,α′(k) = −Aα′,α(−k),
we can write Eq. (2.31) as

HMF
EBCS =∑

k

(A∗
↑,↓(k)c−k,↓ck,↑ +A↑,↓(k)c

†
k,↑c

†
−k,↓)+

∑
k,α

εkc
†
k,αck,α +H

0
EBCS,

(5.39)

Taking advantage of the framework developed in this chapter, we proceed to
diagonalize this mean-field extended BCS Hamiltonian numerically. Using
Eq. (2.39), the matrix that should be diagonalized can be expressed as

Hk =

⎛
⎜
⎜
⎜
⎜
⎝

εk 0 0 −A↑,↓(k)

0 εk A↑,↓(k) 0

0 A∗
↑,↓(k) −εk 0

−A∗
↑,↓(k) 0 0 −εk

⎞
⎟
⎟
⎟
⎟
⎠

. (5.40)
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Diagonalization of this matrix gives rise to the eigenvalues Em,k and eigen-

vectors ϕ†
k,m = (υ∗k,m ν∗k,m ω∗k,m χ∗k,m), where we again have that half

of the eigenvectors can be expressed in terms of the elements of the other
half. We can then consider different sets of initial values for the pairing
amplitudes that go into

A(k) = 2V (eik⋅x̂F x+↑,↓ (k) + e
−ik⋅x̂F x−↑,↓ (k)

+eik⋅ŷF y+↑,↓ (k) + F
y−
↑,↓ (k)e

−ik⋅ŷ
),

(5.41)

in order to make different pairing symmetries, such as the ones displayed in
Fig. 5.1 (b),

∆d = (V /4)(F x̂+↑,↓ + F
x̂−
↑,↓ − F

ŷ+
↑,↓ − F

ŷ−
↑,↓ ),

∆s = (V /4)(F x̂+↑,↓ + F
x̂−
↑,↓ + F

ŷ+
↑,↓ + F

ŷ−
↑,↓ ),

∆px = (V /2)(F x̂+↑,↓ − F
x̂−
↑,↓ ),

∆py = (V /2)(F ŷ+↑,↓ − F
ŷ−
↑,↓ ).

(5.42)

For a given set of initial values, we iteratively diagonalize the system and
calculate new values for the pairing amplitudes using the self-consistent
expressions

F
x±(y±)
↑↓ = −

1

N
∑
k,m

[e∓ik⋅x̂(ŷ)υk,mχ
∗
k,m(1 − n(Ek,m))

+ e±ik⋅x̂(ŷ)ω∗k,mνk,mn(Ek,m)],

(5.43)

until convergence is reached. For each set of initial values we reach conver-
gence and evaluate the free energy of the system

F =H0 −
1

2
∑
k,m

Ek,m −
1

β
∑
k,m

ln(1 + e−βEk,m). (5.44)
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The ground state of the system for a set of parameters can then be estab-
lished. Repeating this procedure for different values of the temperature and
the chemical potential, the phase diagram in Fig. 5.1 (a) is obtained.





6
Indirect exchange interaction
between ferromagnets

Previously, we discussed indirect exchange interaction between impurity spins
mediated by the quasiparticles of a spin-split s-wave superconductor. In this
chapter, we investigate the interaction between groups of spin, such as ferro-
magnets. We first consider the interaction between two metallic ferromagnets
connected by an s-wave superconductor. Next, we explore the effect of the
existence of zero-energy states, as in a d-wave superconductor with a diagonal
edge, on the indirect interaction between two metallic ferromagnets.

6.1 Superconducting spin valve

Historically, the word spin-valve effect was first used in a work by Dieny
et al. [118]. They considered two uncoupled metallic ferromagnets, e.g.
Ni, separated by a nonmagnetic metal, such as Cu or Ag. One of the
ferromagnets was coupled to an uncompensated antiferromagnet, i.e. an
antiferromagnet where only one spin sublattice is exposed at the surface
[119, 120]. As a result of the exchange bias effect [121, 122], the magne-
tization of this ferromagnet was then pinned, making it difficult to change
the magnetization through an external magnetic field. In contrast to this
fixed ferromagnet, the magnetization of the second free ferromagnet could
easily be altered through an external field. In their study, they observed
large magnetoresistive effects in this free-fixed layered structure which they
named a spin-valve.

We mentioned in the introduction chapter that de Gennes was the first
to introduce a structure consisting of two ferromagnetic insulators sand-
wiching a superconductor. Such structures are usually referred to as su-
perconducting spin-valves and can consist of both metallic and insulating
ferromagnets sandwiching a superconductor. As a result of presence of a
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superconductor, these structures feature different physics than the normal
spin-valve structure. One feature, which we have mentioned earlier, is that
TAP
c > TP

c for a superconductor sandwiched between two ferromagnetic insu-
lators, FMI/SC/FMI. Considering the thickness of the ferromagnetic layers
to be large enough, one can easily ignore the effect of the superconductor on
the ferromagnets. However, considering the effect that the superconductor
can have on the ferromagnets can also be of interest. Therefore, Zhu et al.
considered a superconducting spin-valve of GdN/Nb/GdN, i.e. of the type
FMI/SC/FMI [123], where the GdN layers that they used were thin enough
so that the effect of the superconductor was no longer negligible. They were
then able to probe the superconducting exchange coupling between the fer-
romagnets, leading to an antiferromagnetic alignment of the ferromagnets.
This result was interpreted as arising from the superconducting condensa-
tion energy being maximized for the antiparallel configuration.

As the ferromagnets in these works are insulators, the proximity effect
is not of importance. The proximity effect can, however, become important
in superconducting spin-valve structures including metallic ferromagnets.
One of the early theoretical works on superconducting spin-valves involving
metallic ferromagnets was performed in 1999 by Tagirov [124], based on the
structure proposed by Dieny. These calculations showed that in a spin-valve
structure with free-fixed metallic ferromagnets, the superconducting transi-
tion temperature is larger for anti-parallel alignment than parallel alignment
of the ferromagnets. Further, they showed that this device can be used as
a switch where the superconducting current can be turned on and off by
means of rotating the magnetization of the free ferromagnet. At around the
same time, Buzdin obtained similar results for a similar FM/SC/FM struc-
ture, finding that the parallel magnet configuration most efficiently breaks
Cooper pairs, which can be used to switch off superconductivity [125].

These two latter works were done in diffusive limit. Many studies have
also focused on dirty superconductors and/or ferromagnets, as well as dif-
ferent combinations of ferromagnets with varying properties. Later in this
chapter, we will investigate the exchange interaction between two metallic
ferromagnets in a superconducting spin valve. Importantly, the supercon-
ducting gap equation is being solved self-consistently, allowing us to consider
both the effect of the superconducting gap on the interaction between the
ferromagnets, as well as the effect of the ferromagnets on the superconduct-
ing gap. In our case, instead of determining the superconducting transition
temperature for parallel and anti-parallel magnet configurations, we deter-
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Figure 6.1: (a) Andreev reflection: An electron from the spin-down band
inside the normal metal with an energy inside a superconducting gap hits
the interface. It will pair up with an electron from the spin-up band and
leave behind a hole in the normal metal. These two electrons enter the
superconductor and generate a Cooper pair inside of it. (b) Crossed Andreev
reflection: An electron from the spin-down band of the left electrode, with
energy inside the superconducting gap, pairs up with an electron from the
opposite spin band of the right electrode and form a Cooper pair inside the
superconductor.

mine the ground state of the system by calculating the free energy difference
between these two configurations.

6.2 Andreev reflection and crossed Andreev re-
flection

As we mentioned in the previous chapters, interesting physics can arise at
the interface between a superconductor and another material. The phe-
nomena we will discuss in this section takes place when a normal conductor
like a metal or a metallic ferromagnet is brought into contact with a su-
perconductor. An electron approaching the interface from the metallic side
can then experience two different types of reflections. One type is normal
specular reflection, while the other is Andreev reflection (AR) [126, 127].
During specular reflection, an electron that hits the interface is simply re-
flected back as an electron. The total number of charge being transferred to
the other side of the interface is zero in this type of reflection, and there is
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clearly no requirement on the other side of the interface being a supercon-
ductor. Andreev reflection, on the other hand, does require the material on
the other side to be a superconductor and leads to transfer of a total charge
of −2e. In this case, an incoming electron hits the interface and is reflected
back as a hole representing the absence of a particle with spin opposite to
the incoming electron. In this process, a Cooper pair is generated inside the
superconductor, as illustrated in Fig. 6.1 (a).

In order to better understand the origin of Andreev reflections, we first
consider an electron with the energy larger than the superconducting en-
ergy gap (εk > ∆) propagating towards the interface from the metallic side.
Such an electron can be normally transmitted into the superconductor as an
electron-like quasiparticle. However, if the energy of the incoming electron is
smaller than the superconducting gap (εk < ∆), there are no available states
inside the gap that the electron can fill on the superconducting side of the
interface. Instead, this electron needs to pair up with another electron with
opposite spin and momentum to form a Cooper pair. This additional elec-
tron is taken from the metallic side of the interface, leaving behind a hole.
In other words, the incoming electron is reflected as a hole. The inverse
processes involves a hole, approaching the interface from the metallic side,
being reflected as an electron. During this scattering process, a Cooper pair
inside the superconductor is destroyed. Both normal and inverse Andreev
reflection contribute to the proximity effect as both processes introduce cor-
relations between electrons and holes.

Andreev reflection is a local phenomenon in the sense that both parti-
cles that contribute to the generation of an additional Cooper pair inside
the superconductor come from one metallic contact. On the other hand,
Crossed Andreev reflection (CAR) is a non-local phenomenon where the
particles that generate the Cooper pair originate with two different metal-
lic contacts. In CAR, the hole is reflected back inside the second metallic
contact, as displayed in Fig. 6.1 (b). The existence of crossed Andreev re-
flection was first theoretically predicted [128, 129], and later observed in
layered structures of superconductors and ferromagnetic [130] or normal
metals [131].
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Figure 6.2: (a) An s-wave superconductor is sandwiched between two metal-
lic ferromagnets which are assumed to have either parallel or anti-parallel
magnetization. The configuration where the two ferromagnets have parallel
magnetization is denoted by P, while the anti-parallel configuration is de-
noted by AP. (b) The indirect interaction between the two ferromagnets, as
a function of the (horizontal) length of the superconductor, is displayed for
different strengths of the attractive interaction (V > 0) inside the supercon-
ductor.

6.3 Interaction between ferromagnets mediated by
an s-wave superconductor

The system we consider in this section is a superconducting spin-valve where
a conventional s-wave superconductor is sandwiched between two metallic
ferromagnets. This structure is illustrated in Fig. 6.2 (a). The s-wave su-
perconductor will be described using the Hamiltonian in Eq. (2.5). The
metallic ferromagnets are described through itinerant electrons coupling to
a background field as introduced in Eq. (3.4). The aim is to investigate how
the two ferromagnets interact with each other via this superconductor. The
magnetic ground state of the system is determined from the dependence of
the free energy of the system on the relative orientation of the magnetization
in the two ferromagnets. To this end, we define

J12 =F
↑↑
− F ↑↓, (6.1)

where F ↑↑ is the free energy of the system when the magnetization in the
two ferromagnets is parallel, and F ↑↓ is the free energy for the case of anti-
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parallel ferromagnets. The sign of J12 then expresses whether the free energy
is minimized by the parallel or anti-parallel configuration. The reason why
we only consider the magnetization of the two ferromagnets to be either
aligned or anti-aligned is that we are considering a spin-rotationally invari-
ant superconductor without any spin-orbit coupling or spin-splitting. The
system is then expected to either prefer a parallel or anti-parallel magnet
configuration.

The distance between the ferromagnets can be varied by changing the
length of the superconductor in the horizontal direction, denoted by d. The
free energy difference, as a function of d, is plotted in Fig. 6.2 (b) for two
different values of the strength of the attractive interaction in the super-
conductor, V1 and V2. From Fig. 6.2 (b), two types of behaviour can be
observed. For the weaker interaction potential V1, J12 displays damped os-
cillations with a preference for the AP orientation (J12 > 0) for larger d. This
behaviour can be viewed as competition between two types of behaviour:
oscillations, as well as damping with preference for anti-alignment. For the
stronger interaction potential V2, the oscillations of J12 are dominated by
damping with preference for anti-alignment.

The above discussed behaviour arises from competing effects. One is
the normal RKKY oscillations, arising from indirect interaction mediated
by itinerant particles. Another effect is that the superconducting gap pushes
the quasiparticle states away from the Fermi level, limiting the normal
RKKY interaction. With these two effects in mind, we can explain the
above presented oscillatory and damping behaviour. For the case of weaker
interaction V1, there are normal RKKY oscillations at small d. Then, as
d increases, the superconductor becomes larger, leading to a larger gap.
The RKKY interaction is then quickly weakened, giving rise to a behaviour
dominated by damping rather than oscillations. Moreover, for a stronger
attractive interaction V2, the superconducting gap is sufficiently large for
the damping behaviour to dominate even for small d.

The remaining feature of the J12 curves that is left to explain is then the
preference for an anti-parallel configuration in the damped regime. Seek-
ing to understand the sign of J12 in this region, we checked the supercon-
ducting gap for both the P and AP configuration, surprisingly finding that
∆P > ∆AP. This was unexpected as the induced magnetization inside the
superconductor is larger for the P configuration. One would therefore ex-
pect pair-breaking to give rise to ∆P < ∆AP. However, there are in general
three different pair-breaking mechanisms in this type of superconducting
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spin valves: induced magnetization, inverse Andreev reflection, and inverse
crossed Andreev reflection. For sufficiently large background field h in the
ferromagnets, there are few states close to the Fermi level in the spin mi-
nority bands of the ferromagnets, making pair breaking from inverse AR
less important regardless of the relative orientation of the two ferromag-
nets. Pair breaking from inverse CAR also becomes a weak effect in the P
configuration, but not in the AP configuration where there are still avail-
able states close to the Fermi level associated with opposite spin directions.
Based on our results in the discussed region, it then appears that the pair
breaking is dominated by inverse CAR, which then leads to the somewhat
surprising result that the superconducting gap is larger for the parallel con-
figuration. As ∆P > ∆AP, the condensation energy should be expected to
be larger for the P configuration, which one could imagine would lead to a
preference for the P configuration. This is, however, not the full story as
the ground state of the system is affected by both the condensation energy
and the RKKY interaction mediated by itinerant quasiparticles, which is
more efficiently suppressed for a larger gap. As there are more available
quasiparticles around the Fermi level in the AP configuration, featuring a
smaller superconducting gap, this configuration actually ends up minimizing
the free energy.

6.4 Zero-energy surface bound states

After the discovery of cuprate based superconductors in 1986 [56], the pair-
ing symmetry in these superconductors has been much discussed. As we
mentioned in the first chapter, these superconductors are high-Tc unconven-
tional superconductors that were early proposed to have a pairing symmetry
different from the normal s-wave pairing symmetry found in conventional
superconductors. One proposed candidate was d-wave pairing which differs
from isotropic and anisotropic s-wave pairing by changing sign when mov-
ing around the Fermi-surface. Many of the performed experiments were,
however, not able to probe the sign changes of the gap, meaning that d-
wave pairing could not be distinguished from anisotropic s-wave pairing. A
possible solution to this problem was proposed by Hu in 1994 [132]. Hu’s
proposal was motivated by the possibility of existence of zero-energy bound
states (ZES) at the surface of superconductors with d-wave pairing symme-
try.

Consider a d-wave superconductor with pairing symmetry dx2−y2 . In
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Figure 6.3: (a) A schematic illustration of scattering processes leading to
generation of midgap states in a heterostructure consisting of a normal metal
layer located between a dxy superconductor, and an insulating layer/vac-
uum. An electron inside the normal metal performs subsequent Andreev
reflections and specular reflections at the two interfaces, leading to a con-
fined electron-hole state. As the incoming quasiparticle in two subsequent
Andreev reflections face different signs of the superconducting gap, ∆+ and
∆−, the resulting bound states have zero energy relative to the Fermi level.
In (b) and (c), we present the local density of states on a diagonal edge
of a d-wave and an s-wave superconductor, respectively. For the d-wave
superconductor, a peak close to zero energy can be observed.

a rotated coordinate system aligned with a diagonal {110} edge of such a
superconductor, the order parameter will instead have a dxy symmetry. In
order to discuss the presence of zero-energy bound states at such an edge
we simply consider a superconductor with dxy symmetry. The specific setup
we will investigate is displayed in Fig. 6.3(a), consisting of a normal metal
layer sandwiched between a dxy superconductor and an insulating materi-
al/vacuum. The same arguments as presented for this system setup can be
extended to the case without the normal metal layer by considering that
there will be some region close to the interface where the superconducting
order parameter decays from its bulk value, which can play the role of the
normal metal layer present in our setup.

We then consider an electron, with energy within the superconducting
gap, approaching the interface between the normal metal layer and the su-
perconductor from the normal metal side. This electron will be Andreev
reflected as a hole, leading to the generation of a Cooper pair inside the
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superconductor. This hole will propagate to the other side of the normal
metal layer, collide with the vacuum interface, and be specularly reflected
back. Further, returning to the superconductor interface, the hole will ex-
perience inverse Andreev reflection and be reflected back as an electron.
This repeated process, illustrated in Fig 6.3 (a), leads to an electron-hole
bound state which is confined to the normal metal layer. In order to better
understand these bound states, we need to go into a bit more details.

The above picture represents a closed quasiparticle trajectory where the
phase picked up along the way consists of two important parts. The first part
is due to the Andreev reflection which gives rise to a phase θA. The second
part is the phase picked up by the quasiparticle when propagating inside the
normal metal, θP. During the Andreev reflection where an electron (hole) is
reflected back as a hole (electron), a phase shift of −arccos(E/∣∆∣)∓φ takes
place [133], where E is the electron energy relative to Fermi-level and φ is
the phase of the superconducting order parameter. The minus (plus) sign
applies for an electron (hole) hitting the interface and being reflected back as
a hole (electron). Therefore, the first Andreev reflection introduces a phase
shift −arccos(E/∣∆1∣) − φ1, while the second Andreev reflection introduces
a phase shift −arccos(E/∣∆2∣) + φ2. This leads to

θA = − (arccos(E/∣∆1∣) + arccos(E/∣∆2∣)) + (φ2 − φ1). (6.2)

On the other hand

θP =
2l

cos(θ)
(∣ke∣ − ∣kh∣), (6.3)

where l is the length of the normal metal layer, and θ is the angle be-
tween the trajectory of the incident electron and the interface normal.

The electron and hole momenta are given by ke,h = (2m(EF ± E))
1
2 . The

Bohr–Sommerfeld quantization condition requires the phase obtained dur-
ing this closed trajectory to sum up to θA + θP = 2πn, where n is an integer.
For completeness, we here discuss the resulting bound states for three dif-
ferent choices of the superconductor.

• Isotropic s-wave: For this type of superconductor ∣∆1∣ = ∣∆2∣ and
φ1 = φ2, therefore −2 arccos(E/∣∆1∣) + θP = 2πn. For n = 0, this equa-
tion leads to E = ∣∆1∣ cos(θP/2). This expression shows that bound
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states with nonzero energy are possible even for an isotropic s-wave
superconductor. In fact, the idea of existence of quasiparticle surface
bound states inside a normal metal layer sandwiched between an s-
wave superconductor and an insulator was introduced by de Gennes
and Saint-James as early as in 1963 [134].

• Anisotropic s-wave: In an anisotropic s-wave superconductor, as we
mentioned in the previous chapters, the magnitude of the gap is not
the same as we move around the Fermi-surface but the sign of it
remains unchanged. As a result of this character, we will typically
have ∣∆1∣ ≠ ∣∆2∣ and φ1 = φ2. Therefore, we instead end up with the
expression arccos(E/∣∆1∣) + arccos(E/∣∆2∣) = θP, when n = 0, simply
expressing that the bound state energies are altered by the anisotropy
of the order parameter.

• d-wave: Finally, we consider the case of a dxy superconductor, as
displayed in Fig. 6.3 (a). For the two Andreev reflections the gap
then has opposite sign but the same value, φ1 = π, φ2 = 0, and ∣∆1∣ =

∣∆2∣. The energy of the bound states can then be obtained from
−2 arccos(E/∣∆1∣)−π+θP = 2πn. If we set E = 0 in this equation, then
−2 arccos(0) − π + θP(0) = 2πn. This leads to −2(π/2) − π + 0 = 2πn
which shows that n = −1 allows for the presence of zero-energy bound
states.

Existence of such bound states with zero energy at the surface of a d-wave
superconductor was also pointed out by Tanaka et al. [135], Matsumoto
and Shiba [136], and Barash et al. [137]. These zero-energy surface states
are the origin of the observation of zero bias conductance peaks for tunnel
junctions of YBa2Cu3O7 by Greek et el, in 1988 [138], and later by other
groups such as [139, 140].

In order to investigate the existence of zero-energy surface bound states
at the surface of a d-wave superconductor, we consider a two dimensional
square lattice structure with one diagonal edge similar to Fig. 6.4 (a), apart
from the absence of the ferromagnetic contacts. Using Eq. (5.33), we calcu-
late the local density of states for one lattice point at the diagonal edge. We
consider two cases. First a d-wave superconductor described by Eq. (5.34),
leading to the LDOS plot in Fig. (6.3) (b) showing a zero-energy peak. We
also consider an s-wave superconductor, leading to an LDOS plot that does
not feature a zero-energy peak, as displayed in Fig. 6.3 (c).
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Figure 6.4: (a) Two metallic ferromagnets are located on the diagonal edge
of a d-wave superconductor. (b) The indirect interaction between the two
ferromagnets, as a function of their separation distance, for two different
values of the background field h inside the ferromagnets.

6.5 Interaction between ferromagnets mediated by
a d-wave superconductor

Earlier in this chapter, we investigated the indirect exchange interaction
between two metallic ferromagnets mediated by an s-wave superconductor.
We found that the RKKY oscillations in this case could be dominated by
a damping behaviour arising from the superconducting gap pushing quasi-
particle states away from the Fermi-level. One could then wonder how this
picture changes if one introduces available states inside the gapped region of
the excitation spectrum of the superconductor. Motivated by this, we dis-
cussed, in the previous section, the existence of localized zero-energy surface
states, referred to as midgap states. We concluded that such midgap states
can be realized for d-wave superconductors with a diagonal edge in contact
with e.g. vacuum.

In order to investigate how such midgap states affect the indirect inter-
action between ferromagnets, we therefore consider a thin-film d-wave su-
perconductor with one diagonal edge in contact with vacuum and locate two
metallic ferromagnets on the diagonal edge Fig. 6.4 (a). The Hamiltonian
used to describe the d-wave superconductor is presented in Eq. (5.34), and
suitable chemical potential can be determined from the phase plot in Fig.5.1
(a). The magnetization inside the ferromagnets is introduced through a
background field, as in Eq. (3.4). The indirect interaction between the fer-
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romagnets is expressed, as earlier in this chapter, through J12, which is the
free energy difference between the aligned and anti-aligned magnetization
configurations. Results for this indirect interaction is presented in Fig. 6.4
(b). Opposite of the indirect interaction between the ferromagnets in our
earlier considered spin-valve structure, the indirect exchange interaction
now prefers alignment of the two ferromagnets leading to J12 < 0. Further,
J12 now varies very little with the distance between the two ferromagnets.
Further, varying the strength of the background field inside the ferromag-
nets, h, we find that the behaviour is similar, but that the magnitude of J12

increases with increasing h.
This result is somewhat surprising as one might expect that the parallel

configuration of magnets will more efficiently induce a spin-splitting in the
superconductor, leading to a reduced superconducting gap and a lower con-
densation energy. However, the superconducting gap at the diagonal edge
is, even in the absence of the ferromagnets, suppressed due to the presence
of the midgap states. The effect of the ferromagnets is then mainly to spin-
split midgap states associated with opposite spin directions. This shifts the
midgap states away from their resonance energy E = 0, leading to a sup-
pression of the midgap states and a recovery of the superconducting gap
at the edge. As, the parallel magnet configuration suppresses the midgap
states most efficiently, this configuration features a larger superconducting
gap along the edge and therefore also a larger condensation energy.

The induced spin-splitting can be easily observed as the midgap states
represents many states located around zero energy. A spin-splitting then
leads to the formation of a giant magnetic moment due to the large density
of states at zero energy [132, 141, 142]. For the case of aligned magnets, this
magnetization is uniform along the edge, while for the case of anti-aligned
magnets, the magnetization has to change sign along the way. The latter
case leads to a transition region with small magnetization, corresponding to
weak spin-splitting and weak suppression of the midgap states. This tran-
sition region, not present for the aligned magnet configuration, makes the
condensation energy larger for the aligned configuration.



7
Conclusion and outlook

In this thesis, we have presented concepts needed to understand the results
in the four included research papers. We have also introduced the main
findings of these papers.

We started with a brief introduction to the historical background and
current state of the field of spintronics, as well as its subfield superconduct-
ing spintronics. We then moved on to describing the superconducting state
as well as how it can arise from attractive electron-electron interaction me-
diated by phonons, as explained by the BCS theory. The extended BCS
theory, suitable for describing unconventional superconductivity, was also
covered.

We then proceeded to consider the effect of magnetism on superconduc-
tivity, either introduced through an external magnetic field or proximity
to a magnetic material. This led us to a discussion of the Chandrasekhar-
Clogston limit, which normally restricts the spin-splitting field that a spin-
singlet superconductor can coexist with. With this background, we turned
to paper [4], which considers the critical spin-splitting field of a supercon-
ductor with a dispersive band crossing the Fermi level, and an additional
flat-band located close to the Fermi level. We explained why such a system
might feature superconductivity for spin-splitting fields larger than those
permitted by the Chandrasekhar-Clogston limit.

In the next chapter, we shifted the focus to the interaction between
magnetic impurities and especially the indirect interaction between them
mediated by itinerant particles, known as RKKY interaction. This led us
to a discussion of paper [3], which investigates the indirect interaction be-
tween magnetic impurities mediated by the quasiparticles in a spin-split
superconductor. The indirect interaction was in this case found to not be
homogeneous in spin space, but rather consist of two terms referred to as
Heisenberg and Ising terms. The Heisenberg term represents the interaction
strength for the components of the impurity spins in the plane perpendic-
ular to the magnetic field, while the Ising term describes the interaction
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strength for the component of the spins along the axis of the field. As
impurity spins in a magnetic environment will have a tendency of aligning
with the local magnetization, masking the effect of the RKKY interaction,
we further presented a proposal for how the RKKY interaction could be
extracted in experiments.

We then introduced the Bogoliubov-de Gennes method for different lat-
tice models, laying the foundation for a discussion of papers [1] and [2],
which consider indirect interaction between ferromagnets connected by su-
perconductors.

Before the discussion of these articles, we, however, had to touch on
the physics taking place at interfaces between superconductors and non-
superconducting materials. We here introduced the concept of Andreev
reflections as well as the posibility of zero-energy surface states at specific
edges of d-wave superconductors. With this we turned to paper [1], where
the indirect interaction between two ferromagnets mediated by an s-wave
superconductor is investigated in a spin-valve structure, and contrasted with
the case where the superconductor is substituted with a normal metal. Im-
portantly, rather than just investigating how the presence of the supercon-
ductor influences the ferromagnets, this study also captures the effect of the
presence of the ferromagnets on the superconductor, which again influences
the indirect interaction. The indirect interaction was in this article found
to show a different behavior depending on whether the interaction was me-
diated by a normal metal or a superconductor. In the former case, normal
RKKY oscillations were obtained, while in the latter case the interaction
was found to be more quickly suppressed with increasing length of the cen-
tral layer of the superconducting spin-valve and to prefer anti-alignment of
the magnets when the superconducting gap was sufficiently large.

Finally, we moved to a discussion of paper [2], where the indirect inter-
action between two magnetic contacts is mediated by a d-wave supercon-
ductor. When attached to a diagonal edge of the superconductor, featur-
ing zero-energy bound states, the indirect interaction was found to show a
completely different behaviour than the indirect interaction investigated in
paper [1]. The indirect interaction was in this case found to vary little with
distance and favour alignment of the ferromagnets due to the presence of
the midgap states.

Something all the papers included in this thesis have in common is that
they are focused on general model systems rather than being oriented to-
wards specific material choices. It would therefore be of interest to con-
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nect these studies closer to experiments. A good example is paper [4],
which introduces a general mechanism for how superconductivity in multi-
band systems containing flat-bands can survive beyond the Chandrasekhar-
Clogston limit. A natural next step would be to consider more realistic
models in order to learn more about in which realistic systems the outlined
mechanism can be realized. One particular system that comes to mind is
magic-angle twisted trilayer graphene, featuring closely located dispersive
and flat-bands [143], where violation of the Chandrasekhar-Clogston limit
has been observed in experiments [144]. This violation has so far been at-
tributed to spin-triplet pairing [144, 145]. As spin-split superconductors
have been found to feature large thermoelectric effects [146], it could also
be of interest to investigate thermoelectric effects in spin-split flat-band
superconductors in general.

It could also be possible to consider indirect interaction mediated by an
intrinsic spin-triplet superconductor, or a spin-singlet superconductor with
proximity-induced triplet correlations. Going in a slightly different direc-
tion, one could also imagine substituting the superconductor with e.g. an
antiferromagnetic insulator in order to consider indirect interaction medi-
ated by magnons.





A
Evaluation of Tc integral

Here, we want to evaluate the integral in Eq. (2.22).

1 =
V N0

N
∫

~ωc

0
dε

1

ε
tanh (

ε

2kBTc
). (A.1)

Using the change of variable x = ε
2kBTc

, we obtain

1 =
V N0

N
∫

~ωc
2kBTc

0
dx

1

x
tanh(x). (A.2)

Further, doing integration by parts

1 =
V N0

N
[ln(

~ωc
2kBTc

) tanh (
~ωc

2kBTc
) − ∫

~ωc
2kBTc

0
dx

ln(x)

cosh2(x)
]. (A.3)

In order to evaluate tanh( ~ωc
2kBTc

) in the first term, we make the assumption

2kBTc ≪ ~ωc, which we will see holds as long as we are in the weak-coupling
regime. The upper limit on the integral in the second term can then be taken
to infinity as the integral converges quickly for x≫ 1. We then obtain

1 =
V N0

N
[ln(

~ωc
2kBTc

) − ∫

∞

0
dx

ln(x)

cosh2(x)
]

=
V N0

N
[ln(

~ωc
2kBTc

) + I],

(A.4)

where I ≈ 0.81878, and further
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(
N

VN0
− I) =ln(

~ωc
2kBTc

). (A.5)

Solving for the critical temperature, we then obtain

kBTc =1.13~ωce
− N
VN0 . (A.6)

For λ = V N0/N ≪ 1 (weak-coupling), we then see that the assumption
2kBTc ≪ ~ωc holds.



B
Unconventional Cooper
pairing

B.1 Unconventional Quasiparticle energies

In this Appendix, we are aiming to determine the unconventional qusiparti-
cle energies that we have introduced in chapter 2. We then need to calculate
the eigenenergies of the 4× 4 matrix in Eq. (2.39). To this end, we consider
the following determinant

∣
(εk −E)σ0 A(k)

A†(k) −(εk +E)σ0
∣ =0. (B.1)

If A,B,C and D are square matrices of the same size and CD =DC, mean-

ing that C and D commute, then det(
A B

C D
) = det(AD −BC). Therefore,

our determinant can be expressed as

det( − (ε2
k −E

2
)σ0 −A(k)A(k)†

) =0. (B.2)

This expression can, in general, be complicated, but if we considerA(k)A†(k) =
∣Ak∣

2σ0, then

∣
−(ε2

k −E
2)σ0 − ∣Ak∣

2σ0 0

0 −(ε2
k −E

2)σ0 − ∣Ak∣
2σ0

∣ =0, (B.3)

which leads to

E = ±

√

ε2
k + ∣Ak∣

2. (B.4)
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B.2 Bogoliubov transformation

In order to diagonalize the 4× 4 matrix in Eq. (2.39), we consider (
â

b̂
) as an

eigenvector of the 4× 4 matrix with the eigenenergy Ek =
√
ε2
k + ∣Ak∣

2. The
eigenvalue problem can then be expressed as

(
εkσ0 A(k)

A†(k) −εkσ0
)(

â

b̂
) = Ek (

â

b̂
) . (B.5)

Then, from

εkσ0â +A(k)b̂ = Ekâ, (B.6)

and multiplying both sides of the equation with A(k)†, as well as using that
A(k)A(k)† = ∣Ak∣

2σ0, we obtain

b̂ =
A(k)†

∣Ak∣
2
(Ek − εk)â. (B.7)

Therefore, the first two eigenvectors, which have the same eigenvalues, can
be expressed as

Ψ1 =
⎛

⎝

â1

A(k)†
∣Ak∣2 (Ek − εk)â1

⎞

⎠
,Ψ2 =

⎛

⎝

â2

A(k)†
∣Ak∣2 (Ek − εk)â2

⎞

⎠
. (B.8)

The next two eigenvectors can be obtained from a similar eigenvalue problem

with the eigenenergy Ek = −
√
ε2
k + ∣Ak∣

2. From the following equation

εkσ0â +A(k)b̂ = −Ekâ, (B.9)

we obtain

â = −
A(k)

Ek + εk
b̂. (B.10)

The last two eigenvectors can then be expressed as

Ψ3 =
⎛

⎝

−
A(k)
Ek+εk b̂3
b̂3

⎞

⎠
, Ψ4 =

⎛

⎝

−
A(k)
Ek+εk b̂4
b̂4

⎞

⎠
. (B.11)
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For our purposes, the set of eigenvectors should be orthonormal, meaning
that ⟨Ψi∣Ψi⟩ = 1 and ⟨Ψi∣Ψj⟩ = 0 for i ≠ j. For the two first eigenvectors we
have

∣â1∣
2
= ∣â2∣

2
=

∣Ak∣
2

∣Ak∣
2 + (Ek − εk)2

,

∣̂b3∣
2
= ∣̂b4∣

2
=

(Ek + εk)
2

(Ek + εk)2 + ∣Ak∣
2
.

(B.12)

The transformation matrix takes the form

P̂ =
⎛

⎝

â1 â2 −
A(k)
Ek+εk b̂3 −

A(k)
Ek+εk b̂4

A(k)†(Ek−εk)
∣Ak∣2 â1

A(k)†(Ek−εk)
∣Ak∣2 â2 b̂3 b̂4

⎞

⎠
. (B.13)

This transformation matrix should be unitary. We therefore consider

â1 =
∣Ak∣

√
∣Ak∣

2 + (Ek − εk)2
(

1

0
) ,

â2 =
∣Ak∣

√
∣Ak∣

2 + (Ek − εk)2
(

0

1
) ,

b̂3 =
(Ek + εk)

√
(Ek + εk)2 + ∣Ak∣

2
(

1

0
) ,

b̂4 =
(Ek + εk)

√
(Ek + εk)2 + ∣Ak∣

2
(

0

1
) .

(B.14)

Based on these, P̂ can be rewritten as

P̂ = (
υ̂k ν̂k
−ν̂†

k υ̂k
) , (B.15)

with

υ̂k =
Ek + εk

√
(Ek + εk)2 + ∣Ak∣

2
σ0, ν̂k =

−1
√

(Ek + εk)2 + ∣Ak∣
2
A(k). (B.16)





C
Free energy of a fermionic
system

In all the research projects discussed in this thesis, the free energy is an
important quantity because it determines the preferred state of the system.
In this Appendix, we derive the free energy for a fermionic system. Our
starting point is a diagonal Hamiltonian on the form

H =H0 +∑
k,α

Ek,αγ
†
k,αγk,α. (C.1)

Here, H0 is the constant part of the Hamiltonian, and γ†
k,α (γk,α) is a

creation (annihilation) operator for a fermion with momentum k and e.g. a
spin quantum number α. Moreover, Ek,α are the energies of the associated
single-particle states where the chemical potential, as well as e.g. the effect
of a spin-splitting field, is absorbed. The grand canonical partition function
for the system is expressed as

Z =tr(e−βH) = ∑
{nk,α}

⟨{nk,α}∣e
−βH

∣{nk,α}⟩. (C.2)

Here, {nk,α} is a many-particle state defined by the occupation numbers

of the single-particle states ∣nk,α⟩, where n̂k,α ∣nk,α⟩ = γ†
k,αγk,α ∣nk,α⟩ =

nk,α ∣nk,α⟩. Inserting the expression for our Hamiltonian in Eq. (C.1), we
obtain

Z = ∑
{nk,α}

e−βH0⟨{nk,α}∣e
−β∑k,αEk,αn̂k,α ∣{nk,α}⟩. (C.3)
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As the many-particles states {nk,α} are eigenstates of the Hamiltonian, we
simply obtain

Z = ∑
{nk,α}

e−βH0Πk,αe
−βEk,αnk,α . (C.4)

As the occupation numbers for the different single-particle states are inde-
pendent in the grand canonical ensemble, we can rewrite the above expres-
sion as a product of sums over the occupation of single-particle states. As
there can only be either 0 or 1 fermion in each single-particle state, the
partition function can then be expressed as

Z =e−βH0Πk,α ∑
nk,α=0,1

e−βEk,αnk,α = e−βH0Πk,α(1 + e
−βEk,α). (C.5)

Using the relation between the free energy F and partition function Z =

e−βF , the free energy of our system can be expressed as

F =H0 −
1

β
∑
k,α

ln(1 + e−βEk,α). (C.6)



D
Chandrasekhar-Clogston
limit

Consider a single-band, spin-singlet superconductor with a gap around the
Fermi level in the band structure. The gap is assumed to originate with a
constant attractive interaction potential that is active in a thin shell 2~ωc
around the Fermi level. Further, the superconductor is subjected to a spin-
splitting field h that breaks the degeneracy of the spin-up and spin-down
energy bands. The free energy of the superconductor can then be expressed
as

F SC
=N

∆2

V
+∑

k

(εk −Ek) −
1

β
∑
k,α

ln(1 + e−βEk,α). (D.1)

For the discussion in this Appendix, the temperature will be set to zero.
We first consider the case without a spin-splitting field. In this case, the
free energy of the superconducting state is

F SC
(h = 0) ≈N

∆2
0

V
+∑

k

(εk −Ek). (D.2)

There are here no contributions from the ln term as the temperature is set
to zero and we are only summing over positive energies. Next, we take h > 0.
As the superconducting gap is not affected by h at T = 0, the free energy is
then

F SC
(h ≠ 0) = N

∆2
0

V
+∑

k

(εk −Ek) −
1

β
∑
k

[ln(1 + e
−β(
√
ε2
k
+∆2

0−h))

+ ln(1 + e
−β(
√
ε2
k
+∆2

0+h))].

(D.3)
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While the second ln-term can be neglected, the first one can contribute for

h >
√
ε2
k +∆2

0. We can express this as

F SC
(h ≠ 0) ≈N

∆2
0

V
+∑

k

(εk −Ek) −
′
∑
k

(h −
√

ε2
k +∆2

0), (D.4)

where the prime on the last momentum sum puts the restriction that h >√
ε2
k +∆2

0. We then see that the free energy of the superconductor is un-
affected by a spin-splitting field smaller than the superconducting gap. As
we have considered the superconducting state both in the presence and the
absence of a spin-splitting field, we move on to the case of the normal state
of the system (∆0 = 0). The free energy of the normal state in the presence
of a spin-splitting field can be expressed as

FN
(h ≠ 0) =∑

k

(εk − ∣εk∣) −
1

β
∑
k,α

ln(1 + e−β(∣εk∣−αh)). (D.5)

Summing over spin, the ln term becomes

−
1

β
∑
k

[ln(1 + e−β(∣εk∣−h)) + ln(1 + e−β(∣εk∣+h))], (D.6)

which vanishes at h → 0. For h > 0, on the other hand, the first part can
contribute for h > εk. As the normal state has no gap in the band structure,
the free energy is then altered as soon as h > 0. The change in the normal
state free energy due to the introduction of a spin-splitting field is expressed
as

FN
(h = 0) − FN

(h ≠ 0) =
∣εk∣<h
∑
k

(h − ∣εk∣). (D.7)

We then see that the normal state free energy is lowered in the presence of
a spin-splitting field, in contrast to the case of the superconducting state
unless the spin-splitting field is larger than the gap.

Starting from zero field, the free energy of the superconducting state is
lower than the free energy of the normal state by an amount
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FN
(h = 0) − F Sc

(h = 0) =∑
k

(Ek − ∣εk∣) −N
∆2

0

V
, (D.8)

which is referred to as the condensation energy. However, as the normal
state free energy is lowered in the presence of a spin-splitting field, the
free energies of the two states will eventually become equal as the field is
increased. At this point, the system transitions from a superconducting to
a normal state. Comparing Eqs. (D.7) and (D.8), we can therefore obtain
an expression for the maximum spin-splitting field that superconductivity
can coexist with. We thus write

∑
k

(Ek − ∣εk∣) −N
∆2

0

V
=

∣εk∣<h
∑
k

(h − ∣εk∣). (D.9)

First, consider the right-hand-side of the equation. In the thermodynamic
limit, we go over to an integral over energy ∑k → ∫ D(ε)dε. We then have

∣εk∣<h
∑
k

(h − ∣εk∣) = 2∫
h

0
dεN0(h − ∣ε∣), (D.10)

where we have approximated the density of states with the density of states
at the Fermi-level. Calculating the integral

∣εk∣<h
∑
k

(h − ∣εk∣) = N0h
2, (D.11)

gives us the right hand side of Eq. (D.9). In order to calculate the left hand
side of Eq. (D.9), we again substitute the summation with integration and
approximate the density of states with the density of states at the Fermi
level. We then obtain for the first term on the left-hand-side

Q1 ≡∑
k

(Ek − ∣εk∣) =∫
~ωc

−~ωc
dεN0(

√

ε2 +∆2
0 − ∣ε∣), (D.12)

where we have used that the superconducting gap is assumed to only be
present in a thin shell around the Fermi-level. Performing the integration,
we find that



Appendix D. Chandrasekhar-Clogston limit 96

Q1 =2N0[∫

~ωc

0

√

∣ε∣2 +∆2
0 d∣ε∣ − ∫

~ωc

0
∣ε∣d∣ε∣] =

N0[~ωc
√

~2ω2
c +∆2

0 +∆2
0ln(

√

~2ω2
c +∆2

0 + ~ωc) −∆2
0ln(∣∆0∣) − ~2ω2

c ].

(D.13)

Cleaning up the expression

Q1 =N0[~2ω2
c(

¿
Á
ÁÀ1 +

∆2
0

~2ω2
c

− 1) +∆2
0ln(

~ωc
∣∆0∣

(

¿
Á
ÁÀ1 +

∆2
0

~2ω2
c

+ 1))], (D.14)

we next make the usual approximation ∆0 ≪ ~ωc. Using that
√

1 + x2 − 1 ≈
x2

2 and
√

1 + x2 − 1 ≈ 2 for x≪ 1, we then obtain

Q1 =N0
∆2

0

2
(1 + 2ln(2

~ωc
∣∆0∣

)). (D.15)

The only remaining piece in the puzzle is then the second term on the
left-hand-side of Eq. (D.9). Using the gap equation

∆0 =
1

N

′
∑
k

V
∆0

√
ε2 +∆2

0

1

2
tanh(

β

2
(

√

ε2 +∆2
0)), (D.16)

this second term Q2 is expressed as

Q2 ≡ −N
∆2

0

V
= −

1

2

′
∑
k

∆2
0√

ε2 +∆2
0

tanh (
β

2
(

√

ε2 +∆2
0)) =

−
1

2
∆2

0∫

~ωc

−~ωc
D(ε)dε

1
√
ε2 +∆2

0

tanh (
β

2
(

√

ε2 +∆2
0)).

(D.17)

As we integrate over a thin shell around the Fermi-level, we can once again
approximate the density of states with the density of states at the Fermi-

level. Further, as we are working at zero temperature tanh (
β
2 (

√
ε2 +∆2

0)) ≈

1. Then,
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Q2 = −∆2
0N0∫

~ωc

0
d∣ε∣

1
√

∣ε∣2 +∆2
0

=

−∆2
0

N0

2
[ln(

~ωc
√
~2ω2

c +∆2
0

+ 1) − ln(
~ωc

√
~2ω2

c +∆2
0

− 1)].

(D.18)

Once again, we use that ∆0 ≪ ~ωc

Q2 = −∆2
0N0ln(2

~ωc
∆0

). (D.19)

Combining together all the parts, we then obtain

N0
∆2

0

2
(1 + 2ln(2

~ωc
∣∆0∣

)) −∆2
0N0ln(2

~ωc
∆0

) =N0h
2. (D.20)

We then see that a transition to the normal state takes place when

hc =
∆0
√

2
. (D.21)

This limit on the spin-splitting field that a spin-singlet superconductor can
coexist with is referred to as the Chandrasekhar-Clogston limit.





E
Schrieffer-Wolff
transformation

In this Appendix, we will discuss a canonical transformation referred to as
the Schrieffer−Wolff transformation (SWt). Historically, this transformation
was first used by Luttinger and Kohn [147]. The name of the transforma-
tion does, however, stem from a later article by Schrieffer and Wollf where
they connected the Anderson and Kondo models used to describe itiner-
ant electrons interacting with magnetic impurities [148]. In the third paper
[3] included in this thesis, we have used this transformation to transform
the interaction between itinerant electrons and magnetic impurities into
an effective interaction between magnetic impurities mediated by itinerant
electrons.

Suppose we have a non-perturbed Hamiltonian H0 and introduce a small
perturbation ∆H = λα where λ is a smallness parameter. In the third paper
[3] included in this thesis, the perturbation is the interaction between the
conductance electrons and the localized magnetic moments. We start by
performing a unitary transformation UHU †, where U = eiS . Then, using
the Taylor expansion for ex = 1 + x + x2

2! +
x3

3! +⋯, we obtain that

H̃ =eiSHe−iS = ( 1 + (iS) +
(iS)2

2! +⋯
)H ( 1 + (−iS) +

(−iS)2
2! +⋯ ) =

H + i[S,H0] + i[S,∆H] −
1

2
[S, [S,H0]] −

1

2
[S, [S,∆H]] +⋯ =

H0 +∆H + i[S,H0] + i[S,∆H] −
1

2
[S, [S,H0]] +O(λ3

).

(E.1)

As we have considered λ to be small, we ignore the higher order terms in
the above equation. Next, we define S such that the first order terms are
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eliminated, ∆H + i[S,H0] = 0. Therefore, the effective Hamiltonian will be
H̃ =H0 +

i
2[S,∆H].

As explained above, the Schrieffer-Wolff transformation consists of a
unitary transformation that is chosen in order to eliminate linear terms in
the perturbation. The unitary transformation is determined by the choice
of S, which will vary from one system to the other. For the system that
we have considered in the third paper [3] included in this thesis, a suitable
Ansatz for S is

S = ∑
k,k′

α,β

(Ak,k′

α,β

γ†
k,αγk′,β+Bk,k′

α,β

γ†
k,αγ

†
−k′,−β+Ck,k′

α,β

γ−k,−αγk′,β+Dk,k′

α,β

γ−k,−αγ
†
−k′,−β).

(E.2)
By inserting this Ansatz into [S,H0], computing the commutator, and re-
quiring that ∆H + i[S,H0] = 0, the coefficients A,B, ... can be determined.
As the linear terms in the perturbation have then been eliminated, the ef-
fective Hamiltonian can be obtained by calculating [S,∆H] and inserting
the result into the expression for H̃.
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[133] T. Löfwander, V. S. Shumeiko, and G. Wendin, Supercond. Sci. Tech-
nol. 14, R53 (2001).

[134] P. de Gennes and D. Saint-James, Physics Letters 4, 151 (1963).

[135] Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995).

[136] M. Matsumoto and H. Shiba, J. Phys. Soc. Jpn 64, 1703 (1995).

[137] Y. S. Barash, H. Burkhardt, and D. Rainer, Phys. Rev. Lett. 77,
4070 (1996).

[138] J. Geerk, X. X. Xi, and G. Linker, Zeitschrift für Physik B Condensed
Matter 73, 329 (1988).

[139] J. Lesueur, L. Greene, W. Feldmann, and A. Inam, Physica C: Su-
perconductivity 191, 325 (1992).

[140] M. Covington, R. Scheuerer, K. Bloom, and L. H. Greene, Appl.
Phys. Lett. 68, 1717 (1996).

[141] C. R. Hu and X. Z. Yan, Phys. Rev. B 60, R12573 (1999).

[142] J.-X. Zhu and C. S. Ting, Phys. Rev. B 61, 1456 (2000).

[143] J. M. Park, Y. Cao, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Nature 590, 249 (2021).

[144] Y. Cao, J. M. Park, K. Watanabe, T. Taniguchi, and P. Jarillo-
Herrero, Nature 595, 526 (2021).

[145] W. Qin and A. H. MacDonald, Phys. Rev. Lett. 127, 097001 (2021).

[146] A. Ozaeta, P. Virtanen, F. S. Bergeret, and T. T. Heikkilä, Phys.
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Self‑consistent solution 
for the magnetic exchange 
interaction mediated 
by a superconductor
Atousa Ghanbari, Vetle K. Risinggård & Jacob Linder*

We theoretically determine the magnetic exchange interaction between two ferromagnets coupled by 
a superconductor using a tight‑binding lattice model. The main purpose of this study is to determine 
how the self‑consistently determined superconducting state influences the exchange interaction 
and the preferred ground‑state of the system, including the role of impurity scattering. We find that 
the superconducting state eliminates RKKY‑like oscillations for a sufficiently large superconducting 
gap, making the anti‑parallel orientation the ground state of the system. Interestingly, the 
superconducting gap is larger in the parallel configuration than in the anti‑parallel configuration, 
giving a larger superconducting condensation energy, even when the preferred ground state is 
anti‑parallel. We also show that increasing the impurity concentration in the superconductor causes 
the exchange interaction to decrease, likely due to an increasing localization of the mediating 
quasiparticles in the superconductor.

The Ruderman−Kittel−Kasuya−Yosida (RKKY) is an indirect exchange interaction between localized spins 
mediated by itinerant electrons in  metals1. This interaction played an important role in the discovery of giant 
magnetoresistance (GMR)2,3 and has been studied in numerous  materials4–9.

The combination of magnetic and superconducting materials has been widely studied due to interesting 
features which cannot be observed in separate  materials10–19. Recently, the influence of superconductivity on 
the magnetic state was experimentally studied in a superconducting spin valve (SSV), GdN-Nb-GdN20. On the 
basis of the de Gennes  model21, it was shown that the superconductor promoted an anti-parallel configura-
tion as the ground-state configuration. In the de Gennes model, a superconductor in an anti-parallel SSV has 
a higher critical temperature Tc than in the parallel orientation, leading to a larger superconducting gap in the 
anti-parallel configuration.

The interaction between localized magnetic moments through dirty s-wave  superconductors22–24 has previ-
ously been found to contain two contributions. One contribution is from the usual RKKY interaction and a 
second contribution from a longer ranged interaction, decaying exponentially over the superconducting coher-
ence length ξ and with a weaker power-law suppression, which favors an antiferromagnetic alignment. Later, 
the interaction through a d-wave superconductor with an anisotropic order parameter was  studied25. It was 
shown on the basis of analytical approximations that this interaction, similarly to the s-wave case, contains one 
oscillatory term and one term favoring an anti-parallel configuration. The oscillations occur when the length of 
the superconductor ( LS ) is smaller than the coherence length ( ξ ) while the term favoring an anti−ferromagnetic 
configuration of the system occurs when LS > ξ . The latter term was found to be proportional to the supercon-
ducting gap. Very recently, it was experimentally shown that in a d-wave SSV, the anti-parallel ground-state was 
favored for some specific lengths of the superconducting system and that nodal quasiparticles likely played a 
central role in mediating the magnetic  coupling26.

In this work, we address numerically and, importantly, self-consistently the effect of conventional s-wave 
singlet superconductors on the indirect exchange coupling (J) between two ferromagnetic contacts in a F–S–F 
structure. The free energy of the system, which is the main quantity of interest in this work, is manifested in a 
clear experimental observable: namely, the ground-state magnetic configuration of the system. Previous works 
considering superconducting spin-valves have also considered the superconducting transition temperature as 
a quantity of interest with respect to possible cryogenic applications. However, a shift in the preferred magnetic 
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orientation (parallell (P : θ = 0◦ ) or antiparallell (AP : θ = 180◦ )) of the spin-valve will also be a relevant quantity 
in this regard. Therefore, determining how the interaction between the ferromagnets depends on the supercon-
ducting layer is a task which is both of fundamental and possible practical interest. In contrast to Refs.22–25, we 
compute the order parameter self-consistently and account for both the superconducting proximity effect in 
the ferromagnets and the magnetic proximity effect in the superconducting region. The self-consistent com-
putation of the superconducting order parameter includes not only the effect of the magnetic configuration on 
the local spin density of the quasiparticles mediating the RKKY interaction, but also the effect of the magnetic 
configuration on the magnitude of the superconducting gap. This is an important result because as we show in 
the results section, the difference in gap-magnitude between the parallel and anti-parallel configuration does 
affect the RKKY-coupling between the ferromagnets. Due to the proximity effect between the superconductors 
and the ferromagnet, the superconducting gap can be strongly affected by the magnetic configuration, and thus 
requires a self-consistent calculation, unlike Refs.22–24 that considered isolated magnetic impurities. In a singlet 
superconductor, electrons with zero total spin and opposite momentum constitute the Cooper pairs: (k ↑,−k ↓) . 
These Cooper pairs can penetrate into a weak ferromagnet (FM) which has been brought in contact with the 
 superconductor27 in an oscillatory fashion. Bringing another ferromagnetic layer in contact with this bilayer 
makes the SSV.

We first briefly reproduce the well-known RKKY-like oscillations of an F–N–F system to contrast these results 
with what happens in the superconducting state. We consider a finite size system in two dimensions, meaning 
that we do not assume periodic boundary conditions in any direction. Then, by substituting the central part with 
a singlet superconductor which leads to a F–S–F structure (Fig. 1), we demonstrate that two types of behaviour 
take place. For thin superconductors, J oscillates around zero whereas for thick ones the coupling takes values 
J > 0 , favoring the AP configuration (θ = 180◦) , and reduces monotonically as the length is further increased. 
When the central part is a superconductor with small gap connected to two weakly polarized ferromagnets, we 
only find RKKY-like oscillations mediated by quasiparticles in the superconductor. In contrast, when the super-
conducting gap is large or if the exchange field in the ferromagnet is strong, J > 0 and the interaction displays 
either a pure monotonic decay or with superimposed oscillations.

Afterwards, we consider the effect of impurities on J in the F–S–F spin valve. When considering the impurity 
average 〈J〉imp for a large number of realizations with random impurity configurations, we find that increasing 
the impurity concentration in the superconductor causes the exchange interaction to decrease. This is likely due 
to an increasing localization of the mediating quasiparticles in the  superconductor28,29.

Theory
The indirect exchange interaction between the ferromagnets in F–N–F or F–S–F structures is defined by 
J = F↑↑ − F↑↓ . Here, F↑↑ is the free energy when the ferromagnetic contacts have a parallel (P) orientation 
( θ = 0◦ ) and F↑↓ is the free energy when they have an anti-parallel (AP) orientation ( θ = 180◦ ). In this work, 
we only consider P and AP configurations as the possible ground states. This assumption is possible as we will 
consider strong anisotropy easy-axis, macrospin ferromagnets where the exchange stiffness is large enough to 
preclude any inhomogeneous textures, such as domain walls or spin spirals. Moreover, we do not consider the 
Dzyaloshinskii–Moryia-type30 interactions at the interfaces, which may lead to noncollinear magnetization 
configurations. Therefore, the free energy of such a system is defined by

Here, β = 1
kBT

 and kB is the Boltzmann constant and T is the temperature. H0 is a constant term to be specified 
later, which consists of a superconducting constant term ( HS

0 ) and chemical potential constant term ( Hµ
0  ). HS

0 
arises as a result of performing a mean-field approximation while Hµ

0  is due to a symmetrization of the Ham-
iltonian. Moreover, En is the nth eigenvalue and will be calculated by means of diagonalizing a tight-binding 
Hamiltonian for the structure of interest. The Hamiltonian is as follows,

(1)F = H0 −
1

β

∑

n

ln(1+ e−βEn/2).

Figure 1.  Schematic illustration of a superconducting spin valve (SSV) with magnetic moment of the two 
ferromagnets aligned at relative angle θ . Two cases will be consider here, one with θ = 0◦ which is called P 
orientation and the other one is AP orientation with θ = 180◦.
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Here, c†iα ( ciα ) creates (annihilates) an electron with spin α at site i = (ix , iy) with ix = 1, · · ·Nx and iy = 1, · · ·Ny . 
Also, tij is the hopping integral between nearest-neighbor sites and we assume that it has a constant value t. µi 
is the chemical potential at site i while niα = c†iαciα is the number operator. The fourth term in the Hamiltonian 
represents the local exchange interaction with hδi  being the strength of this field in the left ( δ = L ) or right 
( δ = R ) ferromagnets. Also, hLi = hi(0, 1, 0) , hRi = hi(sin(θ), cos(θ), 0) and σ = (σx , σy , σz) the Pauli matrices. 
Although considering h as a fixed input parameter is a standard approach in much of the literature, we have also 
checked if our results hold when the magnetization is solved self-consistently as well. A brief study of J with self-
consistent magnetization is included in the Supplementary information. We find that solving the magnetization 
self-consistently has very little effect on the results for the case when we have open boundary conditions along 
the y-direction. It does not change the physics for the 2D system compared to using a fixed input-value for h. 
We consider a singlet superconductor for the central part, modelling the interaction as an on-site attractive U 
as the third term of Hamiltonian. Ui = U > 0 is the local attractive interaction which creates Cooper pairs in 
the superconductor while it is zero elsewhere. We treat the interaction term by a mean-field approximation to 
simplify the problem,

If we define superconducting gap as �i = −Ui�ci↓ci↑� , then

where we have defined

The Hamiltonian does not contain any constant mean-field term containing the magnetic order parameter since 
we do not solve for the magnetization self-consistently.

We proceed to explain how the eigenvalues En are obtained. Our Hamiltonian Eq. (2) is bilinear in the fermion 
operators and can be diagonalized. Choosing the following basis,

where we have defined

with iy = 1, · · ·Ny and

the Hamiltonian may now be written as

Here, H0 is the constant term that we discussed previously, and

with

Finally, the 4× 4 matrix for interaction between sites i and j is

(2)H = −
∑

�i,j�,α

tijc
†
iαcjα −

∑

i,α

µiniα −
∑

i

Uini↑ni↓ −
∑

iαβ

(hδi · σ )αβc
†
iαciβ .

(3)−
∑

i

Uini↑ni↓ = −
∑

i

Ui

(

c†i↑c
†
i↓�ci↓ci↑� + ci↓ci↑�c

†
i↑c

†
i↓� − �ci↓ci↑��c

†
i↑c

†
i↓�

)

.

(4)−
∑

i

Uini↑ni↓ =
∑

i

(c†i↑c
†
i↓�i + ci↓ci↑�

∗
i )+HS

0 ,

(5)HS
0 =

∑

i

|�i|
2

Ui
.

(6)W† =
[

D†
1 D†

2 D†
3 ... D†

Ny

]

,

(7)D†
iy
=

[

B†(1,iy) B†(2,iy) B†(3,iy) ... B†(Nx ,iy)

]

(8)B†i =
[

c†i↑ c†i↓ ci↑ ci↓

]

,

(9)H = H0 +
1

2
W†SW = H0 +

1

2

∑

ij

B†i hijBj .

(10)S =







S11 · · · S1,Ny

...
. . .

...
SNy ,1 · · · SNy ,Ny







(11)Siy ,jy =







h(1,iy)(1,jy) · · · h(1,iy)(Nx ,jy)

...
. . .

...
h(Nx ,iy)(1,jy) · · · h(Nx ,iy)(Nx ,jy)






.
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Here, τmσl = τm ⊗ σl and τ± = 1
2 (τ1 ± iτ2) . S is Hermitian and can be diagonalized numerically. Note that we 

are considering a finite size 2D system without any periodic boundary conditions. The 2D model is an approxi-
mation that is necessary because doing the calculations in 3D becomes numerically too demanding in terms 
of computational time. Although it could be interesting to consider how a 3D computation alters the result, we 
do not expect any qualitatively new effects. Diagonalizing the Hamiltonian by introducing a new basis gives

The eigenfunctions for S are

where we have defined

The original creation and annihilation operators {c†, c} now can be expressed with new quasiparticle operators,

Using these, we obtain a self-consistency equation for �i,

The local density of states (LDOS) is the density of states at one site and in our model it can be calculated for 
T = 0 . The number of charges at site i is given by

At an arbitrary temperature, the number of charges at site i is

Here, Ni(E) is the local density of states at site i and f(E) is the Fermi-Dirac distribution with energy E meas-
ured relative the chemical potential. When T = 0 , we know that f (E) = 1 for E < 0 and f (E) = 0 when E > 0 . 
Therefore, the LDOS takes the form:

In our model, the proximity effect of the superconductor into the ferromagnets (induced Cooper pair correla-
tions) is quantified by the anomalous Green function Fi = −�ci↓ci↑� . Also, the inverse proximity effect causing an 
induction of magnetic polarization in the superconductor is accounted for by My

i = �S
y
i � where the 〈. . .〉 notation 

denotes expectation value. The spin operator is Syi =
∑

αβ c
†
iα(σαβ)yciβ . Therefore, the magnetization along the 

y-direction in the system is given by

Equation (17) is solved self-consistently. By considering an initial value for the gap, we diagonalize the Hamil-
tonian to obtain the eigenvalues ( En ), and eigenfunctions [Eq. (14)] to compute νi,n and ωi,n . By means of Eq. 
(17), we can then compute a new value for the gap and once again diagonalize the Hamiltonian with the new 
value for the gap. This process is repeated until the relative change in the gap value between iterations is smaller 
than the convergence criterion. The criterion for numerical convergence of the superconducting gap is set to be 
a relative change of 5× 10−4 . To ensure that the self-consistent solution converges to the ground-state, we have 
checked several possible initial values for the superconducting order parameter.

(12)

hij = −

[

t

2
(δix ,jx−1 + δix ,jx+1)+ µiδix ,jx

]

δiy ,jy τ3σ0 −

[

t

2
(δiy ,jy−1 + δiy ,jy+1)+ µiδiy ,jy

]

δix ,jx τ3σ0 +
[

− hzi τ3σz − hxi τ3σx − h
y
i τ0σy

+�ix ,iy iτ
+σy −�∗

ix ,iy
iτ−σy

]

δix ,jx δiy ,jy .

(13)H = H0 +
1

2

∑

n

Enγ
†
n γn .

(14)�†
n =

[

φ†
1n φ†

2n · · · φ†
Ny ,n

]

,

(15)
φ†
iy ,n

=
[

ϕ†
(1,iy),n

ϕ†
(2,iy),n

· · · ϕ†
(Nx ,iy),n

]

,

ϕ†
(ix ,iy)n

=
[

υ∗
(ix ,iy),n

ν∗(ix ,iy),n ω∗
(ix ,iy),n

χ∗
(ix ,iy),n

]

.

(16)
ci↑ =

∑

n

υi,nγn , ci↓ =
∑

n

νi,nγn ,

c†i↑ =
∑

n

ωi,nγn , c
†
i↓ =

∑

n

χi,nγn .

(17)�i = −Ui

∑

n

νi,nω
∗
i,n(1− f (En/2)).

(18)ρi =
∑

α

�c†iαciα�.

(19)ρi =

+∞
∫

−∞

Ni(E)f (E)dE.

(20)Ni(E) =
∑

n

(|υin|
2 + |νin|

2)δ(En/2− E).

(21)M
y
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∑

n

i(−υ∗
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(

En

2
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Results
F–N–F junction, briefly revisited. The main purpose of this paper is to investigate the indirect exchange 
coupling between two ferromagnets separated by a superconductor when solving self-consistently for the order 
parameter and taking into account both the proximity effect and the inverse proximity effect. We will consider a 
large range of h-values corresponding to either weakly polarized ferromagnets, such as PdNi, or strongly polar-
ized elemental ferromagnets like Co or Fe. Before considering the superconducting case, it is worth considering 
briefly a three layer F–N–F structure as shown in Fig. 1. We include this treatment so that the reader can more 
easily contrast the normal and superconducting case. We choose a representative set of parameters as Ly = 10 , 
LxF = 2 , µN = 0.8t , µF = 0.9t , and kBT = 0.01t . In our notation, Ly is the number of lattice sites along the 
y-axis and LxF is the number of lattice sites along the x-axis in the ferromagnets. The length of the ferromagnetic 
part has little influence on the final results in the F–N–F case and also does not change the results qualitatively in 
the F–S–F case. Therefore, we have chosen a small value for LxF to reduce the required time of the numerical sim-
ulations. Both ferromagnetic contacts have the same exchange field strength and the magnetization is directed 
along ŷ ( |hLi |=|h

R
i |=hi ). As the length of the normal part increases, the amplitude of the well-known RKKY-like 

oscillations in the F–N–F structure decreases as shown in Fig. 2. These oscillations indicate a switching between 
P and AP configurations as the ground-state of the junction: J > 0 corresponds to an AP configuration, while 
J < 0 corresponds to a P configuration.

Figure 3 shows J as a function of the exchange field strength in the ferromagnets ( hi ) for several different 
normal region lengths. It demonstrates that J not only oscillates as a function of LxN , but also as a function of hi . 
The oscillations stem from the fact that the eigenstates for the quasiparticle excitations in the system interfere 
constructively or destructively at the ferromagnetic contacts, depending on the length LxN and the exchange field 
hi since both these quantities determine the phase-change of an eigenstate as one moves across the normal metal.

Despite the oscillations for small exchange field strengths, J monotonically decreases when hi becomes suf-
ficiently large. This decay is likely related to the depletion in the number of available states around the Fermi 
level in the ferromagnetic part as shown in Fig. 4.

F–S–F junction. We now turn to the main topic of this manuscript, namely a study of how the exchange 
interaction between two ferromagnets is mediated by an s-wave superconductor. Our results for the RKKY 
interaction in the superconducting state will be relevant for materials which have a (nearly) isotropic supercon-
ducting gap and where the ratio �/µ between the gap � and the Fermi energy µ is relatively large. The reason 
for the latter criterion is that large values of the gap is required in the lattice BdG formalism in order to work 
with systems that have a computationally manageable size. Although our model is simplified and approximative, 
there exists materials which matches the parameter-choice in our manuscript for the energy scales involved. 
One such superconducting material is  FeSe31 which is known to have a large ratio �/µ of order ∼ 0.1 , as in our 
parameter choice. The exact crystal structure of FeSe differs from our model and its full tight-binding model is 
more complex than the simple model used in our manuscript, but the projection of the FeSe crystal structure 
onto the plane is in fact a square lattice. Another material with a high ratio �/µ is FeTe0.6Se0.432 which would 
also resemble our parameter-choice in terms of the relative size of the gap and Fermi energy.

In Fig. 5, we plot J against the length of the superconducting region for three different on-site pairing interac-
tions U/t = 1 , U/t = 1.5 and U/t = 2 . The superconducting gap � tends to zero for a short superconductor with 
a weak superconducting interaction U. For the case of U/t = 1 , J is the same as the F–N–F case. This is simply 

Figure 2.  The indirect exchange interaction J between the two ferromagnetic contacts mediated by a normal 
material (F–N–F structure) when Ly = 10, LxF = 2,µN = 0.8t,µF = 0.9t, |hLi | = |hRi | = hi = 1t and 
kBT = 0.01t.
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because � is zero for short superconductors and when LxS has increased sufficiently to render � non-zero, J → 0 
since the distance between the ferromagnets is then too large.

For the case of U/t = 1.5 , there are two mechanisms competing against each other. One is the conventional 
RKKY-like oscillations mediated by quasiparticles. The other mechanism is the blocking of states that can medi-
ate the interaction due to the superconducting gap. This can be seen from blue curve of Fig. 5. For short super-
conductors, the RKKY-like oscillations are approximately the same as in the F–N–F case because the gap is too 
small to block any significant fraction of the quasiparticles. For longer superconductors the gap increases and 
dominates the indirect exchange interaction J.

Figure 6a,b show that for LxS = 4 and LxS = 5 , the gap is finite in both the P and AP configuration, but still 
RKKY-like oscillations dominate as seen in Fig. 5 for U/t = 1.5 . However, as LxS increases in Fig. 6c,d, � becomes 
sufficiently large to block the oscillations caused by quasiparticles. Now, we see that �P > �AP which leads to 
J > 0 , favoring an AP magnetic configuration as the ground state. At first glance, this might seem strange since 
a larger � in the P configuration should give a larger superconducting condensation energy gain compared 
to the AP configuration. However, the configuration with the largest gap will also block the largest amount 
of quasiparticles that can mediate the interaction between the ferromagnets and lower the free energy. In our 
numerical simulations, we find that when the gap is large enough in magnitude, it is the latter blocking effect 
that determines the ground-state of the system. Hence, �P > �AP causes J > 0.

Figure 3.  Indirect exchange interaction as a function of the exchange field strength of the ferromagnets for the 
F–N–F structure). Here, Ly = 10, LxF = 2,µN = 0.8t,µF = 0.9t and kBT = 0.01t.

Figure 4.  Local density of states (LDOS) for the (2,2) site inside the left ferromagnet as a function of energy for 
4 different hi . Here, Ly = 10, LxF = 2, LxS = 8,µN = 0.8t,µF = 0.9t, kBT = 0.01t . The dashed box indicates an 
area around the Fermi energy.
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Figure 5.  J vs the length of superconducting part ( LxS ) for the F–S–F structure. When Ly = 10 , LxF = 2 , 
µS = 0.8t , µF = 0.9t , kBT = 0.01t , |hLy | = |hRy | = hi = 1t.

Figure 6.  AP and P superconducting gaps ( �AP and �P ) when U/t = 1.5 , hi = 1t , kBT = 0.01t , µS = 0.8t 
and µF = 0.9t (a) LxS = 4 (b) LxS = 5 (c) LxS = 6 (d) LxS = 7 . (e) Superconducting proximity effect inside 
the ferromagnets when U/t = 1.5 , hi = 0.5t , kBT = 0.01t , µS = 0.8t , µF = 0.9t , LxS = 7 and LxF = 10 . (f) 
Layer-dependent magnetization for P and AP when U/t = 1.5 , hi = 1t , kBT = 0.01t , µS = 0.8t , µF = 0.9t , 
LxS = 7 and LxF = 2 . The 〈. . .〉y notation denotes averaging over the y-direction and i is a lattice site along the 
x-direction.
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In Fig. 6, we demonstrate the presence of a superconducting proximity effect inside the ferromagnets. Whereas 
the gap �i vanishes inside the ferromagnets due to the absence of an attractive interaction Ui in those regions in 
our model, the anomalous Green function �−ci↓ci↑� is finite in the ferromagnets, as shown in Fig.  6e. In that plot, 
we have considered larger ferromagnets ( LxF = 10 ) so that the oscillatory nature of the Cooper pairs penetrat-
ing inside the ferromagnets is better shown. On the other hand,an inverse proximity effect is also present: the 
induction of a magnetization induced inside the superconductor due to the exchange field of the ferromagnets. 
The layer-dependent magnetization is shown in Fig. 6 (f).

It is often assumed in the literature that the AP configuration in a superconducting spin valve should give 
the largest superconducting gap. The rationale behind this assumption is that the induced magnetization in the 
superconducting region of the F–S–F structure is weakest in the AP configuration, leading to the the least amount 
of pair-breaking. However, as we will discuss below, this is a simplified picture which neglects a key process in the 
spin valve: crossed Andreev reflection. The effect on � of various pair-breaking processes in equilibrium F–S–F 
structures has been studied previously, but primarily in layers with monoatomic  thickness33–38. In Ref.37, it was 
stated that �P < �AP at any temperature for sufficiently large thicknesses. In our work, we instead find that the 
opposite inequality holds for sufficiently large thicknesses of the superconductor.

For U/t = 2 in Fig. 5 one observes a monotonic decrease of J as a function of LxS . This behavior occurs both 
for a strong pairing interaction U or when the exchange field hi is large. We have already explained why it occurs 
for strong U, leading to a large gap. To explain why it occurs for a large exchange field, we consider the behav-
iour of � as a function of exchange field strength: this is shown in Fig. 7a for U/t = 1 and Fig. 7b for U/t = 1.5.

In both cases, for large enough hi , there exists a specific hi value which marks the transition from �P < �AP to 
�P > �AP . The reason for this transition can be explained in terms of a competition between the pair-breaking 
influence of the induced exchange field in the superconductor and inverse crossed Andreev reflection (CAR)39, 
which we proceed to explain.

Figure 7.  Superconducting gap vs hi when LxS = 8 , kBT = 0.01t , µS = 0.8t and µF = 0.9t . (a) U/t = 1 (b) 
U/t = 1.5.
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In a superconducting spin valve, a magnetization is induced inside the superconductor. The correspond-
ing induced exchange field is stronger in the case of P orientation than the AP one. As a result of this induced 
exchange field, the opposite spin electrons in the Cooper pair accumulate different phases in the superconduc-
tor, ultimately leading to a loss of phase coherence and Cooper-pair breaking. As the induced exchange field is 
stronger in the P case, the destructive effect of the ferromagnets is more severe in the P orientation than the AP. If 
this was the only mechanism, the superconducting gap should always be smaller in the P orientation ( �P < �AP).

On the other hand, inverse crossed Andreev reflection is another pair breaking mechanism in competition 
with the pair breaking effect of the induced exchange field. What happens here is that spin up and down electrons 
in a Cooper pair move into separate ferromagnets. This is in contrast to the usual proximity effect mediated by 
local Andreev reflection, where both electrons (and thus the entire pair) leak into a single material. Crossed 
Andreev reflection is thus a non-local process. In the AP orientation, the electrons tunnel into the spin majority 
band of the two ferromagnets while in the P orientation one spin goes to a majority band while the other one 
goes to the minority band of the other ferromagnet.

As the exchange field becomes stronger, CAR becomes less probable to occur in the P configuration since 
the minority band involved in the process gradually vanishes. In the half-metallic limit, there is no longer any 
conducting minority band to enable CAR in the P configuration. Therefore, the destructive effect of CAR is 
stronger in the AP case, thus making the gap smaller ( �AP < �P).

The configuration giving the largest � then depends on which of the two described effects that dominates. 
From Fig. 7, the fact that �P overtakes �AP in magnitude at a critical value for the exchange field hi indicates 
that crossed Andreev reflection dominates in this regime. This reduces the leakage of superconductivity into the 
ferromagnets, and enhances the gap. It can be done by means of rotating the magnetization direction of one of 
the ferromagnets, for example with the help of an external magnetic field .

Figure 7a also demonstrates an example of reentrant superconductivity which can occur in superconduct-
ing spin valves, enabling a switching of superconductivity on and off possible. This is usually done by varying 
thickness of one of the ferromagnets in a superconducting spin  valve14,40. The suppression of superconductivity 
by the ferromagnet becomes particularly effective at certain ferromagnet thicknesses LF . At these values of LF , 
the different quasiparticle trajectories inside the ferromagnet interfere in such a manner that they minimizes the 
superconducting condensate wave function at the interface with the superconductor. The interference occurs 
since the quasiparticles amplitudes are quantum mechanically determined from sum over all classical trajec-
tories. Since phases picked up along these trajectories not only depend on the length of the trajectory, but also 
the magnitude of the exchange field, varying h also leads to reentrant behavior of superconductivity in our case.

Another interesting aspect of this plot (Fig. 7a) is that superconductivity is eventually enhanced when hi/t 
increases compared to the case hi = 0 without magnetization. In other words, strong magnetization enhances 
superconductivity. The reason for this effect can be understood by considering the mechanisms causing a sup-
pression of superconductivity: local Andreev reflection occurring at a single interface in the system, crossed 
Andreev-reflection (CAR) occurring at both interfaces in the system, and the pair-breaking magnetic moment 
induced in the superconducting region when the exchange-field is finite. In the case of no exchange field ( hi = 0 ), 
the two first mechanisms listed above are then at play and reduce the superconducting gap. When exchange 
field is strong, the gap is seen to be enhanced compared to the hi = 0 case in Fig. 7. Moreover, as seen from 
Fig. 7, the gap becomes almost identical in both the P and AP configuration. This indicates that the reason for 
the enhancement compared to hi = 0 cannot be CAR or the induced magnetic moment (Fig. 8a), because these 
two mechanisms act very differently in the P and AP configuration. Instead, the reason is the first mechanism 
listed above: the behavior of local Andreev reflection. Namely, as the exchange field grows in magnitude, the 
ferromagnets become closer to being half-metallic (only conducting in one spin-band). For a half-metal/super-
conductor interface, there is in fact no proximity effect at all (in Fig.  8b, the proximity effect goes to zero quickly 
in the ferromagnets). As only one spin-type is available in the half-metal, no Andreev reflection can take place 
and the Cooper pairs are confined to the superconductor. Therefore, unlike the case for hi = 0 , there is now no 
leakage of Cooper pairs into the ferromagnetic regions. This results in a stronger superconducting condensate, 
since the leakage of pairs into the magnetic regions is absent.

In Fig. 9, we show how J in a superconducting spin valve behaves with respect to exchange field. The interac-
tion between the ferromagnets weakens the longer the superconductor is. Despite of a small region where the P 
orientation is the ground state, it is clearly seen that AP is mostly the dominating ground state, especially as hi 
becomes large. As we mentioned previously, this is as a result of �P exceeding the magnitude of �AP . Similarly 
to the F–N–F case, for high enough exchange field hi the number of available conduction electron states near 

Figure 8.  (a) Layer-dependent magnetization for P and AP (b) Proximity effect of superconductor inside the 
ferromagnets when U/t = 1 , hi = 2.5t , kBT = 0.01t , µS = 0.8t , µF = 0.9t and LxS = 7.



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5028  | https://doi.org/10.1038/s41598-021-83620-3

www.nature.com/scientificreports/

the Fermi level that can become spin-polarized and mediate the interaction monotonically decreases, leading to 
a corresponding reduction of the indirect exchange interaction.

In Ref.41, the authors showed that the critical temperature difference �Tc ≡ Tc(P)− Tc(AP) in a supercon-
ducting spin-valve could have both positive and negative sign if the thicknesses of the ferromagnets were unequal. 
The authors considered very thin superconductors LS ≪ ξS . In our manuscript, we do not consider such thin 
superconductors and instead focus on the regime LS > ξS . Moreover, Ref.41 obtained the sign change in �Tc 
when assuming a strong Fermi-vector mismatch between the F and S regions, whereas we do not consider layers 
with a strong Fermi-vector mismatch. In our regime, we do not observe any sign-change in the indirect exchange 
interaction J as we vary the thickness of one of the ferromagnets while keeping the other fixed. This indicates 
that the interference effects causing the sign change in Tc(P)− Tc(AP) in Ref.41 are suppressed for superconduc-
tors larger than the coherence length and when there is no strong Fermi-vector mismatch between the layers.

The relevant length-scales under consideration in our system are the superconducting coherence length 
ξ = �vF/π� , the ferromagnetic coherence length ξF = �vF/πh , and the Fermi wavelength �F = k−1

F  . We have 
considered several different parameter choices for the length of the superconductor and the coherence length (by 
varying U). Therefore, the relative size of these length-scales is not a fixed number in our paper. However, con-
sidering a representative parameter set LS/a = 10,U/t = 1.5, h/t = 1.0 , we find that ξS /�F ≃ 3.5, ξF/�F ≃ 1.2 . 
In this work, we have not considered the possible influence of the electromagnetic proximity  effect42,43 on the 
RKKY interaction between the ferromagnets, which could be an interesting extension to consider.

To close this section, we investigate the effect of the width of the structure on the indirect interaction between 
the ferromagnets in Fig. 10. Increasing the width of the structure leads to more available states which makes the 

Figure 9.  F–S–F, Ly = 10, LxF = 2,µS = 0.8t,µF = 0.9t, kBT = 0.01t,U = 1.5.
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Figure 10.  F–S–F, LxF = 2,µS = 0.8t,µF = 0.9t, kBT = 0.01t.
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interaction J between the ferromagnets larger. However, it does not change the fact that the system prefers the 
AP oreintation as the ground state for sufficiently strong superconductors.

We finally consider the effect of impurities on J. To this end, we consider randomly located impurities in the 
superconducting part. Impurity atoms are not chosen from edge atoms and atoms at the interfaces with ferro-
magnets. Here, we consider the impurity-averaged exchange interaction J over a large set of different impurity 
configurations. We define Z as the number of impurity configurations that we have averaged over. The Hamil-
tonian of the system including impurity scattering is as follows

Here V imp
i  is the potential describing the impurity strength at site i. In Fig. 11, we consider J as a function of 

the number of impurities in the system for U/t = 1.5 , hi = 1t and V imp
i = 2t , averaging over Z = 2000 con-

figurations. We see that J decays in an oscillatory fashion as the number of impurities randomly placed in the 
superconductor increases.

To understand the behavior of J, we consider both how the magnitude and the LDOS changes for the F–S–F 
structure when comparing the clean case and the case with impurities. Consider first the case with zero impuri-
ties and zero magnetic field, shown in Fig. 12a,b. The LDOS has its minimum value in the middle of structure 
while |�AP | is maximal at the middle of structure, as expected. When adding impurities, in Fig. 12c,d, |�AP | will 
tend to zero around the impurity atoms. Their location is marked with white crosses. Interestingly, the average 
LDOS in the dirty F–S–F case (Fig. 12d) has increased in comparison to the clean F–S–F (Fig. 12b) case. At first 

(22)H = −
∑

�ij�,α

tijc
†
iαcjα +

∑

i,α

(V
imp
i − µi)niα +

∑

iαβ

(hi · σ )αβc
†
iαciβ −

∑

i

Uini↑ni↓ .

Figure 11.  Indirect exchange interaction J between the ferromagnets versus number of 
impurities ( Ni ). We have considered J averaged over 2000 different impurity configurations, using 
Ly = 10, LxF = 2, LxS = 10,µS = 0.8t,µF = 0.9t, kBT = 0.01t,U/t = 1.5 and hi = 1t.
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Figure 12.  Left column: anti-parallel superconducting gap ( |�AP | ). Right column: local density of states 
(LDOS) plots. We have used LxS = 10 , Ly = 10 , LxF = 2 , µS = 0.8t , µF = 0.9t , U/t = 1.5 , hi = 1t and 
� = 0.036 . (a, b) clean F–S–F (Ni = 0) . (c, d) dirty F-S-F with 8% impurity concentration ( Ni = 8).
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glance, this might indicate that more available quasiparticle states are available to mediate the exchange interac-
tion between the ferromagnets. This should lead to an increase in J compared to the clean case Ni = 0 . However, 
Fig. 11 shows the opposite: J is reduced compared to the clean case. We attribute this decrease in J with increasing 
impurity concentration to an increasing localization of  quasiparticles28,29. When the localization increases, the 
interaction J should be reduced, as seen in Fig. 11.

Concluding remarks
In conclusion, we have considered the magnetic exchange interaction J and the preferred equilibrium magnetic 
configuration in a 2D superconducting spin valve with an s-wave superconductor, solving self-consistently for 
the superconducting order parameter. We find that the qualitative dependence of J on the separation distance 
between the ferromagnets can behave differently on the basis of the strength of the superconducting gap and 
the strength of the exchange field in the ferromagnets. RKKY-like oscillations are observed when the super-
conducting gap � is small, whereas a monotonic decay is observed when � is larger. In the latter case, the AP 
configuration is always preferred even though the gap is larger in the P configuration. We explain this in terms 
of a competition between a proximity-induced pair-breaking magnetization in the superconductor and crossed 
Andreev reflection. Adding randomly localized impurities to the superconductor led to an oscillatory decrease 
of J with increasing impurity concentration.
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We theoretically study the indirect interaction between two ferromagnetic contacts located on the surface of
a d-wave superconductor. When the magnets are connected to a {010} edge of the superconductor we find an
oscillating RKKY interaction that varies in sign as the distance between the magnetic contacts is varied. However,
when coupling the magnets to an {110} edge of the superconductor, we find that the presence of midgap states
qualitatively changes the results. The ground state of the system is then found to always favor alignment of
the magnets as this configuration most strongly suppresses the midgap states, leading to a larger condensation
energy, which dominates over the intrinsic RKKY interaction.
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I. INTRODUCTION

Superconductors with d-wave symmetry have an
anisotropic order parameter, which drops to zero along
some nodal directions [1–3]. A {110} edge of a dx2−y2

superconductor has been shown to feature dispersionless
surface states with zero energy, called midgap states [4]. The
appearance of midgap states for such an edge is related to
the fact that the order parameter in a 45◦ rotated coordinate
system takes the form dxy, introducing opposite signs for the
pair potential experienced by particles undergoing specular
and Andreev reflections at the surface. The {110} edge
also gives rise to a zero bias conductance peak [5], which
is a result of the presence of the midgap states [6]. Such a
zero-bias conductance peak has been experimentally observed
in the high-Tc cuprate superconductors [7–10] and has been
important in determining the pairing symmetry of these
superconductors.

The indirect exchange interaction between two localized
spins, mediated by the itinerant electrons of a host mate-
rial, was first introduced by Ruderman, Kittel, Kasuya, and
Yosida, and is known as the RKKY interaction [11–13].
In this indirect exchange interaction, itinerant electrons of
the host material scatter off a localized spin, and the wave
functions of the scattered electrons interfere with each other
giving rise to alternating regions with high density of spin
up/down. This leads to the well-known RKKY oscillations
in the spin-spin interaction strength, which decrease with the
distance R between the two localized spins as R−D, where D
is the dimensionality of the system. RKKY interaction has
been investigated in various materials ranging from normal
metals [11,13], to one- and two-dimensional electron gases
[14,15], two-dimensional structures like graphene [16–20],
and topological insulators [21–23].

For a system consisting of magnetic impurities embedded
in a superconductor, the influence of superconductivity on the
indirect impurity-impurity interaction has also been studied
[24,25]. For a conventional s-wave superconductor, when the

distance between the impurities is larger than the supercon-
ducting coherence length, the interaction between them is
found to be antiferromagnetic in character and suppressed
compared to the normal metal case. The suppression is caused
by the superconducting gap reducing the number of states
close to the Fermi level that can mediate the interaction.
Below the coherence length, the behavior is similar to the
normal metal case with an oscillatory RKKY interaction that
changes sign with distance. However, nonperturbative treat-
ments have shown that Yu-Shiba-Rusinov (YSR) bound states
can give rise to mainly antiferromagnetic behavior even at
distances shorter than the coherence length [26]. Further, for
impurities on the surface of a three-dimensional topological
insulator with proximity-induced s-wave superconductivity,
the RKKY interaction favors the impurity spins to be in-plane
and antiparallel [27]. For a spin-valve structure consisting of
two ferromagnetic insulators connected by an s-wave super-
conductor, experiments have shown that anti-alignment of the
magnets is still favored [28].

Conventional s-wave superconductors do however typi-
cally have coherence lengths far exceeding the decay length
of the RKKY interaction. On the other hand, d-wave su-
perconductors can feature very short coherence lengths of
the order of nanometers [29], offering an intriguing plat-
form for studying the interplay between superconductivity
and RKKY interaction, as the characteristic length scales of
both phenomena are comparable. RKKY interaction between
magnetic impurities mediated by a d-wave superconductor
with an anisotropic order parameter of the type dx2−y2 has
lead to similar behavior as in the s-wave case [30]. Further,
for a spin-valve structure involving a dx2−y2 superconductor,
nodal quasiparticles close to the Fermi surface have been
observed to mediate interaction that favors anti-alignment of
the magnetic insulators for a sufficiently large superconductor
thickness [31].

As the gapped band structure of a superconductor sup-
presses the RKKY interaction, it is of interest to investigate
the effect the presence of midgap states have on the
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FIG. 1. Schematic illustration of a d-wave superconductor with
midgap surface states mediating the indirect exchange interaction
between two ferromagnetic contacts. We will consider configurations
where the magnetization of the two magnets is either parallel (P) or
antiparallel (AP). For comparison, the ferromagnetic contacts will
also be attached to the lower, nondiagonal edge of the supercon-
ductor. The lengths indicated on the figure will in the main text be
specified by the number of atomic distances.

interaction. We therefore consider a dx2−y2 superconductor and
calculate the exchange interaction between two ferromagnetic
contacts located on a diagonal {110} edge, as illustrated in
Fig. 1. The superconductor is modelled by an extended BCS
tight-binding Hamiltonian on a square lattice and connected
to the metallic magnets through a hopping term across the
interface. The results are obtained through a self-consistent
solution of the Bogoliubov-de Gennes (BdG) equations [32].
To put the results into context, we consider the cases of
a normal metal and an isotropic s-wave superconductor, in
addition to the d-wave superconductor. In all three cases,
we investigate the interaction between ferromagnetic contacts
located on both diagonal and nondiagonal edges.

For magnetic contacts located on a diagonal edge of a
d-wave superconductor, we find that the system always favors
alignment of the two magnets. The variation in the strength
of the magnetic exchange interaction as we vary the distance
between the magnets is small compared to the magnitude of
the interaction itself. We attribute these results to the aligned
magnets more efficiently suppressing the midgap states than
the anti-aligned configuration. Although the aligned magnets
induce a stronger spin splitting in the superconductor, sup-
pressing the gap, the reduction of the midgap states leads to
an overall larger gap and increased condensation energy. The
parallel magnet configuration is therefore the ground state of
the system.

The paper is organized as follows. In Sec. II we introduce
the model and methodology. Then, in Sec. III we present and
discuss the results. Finally, in Sec. IV we provide a summary
of the findings. The phase diagram of our d-wave supercon-
ductor model for a square system with continuous boundary
conditions is included in the Appendix.

II. MODEL AND METHODS

By means of a tight-binding Hamiltonian on a square lat-
tice, we model the attractive electron-electron interaction in a

superconductor:

HSC = −
∑

〈i, j〉,α
ti jc

†
iαc jα −

∑
i,α

μiniα −
∑

i

Uini↑ni↓

+
∑

〈i j〉,α �=α′
Vi jniαn jα′ +

∑
〈i j〉,α

V ′
i jniαn jα. (1)

Here, c†
iα is a creation operator creating an electron with spin

α on lattice site i = (ix, iy). The hopping amplitude is denoted
by ti j , and μi is the chemical potential. The third term rep-
resents on-site attractive interactions between opposite spins,
where the number operator is niα = c†

iαciα . This term gives rise
to conventional spin singlet isotropic s-wave superconduc-
tivity. The fourth and fifth terms represent nearest-neighbor
interaction between opposite or equal spins, respectively.
These terms can give rise to d-wave, p-wave, or extended
s-wave pairing for an attractive interaction potential. For the
purposes of this paper, we will set V ′

i j to zero as we will not be
interested in the possibility of equal spin pairing. As shown
in the Appendix, the above model without V ′

i j can give rise
to a d-wave superconductor for a suitable choice of chemical
potential.

A. Analytical methods

Through a mean-field treatment, we simplify the interac-
tion terms. The on-site part of the interaction becomes

−
∑

i

Uini↑ni↓ = −
∑

i

Ui(c
†
i↑c†

i↓〈ci↓ci↑〉 + ci↓ci↑〈c†
i↑c†

i↓〉

− 〈ci↓ci↑〉〈c†
i↑c†

i↓〉). (2)

Defining the superconducting gap for the on-site interaction
as �i = −Ui〈ci↓ci↑〉, we obtain

−
∑

i

Uini↑ni↓ =
∑

i

(c†
i↑c†

i↓�i + ci↓ci↑�∗
i ) + HS

0 , (3)

where we have defined

HS
0 =

∑
i

|�i|2
Ui

. (4)

The on-site interaction Ui will be taken to a constant U � 0 in
the superconductor, and zero elsewhere. Once again, perform-
ing a mean-field treatment, the attractive nearest-neighbor
interaction term becomes

∑
〈i j〉,α �=α′

Vi jniαn jα′ =
∑

〈i j〉,α �=α′
Vi j (c

†
jα′c

†
iα〈ciαc jα′ 〉

+ ciαc jα′ 〈c†
jα′c

†
iα〉 − 〈c†

jα′c
†
iα〉〈ciαc jα′ 〉).

(5)

We then define the nearest-neighbor pairing amplitude

Fαα′
i j = 〈ciαc jα′ 〉, (6)

transforming Eq. (5) into
∑

〈i j〉,α �=α′
Vi j

(
c†

jα′c
†
iαFαα′

i j + ciαc jα′
(
Fαα′

i j

)†) + Hd
0 , (7)
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where

Hd
0 = −

∑
〈i, j〉,α �=α′

Vi j

∣∣Fαα′
i j

∣∣2
. (8)

As
∑

〈i, j〉 Vi j |F↑↓
i j |2 = ∑

〈i, j〉 Vji|F↓↑
i j |2, we can rewrite Hd

0 =
−∑

〈i, j〉 |F↑↓
i j |2(Vi j + Vji ), and similarly

∑
〈i j〉,α �=α′

Vi j (c
†
jα′c

†
iαFαα′

i j + ciαc jα′ (Fαα′
i j )†)

=
∑
〈i j〉

(c†
j↓c†

i↑F↑↓
i j + ci↑c j↓(F↑↓

i j )†)(Vi j + Vji ). (9)

In the following, we will take the nearest-neighbor interac-
tion to be Vji = Vi j = V � 0 (corresponding to an attractive
interaction) in the superconductor and zero elsewhere. The
mean-field extended tight-binding Hamiltonian now takes the
form

HSC
m f = H0 −

∑
〈i, j〉,α

ti jc
†
iαc jα −

∑
i,α

μiniα

+
∑

i

(c†
i↑c†

i↓�i + ci↓ci↑�∗
i )

+ 2
∑
〈i j〉

V (c†
j↓c†

i↑F↑↓
i j + ci↑c j↓(F↑↓

i j )†), (10)

where H0 = HS
0 + Hd

0 .
The metallic ferromagnets that are attached to the su-

perconductor are described by the following tight-binding
Hamiltonian:

HFM = −
∑

〈i, j〉,α
ti jc

†
iαc jα −

∑
i,α

μiniα

−
∑
iδαβ

hδ
i (σz )αβ c†

iαciβ. (11)

The last term represents the coupling between the spin of an
electron at site i and the local magnetic exchange field, giving
rise to ferromagnetism. The local exchange field hδ

i is taken
to produce a spin splitting in the z direction in spin space,
giving rise to a magnetization that could in general be either
in-plane or out-of-plane in real space. Our model does not
separate these cases as the magnetism is simply introduced
through a spin splitting. Orbital effects on the superconductor
arising from the magnets, not considered in this model, can be
limited by keeping the magnetization in-plane [33]. The Pauli
matrices are denoted by σ , and the index δ separates the local

exchange field of each of the two magnets with δ = L, R for
the leftmost and rightmost magnet, respectively. The sign of
the local exchange field can be either the same or opposite
for the two magnets, giving rise to parallel (P) or antiparallel
(AP) ferromagnets. Outside of the magnets, the local magnetic
exchange field is set to zero. The coupling between the mag-
nets and the superconductor is introduced by having a nonzero
hopping amplitude ti j across the ferromagnet-superconductor
interfaces. The region outside of the superconductor and mag-
nets is considered to be vacuum and decoupled from the rest
of the system with a vanishing hopping amplitude.

After diagonalization, the free energy of the system will be
expressed as

F = H0 − 1

2

2N∑
n=1

En − 1

β

2N∑
n=1

ln(1 + e−βEn ), (12)

where En is the quasiparticle energy associated with quantum
number n, and N is the number of lattice sites. The magnetic
exchange interaction is computed as the difference in free en-
ergy between the configurations with parallel and antiparallel
magnets

J = F↑↑ − F↑↓, (13)

which includes both the RKKY interaction mediated by the
quasiparticles as well as the effect of the magnetic configura-
tions on the condensation energy of the superconductor.

The Hamiltonian H = HSC + HFM is diagonalized by
means of the BdG method in order to compute the eigenvalues
En and eigenstates γn. The diagonalized Hamiltonian will then
take the form

H = H0 − 1

2

2N∑
n=1

En +
2N∑

n=1

Enγ
†
n γn. (14)

In order to perform the diagonalization, we start by rewriting
the Hamiltonian as H = H0 + 1

2

∑
i j B†

i hi jB j where we have
introduced the basis

B†
i = [c†

i↑ c†
i↓ ci↑ ci↓]. (15)

Here, hi j is a 4 × 4 matrix that takes the following form for
i �= j

hi j =

⎡
⎢⎣

−t 0 0 −2V Fi j

0 −t 2V Fji 0
0 2V (Fi j )∗ +t 0

−2V (Fji )∗ 0 0 +t

⎤
⎥⎦, (16)

and for i = j

hi j =

⎡
⎢⎢⎣

−μi + ∑
δ hδ

i 0 0 �i

0 −μi − ∑
δ hδ

i −�i 0
0 −(�i )∗ +μi − ∑

δ hδ
i 0

(�i )∗ 0 0 +μi + ∑
δ hδ

i

⎤
⎥⎥⎦. (17)

Writing the Hamiltonian on matrix form H =
H0 + 1

2W †SW , and introducing the matrix P,
we diagonalize the Hamiltonian H = H0 +
1
2W †P†PSP†PW = H0 + 1

2W̃ †SdW̃ . The eigenvectors of S

are

�†
n =[ϕ∗

1n · · · ϕ∗
in · · · ϕ∗

Nn],

ϕ∗
in =[υ∗

in ν∗
in ω∗

in χ∗
in], (18)
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such that

P† = [�1 �2 . . . �4N ]. (19)

We next use P†W̃ = W along with

W̃ † = [γ †
1 . . . γ

†
4N ], (20)

and the relations between the quasiparticle operators that are
not independent of each other. There are then 2N remain-
ing independent quasiparticle operators with corresponding
eigenvalues. The creation and annihilation operators {c†, c}
can then be expressed in terms of quasiparticle creation and
annihilation operators {γ †, γ }:

ci↑ =
2N∑

n=1

υi,nγn + ω∗
i,nγ

†
n , ci↓ =

2N∑
n=1

νi,nγn + χ∗
i,nγ

†
n ,

c†
i↑ =

2N∑
n=1

ωi,nγn + υ∗
i,nγ

†
n , c†

i↓ =
2N∑

n=1

χi,nγn + ν∗
i,nγ

†
n .

(21)
Inserting these relations into the definition of the gap for the
on-site interaction, we obtain the self-consistent gap equation

�i = −Ui

2N∑
n=1

[(χ∗
i,nυi,n − νi,nω

∗
i,n) f (En) + νi,nω

∗
i,n]. (22)

For the nearest-neighbor pairing amplitudes, we introduce
a simplified notation F↑↓

i j = Fi j . Further, Fi,i+x̂ is expressed

as F x̂+
i and likewise Fi+x̂,i ≡ F+x̂

i and so on. Inserting the
expressions from Eq. (21) into the definitions of the pairing
amplitudes, we obtain

F x±
i =

2N∑
n=1

[(ω∗
i,nνi±x̂,n − υi,nχ

∗
i±x̂,n) f (En) + υi,nχ

∗
i±x̂,n],

F±x
i =

2N∑
n=1

[(ω∗
i±x̂,nνi,n − υi±x̂,nχ

∗
i,n) f (En) + υi±x̂,nχ

∗
i,n],

F y±
i =

2N∑
n=1

[(ω∗
i,nνi±ŷ,n − υi,nχ

∗
i±ŷ,n) f (En) + υi,nχ

∗
i±ŷ,n],

F±y
i =

2N∑
n=1

[(ω∗
i±ŷ,nνi,n − υi±ŷ,nχ

∗
i,n) f (En) + υi±ŷ,nχ

∗
i,n].

(23)

As we are interested in the effect of the midgap states
on the indirect interaction between two ferromagnetic leads
connected to the superconductor, establishing the presence of
midgap states is of importance. This can be achieved by calcu-
lating the single particle local density of states (LDOS), which
should have a peak around zero energy in the presence of
midgap states. The number of charges on lattice site i is given
by ρi = ∑

α〈c†
iαciα〉, but this quantity can also be expressed

as ρi = ∫ +∞
−∞ Ni(E ) f (E )dE . Here Ni(E ) is the local density

of states at site i, and f (E ) is the Fermi-Dirac distribution
with energy E measured relative to the chemical potential.
At T = 0, we have f (E ) = 1 for E < 0 and f (E ) = 0 when
E > 0. Comparing the above two expressions for the number

of charges on lattice site i, the LDOS can then be expressed as

Ni(E ) =
2N∑

n=1

[(|ωi,n|2 + |χi,n|2) δ(E + En)

+ (|υi,n|2 + |νi,n|2) δ(E − En)]. (24)

Another quantity of interest is the magnetization on lattice
site i, Mi = 〈Si〉. Here, the spin operator is defined as Si =∑

αβ c†
iασαβciβ . The magnetization in the z direction can then

be expressed as

Mz
i =

2N∑
n=1

[(|υi,n|2 + |χi,n|2 − |ωi,n|2 − |νi,n|2) f (En)

+ |ωi,n|2 − |χi,n|2]. (25)

B. Computational methods

The computational part of this study consists of numer-
ically diagonalizing the Hamiltonian and self-consistently
solving the equations for either the on-site superconducting
gap [Eq. (22)] or the nearest-neighbor pairing amplitudes
[Eq. (23)], depending on whether the superconductor is taken
to be of the isotropic s-wave type or the d-wave type. Iterative
solution of these equations require an initial value for the gap
function/pairing amplitudes, and a convergence criterion in
order to determine when a solution has been obtained. In this
paper, the convergence criterion was that the relative change
in the gap/pairing amplitudes from one iteration to the next
should be less than 1 × 10−4 for the d-wave and 1 × 10−3 for
the s-wave state. The initial values for the d-wave state are
listed in the Appendix and the initial value for the s-wave gap
� was set to 0.5t .

III. RESULTS AND DISCUSSION

We first investigate the presence of midgap surface states,
i.e., zero-energy states existing on an edge of a superconduc-
tor. As displayed in Fig. 2, we calculate the LDOS for different
points on an s-wave and a d-wave superconductor without
magnetic contacts. One of the points is located at the diagonal
edge, one of the points is in the bulk, and the third point is
on the lower horizontal edge. Only on the diagonal edge of
the d-wave superconductor, Fig. 2(b1), there is a peak around
zero-energy signaling the presence of midgap states. In this
figure, the chemical potential has been set to μS = 0.7t , which
gives rise to an asymmetric density of states around E = 0 for
our tight-binding model as the gap in the electron spectrum is
opened away from the middle of the band.

As the presence of midgap states has been established,
we move on to results for the indirect interaction between
magnetic leads attached to a normal metal, an s-wave super-
conductor, and finally a d-wave superconductor.

A. Normal state

To put the results for the superconductors into context, we
start with the case of magnetic leads connected by a normal
metal (V = U = 0). The indirect exchange interaction J is
presented in Fig. 3. For the horizontal edge, the result is the
expected RKKY oscillations that are damped with increasing
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FIG. 2. Local density of states (LDOS) for different points of an s-wave superconductor (a) and a d-wave superconductor (b), showing the
presence of midgap states on the diagonal edge of the d-wave superconductor. In both cases the size of the structure is LxS = 34 and LyS = 30.
For the s-wave results we have taken U/t = 2 and V = 0, while for the d-wave results we have taken U = 0 and V/t = −1. In both cases we
have set the chemical potential μS = 0.7t .

distance between the magnets. For the diagonal edge, the
results are more peculiar, showing an enhanced interaction
when the electrodes are close to the endpoints of the diagonal
edge. Investigating the LDOS for E = 0 in Fig. 4, the reason
becomes clear. Close to the edges of the system, the LDOS
increases in magnitude and exhibits Friedel-like oscillations
due to the abruptly vanishing charge density at the edge. The
oscillatory and increased LDOS close to the edges corre-
spondingly affects the RKKY interaction when the electrodes
are close to the edge.

(a)

(b)

FIG. 3. Normal metal: Indirect exchange interaction between
magnetic leads connected to a diagonal (a) and a horizontal (b) edge
of a normal metal, presented as a function of the distance between
the leads. Here, the chemical potential in the normal metal is set
to μN = 0.9t and the chemical potential in the ferromagnets is set
to μF = 1.2t . Further, hi = 2t , LxN = 40, LyN = 40, LxF = 2, LyF =
10, and V = U = 0. In both subfigures, the leftmost magnet was
fixed two lattice points away from the endpoint of the edge.

B. s-Wave pairing

We then move on to the case of magnetic leads connected
by an isotropic s-wave superconductor (V = 0). The results
for the indirect exchange interaction are presented in Fig. 5. In
this case, there are two competing effects: The conventional
RKKY interaction and the blocking of the states that can
mediate the interaction due to the gap around the Fermi level
in the band structure. For a weak attractive interaction U in
the superconductor, the RKKY interaction dominates, giving
rise to an oscillating behavior. For larger U , the gap becomes
larger and can block more of the states that can mediate the
interaction between the magnets. The interaction then displays
a damping behavior instead of oscillations, and an antiparallel
configuration of the magnets is preferred [34]. For the diago-
nal edge, the electrodes have been kept further away from the
endpoints of the edge. For a weak attractive interaction U , the
enhanced RKKY oscillations occurring when the electrodes
are close to the end-points can, however, still be observed, as
explained previously. On the other hand, when the strength of

FIG. 4. Normal metal: Local density of states (LDOS) for E = 0
at the diagonal edge in the absence of magnetic contacts. The sys-
tem size is LxN = 40 and LyN = 40, V = U = 0, and the chemical
potential in the normal metal is 0.9t .
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(a)

(b)

FIG. 5. s-Wave : Indirect exchange interaction between magnetic
leads connected to a diagonal (a) and a horizontal (b) edge of a
s-wave superconductor. Here μS = 0.9t , μF = 1.2t , hi = 2t , LxS =
40, LyS = 40, LxF = 2, LyF = 10, and V = 0. For the diagonal edge,
the leftmost magnet is fixed 13 lattice points away from the endpoint
of the edge, while for the horizontal edge, the leftmost magnet is
fixed 2 lattice points away from the endpoint.

the attractive interaction is increased, increasing the supercon-
ducting gap, we see that J is damped to zero for sufficiently
large magnet separation also for the diagonal edge. Thus, in
the s-wave case, the qualitative behavior of J is the same
regardless of which edge we consider.

C. d-Wave pairing

Finally, we consider the main result of this paper, which is
how the magnetic leads interact when separated by a d-wave
superconductor (U = 0). The results for the indirect interac-
tion between the magnetic leads is presented in Fig. 6. For the
horizontal edge, the interaction displays an oscillating behav-
ior and varies in sign as a function of the distance between
the magnetic contacts. The results for the diagonal edge, on
the other hand, show a qualitatively different behavior. The
system now always prefers alignment of the ferromagnets and
the interaction varies little with distance. Further, increasing
hi now leads to a larger difference in free energy between the
parallel and antiparallel magnet configurations.

The result that a parallel magnet configuration is strongly
favored for the diagonal edge is surprising as one would
expect that the parallel configuration induces a larger magne-
tization in the superconductor, which suppresses the gap and
lowers the condensation energy. A particularly large induced
magnetization in the superconductor should be expected in the
presence of midgap states, which can give rise to a giant mag-
netic moment when subjected to a spin splitting [4,35,36]. In
accordance with this, we find a sizable induced magnetization
on the diagonal edge. As previously discussed in the litera-
ture, the magnetization induced in a superconductor due to

(a)

(b)

FIG. 6. d-Wave : Indirect exchange interaction between mag-
netic leads connected to a diagonal (a) and a horizontal (b) edge
of a d-wave superconductor. Here μS = 0.7t , μF = 1t , V/t = −1,
LxF = 2, LyF = 10, and U = 0. For the diagonal edge, the leftmost
magnet is fixed only 2 lattice points away from the endpoint of the
edge in order to maximize the number of data points. The d-wave
diagonal edge results are not sensitive to how close the magnets
are to the endpoints of the edge. Further LxS = 34, LyS = 30. For
the horizontal edge, the leftmost magnet is fixed 10 lattice points
away from the endpoint, and LxS = 40, LyS = 20.

proximity to a ferromagnet can be either aligned or anti-
aligned with the magnetization of the ferromagnet [37–39].
A physical picture for the origin of an anti-aligned induced
magnetization is that there are contributions from Cooper
pairs where one of the two electrons is located in the fer-
romagnet, aligned with the local magnetization, leaving a
Cooper pair partner with opposite spin in the superconductor.
In the present system the induced magnetization tends to be
anti-aligned with the magnetization of the magnetic contacts,
as displayed in Figs. 7(a) and 7(b).

The effect of introducing the magnets is, however, not
solely to reduce the gap due to an induced effective spin
splitting in the superconductor. The induced spin splitting
also splits the midgap states away from their resonance point
at zero energy, suppressing the midgap states. As the gap
close to the edge to begin with is strongly suppressed by
the midgap states, the effect of reducing the midgap states,
causing the superconducting order parameter to recover at
the edge, is stronger than the effect of the spin splitting on
the condensation energy. As the parallel configuration most
effectively produces a spin splitting in the superconductor, this
configuration features the largest condensation energy, giving
rise to the behavior that is observed in Fig. 6(a).

Investigating the constant term in the Hamiltonian H0 =∑
i H0,i, the difference between H0,i for the parallel and an-

tiparallel configurations is presented in Fig. 7(c). The figure
shows that H0, which is a positive quantity, is largest for the
parallel configuration, corresponding to a larger gap. In turn,
this produces a larger condensation energy that lowers the
free energy of the system. From the figure, it is clear that the
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(a) (b)

(c) (d)

FIG. 7. d-Wave: Magnetization on each lattice site for the paral-
lel (a) and antiparallel (b) configuration of magnets. The difference in
H0,i between the parallel and antiparallel configurations is presented
in (c). The local density of states (LDOS) for the 11th lattice site
(from the left) of the diagonal edge is presented in (d), showing that
the midgap states are more suppressed for the parallel magnet con-
figuration. Here we have taken the same parameters as in Fig. 6(a),
apart from a larger exchange field of hi = 2t in order to more clearly
show the differences between the two configurations.

main contribution to the difference in condensation energy be-
tween the magnetic configurations comes from the transition
region where the antiparallel configuration has a reduced edge
magnetization. LDOS results from this region are presented in
Fig. 7(d). While the AP configuration in this region has a clear
midgap peak around zero energy, the midgap states for the P
configuration have been split and suppressed by the induced
spin splitting.

We close by discussing briefly experimental considerations
and possible choices of materials for observation of the d-
wave results presented in this paper. While the system sizes
in the presented calculations are limited by computational
considerations, the presented results are expected to be robust
also for larger systems. As RKKY interaction typically de-
cays below experimentally accessible values over short length
scales of the order of nanometers, the separation between
the magnetic contacts typically needs to be kept small. This
might however only apply to the RKKY dominated indirect
interaction that we observe for the horizontal edge of the
d-wave superconductor. The preference of alignment of the
ferromagnets when attached to a diagonal edge of a d-wave
superconductor is expected to also be observable for larger
magnet separation as the indirect interaction in this case is
not dominated by itinerant carriers, but rather arises from
the parallel configuration more efficiently inducing a spin

splitting, suppressing the localized midgap states. The dis-
tance the magnets can interact over is then limited by the
length scale determining how far away from a magnet the
midgap states still experience a spin splitting. If the magnet
separation is much larger than this decay length of the induced
spin splitting along the edge, the spin splitting arising from
each magnet decays before interacting with the spin splitting
arising from the other magnet. There is then no difference
between the two magnet configurations when it comes to
suppression of midgap states, and the parallel configuration is
no longer favored. For an s-wave superconductor in proximity
to a ferromagnet, the proximity-induced magnetization decays
over a length scale of the superconducting coherence length
[40]. A natural length scale for the decay of the induced spin
splitting in the present case would then be the effective coher-
ence length corresponding to the strongly suppressed order
parameter at the edge. As the coherence length is inversely
proportional to the order parameter, the magnets will then be
able to interact over distances considerably larger than the
bulk coherence length.

Experimental investigation of our main finding would con-
sist of attaching magnetic leads to a {110} edge of a d-wave
superconductor. The indirect interaction between the magnets
can then be established by determining the energy barrier of
switching between the two magnet configurations through an
external magnetic field. Our prediction is that ferromagnetic
alignment of the magnets will be preferred for a wide range of
magnet separation distances. Possible material choices could
be YBCO [2,7,29] for the d-wave superconductor featuring
midgap states, and a nickel-alloy-like Ni80Co20 [41] for the
magnetic contacts.

IV. SUMMARY

We have investigated the indirect exchange interaction be-
tween two ferromagnetic leads connected to a superconductor
as a function of the separation between the magnets, showing
that the presence of zero-energy surface states in a d-wave
superconductor can qualitatively change the results. When the
magnets are connected to an edge without zero-energy surface
states we find a normal oscillating RKKY behavior. However,
when the magnets are connected to an edge featuring zero-
energy surface states, the strength of the magnetic exchange
interaction is shifted away from zero, always favoring align-
ment of the magnetization in the two magnets, as the aligned
configuration produces a larger superconducting condensation
energy.
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APPENDIX: PHASE DIAGRAM

In order to choose the parameters such that the supercon-
ductor used in the study is in a d-wave state, we obtain a
starting point by considering a square system with continuous
boundary conditions in both the x and y directions and no
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attached magnetic leads. The relevant Hamiltonian is the one
in Eq. (1) with Ui = V ′

i j = 0. We introduce Fourier trans-

formations for the electron operators ciα = 1√
N

∑
k eik·ick,α

where i = (ix, iy) and N is the number of lattice sites. After
the mean-field approximation, Eq. (1) then becomes

HSC = −
∑

〈i, j〉,α
tc†

iαc jα −
∑
i,α

μiniα

+
∑

i,α �=α′
V [niαni+x̂,α′ + niαni−x̂,α′ + niαni+ŷ,α′

+ niαni−ŷ,α′ ]

=
∑
k,σ

ζkc†
k,σ

ck,σ +
∑

k

[(�k)†c†
k↓c†

−k↑ + ϒkck↑c−k↓]

+ HSC
0 . (A1)

Here HSC
0 = −2NV (|F x̂+|2 + |F x̂−|2 + |F ŷ+|2 + |F ŷ−|2),

F x± = 1

N

∑
k

e∓ik·x̂〈ck,↑c−k,↓〉,

F y± = 1

N

∑
k

e∓ik·ŷ〈ck,↑c−k,↓〉,
(A2)

and we have defined,

ϒk = 2V (e−ik·x̂(F x̂+)† + eik·x̂(F x̂−)†

+ e−ik·ŷ(F ŷ+)† + eik·ŷ(F ŷ−)†),

�k = 2V (eik·x̂(F x̂+)† + e−ik·x̂(F x̂−)†

+ eik·ŷ(F ŷ+)† + e−ik·ŷ(F ŷ−)†),

εk = −2t[cos(k · x̂) + cos(k · ŷ)] − μ. (A3)

Further, t = ti j and V = Vi j .
Following the BdG method [32], we consider the following

basis in order to diagonalize the Hamiltonian

B†
k = [c†

k↑ c†
k↓ c−k↑ c−k↓]. (A4)

Then full Hamiltonian can be written as H = H0 +
1
2

∑
k B†

kHkBk, where H0 = HSC
0 + ∑

k εk and Hk is

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

εk 0 0 −(ϒk)†

0 εk (�k)† 0

0 �k −εk 0

−ϒk 0 0 −εk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A5)

Using the unitary matrix Pk the diagonalized form of the
Hamiltonian will be HSC = H0 + 1

2

∑
k B†

kP†
k PkHkP†

k PkBk =
H0 + 1

2

∑
k B̃k

†
H̃kB̃k = H0 − 1

2

∑
k,σ Ek,σ + ∑

k,σ Ek,σ γ
†
kσ

γkσ . The relationship between the normal electron operators

TABLE I. Sets of initial values.

F x̂+ F x̂− F ŷ+ F ŷ−

d-wave 1 1 –1 –1
s-wave extended 1 1 1 1
px + ipy 1 –1 i −i
Normal state 0 0 0 0

and the quasiparticle operators is then

⎡
⎢⎢⎣

υk,↑ υk,↓ ω∗
−k,↑ ω∗

−k,↓
νk,↑ νk,↓ χ∗

−k,↑ χ∗
−k,↓

ωk,↑ ωk,↓ υ∗
−k,↑ υ∗

−k,↓
χk,↑ χk,↓ ν∗

−k,↑ ν∗
−k,↓

⎤
⎥⎥⎦

⎡
⎢⎢⎣

γk↑
γk↓
γ

†
−k↑

γ
†
−k↓

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ck↑
ck↓

c†
−k↑

c†
−k↓

⎤
⎥⎥⎦,

(A6)

where the columns are the eigenvectors of Hk. The pairing
amplitudes can then be expressed as

F x± = 1

N

∑
k,σ

[e∓ik·x̂υk,σ χ∗
k,σ (1 − f (Ek,σ ))

+ e±ik·x̂ω∗
k,σ νk,σ f (Ek,σ )],

F y± = 1

N

∑
k,σ

[e∓ik·ŷυk,σ χ∗
k,σ (1 − f (Ek,σ ))

+ e±ik·ŷω∗
k,σ νk,σ f (Ek,σ )].

(A7)

Finally, the free energy of the system is

F = H0 − 1

2

∑
k,σ

Ek,σ − 1

β

∑
k,σ

ln(1 + e−βEk,σ ). (A8)

For different values of chemical potential and temperature,
we then solve the self-consistent equations for the pairing
amplitudes through iteration, using the different sets of initial
values listed in Table I. We then compare the resulting free
energies [Eq. (A8)] and determine the favored phase of the
system. The phase diagram is presented in Fig. 8. The choices
for the initial values are determined by the expressions for the

FIG. 8. Phase diagram for the tight-binding Hamiltonian with
attractive nearest-neighbor interaction between opposite spins V =
−1t . Here, T is the temperature, kB is the Boltzmann constant, μ is
the chemical potential, and t is the hopping amplitude.
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gap functions [42]

�d = (V/4)(F x̂+ + F x̂− − F ŷ+ − F ŷ−),

�s = (V/4)(F x̂+ + F x̂− + F ŷ+ + F ŷ−),

�px = (V/2)(F x̂+ − F x̂−),

�py = (V/2)(F ŷ+ − F ŷ−). (A9)
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We determine theoretically the interaction between two magnetic impurities embedded in a spin-split s-wave
superconductor. The spin-splitting in the superconductor gives rise to two different interaction types between
the impurity spins, depending on whether their spins lie in the plane perpendicular to the spin-splitting field
(Heisenberg) or not (Ising). For impurity separation distances exceeding ξS , we find that the magnitude of the
spin-splitting can determine whether an antiferromagnetic or ferromagnetic alignment of the impurity spins is
preferred by the RKKY interaction. Moreover, the Ising and Heisenberg terms of the RKKY interaction alternate
on being the dominant term and their magnitudes oscillate as a function of distance between the impurities.

DOI: 10.1103/PhysRevB.104.094527

I. INTRODUCTION

Superconductors have been experimentally demonstrated
to exhibit strongly modified spin-dependent transport prop-
erties [1,2] with respect to normal metals, such as spin
relaxation times [3–6] and magnetoresistance effects [7]. Con-
sequently, superconductors have the potential to advance re-
search on spintronic devices, in which the spin of the electron
is utilized as the information carrier instead of the electronic
charge [8–10]. Intrinsically coexisting ferromagnetism and
superconductivity, proposed more than 60 years ago [11–13],
is only possible under rather strict conditions. On the other
hand, by creating hybrid structures of ferromagnetic and su-
perconducting materials, it is possible to study the interplay
between these orders by virtue of the proximity effect [14].

The Ruderman–Kittel–Kasuya–Yosida (RKKY) interac-
tion [15–17] between magnetic impurities is an exchange
interaction mediated by conduction electrons of the host ma-
terial that the impurities are embedded in. This interaction
has been vastly studied in different materials with spin-
degeneracy, including systems with Dirac fermion excitations
[18–20] and superconducting materials [21–26]. In a clean
metal, the RKKY interaction decays as R−D where R is the
distance between the impurities and D is the dimension of
the system. Likewise, the interaction decays faster in higher
dimensions also in superconducting systems.

In the presence of spin-degeneracy, the RKKY interaction
between magnetic impurities is isotropic in spin space and has
no preferred direction for the impurity magnetic moments.
On the other hand, it has been shown that in spin nonde-
generate systems, the interaction can have different terms of
the types Heisenberg, Ising, and Dzyaloshinskii-Moriya (DM)
[27], depending on the spin structure of the host material. For
instance, in a uniformly spin polarized system the Ising term
arises [28] whereas in systems with spin-orbit interactions a
DM interaction term can emerge [29–33]. In particular, the
interaction between magnetic impurities located on top of an
s-wave superconductor with Rashba spin-orbit coupling has

been found to feature an additional DM term due to the spin-
orbit coupling in the superconductor [34]. Similar results have
been obtained for the interaction between magnetic impurities
on top of a topological insulator with proximity-induced su-
perconductivity from an s-wave superconductor [35].

To the best of our knowledge, the RKKY interaction be-
tween magnetic impurities in a spin-split superconductor (see
Fig. 1) has not been studied. Such superconductors have in
recent years been demonstrated to give rise to interesting
spin-dependent thermoelectric effects and spin diffusion prop-
erties [36]. Due to the spin-splitting, the density of states in
the superconductor acquires a large spin-dependent particle-
hole asymmetry. Therefore, one might expect that the RKKY
interaction could be modified compared to both the purely
superconducting case and the case of a superconductor with
spin-orbit interaction.

In practice, a spin-split superconductor is achieved by ei-
ther exposing a thin-film superconductor to a strong in-plane
magnetic field or by growing a thin-film superconductor on
top of a ferromagnetic insulator. In this case, the thickness of
the superconductor has to be much smaller than the magnetic
penetration depth λ. When the superconductor has a thickness
smaller than the superconducting coherence length ξS , it can
be well approximated by a superconductor coexisting with a
homogeneous spin-splitting field.

In this paper, we will consider the RKKY interaction
between two magnetic impurity atoms embedded in a spin-
split conventional s-wave superconductor, contrasting it to the
interaction between magnetic impurities in a normal metal
subject to a spin-splitting field. While the RKKY interaction,
in the normal metal case, is mediated by electrons, the RKKY
in the superconducting case is mediated by quasiparticles that
are a mix of electron and hole excitations. However, in both
the superconducting and normal case a spin-splitting field in-
duced via proximity to a ferromagnetic insulator lifts the spin
degeneracy of the system. This causes the RKKY-interaction
to have two parts: a Heisenberg- and Ising-term. In the present
context, a Heisenberg term denotes the interaction energy
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(  )

(b) (c)

FIG. 1. (a) Schematic illustration of a possible experimental real-
ization of the system. A thin-film superconductor is placed on top of
a ferromagnetic insulator. Quasiparticle reflection at the interface to
the ferromagnetic insulator induces an effective spin-splitting field
inside the superconductor. (b) Circular Fermi-surface with Fermi
vector magnitude of 0.3 Å−1 used in our calculations. (c) Super-
conducting gap as a function of external exchange field for different
temperature magnitudes.

obtained when the impurity spins lie in the plane perpendic-
ular to the spin-splitting field. The Ising term describes the
interaction for the case when the impurity spins are collinear
with the spin-splitting field.

We find that it is possible to switch between an AFM and
FM interaction between the magnetic impurities by adjusting
the magnitude of the spin-splitting field. While this effect is in
principle attainable even in the normal-state of the system, it is
considerably more robust in the superconducting state where
it occurs in a much larger regime of separation distances be-
tween the impurities compared to the normal state. We discuss
a possible experimental way to adjust the spin-splitting field
strength in order to see this effect. Moreover, we find that the
magnitudes of the Ising and Heisenberg terms of the RKKY
interaction oscillate as a function of distance between the im-
purities, causing them to take turns on which is the dominant
term.

This paper is structured as follows. We introduce the
methodology used to compute the RKKY interaction in
Sec. II. In Sec. III, we present a numerical evaluation of the
expression for the RKKY interaction and discuss the underly-
ing physics of its behavior. Finally, we summarize our findings
in Sec. IV.

II. MODEL AND METHODS

We consider a thin film s-wave superconductor in presence
of a spin-splitting field, which causes a spin-splitting in the

electron bands, as shown in Fig. 1. The superconductor is
modelled by a tight-binding Hamiltonian including an attrac-
tive interaction between the electrons

H0 = −
∑

〈i, j〉,σ
ti jc

†
i,σ c j,σ +

∑
i

V c†
i,↑c†

i,↓ci,↓ci,↑

−
∑
i,σ

(σhexc + μ)c†
i,σ ci,σ .

(1)

The first term represents the nearest-neighbor hopping term
with ti j = t being the hopping parameter. The second term is
the BCS on-site attractive interaction with V < 0 being the
pairing strength. In the third term, hexc is the spin-splitting
field. In our model, we consider this field to be oriented in
the z direction, which is assumed to lie in the film plane of the
superconductor. The Meissner response of the superconductor
is well known to be suppressed in a thin-film geometry when
the field is applied in plane and we may neglect orbital effects.

We consider the system having continuous boundary con-
ditions along both in-plane directions (x and z axes here).
Using a Fourier transformation ciα = 1√

N

∑
k e−ik·ri ck,α where

N is the total number of the lattice points, leads to the follow-
ing form of the Hamiltonian in the k space:

H0 =
∑
k,σ

(ζk − σhexc)c†
k,σ

ck,σ +
∑
kk′

V c†
k,↑c†

−k,↓c−k′,↓ck′,↑,

(2)

where ζk = −2t[ cos(kxax ) + cos(kzaz )] − μ and in it ax(az)
is the lattice constant along x(z) axis, also μ is the chemical
potential. Here, we have redefined V/N → V .

Performing a mean-field treatment, we introduce the super-
conducting gap

� = −V
∑

k′
〈c−k′,↓ck′,↑〉. (3)

We then obtain

H0 =
∑
k,σ

(ζk − σhexc)c†
k,σ

ck,σ −
∑
k,σ

�c†
k,↑c†

−k,↓

−
∑
k,σ

�∗c−k,↓ck,↑ − |�|2
V

.

(4)

Using the following transformation (see Appendix A for de-
tails),

(
ck,σ

c†
−k,−σ

)
=

(
υk σνk

−σνk υk

)(
γk,σ

γ
†
−k,−σ

)
, (5)

where

υk = 1√
2

√√√√1 + ζk√
ζ 2

k + �2
, νk = 1√

2

√√√√1 − ζk√
ζ 2

k + �2
,

(6)

the diagonalized form of H0 will be

H0 = −|�|2
V

+
∑

k

ζk −
∑

k

Ek +
∑
k,σ

Ek,σ γ
†
k,σ

γk,σ . (7)
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Here, Ek =
√

ζ 2
k + �2 and Ek,σ = Ek − σhexc. Expressing

the electron operators in terms of the quasiparticle operators
Eq. (5), the gap equation takes the form

1 = −V

2

∑
k

1

2

1√
ζ 2

k + �2

[
tanh

(
β

2

(√
ζ 2

k + �2 − hexc
))

+ tanh
(

β

2

(√
ζ 2

k + �2 + hexc
))]

. (8)

In this paper, the gap equation is solved self-consistently.
Further, the free energy of the system is given by

F = −|�|2
V

+
∑

k

ζk −
∑

k

Ek − 1

β

∑
k,σ

ln(1 + e−βEk,σ ). (9)

An important characteristic length scale in the system is
the superconducting coherence length ξS , which is indicative
of the size of the Cooper pairs. In the BCS formalism, this
quantity for an isotropic s-wave superconductor is given by
ξS = h̄vF

π�0
, where h̄ is the reduced Plank constant, vF is the

Fermi velocity, and �0 is the superconducting gap at zero
temperature. The Fermi velocity is vF = 1

h̄
dζk

dk |k=kF .
The main purpose of this paper is to determine the indirect

exchange interaction between two magnetic impurity atoms
mediated by the quasiparticles inside a superconductor de-
scribed by the Hamiltonian in Eq. (1). The coupling between
the quasiparticle spins and the magnetic impurities will be
treated perturbatively. The total Hamiltonian can then be writ-
ten as

H = H0 + �H, (10)

in which the first part is the nonperturbative Hamiltonian
given by Eq. (1) and the second part is the perturbation
defined by

�H = J
2∑

j=1

S j · s j . (11)

Here, J is the strength of the interaction between the spin
of an impurity atom (S j) and an itinerant spin (s j) at lattice
site j. The impurity spin is treated classically like a normal
vector and itinerant spin is treated quantum mechanically and
represented by the operator s j = ∑

αβ σαβc†
jαc jβ . Here, σ =

(σx, σy, σz ) is the Pauli matrix vector. Performing a Fourier
transformation, the perturbation term in the Hamiltonian be-
comes

�H =
∑

k,k′
α,β

∑
j

J

N
ei(k−k′ )·r j (S j · σαβ )c†

k,α
ck′,β . (12)

By means of Eq. (5), we change the ck,α operators into
quasiparticle operators. Then, by means of a Schrieffer-Wolff
transformation (SWT), the effective interaction between the
magnetic impurity atoms is obtained to second order in the
coupling J . To obtain the effective interaction, we consider a
unitary matrix U of the form U = eiS . The unitary transfor-
mation of the total Hamiltonian H is then

H̃ = UHU † = eiSHe−iS. (13)

The above equation may be expanded as

H̃ = H0 + �H + i[S, H0] + i[S,�H] + O(J3), (14)

where we take S = JS′ and discard higher order terms in
J . This leads to the following effective Hamiltonian for the
system:

H̃ = H0 + �H + i[S, H0] + i[S,�H]. (15)

We now choose the unitary transformation S so that �H +
i[S, H0] = 0 and the effective Hamiltonian becomes H̃ =
H0 + i[S,�H]. In order to accomplish this, we consider the
following Ansatz for S:

S =
∑

k,k′
α,β

(A k,k′
α,β

γ
†
k,α

γk′,β + B k,k′
α,β

γ
†
k,α

γ
†
−k′,−β

+ C k,k′
α,β

γ−k,−αγk′,β + D k,k′
α,β

γ−k,−αγ
†
−k′,−β

).

(16)

Computing the commutator [S, H0], and requiring �H +
i[S, H0] = 0, the coefficients in S are found to be

A k,k′
α,β

= i
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

υ∗
k υk′

Ek′,β − Ek,α

,

B k,k′
α,β

= −βi
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

υ∗
k νk′

E−k′,−β + Ek,α

,

C k,k′
α,β

= αi
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

ν∗
kυk′

Ek′,β + E−k,−α

,

D k,k′
α,β

= αβi
∑

j

J

N
ei(k−k′ )·r j (S j · σαβ )

ν∗
kνk′

−E−k′,−β + E−k,−α

.

(17)

The final form of the effective Hamiltonian H̃ is obtained
after calculating [S,�H]. In this Hamiltonian, we neglect
terms representing feedback from the impurity spin on the
superconductor. Feedback from the impurities would ideally
be included by self-consistently taking into account both the
effect of the presence of the superconductor on the impurity
spins and the effect of the impurity spins on the superconduct-
ing gap, giving rise to spatial variation of the superconducting
order parameter. As the density of impurities in the system
is very low, neglecting feedback from the impurities can be
justified.

Computing the expectation value of the effective Hamilto-
nian H̃ (given explicitly in Appendix B) leads to two different
terms in the interaction energy between the two magnetic
impurities: a 2D Heisenberg-like (EH ) and Ising-like (EI )
interaction

〈H̃〉 = E0 + 2EI
(
Sz

1Sz
2

) + 2EH
(
Sx

1Sx
2 + Sy

1Sy
2

)
, (18)

where E0 is a constant. In Sec. III, we will consider these EI

and EH terms in more detail analytically and then evaluate
them numerically to determine the nature of the RKKY inter-
action in a spin-split superconductor.
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III. RESULTS AND DISCUSSION

A. Analytical

The physical significance of the RKKY interaction terms
EI and EH is described as follows. The Ising term EI deter-
mines the strength of the interaction between the magnetic
impurities when they are oriented collinearly to the spin-
splitting field. For EI > 0, the interaction prefers an AFM
alignment of the impurity spins. For EI < 0, they prefer a FM

alignment. The Heisenberg term EH determines the strength
of the interaction between the magnetic impurities when they
lie in the plane perpendicular to the spin-splitting field. The
same considerations regarding the sign for EH hold as for the
Ising term.

The explicit expression for the RKKY Ising-like interac-
tion between the spin of impurity atom 1 and the spin of
impurity atom 2 is found to be

EI = −1

2

∑
k,k′

(
J

N

)2

ei(k′−k)·R21

[
(|υkυk′ |2 + |νkνk′ |2)

(
n(Ek,↑) − n(Ek′,↑)

Ek′,↑ − Ek,↑
+ n(Ek,↓) − n(Ek′,↓)

Ek′,↓ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

×
(

n(Ek′,↑) − n(Ek,↑)

Ek′,↑ − Ek,↑
+ n(Ek′,↓) − n(Ek,↓)

Ek′,↓ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

(
1 − n(Ek,↑) − n(Ek′,↓)

Ek′,↓ + Ek,↑
+ 1 − n(Ek,↓) − n(Ek′,↑)

Ek′,↑ + Ek,↓

)

+
(

1 − n(Ek,↑) − n(Ek′,↓)

Ek,↑ + Ek′,↓
+ 1 − n(Ek,↓) − n(Ek′,↑)

Ek,↓ + Ek′,↑

)
2υ∗

k υkν
∗
k′νk′

]
.

(19)

Here, R21 = r2 − r1 is the relative distance between the two impurity atoms and n(Ek,σ ) = (1 + eβEk,σ )−1 is the Fermi-Dirac
distribution function. The Heisenberg-like term in the RKKY interaction energy is

EH = −1

2

∑
k,k′

(
J

N

)2

ei(k′−k)·R21

[
(|υkυk′ |2 + |νk′νk|2)

(
n(Ek,↑) − n(Ek′,↓)

Ek′,↓ − Ek,↑
+ n(Ek,↓) − n(Ek′,↑)

Ek′,↑ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

×
(

n(Ek′,↓) − n(Ek,↑)

Ek′,↓ − Ek,↑
+ n(Ek′,↑) − n(Ek,↓)

Ek′,↑ − Ek,↓

)
− 2υ∗

k υk′ν∗
kνk′

(
1 − n(Ek,↑) − n(Ek′,↑)

Ek′,↑ + Ek,↑
+ 1 − n(Ek,↓) − n(Ek′,↓)

Ek′,↓ + Ek,↓

)

+
(

1 − n(Ek,↑) − n(Ek′,↑)

Ek,↑ + Ek′,↑
+ 1 − n(Ek,↓) − n(Ek′,↓)

Ek,↓ + Ek′,↓

)
2υ∗

k υkν
∗
k′νk′

]
.

(20)

In the limiting case of hexc = 0, the two above terms are
equal. The system then displays a normal 3D Heisenberg-like
interaction between the two impurity atoms hosted by an s-
wave superconductor, which is spin isotropic as it should.

B. Numerical

Proceeding to a numerical evaluation of EH and EI , we
consider a system of N = 800 × 800 lattice points in the
xz plane. We choose V so that the zero-temperature super-
conducting gap takes the value � ≈ 1.5 meV. The lattice
constants are set to ax = az = 3.5 Å. The hopping parameter
and chemical potential magnitudes are taken to be t = 0.2 eV
and μ = −0.6 eV, respectively. The chemical potential is
chosen to provide us with a circular Fermi surface as shown
in Fig. 1(b). The superconducting gap at T = 0K , the Fermi
velocity, the Fermi wave vector, and coherence length take the
values �0 = 1.49 meV, vF = 1.91 × 105 m

s , kF ≈ 0.3 Å, and
ξS = 269 Å, respectively.

Figure 1(c) illustrates the gap versus the spin-splitting field
for different temperatures. A nontrivial solution to the gap
equation does not guarantee that the superconducting phase
is the ground state of the system. For each temperature and
field strength, the ground state of the system (either � = 0 or
� �= 0) has therefore been determined by computing the free
energy of the system given in Eq. (9). At T ≈ 0 K the largest
spin-splitting, which allows for a superconducting phase as
the ground state is approximately hexc ≈ 0.7�0, which is

around 1.07 meV with our set of parameters. This is consistent
with the Clogston-Chandrasekhar limit. It is also seen from
the figure that increasing temperature reduces the gap until a
phase transition occurs at the critical temperature, which is
around TC = 9.829 K for hexc = 0. A superconductor with a
similar set of parameters as chosen above is niobium (Nb)
with a critical temperature TC ≈ 9.2 K [37].

1. Low temperatures T � Tc

We start by considering temperatures well within the super-
conducting phase T � Tc and here set T = 1 K. The strength
of the exchange interaction between the impurity spins and
the quasiparticle spins is taken to be J = 1 meV. For hexc = 0,
the RKKY energies Eq. (19) and Eq. (20) are presented as a
function of the distance between the two impurity atoms in
Fig. 2(a). The RKKY energy goes to zero as R21 increases as
seen in the inset of Fig. 2(a). The effect of the superconducting
gap is primarily to shift the RKKY energy above zero for
distances larger than coherence length ξS . Consequently, the
interaction prefers an AFM orientation of the impurity spins
at such distances. In the normal state of the system, the RKKY
signal changes sign between FM and AFM alignment, also
for large distances. These results are consistent with previous
literature.

Considering instead the case where the spin-splitting field
hexc is present, an interesting possibility with regard to the
tunability of the RKKY interaction opens up. Since the RKKY
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FIG. 2. (a) RKKY energy vs R21 when hexc = 0. The inset rep-
resents the energies for distances smaller than coherence length.
Furthermore, the energies as a function of exchange field for
(b) R21 = 374.7Å, (c) R21 = 376.18Å, (d) R21 = 377.59Å, and (e)
R21 = 379Å are computed. Here, NH (NI ) is the Heisenberg (Ising)
RKKY interaction energy for the normal state of the system while
SH (SI ) is Heisenberg (Ising) RKKY interaction energy for the super-
conducting phase. The temperature is fixed at 1 k.

interaction E is positive in the superconducting state at hexc =
0 for R21 > ξS whereas it oscillates in the normal-state, driving
the system through a phase transition by increasing hexc above
its critical value will change the sign of the RKKY interaction
whenever the oscillations in the normal state causes E < 0.
We illustrate this in Figs. 2(b)–2(e), which shows the RKKY
energies at four different separation distances taken from the
dashed oval region marked in Fig. 2(a).

It can be seen from Figs. 2(c)–2(e) that by increasing hexc

one can change the RKKY energy sign from AFM alignment
into FM alignment and vice versa. In contrast to the normal
state of the system where E varies significantly with hexc, the
RKKY interaction in the superconducting phase is practically
independent of hexc in comparison. This can be understood
from the fact that the superconducting gap changes very
slowly as a function of hexc for low temperatures, as seen in
Fig. 1(c). As a result, an abrupt change occurs once the phase
transition to the normal state takes place, which can cause
a sign change in the RKKY interaction. A sign change can
in principle also occur in the normal state of the system, as
shown in Fig. 2(c), but this effect is far less robust than the one
observed in the superconducting state. In the normal state of
the system, the sign change can only occur at carefully chosen
separation distances R21, whereas the sign change occurs in
the superconducting state for a much larger set of separa-
tion distances. More precisely, when the separation distance

FIG. 3. Difference between the Ising and Heisenberg energies for
three different values of the spin-splitting field at T = 1 K for the
superconducting state.

between the impurities is larger than the coherence length, the
sign change occurs in the superconducting state whenever the
normal-state RKKY oscillations cause E to be negative. In
principle, above the coherence length, this corresponds to half
of all separation distances.

It is also of interest to determine whether the interaction
between the magnetic impurities in the system favor their
spins being collinear with the spin-splitting field or lying in
the plane perpendicular to it. To this end, we compute the
difference between the magnitude of the Ising and Heisenberg
energies (|EI | − |EH |) as a function of distance between the
impurities for several different values of the spin-splitting
field in the superconducting phase (Fig. 3). The term, which
is largest in magnitude will dictate whether the interaction
prefers the impurity spins to orient in the plane normal to the
exchange field or collinearly with it. The sign of the largest
term thereafter determines whether the interaction prefers the
impurity spins to orient parallel or antiparallel. The difference
in magnitude between the Ising and Heisenberg interaction
energies oscillates as a function of separation distance, mak-
ing the two interaction terms take turns on being dominant.

2. High temperatures T � Tc

In order to show the effect of temperature on the results, we
consider in this section T = 4 K, taken to represent the regime
T � Tc. Similarly to the previous section, we first compute
the change in the RKKY energy as a function of R21 when
no spin-splitting field is present for both the normal state
and superconducting phase of the system in Fig. 4(a). The
results are qualitatively similar to the low-temperature case.
For R21 � ξS , the signal oscillates both in the normal and
superconducting state, while above ξS the interaction between
the magnetic impurities is AFM in the superconducting state.

When the spin-splitting field is present, as shown in
Figs. 4(b)–4(e), the RKKY interaction in the superconducting
state is more strongly affected by a change in hexc than in
the low-temperature case considered in the previous section.
This can be understood from the exchange field having a
larger effect on the superconducting order parameter at higher
temperatures, as displayed in Fig. 1(c). As a result, it becomes
easier to change the sign of the RKKY interaction energies
EI and EH by increasing hexc while still remaining in the
superconducting phase of the system. In fact, it can be seen
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FIG. 4. (a) RKKY energy vs R21 when hexc = 0. The RKKY
energies as a function of exchange field for (b) R21 = 386.561Å,
(c) R21 = 387.975Å, (d) R21 = 388.908Å, and (e) R21 = 390.803Å
are computed. Here, NH (NI ) is Heisenberg (Ising) RKKY interac-
tion energy for normal metal state and SH (SI ) is Heisenberg (Ising)
RKKY interaction energy for the superconducting phase. The tem-
perature is fixed at 4 K.

from Figs. 4(c)–4(e) that the sign change can occur for much
lower spin-splitting fields than in the low-temperature case.
We also find that a sign change of the RKKY interaction
becomes more difficult to achieve in the normal state of the
system and no such sign change is observed in any of the plots
in Fig. 4. In fact, the sign change now only occurs at highly
selective separation distances R21 in the normal state where
the RKKY oscillations cause the interaction to almost vanish.

Moreover, Fig. 5 shows that the interaction between the
two impurity spins still oscillates between Heisenberg and

FIG. 5. Difference between the Ising and Heisenberg energies for
three different external values of the spin-splitting field at T = 4 K
for the superconducting state.

FIG. 6. Possible experimental setup that can be used to test
the effect on the RKKY energies when changing the effective
Zeeman-splitting in the superconductor. By growing several super-
conducting layers on top of a ferromagnetic insulators and making
the thickness of each superconducting layer different, the effective
spin-splitting experienced by magnetic impurities placed on top of
the superconducting surfaces will be different. The thickness of the
superconducting layers should in all cases be much smaller than the
penetration depth λ and smaller than the superconducting coherence
length ξS in order to justify the approximation of a homogeneous
spin-splitting field.

Ising terms as a function of the distance between the two im-
purity spins even for the case of higher temperatures T � Tc.
The magnitude of the oscillations in Fig. 5 increases with hexc

in both cases. This is reasonable since the spin-rotational in-
variance becomes more strongly broken with increasing hexc,
making the Ising and Heisenberg configurations more distinct
in energy.

3. Discussion of experimental aspects

We close this section by discussing possible experimental
realizations of the proposed system. The magnitude of the
spin-splitting field hexc can be readily tuned by an external
magnetic field. Alternatively, the spin-splitting can be induced
by proximity coupling the superconductor to a ferromag-
netic insulator (FMI), as displayed in Fig. 6. An effective
spin-splitting field in the superconductor then arises from
quasiparticle reflections at the interface between the super-
conductor and the ferromagnet. The spin-splitting field can be
assumed to be uniform if the thickness of the superconductor
is much smaller than the coherence length. Also, the magni-
tude of the spin-splitting scales as one over the thickness of the
superconducting layer [36]. The effective exchange field in the
superconductor hexc can therefore be tuned through the thick-
ness of the superconducting layer. Figure 6 illustrates such a
set up where several superconducting samples with varying
thickness are grown on top of the same FMI layer. Magnetic
impurity spins placed on the top surface of the superconductor
will then couple via quasiparticles that experience different
values of the effective hexc, depending on the thickness of the
superconducting layer.

For RKKY interaction in spin-polarized systems [28], an
important point to note is that the preferred direction of the
impurity spins will not be solely determined by the RKKY
interaction. There are also local effective anisotropy terms of
the type Ez(Sz

j )
2 and Exy[(Sx

j )2 + (Sy
j )

2] for both impurities
j = 1, 2 that are contained in E0 in Eq. (18). Moreover, when
inducing a magnetization in the superconductor, there will
be a coupling between the induced magnetization and the
impurities, which is first order in the perturbation parameter
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J and therefore able to dominate over the RKKY interaction
for sufficiently large spin-splitting. As the interaction between
the impurity spins and the homogeneous magnetization of the
superconductor will be equal for both impurities, this interac-
tion will act to align the impurity spins. If the spin-splitting
arises from an external magnetic field, there will in addition
be a direct Zeeman coupling to the impurity spins. This direct
Zeeman coupling, which would otherwise typically be the
dominant interaction determining the impurity spin orienta-
tion, can be avoided by inducing the spin-splitting through
proximity to a ferromagnet.

We want to underline that, although there will be other
interactions influencing the magnetic impurity configuration,
the RKKY interaction is detectable in experiments as it is
the only interaction that depends on the relative orientation
of the impurity spins and the distance between them. A pos-
sible experiment probing the RKKY interaction could be as
follows. Consider the setup in Fig. 6. The impurity spins in the
superconductor will prefer to align due to the coupling to the
exchange field. Using, e.g., spin-polarized scanning tunneling
microscopy, the energy needed to flip one of the two spins can
be measured [38,39]. The energy necessary to flip this spin
at a given impurity separation distance will be decided by the
RKKY interaction as well as other present interactions. By
subtracting the energy necessary to flip a spin in the absence of
RKKY interaction (when there is no other impurity nearby),
the RKKY interaction can then be determined.

IV. SUMMARY

In conclusion, we have determined the RKKY interaction
between magnetic impurities in a spin-split superconductor, in
which case the interaction becomes anisotropic in spin space.
The magnitudes of the Ising and Heisenberg terms of the
RKKY interaction alternate on being the dominant term and
oscillate as a function of distance between the impurities, both
at low temperatures T � Tc and high temperatures T � Tc.

We also demonstrate that it is possible to change the
preferred orientation of the RKKY interaction from an an-
tiferromagnetic configuration of impurity spins to a parallel
configuration by adjusting the magnitude of the spin-splitting
field hexc. Such an effect is in principle also attainable in
the normal state of the system, but the effect is considerably
more robust in the superconducting state where it occurs for a
much larger set of separation distances between the impurities
compared to the normal state.
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APPENDIX A: BOGOLIUBOV-DE GENNES
TRANSFORMATION

In this section, we give a brief derivation of Bogoliubov-de
Gennes transformation in Eq. (5). We first rewrite Eq. (4) as
follows:

H0 = 1

2

∑
k,σ

(c†
k,σ

c−k,−σ )

(
ζk − σhexc −σ�

−σ� −ζk − σhexc

)

×
(

ck,σ

c†
−k,−σ

)
− |�|2

V
+

∑
k

ζk

= 1

2

∑
k,σ

ϕ
†
k,σ

Mϕk,σ − |�|2
V

+
∑

k

ζk.

(A1)

In order to diagonalize the Hamiltonian, we consider the uni-
tary matrix Pk,σ of the form

P†
k,σ

= (�+
k,σ

�−
k,σ

),

�+ =
(

υk

−σνk

)
,�− =

(
σνk

υk

)
,

(A2)

where �+ and �− are eigenvectors of M. The Hamiltonian
then takes the form

H0 = 1

2

∑
k,σ

ϕ̃
†
k,σ

M̃ϕ̃k,σ − |�|2
V

+
∑

k

ζk. (A3)

We have used

M̃ =
(

E+
k,σ

0
0 E−

k,σ

)
,

ϕ̃k,σ = Pk,σ ϕk,σ =
(

γk,σ

γ
†
−k,−σ

)
.

(A4)

Here, the quasiparticle energies are E±
k,σ

=
±

√
ζ 2

k + (−σ�)2 − σhexc. Using P†
k,σ

ϕ̃k,σ = ϕk,σ leads to
the transformation between normal creation and annihilation
operators and quasiparticle creation and annihilation operators
[Eq. (5)].

APPENDIX B: EFFECTIVE HAMILTONIAN

In order to obtain the Ising and Heisenberg terms of the RKKY interaction, we calculate the expectation value of the effective
Hamiltonian following the procedure outlined in Sec. II. We then obtain

〈H̃〉 =
∑
k,σ

Ek,σ n(Ek,σ ) − 1

2

∑
k,k′
α,β

∑
i, j

(
J

N
)2ei(k′−k)·(r j−ri )

[
|υkυk′ |2 n(Ek,α ) − n(Ek′,β )

Ek′,β − Ek,α

Sαβ
i Sβα

j + αβυ∗
k υk′ν∗

−kν−k′

× n(Ek′,β ) − n(Ek,α )

Ek′,β − Ek,α

Sαβ
i S−α,−β

j + (−αβ )υ∗
k υ−k′νk′ν∗

−k

n(Ek,α ) + n(E−k′,−β ) − 1

E−k′,−β + Ek,α

Sαβ
i S−α,−β

j

094527-7



ATOUSA GHANBARI AND JACOB LINDER PHYSICAL REVIEW B 104, 094527 (2021)

+ υ∗
k υkνk′ν∗

k′
−n(Ek,α ) − n(E−k′,−β ) + 1

Ek,α + E−k′,−β

Sαβ
i Sβα

j − υk′υ∗
k′ν∗

kνk
n(E−k,−α ) + n(Ek′,β ) − 1

Ek′,β + E−k,−α

Sαβ
i Sβα

j

− (−βα)υk′υ∗
−kν

∗
kν−k′

−n(E−k,−α ) − n(Ek′,β ) + 1

Ek′,β + E−k,−α

Sαβ
i S−α,−β

j + (βα)υ∗
−kυ−k′ν∗

kνk′
n(E−k,−α ) − n(E−k′,−β )

E−k,−α − E−k′,−β

Sαβ
i S−α,−β

j

+ |νkνk′ |2 n(E−k′,−β ) − n(E−k,−α )

E−k,−α − E−k′,−β

Sαβ
i Sβα

j

]
. (B1)

Here, we have defined Sαβ
i = Si · σαβ . The first term is a constant that is not relevant for the RKKY interaction. Performing the

Pauli matrix products, the second term in Eq. (B1) leads to the RKKY interaction presented in Eqs. (19) and (20).
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Going beyond the Chandrasekhar-Clogston limit in a flat-band superconductor
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NO-7491 Trondheim, Norway

The Chandrasekhar-Clogston limit normally places stringent conditions on the magnitude of the magnetic
field that can coexist with spin-singlet superconductivity, restricting the critical induced Zeeman shift to a frac-
tion of the superconducting gap. Here, we consider a model system where the spin-singlet Cooper pairing in
a dispersive band crossing the Fermi level is boosted by an additional flat-band located away from the Fermi
level. The boosting of the pairing in the dispersive band allows for nontrivial solutions to the coupled gap
equations for spin-splitting fields considerably larger than the superconducting gaps at zero field. Further, the
additional Cooper pairing in the flat-band, away from the Fermi level, increases the superconducting conden-
sation energy without affecting the paramagnetic susceptibility of the system, making the free energy favor
the superconducting state. This opens up the possibility for spin-singlet superconductivity beyond the standard
Chandrasekhar-Clogston limit.

Introduction. – Coexistence of superconductivity and
magnetism is essential within the field of superconduct-
ing spintronics [1–8], which relies on stabilizing super-
conductors in proximity to magnetic materials and realiz-
ing phenomena such as spin-polarized supercurrents [9–
11]. Moreover, spin-split superconductors can give rise
to very large thermoelectric effects [12–17], which can
be used to convert excess heat into useful energy.

Magnetism is, however, usually detrimental to super-
conductivity. Orbital effects induced in a superconduc-
tor due to a magnetic field can be suppressed by mak-
ing the superconductor sufficiently thin and applying the
magnetic field in-plane [16, 18, 19]. The critical mag-
netic field is then determined by the Zeeman-splitting
that the superconducting state can survive [20, 21]. As
the normal state of the system has a nonzero density of
states at the Fermi level, the free energy can be low-
ered in the presence of a spin-splitting field by spin-
polarizing the system. A spin-singlet superconductor
with a gap around the Fermi level [22], on the other
hand, has no zero-temperature paramagnetic suscepti-
bility and is unable to lower its energy in the same
way. When the Zeeman energy gain in the normal state
becomes as large as the superconducting condensation
energy, the system therefore transitions to the normal
state. This places an upper bound on the spin-splitting
field that a conventional superconductor can coexist with
h = ∆0/

√
2 ≈ 0.7 ∆0 [20, 21], referred to as the

Chandrasekhar-Clogston limit. Here ∆0 is the supercon-
ducting gap at zero field. Bypassing the Chandrasekhar-
Clogston limit requires e.g. spin-triplet or Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) pairing [23, 24], introduc-
tion of spin-orbit coupling in the system [25], or an ap-
plied voltage bias driving the superconductor out of equi-
librium [26].

Fermionic flat-band systems are systems containing
one or more fermionic energy bands with vanishing or
small dispersion [27, 28]. Such bands can be gener-

ated by realizing particular tight-binding models [29–
35] in e.g. artificial electronic lattices [36–39] or opti-
cal lattices filled with ultracold fermionic atoms [40, 41].
Flat-bands can also be realized in twisted or lattice mis-
matched multilayers such as twisted bilayer graphene
[28, 42–45], where the flat-bands are defined in a mini-
Brillouin zone corresponding to a long-wavelength su-
perlattice arising from the mismatch between the peri-
odic structures in the separate layers. Flat-band systems
are appealing for superconductivity as a larger density of
states at the Fermi level normally leads to a larger super-
conducting transition temperature. Early studies identi-
fied that the presence of a flat-band could in fact give
rise to a linear dependence of the transition tempera-
ture on the strength of the attractive interactions [46, 47],
generating hope of achieving high critical temperatures.
With the discovery of superconductivity in magic-angle
twisted-bilayer graphene [43], interest in flat-band su-
perconductivity rocketed [48–52]. Recently, it has also
been discovered that superconductivity in twisted trilayer
graphene can survive in-plane magnetic fields beyond the
Chandrasekhar-Clogston limit [53], which has been in-
terpreted as an indication of spin-triplet pairing [53, 54].

In this Letter, we consider a two-band model system
for a spin-split superconductor, in which a dispersive
band crosses the Fermi level and a flat-band is located
in the vicinity of the Fermi level. We consider both at-
tractive intra- and interband scattering, giving rise to two
coupled self-consistency equations for the spin-singlet
pairing amplitudes associated with the two bands. The
additional Cooper pairing in the flat-band gives rise to
an increase in the condensation energy, without affect-
ing the zero-temperature paramagnetic susceptibility of
the system as the flat-band does not cross the Fermi
level. The free energy is therefore minimized by the su-
perconducting state beyond the Chandrasekhar-Clogston
limit. Moreover, as the flat-band is located away from
the Fermi level, quasiparticle excitations associated with
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the flat-band are energetically costly also for large spin-
splitting, making the flat-band contributions to the gap
equations more resilient to spin-splitting fields than the
contributions from the dispersive band. We therefore find
that the spin-singlet pairing in this system can survive
spin-splitting fields significantly larger than the super-
conducting gaps at zero field. We close by discussing
how the physics captured by our model can be realized
in experiments.

Model. – Our system is described by an interacting
two-band Hamiltonian on the form

H =
∑

i,k,σ

εi,k,σc
†
i,k,σci,k,σ

− 1

N

∑

i,j,k,k′
Vij(k,k

′) c†i,k,↑ c
†
i,−k,↓ cj,−k′,↓ cj,k′,↑.

(1)

Here, ci,k,σ is an annihilation operator for an electron
in band i with momentum k, and spin σ. The non-
interacting part of the Hamiltonian describes the dis-
persive band with energies ε1,k,σ = −2t

[
cos(kx) +

cos
(
ky
)]
− µ − σh and the flat-band with energies

ε2,k,σ = −µ0 − σh. The strength of the spin-splitting
field is still h, the number of lattice sites is denoted byN ,
and µ is the chemical potential. Further, µ0 is the shift
of the flat band away from the Fermi-level. With this
parametrization, the Fermi level is moved relative to the
dispersive band when µ is varied, while the separation of
the flat-band and the Fermi level is fixed. The band struc-
ture in the absence of spin-splitting is illustrated in Fig.
1 (a-b). The Hamiltonian in Eq. (1) is similar to the one
used in Ref. [46], which discussed boosting of the pairing
in a dispersive band through the presence of a flat-band.
However, no spin-splitting field was considered in Ref.
[46].

The interaction term in the Hamiltonian allows for
attractive BCS-type intraband and interband scattering
[55]. The interaction is taken to be attractive in a thin
shell of width 2~ωc around the Fermi level

Vij(k,k
′) =

{
Vij > 0, |εi,k|, |εj,k′ | ≤ ~ωc,
0, otherwise.

(2)

Here, εi,k is defined from εi,k,σ = εi,k − σh, and Vij
is the band-dependent attractive interaction strength. In
the following, we neglect any hybridization between the
bands or other changes to the normal state band structure
arising from the interaction, and investigate up to what
values of h the attractive interaction can give rise to
superconductivity.

Performing a standard mean-field the-
ory, defining spin-singlet gaps ∆i(k) =
1
N

∑
j,k′ Vij(k,k

′)〈cj,−k′,↓cj,k′,↑〉, and introducing
the necessary Bogoliubov-de Gennes transformation,

FIG. 1. (a-b) Illustration of the band structure of the two-band
model in the absence of spin-splitting. Dashed lines represent
three different values of the chemical potential µ = −0.2t,
−2t, and −3.8t. The flat-band is fixed µ0 below the Fermi
level, which is illustrated by the blue line 2 in (b) for a specific
choice of the chemical potential. (c) Superconducting gap ver-
sus the ratio between the strength of the spin-splitting field and
the gap at zero field for the three different chemical potentials
in (a). The Chandrasekhar-Clogston limit is indicated by the
vertical dashed line. The parameters have been set to t = 1,
T = 0, V11 = V12 = V21 = V22 = 0.01t, µ0 = 0.00495t,
and ~ωc = 0.05t.

the coupled gap equations take the form

∆i(k) =
1

N

∑

j,k′
Vij(k,k

′)
∆j(k

′)
2Ej,k′

× 1

2

[
tanh

(
β

2
Ej,k′,↑

)
+ tanh

(
β

2
Ej,k′,↓

)]
.

(3)

Here, Ei,k =
√
ε2i,k + |∆i(k)|2, the quasiparticle ener-

gies areEi,k,σ = Ei,k−σh, and β = 1/(kBT ) is inverse
temperature. The free energy, which determines whether
the superconducting state minimizes the free energy, is
expressed as
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F =
1

4

∑

i,k,σ

∆2
i (k)

Ei,k
tanh

(
β

2
Ei,k,σ

)

+
∑

i,k

(
εi,k − Ei,k

)
− 1

β

∑

i,k,σ

ln
(
1 + e−βEi,k,σ

)
.

(4)

The first term in this expression is simply a generaliza-
tion of the termN∆2/V , which it reduces to for the case
of a single electron band.

Results. – For simplicity, we start with the case where
all the interaction strengths are equal (V11 = V12 =
V21 = V22 = V ). In this case, the two coupled gap equa-
tions in Eq.(3) reduce to a single self-consistent equation
for the gap ∆ = ∆1 = ∆2. By numerically solving
this gap equation and ensuring that the free energy in Eq.
(4) is minimized, we determine the value of the gap as a
function of the strength of the spin-splitting field h. The
results at zero-temperature are presented in Fig. 1 (c) for
different values of the chemical potential µ. As displayed
in this figure, a non-zero superconducting gap can exist
for spin-splitting fields significantly larger than the gap
at zero field ∆0.

In the more familiar case of a superconductor with
a single dispersive band crossing the Fermi level, the
superconducting gap vanishes when the field strength
reaches the Chandrasekhar-Clogston limit and the nor-
mal state minimizes the free energy. In Fig. 1(c), this
limit is indicated by a vertical dashed line. The mech-
anism for this transition is easily seen from the expres-
sion for the free energy in Eq. (4) if we limit ourselves
to the contributions from i = 1, corresponding to the
dispersive band. For the superconductor, as long as the
spin-splitting is smaller than the gap, all the quasipar-
ticle energies are positive and the last term in the free
energy vanishes. For the normal state, on the other hand,
there is no gap in the excitation spectrum and the ener-
giesE1,k,σ = |ε1,k|−σh can turn negative, giving rise to
negative contributions from the last term in the free en-
ergy. This corresponds to a lowering of the normal state
free energy through the system becoming spin-polarized.
Comparing the rest of the free energy for the two phases
gives rise to the condensation energy, favoring the super-
conducting state. When the strength of the spin-splitting
field is increased, the lowering of the free energy of the
normal state eventually dominates over the condensation
energy, and the normal state prevails.

In the present case, there are additional contributions
to the free energy arising from the flat band. As long as
the quasiparticle energies E2,k,σ are shifted away from
the Fermi level by |µ0| > h, these energies will al-
ways be positive even without a gap. At zero temper-
ature there are then no contributions from the last term
in the free energy arising from the flat-band, regardless

of whether the system is in the superconducting or nor-
mal state. The effect of the flat-band on the free energy
is then simply to significantly increase the condensation
energy due to its large density of states. We therefore
find that having a nonzero gap minimizes the free energy
also beyond the Chandrasekhar-Clogston limit. More-
over, when the spin-splitting becomes larger than ∆0,
the gaps in the separate spin-bands no longer overlap
and the superconducting state is able to lower its free en-
ergy by spin-polarizing the quasiparticles as discussed in
Ref. [56]. Such ”gapless” superconductivity arises from
time-reversal symmetry breaking [57, 58] and has been
encountered in e.g. systems with magnetic impurities
[59, 60] and in the presence of a magnetic field [61, 62].

Turning to the gap equation, for a spin-splitting field
larger than the gap, the energies E1,k′,↑ and E1,k′,↓ on
the right-hand-side of Eq. (3) can end up with opposite
signs, leading to a cancellation of the contributions. The
first contributions to go are those with the smallest ener-
gies E1,k′ , i.e. the most important contributions from the
dispersive band. For the flat-band, on the other hand, the
quasiparticle energies are always positive for |µ0| > h.
The flat-band contributions to the gap equation are there-
fore robust towards spin-splitting. By having the flat-
band sufficiently close to the Fermi level (|µ0| < V/2),
solutions to the gap equation can then be guaranteed as
long as h < |µ0|. The spin-splitting field that can coex-
ist with superconductivity is then, in other words, limited
by |µ0|, where the value of |µ0| that can produce a super-
conducting solution is limited by the interaction strength
V .

The dependence of the gap equation on the strength of
the spin-splitting field can be observed in Fig. 1 (c), and
is most easily seen by considering the pink curve corre-
sponding to µ = −0.2t. For h < ∆0, the curve is flat as
the spin-splitting has no effect on the contributions to the
gap equation. Then, as h > ∆0, contributions from the
dispersive band start cancelling out, leading to a decrease
in the gap. This corresponds to the minimum energy of
breaking a Cooper pair becoming zero, as discussed by
Abrikosov in the context of gapless superconductivity in
the presence of magnetic impurities [63]. In the present
case, a non-zero superconducting gap exists until around
h > |µ0|, beyond which the flat-band no longer con-
tributes to the gap equation.

We next demonstrate how our results are influenced by
band-dependence of the interaction strengths. We first
consider the effect of reducing the interband scattering
by taking V12 = V21 smaller than V11 = V22. Solving
the coupled gap equations and checking the free energy,
we obtain the results in Fig. 2. As the dominant contri-
butions to the gap equations arise from the flat-band, we
find that ∆2, which obtains contributions from V21∆1

and V22∆2, is not strongly affected by a reduction of
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FIG. 2. (a) ∆1 (b) ∆2 as a function of the strength of the
spin-splitting field h for four different ratios of V12/V11. The
parameters are set to t = 1, T = 0, µ0 = 0.00495t,
V11 = V22 = 0.01t, V12 = V21, ~ωc = 0.05t, and µ = −2t.

V21. On the other hand, ∆1 obtains contributions from
V11∆1 and V12∆2, and a reduction of V12 therefore leads
to a significant reduction of ∆1. Substantial pairing in
the dispersive band crossing the Fermi level therefore re-
quires a sufficiently large interband interaction strength.
In all cases, the gaps survive until h > |µ0|, which is
considerably larger than the gaps at zero field.

Finally, we consider the case where we also increase
the intraband interaction in the dispersive band compared
to the intraband interaction in the flat-band. The results
for ∆1 are displayed in Fig. 3, showing that significantly
increasing V11 only leads to a moderate increase in ∆1

as the dominant contributions to the gap equations still
arise from the flat-band due to its large density of states.
A moderate increase in ∆1 has little impact on the results
for ∆2 which therefore varies little when we increase
V11. The gaps once again survive until h > |µ0|, where
the magnitude of |µ0| that can still provide a nontrivial
solution to the gap equations is determined by how large
we take V22.

Outlook. – We have presented a mechanism for how
a spin-singlet superconductor can survive beyond the
Chandrasekhar-Clogston limit. The mechanism relies on
having a dispersive band crossing the Fermi level, an ad-
ditional flat band nearby, sufficient intra-band interaction
in the flat band, and some interband scattering. Realiza-
tion in experiments requires a thin-film superconductor
with a, preferably tunable, induced spin-splitting. The
spin-splitting can be achieved by exposing the supercon-
ductor to a strong in-plane magnetic field, or to a com-
bination of a ferromagnet and an external field where
the additional external field provides the tunability of the
strength of the spin-splitting [26]. The necessary band
structure could be realized in artificial electronic lattices,
optical lattices, or in twisted multilayers. The especially
relevant case of a dispersive band on top of a flat band

FIG. 3. The gap ∆1 as a function of the strength of the spin-
splitting field h for four different ratios of V11/V22. The param-
eters are set to t = 1, T = 0, µ0 = 0.00495t, V22 = 0.01t,
V12 = V21 = 0.005t, ~ωc = 0.05t, and µ = −2t.

corresponds to the limiting case where the chemical po-
tential in Fig. 1 is taken almost down to the bottom of
the band, e.g. µ = −4t + µ0. Importantly, the flat-
ness of the flat-band should be stable in the presence of
spin-splitting. Finally, the interactions could originate
with phonons in twisted multilayers or be engineered in
artificial systems. The choice of interactions in Fig. 1
could e.g. in principle correspond to the electrons in both
bands coupling similarly to Einstein phonons. As shown
in Fig. 2 and 3, the results for the critical field are, how-
ever, quite robust to band-dependence of the interaction
strengths, allowing for reduction of the interband scatter-
ing as well as for a much larger intraband scattering in
the dispersive band than in the flat-band.

More exhaustive studies of realistic systems, taking
into account the details of the band structure and the in-
teractions, should be performed in order to more closely
relate the results to experiments. Special attention should
be paid to the theoretical approach when a flat-band is
present and when the Fermi energy is not dominating the
other energy scales in the system, which e.g. can be the
case when the chemical potential is close to the bottom
of the conduction band. Future work could also look into
whether other superconducting phases, such as an FFLO
state, could be favored in parts of the parameter regime.

Summary. – Our results demonstrate that spin-singlet
superconductivity beyond the Chandrasekhar-Clogston
limit could be possible in flat-band systems. Future stud-
ies should perform more detailed calculations for realis-
tic systems in order to more closely connect the findings
to experiments.
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