
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Sindre Trefall

Numerical Simulation of a Pico
Turbine

Master’s thesis in Mechanical Engineering
Supervisor: Reidar Kristoffersen
November 2021

M
as

te
r’s

 th
es

is

Sindre Trefall

Numerical Simulation of a Pico Turbine

Master’s thesis in Mechanical Engineering
Supervisor: Reidar Kristoffersen
November 2021

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

Preface

This master thesis records the development and to a certain degree production of a pico
turbine at the Department of Energy and Process Engineering (EPT) at the Norwegian
University of Science and Technology (NTNU). The thesis is submitted as part of a two
year study program and comprises of 30 ETCS. It proposes a simplistic design that can be
analysed numerically (CFD), experimentally and theoretically (control volume analysis).
The thesis draft intended to design the runner using CFD analysis and conduct a labora-
tory experiment to verify the results, but due to the COVID-19 pandemic the experiment is
canceled. Several attempts of building a homemade test bench was conducted, but failed
due to lack of available parts and equipment.

Sindre Trefall
Tromsø, 12.11.2021

i

ii

Acknowledgment

The master thesis has been an exciting and a frustrating challenge, exhibiting all levels
between both extremes. I would like to extend my gratitude to my supervisor Reidar
Kristoffersen for introducing me to CFD by letting me participate in an OpenFOAM crash
course for PhD-students. I would also thank him for proposing his observation as my
thesis and for Wednesday meetings (both in person and on Skype). These were very en-
joyable and a much needed social interaction during the COVID-19 lockdown. I would
also like to extend my thanks to the EPT’s IT-department that provided onsite help when I
lost connection with my remote computer. Without their help I could not have continued
my work after the campus lockdown on March 12, 2020.

In early May 2020 I became sick which resulted in a 19 month sick leave. This has compli-
cated the writing of this thesis. In this regard I would like to thank my family and friends
for their support. There have been times I thought the thesis would never be finished, but
I am grateful for all the encouragement and help I have received.

iii

Abstract

This master thesis documents the process of designing a pico turbine that supplies a con-
trolling unit of a urinal with power using approximately 15 % of the head pressure. The
thesis envelopes the construction of a simplistic runner, setup of a numerical model (Open-
FOAM 7) and a partially finished design of a laboratory experiment intended to validate
the numerical model. Because of the lockdown of Gløshaugen campus March 12, 2020,
the laboratory experiment is canceled. The thesis documents the work with this experi-
ment until this point, even though it is not finished.

The results from the CFD model have not been validated due to the cancellation of the
laboratory experiment. To validate the results a control volume analysis is conducted, but
the results from this analysis contradicts the results from the numerical model.

The unvalidated results from the CFD analysis shows that the turbine is utilizing only
a small portion of the energy extracted from the flow. This yields an efficiency of only 4
%. The analysis also shows that the turbine does not produce a high enough pressure drop
to be able to sustain the controller unit of a urinal with power.

iv

Sammendrag

I denne masteroppgaven dokumenteres prosessen ved et design av en pico-turbin som skal
levere nok effekt til å drive kontrollenheten til en urinal ved å bruke ca. 15 % av trykket
oppstrøms av turbinen. Oppgaven omfatter konstruksjonen av et løpehjul med et foren-
klet design, oppsett av numerisk modell (OpenFOAM 7), samt planlegging og et delvis
design av et laboratorieforsøk for å teste turbinen og validere dataene fra den numeriske
modellen. På grunn av nedstengingen av Gløshaugen campus 12. mars 2020, ble labora-
torieforsøket avlyst. Arbeid med laboratorieeksperimentet fram til dette tidspunktet er tatt
med i oppgaven, selv om arbeidet ikke er ferdigstilt.

Resultatene fra CFD-modellen er ikke validert på grunn av avlysningen av laboratorieeksper-
imentet. I stedet er det gjort en kontroll-volum-analyse over løpehjulet, som bestrider re-
sultatene fra CFD-modellen.

De uvaliderte resultatene fra CFD-analysen viser at turbinen benytter energien fra strømningen
på en svært dårlig måte. Dette gjøre at virkningsgrad til turbinen bare er 4 %. Analysen
viser også at turbinen ikke klarer å skape nok trykkfall til å kunne hente ut nok effekt til å
drive kontrollenheten til en urinal.

v

vi

Table of Contents

Preface i

Acknowledgment iii

Abstract iv

Sammendrag v

Table of Contents ix

List of Tables xi

List of Figures xiv

Abbreviations xv

Variables xvii

1 Introduction 1

2 Theory 3
2.1 Hydro Power Turbines . 3
2.2 Control Volume Analysis . 5

2.2.1 Control Volume Analysis of Runner 5
2.3 Entry Length for Turbulent Pipe Flow 7
2.4 Computational Fluid Dynamics . 7

2.4.1 Governing Equation . 8
2.4.2 Finite Volume Method . 8
2.4.3 3D Descretization . 11
2.4.4 Pressure-Velocity Coupling . 11
2.4.5 Handling of Non-Orthogonal Mesh 13
2.4.6 Turbulence Modeling . 14

vii

2.4.7 Dynamic Mesh . 16
2.5 Kinematic Pressure . 17
2.6 3D Printing . 17

3 Design 19
3.1 Runner Design . 20

3.1.1 Prototype A . 20
3.1.2 Prototype B . 21

4 CFD Model 27
4.1 OpenFOAM, Propeller Tutorial . 27
4.2 OpenFOAM, Pico Turbine . 28
4.3 Meshing Process . 28

4.3.1 SnappyHexMesh . 29
4.3.2 Import Geometry, Defining Cell Regions and Castellation 30
4.3.3 Snapping . 33

4.4 Domain . 35
4.5 Mesh Quality . 35
4.6 Constants . 36
4.7 Initial Conditions . 36

4.7.1 Velocity and Pressure . 36
4.7.2 Turbulence Modeling . 36

4.8 Boundary Conditions . 38
4.9 OpenFOAM Settings . 39
4.10 High Performance Computing . 40

5 Design of Laboratory Experiment 43
5.1 Entry Length . 43

5.1.1 Generator . 44
5.2 Laboratory Concept 1: 90° Bend or T-Pipe 44
5.3 Laboratory Concept 2: Rim Driven Transmission 45
5.4 Laboratory Concept 3: Internal Generator 46
5.5 Final design . 46

6 Results and Discussion 49
6.1 3D CFD Model . 49
6.2 Verification . 50
6.3 Validation . 51
6.4 Runner Efficiency . 51
6.5 Turbulence . 52

7 Conclusion 53
7.1 Runner Design . 53
7.2 CFD Model . 54
7.3 Laboratory Experiment . 54

viii

8 Further Work 55

Bibliography 57

Appendices 61
A 3D Model Comparison with the Prototype B 2D Model 61
B Control Volume Calculation . 63
C Cylinder to 2D Plane Filter . 65
D Slurm-Script . 67

ix

x

List of Tables

2.1 Two-equation model constants. 16

3.1 Prototype A parameters. 21
3.2 Parameters to calculate the domain height S. 22
3.3 Equations for point coordinates. 23

4.1 Cell refinement levels of edges, surfaces and regions. 33
4.2 Crash time during rotating mesh test. 34
4.3 Mesh quality. 35
4.4 Transport properties (White, 2016, page 738). 36
4.5 Reynolds number. 36
4.6 Initial conditions for turbulent properties. 37
4.7 Initial conditions for the simulation. 38
4.8 PIMPLE settings. 39
4.9 Under-relaxation settings. 39

5.1 Entry length. 44
5.2 Deep grove ball bearing (SKF, 2020). 46

6.1 Forces and pressure drop in the axial direction. 49
6.2 Torque about z-axis and power. 50
6.3 Verification of calculated forces. 50
6.4 Comparing the theoretical maximum power output (PCV) and the esti-

mated power output by the CFD model (PCFD). 51
6.5 Runner efficiency. 52
6.6 Effects of turbulence using the k-ω-SST model (subscript tm denotes

turbulence model and l denotes laminar). 52

xi

xii

List of Figures

2.1 Operation areas for Pelton, Francis and Kaplan turbines (Brekke, 2003,
page 3, figure 1.1). 3

2.2 Kaplan turbine (Nielsen, 2014, page 11). 4
2.3 Kaplan bulb turbine (Brekke, 2008, page 132). 4
2.5 Velocity triangle with stationary control volume diagram. 6
2.6 Sketch of non-orthogonal cells, in accordance with (Jasak, 1996, figure

3.4, page 84) . 13
2.7 Rotating mesh with sliding interface (Jasak, 2009, page 5, figure 5) 17
2.8 3D printed runner. Photo and print by Lars Røed Ramstad. 18
2.9 3D printed propeller (Listek, 2019). 18

3.1 Side view of one blade and hub of prototype A. 21
3.2 Isometric view of prototype A. 21
3.3 2D domain, point coordinates are given in table 3.3. 22
3.4 2D shape transferred to Autodesk Fusion 360 (unit: mm). 24
3.5 Side view of one blade and hub with fillet dimensions of blade edges (unit:

mm). 24
3.6 Prototype B constructed in Autodesk Fusion 360. 25

4.1 2D representation of domain with rotating region marked with red lines. . 28
4.2 SnappyHexMesh flowchart (OpenFoam.com, 2019). 30
4.3 Implementation of a searchable region (cylinder) used to create the rotat-

ing and refinement region in snappyHexMeshDict. 30
4.4 Unequal cell refinement level. 31
4.5 Enlargement of oscillation in figure 4.4 to show the oscillations marked

with red circles. 31
4.6 Equal cell refinement level. 32
4.7 Refinement of regions and surfaces in the region close to the runner. . . . 32
4.8 Imperfect pipe topology. 33
4.9 Wolf Dynamics’ O-grid mesh (Guerrero, 2019a). 34

xiii

4.10 Runner surface after snapping, O-grid mesh can be seen along the surface. 35

5.1 Top view of concept 1 with suggested box (red dotted line). 44
5.2 Isometric view of concept 2. 45
5.3 Side view of concept 3 with generator on the right side. 46
5.4 Final design sketch. 47

1 Velocity plot, 2D simulation at r/R = 3/4. 61
2 Kinematic pressure plot, 2D simulation at r/R = 3/4. 61
3 k-ω-SST , Cylindrical plot, 3D simulation at r/R = 3/4. 62
4 Cylindrical cut created by programmable filter. 65
5 Cylindrical cut transformed to a 2D surface by the calculator function. . . 66

xiv

Abbreviations

AMI = Arbitrary Mesh Interface
CAD = Computer Aided Design
CFD = Computational Fluid Dynamics
CPU = Central Processing Unit
CV = Control Volume
DNS = Direct Numerical Simulation
FDM = Fused Deposition Modeling
FVM = Finite Volume Method
GAMG = Geometric Algebraic Multigrid
GUI = Graphical User Interface
HPC = High Performance Computing
IC = Initial Condition
LES = Large Eddy Simulation
MC = Monotonized Central limiter
MUSCL = Monotonic Upstream-centered Scheme for Conservation Laws
NTNU = Norwegian University of Science and Technology
OpenFOAM = Open-source Field Operation And Manipulation
PaT = Pump as Turbine
PISO = Pressure-Implicit with Splitting of Operators
RAM = Random Access Memory
RANS = Reynolds-averaged Navier–Stokes
RAS = Reynolds-Averaged Simulation
SHM = SnappyHexMesh
SIMPLE = Semi-Implicit Method for Pressure Linked Equations
SST = Shear Stress Transport
STL = Sterolitography
TVD = Total Variation Diminishing
UPM = Upwind Method

xv

xvi

Variables

A = Area [m2]
Ahub = Cross sectional area of hub [m2]
Apipe = Cross sectional area of pipe [m2]
CL = Lift coefficient [−]
C0 = Static load [kN]
Co = Courant number [−]
Dhub = Hub diameter [m]
Di = Inner diameter [m]
Do = Outer diameter [m]
Dpipe = Pipe diameter [m]
dFθ = Force acting on CV [N]
Fz = Force acting on runner in axial-direction [N]
fp = Fraction of the computation that can be parallel processed [N]
I = Turbulence intensity [−]
k = Turbulent kinetic energy [m2 · s−2]
Lentry = Entry length [m]
Lexit = Exit length [m]
Lrunner = Runner length [m]
nblades = Number of blades [−]
nc = Number of processors [−]
P = Power [W]
PCFD = Power calculated using CFD model [W]
PCV = Power calculated using control volume analysis [W]
p = Kinematic pressure [m2 · s−2]
ps = Static pressure [Pa]
ReD = Reynolds number [−]
Rhub = Hub radius [m]
Rpipe = Pipe radius [m]
r = Radius [m]
r̄ = Leverage arm [m]
S = Distance between blades (2D simulation) [m]
ST = Theoretical speed-up [−]
T = Temperature [◦C]
Tz = Torque about z-axis [Nm]
tblade = Blade thickness [m]
thub = Hub thickness [m]
uinlet = Inlet velocity [m · s−1]

V̇ = Volumetric flow rate [m3 · s−1]

xvii

w1 = Relative velocity at leading edge of runner blade [m · s−1]
w2 = Relative velocity at trailing edge of runner blade [m · s−1]
y+ = Dimensionless length [−]
α = Blade angle (Prototype A) [◦]
αentry = Flow inlet angle [◦]
αexit = Flow outlet angle [◦]
α1 = Blade inlet angle [◦]
α2 = Blade outlet angle [◦]
∆p = Kinematic pressure drop [m2 · s−2]
∆ps = Static pressure drop [Pa]
ηrunner = Runner efficiency [−]
µ = Dynamic viscosity [Pa · s]
µt = Turbulent dynamic viscosity [Pa · s]
ν = Kinematic viscosity [m2 · s−1]
νt = Turbulent kinematic viscosity [m2 · s−1]
ρ = Density [kg ·m−3]
ω = Turbulence frequency [s−1]
ωrot = Rotational speed [rad · s−1]

xviii

Chapter 1
Introduction

In households and industry the use of wireless microelectronic monitoring devices have
grown with the technological advances. These low powered systems are commonly ener-
gized by battery electric power due to batteries’ high power density. On a larger scale ap-
plication, magnetically generated energy has been produced by hydro power for over a cen-
tury and played an integral part in the advance of industry. During the latest decades there
has been significant scientific achievements within microscale power systems (Arnold,
2007), which sparks interest in combining low powered monitoring devices with hydro
power.

This thesis started with an observation by professor Reidar Kristoffersen. He observed that
the supply-battery for the controlling unit for the urinal at the campus-building needed to
be changed on a regular basis. This seems unnecessary if the water supply to the urinal can
maintain the battery’s energy level. This started the thought process of making a turbine
that can be mounted to the urinal’s water supply and siphon enough energy to make the
urinal self-sustainable.

Removing the need of new batteries is one of the challenges the society is facing. Batteries
are made of resources that are limited on a global scale. With the increase in demand of
batteries, these should be used efficiently. This also opens a niche market where devices
close to a water supply can be sustained using a small turbine. An industrial application of
this concept is particularly interesting where the turbine is installed parallel to a valve and
the pressure drop is utilized to sustain monitoring devices.

Most hydro power research conducted revolve around large hydro power plants that sup-
plies the power grid with electricity. For smaller projects, research within creating power
plants for rural villages has grown. Due to the humanitarian nature of these projects
the cost and knowledge required to make them function is of peak interest (Greacen and
Kerins, 2010). This has created the research field where commercial pumps are reversed
and used as turbine, often labeled as pump as turbine (PaT). The benefit of using PaT is

1

Chapter 1. Introduction

that pumps are manufactured in a larger scale than turbines and thus much cheaper. The
drawback is the lower efficiency, however this is where researchers are trying to optimize
performance for a wide range of given scenarios. Smaller hydro turbines are less common
as a product, but are often made as experiments that later will be scaled up for conventional
use.

Using Computational Fluid Dynamics (CFD) model during the design phase of a product
has grown in popularity with the technological advances. In this thesis a Reynolds-average
Navier-Stokes (RANS) model with the capability of moving mesh-sections is used to sim-
ulate the flow. Other models such as Large Eddy Simulation (LES) and Direct Numerical
Simulation (DNS) are available, but require more knowledge and computational power
to use. Due to the approximated nature of CFD models it is customary to compare the
numerical results with known theory, results from a laboratory experiment or other simu-
lations that have gone through a rigorous set of reviews and are thereby both verified and
validated. The conclusion will present all findings during this thesis without censorship or
external agendas.

This thesis will investigate if it is possible to sustain the controlling unit of a urinal by
extracting 1-10 W that is available in the water supply without producing a large pressure
drop using a one inch turbine. This will be conducted in five steps.

1. Design a runner and turbine casing.

2. Create a CFD model in OpenFOAM 7 by modifying the Propeller tutorial.

3. Build and conduct a laboratory experiment for the designed hydro turbine.

4. Compare the results from the CFD model and the laboratory experiment.

5. Conclude with the findings of this thesis.

2

Chapter 2
Theory

2.1 Hydro Power Turbines
The most common hydro turbines in conventional hydro power plants are Pelton, Francis
and Kaplan turbines. The selection of turbine is primarily based on the available head and
volume flow. Figure 2.1 shows the operation areas for Pelton, Francis and Kaplan turbines.

Figure 2.1: Operation areas for Pelton, Francis and Kaplan turbines (Brekke, 2003, page 3, figure
1.1).

3

Chapter 2. Theory

The Pelton turbines are impulse turbines, where the pressure is converted into kinetic
energy using nozzles. The water jets transfer the energy to the runner that is connected to a
shaft driving the generator. Francis and Kaplan turbines are reactionary turbines, meaning
approximately 50 % of the energy extracted from the stream is due to the pressure drop.
The main components of the Francis and the Kaplan turbines are spiral casing, stay vanes,
guide vanes, runner, draft tube and shaft. The guide vanes are adjustable to regulate and
optimize the flow and induces a rotating flow that the runner can utilize leaving a non-
rotating flow downstream of the runner. The Francis turbine has a radial inlet and an axial
outlet, while the Kaplan has both an axial inlet and outlet.

Figure 2.2: Kaplan turbine (Nielsen, 2014, page 11).

Another type of Kaplan turbine is the Kaplan bulb turbine. This is a variation where the
turbine is used in a pipe without a spiral casing and stay vanes.

Figure 2.3: Kaplan bulb turbine (Brekke, 2008, page 132).

4

2.2 Control Volume Analysis

2.2 Control Volume Analysis

Control volume (CV) analysis is a useful tool to investigate gross flow effects happening
within a defined area. This is useful as the analysis only evaluates the conditions on the
border of the control volume, without computing the flow within the control volume.

In this thesis the results from a control volume analysis will be used to compare the CFD
results in order to estimate the validity of the CFD model. This comparison is done by
evaluating the power estimated by both calculations. Control volume analysis uses the
linear momentum equation which is the equivalent of Newton’s second law (White, 2016,
page 133).

d

dt
(mV)sys =

∑
F =

d

dt

(∫
CV

Vρ dV

)
+

∫
CS

Vρ(Vr · n) dA (2.1)

This is used to find the required external forces that is needed to maintain a non-accelerating
control volume. The linear momentum equation states that a flow that changes its direction
must have a resulting external force acting on the control volume.

2.2.1 Control Volume Analysis of Runner

For a runner blade, a control volume can be established by using the surface area enclosed
by the circumference at radius r and the length of the runner Lrunner. This creates a cylin-
drical slice that can be flattened into a rectangle. By investigating only the flow between
two blades this creates a control volume with inlet and outlet patches and two surfaces
(upper and lower part of the blade). To simplify, the flow is considered incompressible
and inviscid, and the blades are assumed rigid and infinitesimally thin.

(a) Isometric view of the cylindrical slice of
one runner blade.

(b) Front view with a cylindrical slice made
into a control volume.

5

Chapter 2. Theory

Figure 2.5: Velocity triangle with stationary control volume diagram.

In the turbine a section dr can be investigated where the flow enters with the absolute
velocity uinlet and exits the turbine with the absolute velocity uexit. Due to the rotation
of the runner it is easier to use relative velocity where the runner’s rotational velocity is
accounted for yielding inlet velocity w1 and outlet velocity w2. Assuming incompressible
flow, the continuity dictates that w1 = w2 = w because the inlet and outlet patch are of
equal area. The change of direction in the flow yields a force that given the leverage arm
r produces a torque that drives the runner. Given flow with the inlet angle αentry and
assuming inviscid flow, where the flow exit angle αexit is equal to the blade outlet angle
α2, the force acting on the hollow cylindrical section is

dFθ = ṁ

(
dA

A

)
|w|

[
sin(α2)− sin(αentry)

]
) (2.2)

where ṁdA
A is the mass flow rate that passes the cross sectional area dA. This calculates

the force dFθ acting on that section of the runner blade.

dA = π · ((r + 1

2
dr)2 − (r − 1

2
dr2)) (2.3)

A = π · r2 (2.4)

Knowing the distance r from the center of the pipe to the center of the runner blade section
gives the torque that drives the runner.

Tz = dF × r = |dF | · |r|sin(θ) (2.5)

6

2.3 Entry Length for Turbulent Pipe Flow

To estimate the power produced by all the turbine sections. The torque contribution from
each section is multiplied by the rotational velocity and summed up.

P =

rpipe∑
r=rhub

Tz(r) · ωrotdr (2.6)

Leverage Arm

The distributed load represented for each section by equation (2.2) can be assumed to be
a continuous function dependent on r2. This distributed load can be transformed into a
point load at r̄ in the radial direction. r̄ is found using

r̄ =

∫ Rpipe

Rhub
ζ · r3dr∫ Rpipe

Rhub
ζ · r2dr

=
3(R4

pipe −R4
hub)

4(R3
pipe −R3

hub)
(2.7)

r̄

Rpipe
= 0.78 (2.8)

where ζ is all independent factors of radius r in equation (2.2). This is used during the
verification in section 6.2

2.3 Entry Length for Turbulent Pipe Flow

The entry length of an inlet pipe is important to ensure a fully developed flow in an em-
pirical experiment. This is determined by its correlation to the Reynolds number (White,
2016, page 313).

Lentry

Dpipe
≈ 1.6Re

1
4

D = 1.6

(
uinletDpipe

ν

) 1
4

for ReD ≤ 107 (2.9)

where Lentry is the entry length, uinlet is the bulk velocity, Dpipe is the pipe diameter and
ν is the kinematic viscosity.

2.4 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) investigates the changes within the flow on a small
scale (differential form). This can reproduce flows by solving the Navier-Stokes equation
numerically. This yields a detailed picture of the flow within the computed domain, but is
based on approximations. This dictates that CFD results must be verified and validated by
empirical results.

7

Chapter 2. Theory

2.4.1 Governing Equation

Navier-Stokes equation for mass continuity

∂ρ

∂t
+∇ · (ρu) = 0 (2.10)

Navier-Stokes equation for conservation of momentum on differential form

∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ g + ν∇2u (2.11)

2.4.2 Finite Volume Method

Finite Volume Method (FVM) is a CFD technique using control volume integration. Sec-
tion 2.4.2 - 2.4.4 represents a summary of the discretization given in ”An Introduction to
Computational Fluid Dynamics” (Versteeg and Malalasekera, 2007).

∂

∂t

∫
CV

ρϕ dV +

∫
A

(ρuϕ)·n dA−
∫
A

µ(∇ϕ)·n dA−
∫
V

ρSϕdV = −
∫
A

p·ndA (2.12)

The discretization of the right hand side (transient convection diffusion) is summarized
in this section, while the left hand side is coupled to the equation in section 2.4.4. By
integrating the 1D transient convection diffusion equation over space and time yields

ρ∆V

∆t
(ϕP − ϕ0P) + (ρuAϕ)e − (ρuAϕ)w =

(
ΓA

dϕ

dx

)
e

−
(
ΓA

dϕ

dx

)
w

+ S̄∆V (2.13)

where S̄ is the average of the source strength in the control volume. The capital suffixes
denotes at cell center while the lowercase suffixes denotes at cell face. To evaluate the
equation the gradients in the diffusion term must be approximated.

dϕe
dx

≈ ϕP − ϕE
δx

dϕw
dx

≈ ϕW − ϕP
δx

(2.14)

By implementing the approximation and assuming that all faces have a equal face area and
rearranging, the following equation is obtained

ρ∆x

∆t
(ϕP −ϕ0P)+ (ρuϕ)e− (ρuϕ)w =

(
Γ

δx

)
e

(ϕP −ϕE)−
(

Γ

δx

)
w

(ϕW −ϕP)+ S̄∆x

(2.15)
To simplify the equation a variable for convective mass flux F , and diffusion conductance
D is introduced to the equation.

Fe = (ρu)e Fw = (ρu)w (2.16)

De =

(
Γ

δx

)
e

De =

(
Γ

δx

)
w

(2.17)

8

2.4 Computational Fluid Dynamics

The source term S̄∆V can be substituted into a linear function if the source is a function
of the dependent variable. This yields a uniform source term which is equal for all cells
and a non-uniform term which is cell specific.

S̄∆V = Su + Spϕp (2.18)

This leads to the equation

ρ∆x

∆t
(ϕP −ϕ0P)+Feϕe−Fwϕw = De(ϕE−ϕP)−Dw(ϕP −ϕW)+Su+Spϕp (2.19)

The unknowns in this equation are the cell face values ϕe and ϕw. These two must be
computed using a scheme for the convection terms. In OpenFOAM several schemes are
available. The initial choice to calculate the convective fluxes is the first order upwind
method (UPM). This is known as a robust scheme, but lacks in accuracy due to artificial
diffusion (Versteeg and Malalasekera, 2007, page 150). To gain higher accuracy, second
order schemes can be applied. These schemes have less robustness, but higher accuracy.
This demands a stricter requirement to the initial conditions (IC) and in some cases it is
beneficial to run a first order simulation and use the results as initial condition for the
second order simulation. When the cell face values are found the solution can be written
on general form with coefficients depending on chosen schemes.

aPϕP =
∑
nb

anbϕnb + Su + a0pϕ
0
P (2.20)

where
ap =

∑
nb

anb − SP + a0p (2.21)

and
a0p =

ρ∆x

∆t
(2.22)

First Order Upwind Scheme

To determine the value at the cell faces it must be established how this value is calculated.
The first order upwind scheme uses the value at the upstream cell center as its cell face
value. This is a valid option for convective flows where the direction of the flow is known
because this is mandatory to determine which cell is upstream. In a stream going from
west to east (u > 0) the cell face values are as following.

ϕw = ϕW ϕe = ϕE (2.23)

Substituting the new cell face values into (2.19)

ρ∆x

∆t
(ϕP −ϕ0P)+FeϕP −FwϕW = De(ϕE−ϕP)−Dw(ϕP −ϕW)+Su+SPϕP (2.24)

And rearranging into general form

aPϕP = aWϕW + aEϕE + Su + a0pϕ
0
P (2.25)

9

Chapter 2. Theory

Giving the central coefficient

aP = aW + aE + (Fe − Fw)− SP + a0p (2.26)

By adding (Fe − Fw = 0) to the central coefficient and the maximum function to the
neighbouring coefficient the implementation is valid for both u > 0 and u < 0. With the
neighbouring coefficients

aW = max(Fw, DW +
Fw

2
, 0) ae = De +max(−Fe, De −

Fe

2
, 0) (2.27)

MUSCL

MUSCL is the acronym for Monotonic Upstream-Centered Scheme for Conservation Laws.
This method uses the neigbouring points in order to reconstruct the values at the cell faces.
This yield a higher order of accuracy, but can have problems with oscillations near dis-
continuities. To combat this numerical phenomenon Total Variation Diminishing (TVD)
schemes are implemented where limiters prevents the solver from creating unphysical ex-
tremas which can cause instability (Versteeg and Malalasekera, 2007, 165). The method
implements a deffered correction source term (SDC) that enforces a first order scheme
near discontinuities and a second order scheme elsewhere.

aPϕP = aWϕW + aEϕE + Su + SDC
u + a0Pϕ

0
P (2.28)

With central coefficient

aP = aW + aE + (Fe − Fw)− SP + a0P (2.29)

Neighbouring coefficients

aW = max(Fw, DW +
Fw

2
, 0) ae = De +max(−Fe, De −

Fe

2
, 0) (2.30)

The deffered correction source term

SDC
u =

1

2
Fe[(1− αe)Ψ(r−e)− αe ·Ψ(r+e)](ϕE − ϕP) (2.31)

+
1

2
Fw[αwΨ(r−w)− (1− αw) ·Ψ(r+w)](ϕP − ϕW)

To maintain bi-directional validity α is introduced

αw = 1 for Fw > 0 αe = 1 for Fe > 0 (2.32)
αw = 0 for Fw < 0 αe = 0 for Fe < 0 (2.33)

where r+e , r+e , r−e and r−W

r+e =
ϕP − ϕW
ϕE − ϕP

r+w =
ϕW − ϕWW

ϕP − ϕW
(2.34)

r−e =
ϕEE − ϕE
ϕE − ϕP

r−w =
ϕE − ϕP
ϕP − ϕW

(2.35)

10

2.4 Computational Fluid Dynamics

The limiter function Ψ(r) has several options, the implementation of the MUSCL scheme
in OpenFOAM uses the Monotonized Central limiter (openfoam.com, 2019).

ΨMC(r) = max(min(min(2 ∗ r, 0.5 ∗ r + 0.5), 2), 0) lim
r→∞

= 2 (2.36)

The discretization stated above will solve the transient convection diffusion equation, but
in order to solve the Navier-Stokes equation the pressure gradient must be included. In this
thesis, this is done by coupling the velocity and the pressure using the PIMPLE algorithm.

2.4.3 3D Descretization
The discretizaton performed in the previous chapters can be extended from 1D space (east
and west) into 3D space (east, west, north, south, front and back). This yields solution to
the transient convection-diffusion equation on general form:

apϕP = aWϕW + aEϕE + aSϕS + aNϕN + aBϕ
0
B + aFϕ

0
F + a0Pϕ

0
P + Su (2.37)

where the central coefficient

ap =
∑
nb

anb + a0P +∆F − SP (2.38)

where
a0P =

ρ∆V

∆t
(2.39)

and
∆F = (Fe − Fw) + (Fn − Fs) + (Ff − Fb) (2.40)

The neighbouring coefficients (aE , aW , aS , aN , aF and aB) are determined by the chosen
scheme for the convective fluxes as shown in chapter 2.4.2.

2.4.4 Pressure-Velocity Coupling
To couple the pressure and the velocity fields a ”guess and correct” method is used. The
PIMPLE algorithm combines the transient PISO algorithm with the steady state SIMPLE
algorithm. The PISO algorithm is restricted by the Courant criterion |Co| = |u|∆t

∆x ≤
1 which can prove computational costly due to the small time step. For the PIMPLE
algorithm to handle Courant numbers larger than 1, and thus larger time steps, an outer
loop adopted from the SIMPLE algorithm is implemented to find a steady state solution
at the given time level before advancing in time. To converge, the SIMPLE algorithm
requires diagonal dominance (Versteeg and Malalasekera, 2007, page 143).

|
∑
anb|

|a′p|

{
≤ 1 for all nodes
< 1 for at least one node

(2.41)

where a′p = ap − bi − Sp is the net central coefficient and bi is additional source terms.
The algorithms uses a staggered grid where the pressure is located at the centroid and the
velocities are located at the cell faces (Harlow and Welch, 1965).

11

Chapter 2. Theory

SIMPLE Algorithm

The SIMPLE algorithm is an iterative procedure that uses a guessed fields denoted ∗ to
calculate a corrector denoted ′. The algorithm couples pressure and velocity for each time
step to create a steady state solution that satisfies continuity.

u = u∗ + u′ (2.42)
v = v∗ + v′ (2.43)
p = p∗ + p′ (2.44)

The correction for the velocity field is found using the current and the guessed pressure
field

ai,Ju
′
i,J =

≈0︷ ︸︸ ︷∑
nbf

anbfu
′
nbf +

(p′
I−1,J︷ ︸︸ ︷

(pI−1,J − p∗I−1,J)−

p′
I,J︷ ︸︸ ︷

(pI,J − p∗I,J)

)
Ai,J (2.45)

ai,Jv
′
i,J =

≈0︷ ︸︸ ︷∑
nbf

anbfv
′
nbf +

(p′
I,J−1︷ ︸︸ ︷

(pI,J−1 − p∗I,J−1)−

p′
I,J︷ ︸︸ ︷

(pI,J − p∗I,J)

)
AI,j (2.46)

The SIMPLE algorithm’s main assumption is to neglect the contribution to the correc-
tor from the neighbouring cells. This is justified because this contribution goes towards
zero when the guessed velocity field converges towards the correct velocity field for each
iteration.

u′i,J =
Ai,J

ai,J

(
(pI−1,J − p∗I−1,J)− (pI,J − p∗I,J

)
(2.47)

v′I,j =
AI,j

aI,j

(
(pI,J−1 − p∗I,J−1)− (pI,J − p∗I,J

)
(2.48)

calculating corrected velocity field

ui,J = u∗i,J + u′i,J = u∗i,J +
Ai,J

ai,J

(
(pI−1,J − p∗I−1,J)− (pI,J − p∗I,J

)
(2.49)

vI,j = v∗I,j + v′I,j = v∗I,j +
AI,j

aI,j

(
(pI,J−1 − p∗I,J−1)− (pI,J − p∗I,J

)
(2.50)

The inconsistency caused by disregarding for the terms
∑

nb anbu
′

nb and
∑

nb anbv
′

nb in
equation (2.45) and (2.46) can cause the algorithm to become unstable. This is solved by
inflating ap by dividing by the under-relaxation factor αu and αv in equation (2.51) and
(2.52), where 0 < α < 1.

ai,J
αu

ui,J =
∑
nb

anbunb +Ai,J(pI−1,J − pI,J) + bi,J +

[
(1− αu)

ai,J
αu

]
un−1
i,J (2.51)

aI,j
αv

vI,j =
∑
nb

anbvnb +AI,j(pI,J−1 − pI,J) + bI,j +

[
(1− αv)

aI,j
αu

]
vn−1
I,j (2.52)

12

2.4 Computational Fluid Dynamics

where u and v are the corrected velocities. Due to the correction to the velocity field the
pressure must also be corrected to maintain continuity. The pressure correction term is
calculated using the continuity equation using u = u∗ + u′ and v = v∗ + v′ .[

ρ(u∗ + u′)A

]
i+1,J

−
[
ρ(u∗ + u′)A

]
i,J

+

[
ρ(v∗ + v′)A

]
i,J+1

−
[
ρ(v∗ + v′)A

]
i,J

= 0 (2.53)

which leads to

p′I,J =

∑
nbc anbcp

′
nbc +

[
(ρu∗A)i,J − (ρu∗A)i+,j + (ρv∗A)I,j − (ρv∗A)I,j+1

]
∑

nbc anbc
(2.54)

where nbc denotes the neighbouring cell centers.

2.4.5 Handling of Non-Orthogonal Mesh
A non-orthogonal mesh is caused when two or more cells have a cell face f which leads to
a misalignment between the cell face unit normal vector n and the centroid vector d (from
point P to N).

Figure 2.6: Sketch of non-orthogonal cells, in accordance with (Jasak, 1996, figure 3.4, page 84)

The angle θ between the centroid vector and the connecting face unit normal vector is
given by

θort = cos−1

(
d · n

|d| · |n|

)
(2.55)

13

Chapter 2. Theory

This causes a problem during the discretization of the diffusion term in the momentum
equation. ∫

V

[∇ · (µ∇u]dV =
∑
f

[µf (∇u) · n]Af (2.56)

If θort > 0◦ there is a non-orthogonal contribution. OpenFOAM solves the problem by
splitting the unit normal vector to the surface into an orthogonal and a non-orthogonal
vector (Jasak, 1996, page 83-85).

n = ∆+ k (2.57)

∫
V

[∇ · (µ∇u]dV =

orthogonal︷ ︸︸ ︷∑
f

[µf (∇u) ·∆f]Af +

non−orthogonal︷ ︸︸ ︷∑
f

[µf (∇u) · kf]Af (2.58)

The orthogonal contribution is determined implicitly in the PIMPLE-loop by

(∇u) ·∆ =
uP − unb

|d|
∆f (2.59)

and the non-orthogonal contribution is determined explicitly using the values of the last
time step

(∇u) · k =
un−1
P − un−1

nb

|d|
kf (2.60)

OpenFOAM limits the contribution of the non-orthogonal term using the factor 0 ≤ γ ≤ 1.

(∇u)f · kf ≤ γ

(
uP − uN

|d|
|∆|f

)
(2.61)

The non-orthogonal term is therefore added as a source term. This causes a smaller
a′p = ap − bp − Sp where the non-orthogonal contribution is lumped into the source
term bp. The smaller a′p can lead to instability if the matrix is lacking diagonal domi-
nance (eq. 2.41). To prevent a too large contribution, the non-orthogonal contribution is
limited to be less than orthogonal contribution. This is practical for meshes with a few
cells with high non-orthogonality that causes instability. At the sacrifice of accuracy in the
non-orthogonal term of these cells, the stability is improved which can yield a converged
solution. In PimpleFOAM the nNonOrthogonalCorrectors found in fvSolution sets the
number of recalculations of the pressure field.

2.4.6 Turbulence Modeling
To reproduce turbulence in a CFD model, the turbulence scales must be resolved. This
is know as Direct Numerical Simulation and is computationally demanding type of sim-
ulation. By developing the RANS equations using the Reynolds decomposition, where
the instantaneous variable ψ is separated into a time mean quantity ψ̄ and a fluctuating
quantity ψ′.

ψ = ψ̄ + ψ′ (2.62)

14

2.4 Computational Fluid Dynamics

This allows the Reynolds stress tensor, represents the turbulent effects, to be separated
from the rest of the equation and modelled at a cost of accuracy.

∂ūi
∂t

+ ūj
∂ūi
∂xj

= f̄i +
∂

∂xj

[
− p̄

ρ
δij + ν

(
∂ūj
∂xi

+
∂ūi
∂xj

)
− u′iu

′
j

]
(2.63)

To model the unresolved turbulence the Boussinesq’s approximation simplifies the Reynolds
stress tensor using an artificial contribution to the viscosity called turbulent viscosity νt.

− u′iu
′
j ≈ νt

(
∂ūj
∂xi

+
∂ūi
∂xj

)
− 2

3
kδij (2.64)

The Boussinesq’s approximation opens a range of possibilities in regard to how the tur-
bulent viscosity is calculated. The two-equation model k-ω-Shear Stress Transport
(k-ω-SST) proposed by Menter (Menter and Esch, 2001) is selected in this thesis . It uses
the turbulent kinetic energy k and the turbulence frequency ω. The model equations are
summarized below with some changes based on the OpenFOAM k-ω-SST source code.

νt =
µt

ρ
=
f(k, ω)

ρ
(2.65)

The model requires two additional transport equations (eq. 2.66 and eq. 2.69) to be solved.

The transport equation for turbulent kinetic energy:

∂ρk

∂t
+
∂ρūjk

∂xj
= P̃k − β∗ρωk +

∂

∂xj

[
(µ+ αkµt)

∂k

∂xj

]
(2.66)

where the production term has been limited to prevent turbulence in stagnation regions
(Menter et al., 2003, page 2).

P̃k = min(Pk, 10β
∗ρkω) (2.67)

Pk = µt
∂ūi
∂xj

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.68)

The transport equation for turbulence frequency:

∂ρω

∂t
+
∂ρūjω

∂xj
=

γ

νt
Pk − βρω2 +

∂

∂xj

[(
µ+ αωµt

)
∂ω

∂xj

]
+ 2(1− F1) +

ρ

ω
αω2

∂k

∂xj

∂ω

∂xj
(2.69)

where γ and β are model constants.

The k-ω-SST model is developed based on the strengths of the k-ϵ model and the k-ω
model, where the k-ϵ model is used outside of the boundary layer and a blending function
F1 is used to give a gradual change to the k-ω model inside the boundary layer.

F1 = tanh(arg41) (2.70)

15

Chapter 2. Theory

arg1 = min

(
max

[(√
k

β∗ωd
,
500ν

d2ω

)
,
4ραω2

k

CDkωd2

])
(2.71)

CDkω = max

(
2ραω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−20

)
(2.72)

where d is the distance normal to closest wall, and β∗ = 0.09 and αω,2 are model con-
stants. The model constants are weighted when 0 < F1 < 1 according to

ϕ = F1ϕ1 + (1− F1)ϕ2 (2.73)

In the k-ω-SST model source code there is a remark that in Menter’s paper (Menter and
Esch, 2001, eq. 2) there is an error in the last term (Foundation, 2010, line 65). The source
code has corrected this error in accordance with Menter’s paper (Menter et al., 2003, eq.
1). The model constants are also updated with the latter paper, due to the α-notation. The
source code dispute the blending of σk and σω , arguing that it is not consistent with the
blending of k-ϵ and k-ω, and proposes a blend of αk and αω . Table 2.1 summarizes the
use of constants for each turbulence model.

Table 2.1: Two-equation model constants.

Model F1 ϕi αk,i =
1

σω,i
αω,i =

1
σk,i

βi γi

k-ω 0 ϕ1 0.85 0.5 3/40 5/9
k-ϵ 1 ϕ2 1 0.856 0.0828 0.44

The turbulent viscosity is calculated using

µt =
ρa1k

max(a1ω, SF2)
(2.74)

F2 = tanh(arg22) (2.75)

arg2 = max

(
2

√
k

β∗ωd
,
500ν

d2ω

)
(2.76)

where a1 = 0.31 and F2 is a blending function.

2.4.7 Dynamic Mesh
Dynamic mesh is a useful tool when investigating flows with moving boundaries. This op-
eration can change both the topology of the geometries and/or the mesh without inflicting
discretization errors (Jasak, 2009, page 2). The moving mesh FVM uses the integral form
of the governing equations similar to equation (2.12) where the volume is moving with the
velocity us.

∂

∂t

∫
V

ρϕ∂V +

∮
A

ρ · (u− us)ϕ∂A−
∮
A

µn · ∇ϕ∂A =

∫
sϕ∂V (2.77)

This allows a mesh region to move with respect to the rest of the domain. This is shown
in figure 2.7 where a mixer is rotated.

16

2.5 Kinematic Pressure

Figure 2.7: Rotating mesh with sliding interface (Jasak, 2009, page 5, figure 5)

The interface between the rotating and non-rotating mesh is called an Arbitrary Mesh
interface (AMI) and is used to couple the meshes into one domain. The PimpleFOAM
solver has the dynamic mesh feature which is controlled by adding the dynamicMeshDict-
file to the constant folder. This file states which mesh region is rotated, origin of rotation,
axis of rotation and rotational speed ωrot.

2.5 Kinematic Pressure

OpenFOAM’s PimpleFOAM is developed for incompressible flow. The constant density is
therefore divided in all terms in the Navier-Stokes equations which produces the kinematic
pressure term p.

p =
ps
ρ

(2.78)

This is of key importance during post processing because the density must be factored in
to yield the static pressure ps.

2.6 3D Printing

The runner can be manufactured using additive manufacturing techniques (3D printing)
such as Fused Deposition Modeling (FDM) or stereolithography. The main difference be-
tween the two additive manufacturing methods are the cost and knowledge requirement
versus detail. FDM is a method where plastic/metal in a semi molten state is extruded
onto a surface, layer by layer. This is the most common 3D printing method, however the
downside to FDM is the restriction on the precision of the layers created by the nozzle di-
ameter and the vibration induced when moving the nozzle. FDM requires a self supporting
structure that imposes a limit of less than 45-60° overhang while printing. If the limit is
exceeded, the overhanging surface might be printed with an incorrect surface, bad surface
quality and/or failed print.

17

Chapter 2. Theory

Figure 2.8: 3D printed runner. Photo and print by Lars Røed Ramstad.

The surface imperfections shown in figure 2.8 can be improved by using a thin layer of
plastic fillers and sanding the runner to the intended shape.

Stereolithography is a more advanced manufacturing technique using a low powered laser
beam in order to harden liquid photopolymers. The precision and accuracy is vastly supe-
rior for small 3D prints compared to FDM, which is evident by comparing figure 2.8 and
2.9. However, due to toxic fumes during printing it is less available than FDM.

Figure 2.9: 3D printed propeller (Listek, 2019).

18

Chapter 3
Design

The aim is to design a runner that produces enough power to sustain a controlling unit
(1-10 W) using some of the pressure in the water supply. To simplify the design the guide
vanes and bulb are not included, and in difference to conventional runner designs the
runner blades only curve in two dimensions (section 2.1). This is mainly to simplify the
construction of the runner in the CAD program Autodesk Fusion 360, but also simplifies
the comparison with the control volume analysis. For the initial calculations the following
variables have to be set:

• Pipe diameter

• Head pressure

• Volumetric flow rate

• Rotational velocity of the runner

The turbine is intended to be connected to a 25.4 mm (1 inch) pipe with a head pressure
of 1 bar. Due to the COVID-19 lockdown employed March 12, 2020, some measurements
had to be done at home. The volumetric flow rate 20 L/min is measured in a household
sink yielding an inlet velocity uinlet of 0.658 m/s. With these constraints, 15 % pressure
loss equates to 5 W.

The rotational speed of the runner ωrot is dependent of the volumetric flow rate, geometry
inside the turbine, the friction in the turbine and the friction produced by the generator.
The available bearings for this project proved to have a substantial rolling friction and a
low rotational speed of 6.125 rad/s. The total friction of the system is dictated by the fric-
tion of the ball bearing, the load of the generator circuit and viscous friction. This reveals
a large amount of uncertainties, but also the fact that the rotational speed can be regulated
using a dummy load if the rotational speed is too high. The low rotational speed is chosen
to increase the torque produced and ensure that the torque is large enough to overcome the
friction. This is evident by the equation

P = Tz · ωrot (3.1)

19

Chapter 3. Design

where P is power and Tz is torque about the z-axis (along the pipe). By lowering the
rotational speed the torque will increase if the power is constant. This is primarily because
of the high friction in the suboptimal bearings that are available for this project (section
5.5).

The turbine casing for a final product is not designed, but a turbine casing using Plexi-
glas is designed (section 5.2-5.4). A similar design using a material such as stainless steal
or aluminium is possible.

3.1 Runner Design

In this design an axial turbine is the most beneficial because it requires less space than a ra-
dial turbine. Another option is to use a Pelton turbine at the outlet to the urinal and extract
all the energy while flushing. The drawback of this option is that the turbine is limited to
extracting energy while flushing, the benefit is that the turbine utilizes all the pressure en-
ergy during this time interval. The axial turbine has a continues operation where it siphon
some of the energy from the pressure while the flow still remains, this is beneficial because
the turbine can be located further upstream to include more water usage in the area.

During the design phase it is emphasized that the runner should be easily manufactured
using 3D printing. The most common 3D printers use Fused Deposition Modeling (FDM)
or Sterolithography (section 2.6), where FDM is a good option for prototyping, while
sterolithography is better during the production of the finished product due to a higher
surface quality. A limitation with FDM is the requirement of a self supporting structure.
This imposes a restriction of around 45◦ overhang while printing that has to be included
as a design criterion. If the angle is less than 45◦, this can result in a incorrect surface, bad
surface quality and/or failed print.

3.1.1 Prototype A

During the outline of the thesis, the design of the runner was intended to be a hollow cen-
tered cylinder with five exterior angled blades. The angle of the blades α is determined by
the diameter Dhub, thickness of the hollow hub thub and the length of the runner Lrunner.

α = tan−1

(
Dhub − thub
Lrunner

)
(3.2)

20

3.1 Runner Design

Figure 3.1: Side view of one blade and hub of prototype A.

Table 3.1 shows the parameters of prototype A.

Table 3.1: Prototype A parameters.

Lrunner [mm] Dhub [mm] thub [mm] tblade [mm] α [◦]

100 10 1 1 5.143

Figure 3.2: Isometric view of prototype A.

The CFD model estimates that prototype A produced too little torque to be feasible. The
first observation is that the flow passes through the hollow hub instead of rotating the
runner, this is logical because its the path of least resistance. The second observation is
that the angle of the blades is to small to produce the required torque. This requires the
length of the runner Lrunner to be shorter and/or the diameter of the hub to be larger.

3.1.2 Prototype B
To find a better shape and parameters for the runner blades, a 2D steady state case is
made in OpenFOAM by modifying the Cavity tutorial. The model simulates the flow at
a constant radius between two blades. In order to test several profiles a Bash-script is
constructed to make a test battery for different blade outlet angles α2 (figure 2.5).

21

Chapter 3. Design

2D CFD Model

The 2D CFD model simulates the flow between two runner blades at r/Rpipe = 3/4. The
script modifies the blockMeshDict-file to create blade profiles with different blade outlet
angles. This allows the program to test multiple 3-point B-spline curves that represents
both the top and bottom of two blades with a distance S apart. The parameter S is depen-
dent of the number of blades nblades, the radius Rpipe and the blade thickness tblade.

S =
2πr

nblades
− tblade =

π 3
2Rpipe

nblades
− tblade (3.3)

Using ”trial and error”, nblades = 8 is chosen because it is the least amount of blades
needed to cover the cross sectional area of the pipe. Table 3.2 summarizes the parameters
to calculate the domain height S.

Table 3.2: Parameters to calculate the domain height S.

3/4Rpipe [mm] nblades [-] tblade [mm] S [mm]

9.525 8 1 6.48

The thickness of the blade tblades is set to 1 mm. This is equal of two passes for each layer
with a FDM 3D printer, discussed in section 2.6. This implies that the sharp edges of the
3D print must be sanded before the runner can be tested in a laboratory experiment.

The simplification of calculating a uniform blade, leads to a geometry where point p1,
p2 and p3x are fixed while the y-component of p3 determines the blade outlet angle α2.

Figure 3.3: 2D domain, point coordinates are given in table 3.3.

22

3.1 Runner Design

This leads to a hub diameter
Dhub = |p3y|+ tblade (3.4)

Due to the blockage of the hub (runner blades neglected) the relative velocity w1 is calcu-
lated.

w1 =
√
u2inlet + (ωrotr)2

Apipe

Ahub
=

√
u2inlet + (ωrotr)2

1

1− D2
hub

D2
pipe

(3.5)

The blade’s inlet angle α1 is constant because it is set equal to the flow entry angle αentry

at r = 3/4Rpipe for all r.

α1 = αentry = tan−1

(
3/4Rpipeωrot

uinlet

)
(3.6)

Table 3.3: Equations for point coordinates.

Point x-coordinate y-coordinate
p1 0 0
p2 0.5 Lrunner = 5 mm −1/2 · Lrunner · tan(α1)
p3 Lrunner = 10 mm −1/2 · Lrunner · [tan(α1) + tan(α2)]

To create this domain using blockMesh the outlet is shifted downwards and the top and
bottom wall is curved with a b-spline curve function. This is conducted using a Bash-script
that modifies blockmeshDict. The simulation uses the steady state solver SimpleFOAM
with no turbulence model (”Laminar”) implemented. The mesh has a y+ = 1.25 and
wall functions are therefore not used (Guerrero, 2014, page 903). The function object
”forceCoeffs” is included in the controlDict to calculate the lift coefficient CL to the blade
profile.

CL =
dFθ

1
2ρAu

2
inlet

(3.7)

where dFθ is the vertical force acting on the control volume andA is set equal to the length
of the blade. After finding a steady state solution, the script calculates the net vertical force
on the blade and the angle of the velocity at the exit of the runner blade. The script labels
each simulation with a CASEID that contains the coordinates needed to represent the curve
and sorts the results according to the equation

CASEID = max

(
dFθ

α2 − αexit

)
(3.8)

where α2 is the blade outlet angle and αexit is the flow exit angle at the trailing edge of the
runner. The equation promotes the profile that yields the highest force and a late separation
of the flow. Figure 3.4 shows the highest performing blade curve obtained after sorting the
2D simulations.

23

Chapter 3. Design

Figure 3.4: 2D shape transferred to Autodesk Fusion 360 (unit: mm).

3D Model of the Runner

The blade profile shown in figure 3.4 is exported using the extract surface filter in Paraview
as a STL-file and imported into Autodesk Fusion 360. The sharp edges on the runner are
rounded using the fillet function (figure 3.5) and the sharp chamfers at the runner hub
are rounded (0.1 mm) to prevent small and skewed cells while meshing. The length of
the runner hub is also extended by 0.5 mm upstream and downstream of the runner blades.
This is a result of Autodesk Fusion 360 having problems with colliding fillet/chamfer from
the hub edge and the junction between the blades. The leading and the trailing edge of the
2D blade profile is rounded to give the blades a more aerodynamic form which promote
less disturbance downstream of the runner.

Figure 3.5: Side view of one blade and hub with fillet dimensions of blade edges (unit: mm).

24

3.1 Runner Design

Using the revolve function in Autodesk Fusion 360 the number of blades of the runner is
set, yielding prototype B.

Figure 3.6: Prototype B constructed in Autodesk Fusion 360.

25

Chapter 3. Design

26

Chapter 4
CFD Model

Computational Fluid Dynamics (CFD) is used in a large variety of industrial and scientific
applications like optimizing the shape of aerodynamic features, chemical reactions in a
mixture and multiphase flow problems.

OpenFOAM is a free open source software. The source code is written in C++, but has a
higher level ”interface” for users. It is native to Linux and available for Windows and Mac,
however Linux is the recommended option. OpenFOAM does not have a user-friendly
GUI (graphical user interface), but relies on text-files in a specific case structure to orga-
nize the simulation. A recommended option is to use a text editing program such as Atom
to structure and edit the case files.

One of the largest benefits with OpenFOAM is the ability to edit or use custom made
code. This is in contrast to most commercial code where the user gives input and settings
and receives the output without the ability to check the source code. Another benefit of
OpenFOAM is its library of tutorials. This is a selection of base cases within several fields
that can be copied and altered into the flow problem that is investigated.

4.1 OpenFOAM, Propeller Tutorial
The OpenFOAM Propeller tutorial is the closest tutorial to this thesis’ flow problem. The
major difference is the enclosed flow by the pipe, creating an internal flow, compared to
the Propeller tutorial which is an external flow. The Propeller tutorial is a transient sim-
ulation using RANS turbulence modeling (k-ϵ-model). The propeller is rotated using a
cell-zone with Arbitrary Mesh Interface (AMI) patches that is rotated at a constant rota-
tional speed ωrot (section 2.4.7). This is established by creating a cylindrical mesh for the
rotating region and an equal void in the external mesh where the rotating region can be
integrated. By merging the two meshes this creates a patch between the rotating region
and the external mesh where the rotating region can slide. The rotational axis, speed and
direction is set using the dynamicMeshDict-file.

27

Chapter 4. CFD Model

4.2 OpenFOAM, Pico Turbine
Using the setup in the Propeller tutorial the first change is to create a mesh for the interior
flow. The main question is where the AMI patches should be located. To mimic the design
the entire domain should be surrounded by the rotating region except for the inlets and
the outlets. However this creates difficulties with coinciding patches. The rotating region
is therefore chosen to contain the runner and a section upstream and downstream of the
runner. The pipe wall is also included because the pipe and the runner patch coincide. If
the pipe wall is stationary and the runner is rotated, an undefined hole in the pipe wall patch
will appear and a double defined edge where the runner coincides with the pipe wall patch
will exist. This causes the simulation to crash, due to the undefined and double defined
patches. The possibility of only rotating the runner demands a gap between the runner and
the pipe wall. This creates a problem when this gap has to be filled with extremely small
cells. This dictates an unnecessary small time step with regard to the Courant number for
this simulation.

Figure 4.1: 2D representation of domain with rotating region marked with red lines.

Figure 4.1 also shows the short domain compared to the estimation made in section 5.1
(including the shortening of the entry length). The short length of the domain is a conse-
quence of the high amount of cells it takes to create a semi smooth runner surface, this will
be further addressed in section 4.3.3 and 4.4.

4.3 Meshing Process
In spirit of only using open source software the OpenFOAM functions blockMesh and
snappyHexMesh and the CAD program SALOME is intended to create the mesh. This is
a choice made because the software is available for free after graduating. During the test-
ing of the prototype A runner, OpenFOAM’s mesh functions create a mesh within Open-
FOAM’s mesh quality criterion and the simulation yields a converged solution. When

28

4.3 Meshing Process

changing to the prototype B runner the mesh quality remained within the quality criterion,
but crashs due to a ”divide by zero”-error. This proves to be because snappyHexMesh is
not able to capture the pipe geometry and can not create a perfect circle (section 4.3.3)
for the AMI to slide along. At this point the meshing process is moved to SALOME that
creates unstructured meshes. The meshing follows the meshing guide by Ali Ikhsanul
(Ikhsanul, 2017). The problem with this mesh is high non-orthogonality that causes di-
vergence after the runner started to rotate. An effort is made to tweak and tune the mesh
with the information from the tutorial, but the meshes have a maximum non-orthogonality
of 78◦. Without the possibility of improving the SALOME mesh the focus is directed
back to the blockMesh and creating a cylindrical domain instead of using snappyHexMesh
to cut the blockMesh into a cylinder. This is possible using the curve feature (similar to
the 2D model) in blockMesh, however the cells close to the center in a cylindrical mesh
have a high aspect ratio that is problematic. To circumvent this problem an O-grid mesh is
preferred (figure 4.9). With an O-grid mesh provided by wolfDynamics (Guerrero, 2019a,
page 60-66) the mesh has acceptable mesh quality that produces a converging solution.

4.3.1 SnappyHexMesh
The mesh is created using the snappyHexMesh (SHM) function. It manipulates a pre-
made hexahedral mesh (blockMesh) in order to import geometries and create cell refine-
ment. SHM has four phases where it imports the geometry and creates refinement regions,
castellation (removal of cells with 50 % of its cellbody inside the geometry), snapping
(moving vertices onto surfaces) and layering. The parameters used by SHM are stored in
the system folder under snappyHexMeshDict. The geometry file for the runner (*.stl/*.obj
file) is stored in the triSurface folder, which is located in the constant folder. The snappy-
HexMesh flowchart found in the OpenFOAM v1912 User Guide (OpenFoam.com, 2019)
is shown in figure 4.2.

29

Chapter 4. CFD Model

Figure 4.2: SnappyHexMesh flowchart (OpenFoam.com, 2019).

4.3.2 Import Geometry, Defining Cell Regions and Castellation
After importing the geometry files, SHM creates searchable regions. This feature is used
to create the refinement regions used by SHM and to define the rotating zone used by the
dynamicMesh function. A cylindrical cell zone called innerCylinder is created around the
runner which is initialized by two points that creates the height of the cylinder and a radius.
The radius is set larger than the pipe radius to ensure that all interior cells and the pipe wall
patch is included in the cell selection.

Figure 4.3: Implementation of a searchable region (cylinder) used to create the rotating and refine-
ment region in snappyHexMeshDict.

This cell zone is used to create the AMI which allows the mesh to be rotated. The zone is
also used as a refinement region in order to have smaller cells close to the runner surface.
During testing a numerical error was observed at the AMI patches, as shown in figure 4.4
and 4.5, using an intermediate prototype runner based on prototype A (section 3.1.1) with
length 10 mm, blade angle 45◦ and a hollow hub. The figures show the velocity magnitude
and the pressure along the center of the pipe.

30

4.3 Meshing Process

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Position

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

V
e
lo

c
it
y
 m

a
g
n
it
u
d
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
in

e
m

a
ti
c
 p

re
s
s
u
re

Line plot along the center of the pipe

mag U

p

Inlet side AMI patch

Outlet side AMI patch

Figure 4.4: Unequal cell refinement level.

.

Figure 4.5: Enlargement of oscillation in figure 4.4 to show the oscillations marked with red circles.

31

Chapter 4. CFD Model

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04

Position

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

V
e
lo

c
it
y
 m

a
g
n
it
u
d
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K
in

e
m

a
ti
c
 p

re
s
s
u
re

Line plot along the center of the pipe

mag U

p

Inlet side AMI patch

Outlet side AMI patch

Figure 4.6: Equal cell refinement level.

This numerical error is introduced by the abrupt change in cell size at the AMI patches
and is remedied by creating a refinement region outside the innerCylinder zone. This zone
is called outerCylinder. The refinement regions are seen in the plane along the pipe center
shown in figure 4.7. Table 4.1 states the refinement levels used for each area where the
darker/denser areas in figure 4.7 have a higher refinement level. The region innerCylinder
is located between the AMI patches (denoted by red lines in figure 4.7) and the refinement
region outerCylinder is the mesh area located on the outside of the dynamic mesh region.
The coarser center section is a result of how the O-grid mesh is constructed and efforts are
made to balance the inner and outer section to create a quality mesh.

Figure 4.7: Refinement of regions and surfaces in the region close to the runner.

32

4.3 Meshing Process

Table 4.1 summarizes the refinement levels for each section where a higher refinement
level dictates smaller cells in the area.

Table 4.1: Cell refinement levels of edges, surfaces and regions.

Edge, surface, region Refinement level
Runner edge 4

Runner surface 3
Pipe surface 1

Inner cylinder/rotating cell zone 1
Outer refinement zone 1

4.3.3 Snapping

The snapping process is where the hexhedral cells are deformed by moving the cell vertex
points onto the surfaces. In order to snap the geometry successfully, the cells close to
the surface must have an aspect ratio close to unity (Greenshields, 2019, section 5.4.2).
Initially a rectangular formed hexhedral mesh is constructed. This creates a good quality
mesh in regard to non-orthogonality (40°<), maximum aspect ratio (1.5<) and maximum
cell skewness (1.5 <), but requires to snap the pipe geometry using an additional stl-file.
While running the simulation this causes a zero division error due to misalignment after
rotating a non-circular AMI patch as shown in figure 4.8.

Figure 4.8: Imperfect pipe topology.

33

Chapter 4. CFD Model

The red line denotes the surface created by the imported pipe stl-file, which shows the
deviation caused by a too coarse initial mesh. The cause of the error is proven by running
three simulations with different rotational speeds (ωrot). Table 4.2 shows that the crash
occurs after rotating the mesh 1.178°, which implies that it is caused by the rotation of the
mesh.

Table 4.2: Crash time during rotating mesh test.

ωrot [rad/s] Simulated time before instability [s]

0 ∞
6.125 0.0032
12.50 0.0016

To circumvent this problem a blockMeshDict created by Wolf Dynamics (Guerrero, 2019a,
section Supplement: blockMesh) is used to create the O-grid mesh. Figure 4.9 shows the
O-grid structure and the structural blocks created in blockMeshDict.

Figure 4.9: Wolf Dynamics’ O-grid mesh (Guerrero, 2019a).

The advantage of using the O-grid mesh is the structured cylindrical mesh that has a per-
fectly circular outer edge. The disadvantage is the different cell shapes that are in conflict
with the aspect ratio snapping requirement that is evident by inspecting the surface topol-
ogy of the runner. The runner surface after snapping is shown in figure 4.10.

34

4.4 Domain

Figure 4.10: Runner surface after snapping, O-grid mesh can be seen along the surface.

4.4 Domain
The domain is created with three times the pipe diameter upstream and five times the pipe
diameter downstream of the runner’s leading edge. The short domain is due to the large
requirement of cells in order to capture the runner surface. The main interest is to compute
the torque on the runner which is geometry dependent and thus the domain length has to
be sacrificed to gain better surface quality because of RAM-restriction. This causes the
wake to be in contact with the outlet boundary which is not optimal.

4.5 Mesh Quality
The mesh quality is checked using the checkMesh function, and the criteria are located in
the snappyHexMeshDict-file under quality control. Table 4.3 shows the output from the
checkMesh function of important properties for the mesh quality.

Table 4.3: Mesh quality.

Maximum Average

Number of cells 6547341 -
Non-orthogonality 68.8196° 12.3743°

Skewness 2.5633 -
Cell aspect ratio 5.31822 -

35

Chapter 4. CFD Model

Because of the difficulties to create an acceptable mesh, a grid refinement study is not con-
ducted. This is mainly due to the high amount of cells needed to capture the geometry of
the runner during snapping. The high amount of cells required results in a problem during
post processing where the RAM is the limiting factor. There are possibilities to circum-
vent this problem, however due to the time limitation the project is continued without a
grid refinement study.

4.6 Constants
In this thesis the density ρ and dynamic viscosity µ are assumed constant. Both quantities
are dependent on the temperature T , however these changes are negligible in this flow
scenario. The temperature equation is not solved in this simulation, however the water
is presumed to have a constant temperature 5 oC. This yields a kinematic viscosity of
1.547e−6 m2/s and a density of 1000 kg/m3. The temperature and density are irrelevant,
except their implication on the viscosity and calculation of static pressure (equation 2.78).
Table 4.4 summarizes the transport properties.

Table 4.4: Transport properties (White, 2016, page 738).

T [oC] ρ [kg/m3] ν [m2/s]

5 1000 1.547e-6

4.7 Initial Conditions

4.7.1 Velocity and Pressure
The internal velocity field is set equal to the inlet velocity [0, 0, −0.658]m/s, where the z-
axis is orientated in the counter flow direction. The internal field of the kinematic pressure
is set to 0m2/s2.

4.7.2 Turbulence Modeling
The Reynolds number calculated in table 4.5 estimates a turbulent flow (White, 2016, page
310).

Table 4.5: Reynolds number.

Dpipe [m] |uinlet| [m/s] ν [m2/s] ReD [-]

0.0254 0.658 1.547e-6 10804

This dictates the use of a turbulence model (section 2.4.6) as the turbulence scales are not
resolved (temporal and spatial) in the simulation. Due to familiarity with 2-equation mod-
els the k-ϵ, k-ω and k-ω-SST models where of initial interest. When using the k-ϵ model

36

4.7 Initial Conditions

it is beneficial to use a wall function because the model does not reproduce the boundary
layer accurately. Due to the small cells needed to capture the geometry this led to a y+ < 6
which is unsuited for wall functions in combination with the k-ϵ model (Guerrero, 2021,
page 162). The k-ϵ model proved numerically unstable and due to the previous arguments
the model was not further used.

The k-ω causes instability for all available initial condition. The k-ω-SST is the only
turbulence model that produces a converged solution. In an effort to use the k-ω the fields
from a k-ω-SST is transferred to the simulation with k-ω, but the simulation remains un-
stable. Efforts are also made to investigate the use of different timesteps, but this proved
unfruitful. To elaborate on this instability, the simulation is conducted without a turbu-
lence model. By omitting turbulence modeling OpenFOAM is conducting a direct numer-
ical simulation on a too coarse grid with a large time step. This means that information
is lost. The simulation without the additional turbulent viscosity proves also stable which
disproves the hypothesis that the increased viscosity causes the stability. The reason why
k-ϵ and k-ω creates instability and why k-ω-SST (section 2.4.6) and ”laminar” model
creates a converged solution, is a question left as further work.

Initial Condition Turbulence Properties

The ANSYS userguide gives a relation between the initial conditions for the turbulence
kinetic energy, turbulence intensity, Reynolds number and the turbulence dissipation fre-
quency (ANSYS, 2020, section 7.3.2).

k =
3

2
(|uinlet| · I)2 (4.1)

The turbulence intensity I is defined by I = u′

ū where u′ is the fluctuation in the velocity
and ū is the mean velocity.

I = 0.16 · (ReD)−
1
8 (4.2)

The turbulence dissipation frequency is calculated using

ω =
ρk

µ

(
µt

µ

)−1

(4.3)

At low turbulence the turbulence viscosity ratio is approximately unity. This yields the
following initial conditions for the turbulence quantities shown in table 4.6.

Table 4.6: Initial conditions for turbulent properties.

|uinlet| [m/s] ReD [-] I [-] k [m2/s2] νt/ν [-] ω [s−1]

0.658 10804 0.0501 1.6308e-3 1 1054

37

Chapter 4. CFD Model

4.8 Boundary Conditions

The inlet velocity is set to a constant [0, 0, −0.658]m/s. Ideally this should have been a
velocity profile, but due to the time restriction this is not implemented. The outlet veloc-
ity condition is the inletOutlet velocity condition. This handles backflow by giving it a
constant velocity while operating as a zero gradient boundary condition elsewhere. This
boundary condition is selected due to the short exit length in case of eddies producing
counter flow at the outlet. The runner has the movingWall boundary condition which sets
the velocity to [0, 0, 0]m/s relative to the runner while the mesh section is moving. The
pressure at outlet is set to zero m2/s2 and at inlet is set to zero gradient. To enhance numer-
ical robustness all turbulent properties (k, ω, νt) are set to 1e−10 instead of zero (Versteeg
and Malalasekera, 2007, page 91). This is to prevent divide by zero in any calculation.
Due to the rotating mesh the wall functions are not used, even though the boundary layer
is not resolved. This also made it possible to obtain an y+ ≤ 6 which arguably allows
a constant boundary condition on the walls (Guerrero, 2014, page 861). This is advan-
tageous because wall functions are derived with the following assumptions (Versteeg and
Malalasekera, 2007, page 279); the velocity is parallel to the wall and varies only in the
direction normal to the wall, no pressure gradients in the flow direction and high Reynolds
number. Neither of these assumptions are valid in this CFD model, thus a constant bound-
ary may be more accurate even though the viscous boundary layer is not fully resolved
(y+ ≤ 1).

Table 4.7: Initial conditions for the simulation.

Field inlet outlet pipe runner
U [0 0 -0.658] inletOutlet

[0 0 0]
noSlip movingWall

[0 0 0]
p zeroGradient fixedValue

uniform 0
zeroGradient zeroGradient

k zeroGradient inletOutlet
uniform 0

fixedValue
uniform 1e-10

fixedValue
uniform 1e-10

ω zeroGradient inletOutlet
uniform 0

fixedValue
uniform 1e-10

fixedValue
uniform 1e-10

νt zeroGradient inletOutlet
uniform 0

fixedValue
uniform 1e-10

fixedValue
uniform 1e-10

The CFD model does not require an entry length because it can set a velocity profile. It is
therefore custom to make a separate simulation in order to find a steady state inlet velocity
profile or use a known function for velocity profile. This shortens the computational do-
main which leads to a faster computational time.

The exit length Lexit is of equal importance. Due to the design choice of not implement-
ing guide vanes to create a rotational free outlet, a swirl will be generated downstream of
the runner. Ideally the CFD model should contain this swirl. However this will demand
a large domain as the energy in the swirl is only dissipated by viscous friction. The most

38

4.9 OpenFOAM Settings

logical approach would therefore be to use the laboratory experiment to find the length of
the swirl and use this length with a margin for the computational domain. Without this
option the exit length is assumed to be longer than the entry length because the viscous
friction has to eliminate the swirl in the same matter as creating the boundary layer at the
inlet.

4.9 OpenFOAM Settings
The setup used in this thesis is based on ”Tips and tricks”-pdf by Guerrero (2019b). The
lecture notes are a summary of experiences during his research and suggest general Open-
FOAM guidelines.

Due to stability, mesh quality dictates a numerical setup where different schemes, lim-
iters, blending factors and under-relaxation are used to enhance stability and accuracy. In
this regard, the maximum non-orthogonality is important during the calculation of the dif-
fusion term. The non-orthogonal vector is split into an orthogonal and a non-orthogonal
component (section 2.4.5). The maximum non-orthogonal cell in the mesh is 68°. The
selected setup for fvScheme and fvSolution found in the ”Tips and tricks”-pdf is based on a
maximum orthogonality of 70-80° (Guerrero, 2019b, page 36). The choice of using more
correctors and under-relaxation is based on the possibility of instability during the transi-
tion from static to dynamic mesh at the startup. The PIMPLE settings are set accordingly

Table 4.8: PIMPLE settings.

Setting Option
momentumPredictor no
correctPhi yes
nOuterCorrectors 2
nCorrectors 3
nNonOrthogonalCorrectors 3

To ensure stability the following under-relaxation factors are used.

Table 4.9: Under-relaxation settings.

Field variable Under-relaxation factor
p 0.3
pFinal 1
U 0.7
k 0.7
ω 0.7

The initial divergence scheme for all quantities is the linear upwind scheme. Due to in-
stability while calculating the turbulent quantities, the linear upwind scheme is changed

39

Chapter 4. CFD Model

to the first order accurate upwind scheme for k and ω. The explicit Euler method is used
to march forward in time. This introduces some numerical diffusion, but this effect can
arguably be less detrimental because all the turbulence is modelled as turbulent viscosity.
The pressure is solved using the geometric algebraic multigrid (GAMG) method and for
the velocity the symmetric Gauss Seidel method is used. The time step is initially set to
1 ms, but after a few iterations the automated time step function is used with a limit of
Comax ≤ 0.5. After four full revolutions of the runner the divergence scheme for the tur-
bulent quantities is changed to the MUSCL scheme, which provides a converged solution
with a second order accuracy in space. The simulation is afterwards ran until the torque
calculated by PimpleFOAM is converged.

4.10 High Performance Computing
OpenFOAM is capable of parallel computing. This is advantageous because the domain
can be separated into regions and calculated simultaneously. This shortens the wall clock
time spent to run the simulation. The parallel processing is controlled by the function de-
composePar. This function divides the domain into subdomains that each processor core
calculates and then handles the cross communication between the processor boundaries.
The decomposePar function is controlled by the decomposeParDict-file where number of
processor cores and method is set. There are several options for the decomposition and
how the regions are divided. The simplest option is to divide the domain using a geomet-
ric decomposition, however because most of the cells in this simulation are located at the
runner this will create a computational bottleneck. Another option is the Scotch method,
where the decomposition is based on minimizing the amount of CPU boundaries (open-
foam.com, 2020) which is used in this thesis.

To determine a suitable number of processor cores there are some considerations that needs
to be taken. The most important factor is the amount of available cores. If a simulation
requires a large amount of cores the waiting time in queue to run the simulation will in-
crease. Another limiting factor is weak scaling, where using more processors will yield
diminishing returns. The weak scaling is described by Amdahl’s law (Amdahl, 1967)
which estimates a theoretical speed-up of the processing that can be computed using par-
allel processed.

ST =
1

(1− fp) +
fp
nc

(4.4)

where ST is the theoretical speed-up, fp is the fraction of the computation that can be
parallel processed and nc number of processor cores. The equation states that the serial
part of the computation represented by 1

(1−fp)
, is the limiting factor when the number of

processors become many enough. It is possible to perform a weak scaling study to find the
optimal amount of cores, however the IDUN high performance computing (HPC) cluster
used in this thesis does not have a uniform selection of processors on each node. Meaning
that each node have different computational efficiency.

In regard to primarily queue and wall clock time, 40 processor cores are used to run this

40

4.10 High Performance Computing

simulation. Compared to running locally on 10 processors this gives a significantly lower
wall clock time to run the simulation.

41

Chapter 4. CFD Model

42

Chapter 5
Design of Laboratory Experiment

The design of the laboratory experiment is based on the turbine being connected to a
1 inch water pipe and having access to a drain. The runner is intended to be printed
at NTNU Make where they have both filament (FDM) and resin (stereolithography) 3D
printers. The turbine housing is intended to be built by chemically welding Plexiglas to
have a transparent pipe wall. The laboratory experiment is designed with the following
requirements:

• robustness

• simple to build and change parts

• mounted to a water supply pipe using a valve

• the rotor must be able to turn freely (least amount of friction)

• the energy must be transformed to electrical power

• the water leakages must be contained

The sensory equipment needed to compare with the CFD results are an inlet and an outlet
pressure gauge, a tachometer to measure the rotational speed of the runner and a flow
meter to measure the flow velocity (this can be measured at the outlet).

5.1 Entry Length

To ensure a fully developed flow upstream of the runner in the laboratory experiment, the
entry length Lentry is estimated using equation (2.9). For this flow problem this yields an
entry length of 16.31 pipe diameters or 0.414 m. Table 5.1 summarizes the calculation of
the entry length.

43

Chapter 5. Design of Laboratory Experiment

Table 5.1: Entry length.

Dpipe [m] |uinlet| [m/s] ν [m2/s] ReD [-] Lentry [m]

0.0254 0.658 1.547e-6 10804 0.414

5.1.1 Generator

In all designs a flooded generator is planned, this means that the gap in the generator is
filled with water and that the coils and the magnets are cast in epoxy to prevent damage.
This is based on the same principle as the flooded generators in tidal turbines (Wani et al.,
2020, chapter 4).

5.2 Laboratory Concept 1: 90° Bend or T-Pipe

Laboratory concept 1 uses a shaft and a 90° bend or T-pipe to transfer the mechanical en-
ergy from the runner to the generator. In this setup the runner is mounted to a shaft that
passes through the pipe wall using a bearing. The simplistic design has fewer parts than
the other concepts (section 5.3 and 5.4) and a smaller bearing is more likely to be designed
for this application with regard to friction/lubrication. This allows the turbine to transfer
the mechanical energy directly to the generator. Because the runner is not in contact with
the pipe wall, there will be some leakages between the runner and the pipe wall. To pre-
vent flow induced vibration, high precision to align the bearing, shaft and runner along the
center of the pipe is needed. This ultimately makes the concept less viable.

This concept has some practical issues with leakage through the bearing. To prevent fur-
ther leakage an enclosing box has to seal the leakage as shown in figure 5.1 (dotted lines).

Figure 5.1: Top view of concept 1 with suggested box (red dotted line).

44

5.3 Laboratory Concept 2: Rim Driven Transmission

5.3 Laboratory Concept 2: Rim Driven Transmission
Laboratory concept 2 uses a rim driven transmission where a ring gear and a pinion are
used to transfer energy from the runner to the generator. In this setup the runner is glued
to the inside of a pipe, that in turn is mounted to two bearings on the outside. The ring
gear is glued to the outside of the pipe to allow the runner to drive the pinion and gen-
erator. The gear system gives the option to have different rotational speed of the runner
and the generator. This option is also less prone to vibrations, however using a gear and
pinion will create friction which is problematic for this low energy device. In this concept
an emphasize on a precise and efficient gear system is important. Compared to concept
1 this option uses an additional bearing and bearings that are much larger, this dictates
additional friction/loses. The bearings in this option is also acting as seals which dictates
that the turbine have to be enclosed by a box to prevent leakage in a similar matter as in
concept 1.

Figure 5.2: Isometric view of concept 2.

45

Chapter 5. Design of Laboratory Experiment

5.4 Laboratory Concept 3: Internal Generator

Laboratory concept 3 uses an internal generator design which is a further development of
concept 2. In this option the pipe that the runner is glued to is used as a shaft that rotates
the rotor of the generator directly. The stator of the generator is glued to the external pipe
that prevents further leakage through the bearings.

Figure 5.3: Side view of concept 3 with generator on the right side.

5.5 Final design

Because of the campus lockdown caused by the COVID-19 pandemic, the turbine casing
and generator is not built. The most promising concept is the internal generator concept.
This is because it allows the generator to be rotated with a lower risk of vibration (no shaft
or centering) in contrast to concept 1 and with less mechanical losses (no gear) than con-
cept 2. The drawback of this concept is the requirement of a tailor made generator, while
concept 1 and 2 can use a stock item generator that matches the turbine specifications.

The bearings intended for this laboratory experiment is the SKF 6006-2RS (Table 5.2).
The main concern with the ball bearings are the rolling friction. The bearings are designed
for much higher speed (maximum 8000 RPM) and load, this require a more viscous lu-
bricant than needed for this thesis. The lubricant is therefore intended to be removed if
the bearings have too high friction. The external pipe that prevents leakage is designed
to have an inner diameter of 55 mm to fit the bearings, but this can be adjusted with 3D
printed parts if the generator requires more space. To lock the two ball bearings between

Table 5.2: Deep grove ball bearing (SKF, 2020).

Bearing number Di [mm] Do [mm] axial length [mm] static load: C0 [kN]

6006-2RS 30 55 13 8.3

the internal and the external pipe, 3D printed rings are glued onto the pipes. A ring is glued
to the interior wall of the external pipe, acting as a rest for the bearing to be pushed into
and to separate the main compartment from the generator. Two rings are glued onto the

46

5.5 Final design

exterior wall of the internal pipe and are used to push the ball bearing against rest when
tightening the flanges.

Figure 5.4: Final design sketch.

47

Chapter 5. Design of Laboratory Experiment

48

Chapter 6
Results and Discussion

6.1 3D CFD Model
The objective of the CFD model is to calculate power output of the runner by calculating
the forces and the torque acting on the runner and the total pressure loss. In the initial
design the turbine and generator are intended to extract approximately 15 % of the inlet
pressure and convert it to electrical power. The CFD model estimates a pressure drop of
approximately 1.5 % if the inlet pressure is 1 bar, which is one order of magnitude smaller
than the design aimed for. To improve the turbine guide vanes should be installed.

The axial forces acting on the bearings are shown in table 6.1. The axial forces
∑
Fz

are very small compared to the axial forces the bearings are capable to handle. This con-
firms the assumption that the bearings are oversized for this purpose.

Table 6.1: Forces and pressure drop in the axial direction.

Model Fz,pressure [N] Fz,viscous [N]
∑
Fz [N] ∆ps [Pa] ∆ps [%]

Laminar −0.4838 −0.02376 −0.5068 1475.18 1.475
k-ω-SST −0.4807 −0.03040 −0.5111 1492.82 1.492

Difference: 3.1 · 10−3 −6.64 · 10−3 4.3 · 10−3 −17.64 -0.017

The torque acting on the runner creates a power potential given in table 6.2. To determine
the real power output of the generator, several unknowns have to be determined empiri-
cally. To rotate the runner the flow must produce enough torque to overcome the genera-
tor’s inertia and the friction in the turbine. Because non of the parts of the generator are
made, it is impossible to calculate the rotational speed accurately, thus the rotational speed
set in this thesis has to be changed with the result of an empirical value determined after
the generator is built. Depending on the torque created by the runner, the friction (static/-
dynamic) in the bearings and the electrical load of the generator, the rotational speed will

49

Chapter 6. Results and Discussion

vary until it settles on its equilibrium (no acceleration). It is also notable that this rotational
speed must satisfy the requirements to generate electricity.

Table 6.2: Torque about z-axis and power.

Model Tz,pressure [Nm] Tz,viscous [Nm]
∑
Tz [Nm] PCFD [W]

Laminar 3.4065 · 10−3 −1.71308 · 10−4 3.2352 · 10−3 0.0196
k-ω-SST 3.3924 · 10−3 −2.22364 · 10−4 3.1700 · 10−3 0.0194

With the set rotational speed (meaning the bearings friction has been overcome), Open-
FOAM estimates the turbine to produce approximately 20 mW. However, the generator
will cause losses and the turbine output has to be multiplied by the generator efficiency
factor to find the total power output.

6.2 Verification
Verification of the calculated torque can be conducted using control volume analysis. The
analysis evaluates if the sum of forces acting on the control volume is equal to 0, in accor-
dance with Newton’s 1st law. Equation 6.1 is given by the systems force balance where
the denominator is the systems driving force, while the numerator is the sum of all forces
acting on the runner. An additional force contributed by the pipe wall is neglected because
it is much smaller than forces acting on the runner, this implies that the expected result
should be less than one.

error =

∑
F

∆p ·Apipe
=

∑
Fz +

∑
Tz

r̄

∆p ·Apipe
(6.1)

In equation 6.1, r̄ is the length of the leverage arm and ∆p is the pressure drop from inlet
to outlet. The undetermined leverage arm can be estimated by assuming that the torque
acting on the runner blade is produced by a distributed load that can be transformed into a
point force. The function of the distributed load on the runner blade is unknown, but does
increase radially by r2 due to the dA

A -factor in equation (2.2). Using this assumption the
leverage arm must be located at r̄ = 0.78Rpipe in the radial direction (derived in section
2.2.1).

Table 6.3: Verification of calculated forces.

Model error

Laminar 107.89 %
k-ω-SST 106.39 %

Table 6.3 summarizes these calculations. The results show that the forces acting on the
runner are larger than the driving force. This is problematic and causes a major concern

50

6.3 Validation

about where the calculation is wrong. Most likely this is a result of the sacrifices in the
mesh generation.

6.3 Validation
Validation of the CFD model is a hard challenge without any external results to compare.
A control volume analysis can be conducted over a volume containing the runner. The
derivation uses the linear momentum equation to calculate the force acting on a control
volume given by the circumference at radius r, length of the runner blades Lrunner and
the cylindrical slice thickness dr. This calculates point forces along the runner blades in
the radial direction and is used to calculate the power contribution from each section which
is integrated to find the total power of the runner. It is based on an inviscid flow where the
outlet flow angle is equal to the outlet angle of the runner blade. This gives a maximum
potential power output available for the turbine. The derivation is given in section 2.2.

Table 6.4: Comparing the theoretical maximum power output (PCV) and the estimated power output
by the CFD model (PCFD).

PCFD [W] PCV [W] PCFD/PCV [-]

Power 0.0194 0.01335 1.45

The calculated power output is summarized in table 6.4 and estimates that the power out-
put calculated by the control volume analysis is greatly exceeded by the CFD analysis.
This renders the CFD model unfit for further use and has to be modified (change mesh).
Due to the overestimated forces acting on the runner (section 6.2) and the overestimated
power output, it is without doubt that the torque calculated by the CFD model is inaccurate
because it is the common denominator.

6.4 Runner Efficiency
When the runner efficiency is evaluated, it is important to address the use of the power that
is taken from the pressure loss. To find the runner efficiency ηrunner the power created by
the runner is divided by the power from the pressure drop.

ηrunner =
PCFD

V̇ ·∆p
=
Tz · ωrot

V̇ ·∆p
(6.2)

The variable Tz is the momentum about the z-axis, ωrot is the rotational velocity, V̇ is the
volumetric flow rate and ∆p is the pressure loss from inlet to outlet.

The efficiency of the runner is quite low compared to other turbine arrangements such
as Kaplan turbines (Brekke, 2003, section 9.5.4). From the start of this thesis it has been
known that the efficiency of the turbine would be lower than commercial turbines due to
its simplistic geometry and by omitting the guide vanes in the design. This causes the

51

Chapter 6. Results and Discussion

runner to lose more than 96 % of the energy extracted from the flow to create a swirl be-
hind the runner, while less than 4 % is used to drive the runner. This indicates that the
simplistic runner can be improved significantly by installing guide vanes and using a more
sophisticated design criteria to create a vortex free outlet.

Table 6.5: Runner efficiency.

Model PCFD[W] V̇ ·∆ps [W] ηrunner [-]

Laminar 0.0196 0.4921 0.0398
k-ω-SST 0.0194 0.4976 0.0390

From a practical CFD point of view, including the guide vanes will require more cells
due to the new imported geometry. Due to the large cell count in the current simulation
it is not viable to have another geometry present. This begs the conclusion that with the
writers current user knowledge of snappyHexMesh, it is not suitable for this project. The
effort to use SALOME as a mesh generator was not successful due to low mesh quality,
and introducing a new geometry will not improve the problems (section 4.3), however a
commercial mesh generator such as ANSYS could yield better results.

6.5 Turbulence
The turbulence is causing a decrease of power output and efficiency. The increased viscous
friction results in a decrease in net torque implying a reduction in the power output. The
viscous friction also causes a larger non-contributing pressure loss yielding a lower runner
efficiency. This is in line with viscous pipe flow theory (White, 2016, chapter 6.6). The
effects of turbulence are shown in table 6.6

Table 6.6: Effects of turbulence using the k-ω-SST model (subscript tm denotes turbulence model
and l denotes laminar).

Ptm -Pl [mW] Ptm−Pl

Ptm
[-] ηtm−ηl

ηtm
[-] Tz,tm

Tz,l
[-] ∆ps,tm−∆ps,l

∆ps,tm

-0.02 -0.01 -0.0205 1.3 0.01

52

Chapter 7
Conclusion

The goal of this master thesis is to determine if a turbine in a 1 inch water pipe can produce
enough power to run low powered sensory equipment such as a controlling unit for a urinal.
The CFD results (not validated) argue that the runner can produce 19.4 mW if it can reach
a stationary rotational speed of 6.125 rad/s. This is only a fraction of the 1-10 W that is
needed to run the controlling unit. The reasons for this discrepancy are the low efficiency
(4 %) of the runner and that the runner is not capable of producing a large enough pressure
drop to be able to generate the required power.

7.1 Runner Design

Prototype A and B are proven to be lackluster and a more complex design with guide
vanes is advantageous because this will increase the runner efficiency. Prototype A proved
to have a design flaw where the flow passed through the hollow center of the runner. Be-
cause the rotational velocity is set, the CFD model estimated a negative torque and at no
rotation the runner produces an insignificant amount of torque. The design of prototype
B is interesting because, in theory, the 2D model is acceptable. However, the simplifi-
cation of constructing the runner blade with uniform blade angles proved erroneous even
though the runner has a small diameter. During the writing of this thesis an error in the
Bash-script that edits the case files of the 2D CFD model has been found. This error in
the 2D model causes the inlet velocity to be constant while the hub diameter is changing,
this defies continuity. The benefit creating this design is the experience with automating
text-file manipulation using a Bash-script and how to run and extract results from a series
of simulation in OpenFOAM.

Prototype B has been manufactured using a FDM 3D printer with a sufficient surface
quality (can be improved with filler and sandpaper). However, a SLA printer will provide
a much better runner in regard to both structural integrity and surface quality.

53

Chapter 7. Conclusion

7.2 CFD Model
Because the CFD model is not validated there are several key-aspects that is worth ex-
ploring. The turbulence is modeled using the k-ω-SST model and the laminar model (no
turbulence). Two other models have been tried; k-ϵ and k-ω, but they are disregarded due
to instability. This raises the question to why k-ϵ and k-ω produces instability and k-ω-
SST model does not. Especially when k-ω-SST model is a blend of the former. During
the meshing it is found that all the problematic cells with high non-orthogonality are lo-
cated close to the surfaces. This raises a question to whether these cells are playing a part
in causing the instability or if there is another source to this problem.

The largest concern with the CFD model is the large number of cells required to make
a mesh with barely acceptable non-orthogonality (< 70◦). This is mainly because SHM
is trying to mesh an internal geometry where the mesh is restricted by the features of the
runner and the pipe wall. Another related issue is to create a smooth surface on the runner
geometry. This is caused by a misalignment during the snapping stage where the algorithm
is trying to fit the runner geometry onto the O-grid mesh. This causes a deviation on the
surfaces of the runner represented with jagged surfaces and edges. This imperfection is not
all bad, the jagged surface feature resembles the same kind of imperfection as a FDM 3D
print which is intended for the laboratory experiment. Arguably these two imperfections
resemble each other.

7.3 Laboratory Experiment
The laboratory experiment was canceled due to the COVID-19 pandemic. At the current
state the laboratory experiment is designed, but the implementation of the sensory equip-
ment is lacking. This raises some concerns because the design might change according
to which sensors that needs to be implemented to measure the rotational speed, flow rate,
pressure drop and torque.

54

Chapter 8
Further Work

This chapter summarizes ideas, discoveries and tasks that have not been explored or com-
pleted.

• The simplistic runner design is inadequate to generate enough power and the ef-
ficiency proves that a more in-depth design including guide vanes is necessary to
reach the required power generation.

• The mesh function of both OpenFOAM and SALOME is used with variable results.
Due to inexperience with meshing, the poor mesh can be a result of user error or
that meshing a complex geometry is more complicated than most tutorials are made
for. A new mesh is mandatory in any continuation of this work.

• The modeling of turbulence has some unexpected results and would be interesting
to explore further. There are also other ways of modeling turbulence available in
OpenFOAM such as Reynolds stress transport models.

• Implementing sensory equipment into the laboratory experiment design and pur-
chase/manufacture needed parts.

• Validation of CFD results by comparing to the data from the laboratory experiment.

• Depending on which concept chosen in section 5, a generator has to be purchased or
built. Concept 2 also requires a gear and pinion to be designed and manufactured.

55

Chapter 8. Further Work

56

Bibliography

Amdahl, G.M., 1967. Validity of the single processor approach to achieving large scale
computing capabilities, in: Proceedings of the April 18-20, 1967, spring joint computer
conference, pp. 483–485.

ANSYS, 2020. Ansys fluent 12.0/12.1 documentation. URL: https://www.afs.
enea.it/project/neptunius/docs/fluent/html/ug/node238.htm.

Arnold, D.P., 2007. Review of microscale magnetic power generation.

Brekke, H., 2003. Pumper & Turbiner.

Brekke, H., 2008. Konstruksjon av pumper og turbiner.

Foundation, O., 2010. komegasstbase.h. URL: https://github.com/OpenFOAM/
OpenFOAM-7/blob/master/src/TurbulenceModels/
turbulenceModels/Base/kOmegaSST/kOmegaSSTBase.H.

Greacen, C., Kerins, M., 2010. Pump as turbine (pat) manual. URL:
https://energypedia.info/wiki/File:
Pump_as_Turbine_(PaT)_Manual.doc.

Greenshields, C., 2019. Openfoam v7 user guide. URL:
https://cfd.direct/openfoam/user-guide.

Guerrero, J., 2014. Openfoam introductory training. URL:
https://doi.org/10.6084/m9.figshare.16783657.

Guerrero, J., 2019a. Supplement meshing with blockmesh. URL:
http://www.wolfdynamics.com/wiki/meshing_OF_blockmesh.pdf.

Guerrero, J., 2019b. Tips and tricks. URL:
http://www.wolfdynamics.com/wiki/tipsandtricks.pdf.

Guerrero, J., 2021. Turbulence modeling in openfoam: Theory and applications. URL:
http://www.wolfdynamics.com/training/turbulence/OF2021/
turbulence_2021_OF8.pdf.

57

https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node238.htm
https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node238.htm
https://github.com/OpenFOAM/OpenFOAM-7/blob/master/src/TurbulenceModels/turbulenceModels/Base/kOmegaSST/kOmegaSSTBase.H
https://github.com/OpenFOAM/OpenFOAM-7/blob/master/src/TurbulenceModels/turbulenceModels/Base/kOmegaSST/kOmegaSSTBase.H
https://github.com/OpenFOAM/OpenFOAM-7/blob/master/src/TurbulenceModels/turbulenceModels/Base/kOmegaSST/kOmegaSSTBase.H
https://energypedia.info/wiki/File:Pump_as_Turbine_(PaT)_Manual.doc
https://energypedia.info/wiki/File:Pump_as_Turbine_(PaT)_Manual.doc
https://cfd.direct/openfoam/user-guide
https://doi.org/10.6084/m9.figshare.16783657
http://www.wolfdynamics.com/wiki/meshing_OF_blockmesh.pdf
http://www.wolfdynamics.com/wiki/tipsandtricks.pdf
http://www.wolfdynamics.com/training/turbulence/OF2021/turbulence_2021_OF8.pdf
http://www.wolfdynamics.com/training/turbulence/OF2021/turbulence_2021_OF8.pdf

Harlow, F.H., Welch, J.E., 1965. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. The Physics of Fluids 8, 2182–2189.
URL: https://aip.scitation.org/doi/abs/10.1063/1.1761178,
doi:10.1063/1.1761178,
arXiv:https://aip.scitation.org/doi/pdf/10.1063/1.1761178.

Ikhsanul, A., 2017. Salome & openfoam tutorial: Propeller - preparing the mesh. URL:
https://www.youtube.com/watch?v=z8J6euEVCvg&t.

Jasak, H., 1996. Error analysis and estimation for the finite volume method with
applications to fluid flows .

Jasak, H., 2009. Dynamic mesh handling in openfoam. URL:
https://arc.aiaa.org/doi/abs/10.2514/6.2009-341,
doi:10.2514/6.2009-341,
arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2009-341.

Listek, V., 2019. Shipboard 3d printing expanding worldwide. URL:
https://3dprint.com/240346/
shipboard-3d-printing-expanding-worlwide/.

Menter, F., Esch, T., 2001. Elements of industrial heat transfer predictions, in: 16th
Brazilian Congress of Mechanical Engineering (COBEM), p. 650.

Menter, F.R., Kuntz, M., Langtry, R., 2003. Ten years of industrial experience with the
sst turbulence model. Turbulence, heat and mass transfer 4, 625–632.

Nielsen, T.K., 2014. Turbiner - virkningsgrader og slukeevne. URL:
https://docplayer.me/
17071327-Turbiner-virkningsgrader-og-slukeevne.html.

openfoam.com, 2019. Openfoam muscl. URL:
https://develop.openfoam.com/Development/openfoam/blob/
OpenFOAM-v2006/src/finiteVolume/interpolation/
surfaceInterpolation/limitedSchemes/MUSCL/MUSCL.H.

OpenFoam.com, 2019. Openfoam: User guide v1912. URL:
https://www.openfoam.com/documentation/guides/latest/doc/
guide-meshing-snappyhexmesh.html.

openfoam.com, 2020. 3.2 running applications in parallel. URL:
https://www.openfoam.com/documentation/user-guide/
3-running-applications/3.
2-running-applications-in-parallel.

Santos, B., 2015. Paraview slice type - cylinder. URL:
https://www.cfd-online.com/Forums/paraview/
117815-paraview-slice-type-cylinder-2.html.

58

https://aip.scitation.org/doi/abs/10.1063/1.1761178
http://dx.doi.org/10.1063/1.1761178
http://arxiv.org/abs/https://aip.scitation.org/doi/pdf/10.1063/1.1761178
https://www.youtube.com/watch?v=z8J6euEVCvg&t
https://arc.aiaa.org/doi/abs/10.2514/6.2009-341
http://dx.doi.org/10.2514/6.2009-341
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2009-341
https://3dprint.com/240346/shipboard-3d-printing-expanding-worlwide/
https://3dprint.com/240346/shipboard-3d-printing-expanding-worlwide/
https://docplayer.me/17071327-Turbiner-virkningsgrader-og-slukeevne.html
https://docplayer.me/17071327-Turbiner-virkningsgrader-og-slukeevne.html
https://develop.openfoam.com/Development/openfoam/blob/OpenFOAM-v2006/src/finiteVolume/interpolation/surfaceInterpolation/limitedSchemes/MUSCL/MUSCL.H
https://develop.openfoam.com/Development/openfoam/blob/OpenFOAM-v2006/src/finiteVolume/interpolation/surfaceInterpolation/limitedSchemes/MUSCL/MUSCL.H
https://develop.openfoam.com/Development/openfoam/blob/OpenFOAM-v2006/src/finiteVolume/interpolation/surfaceInterpolation/limitedSchemes/MUSCL/MUSCL.H
https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-meshing-snappyhexmesh.html
https://www.openfoam.com/documentation/user-guide/3-running-applications/3.2-running-applications-in-parallel
https://www.openfoam.com/documentation/user-guide/3-running-applications/3.2-running-applications-in-parallel
https://www.openfoam.com/documentation/user-guide/3-running-applications/3.2-running-applications-in-parallel
https://www.cfd-online.com/Forums/paraview/117815-paraview-slice-type-cylinder-2.html
https://www.cfd-online.com/Forums/paraview/117815-paraview-slice-type-cylinder-2.html

SKF, 2020. Skf 6006-2rs1. URL: https://www.skf.com/group/products/
rolling-bearings/ball-bearings/deep-groove-ball-bearings/
productid-6006-2RS1.

Versteeg, H., Malalasekera, W., 2007. An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Pearson Education Limited. URL:
https://books.google.no/books?id=RvBZ-UMpGzIC.

Wani, F., Dong, J., Polinder, H., 2020. Tidal turbine generators, in: Advances in
Modelling and Control of Wind and Hydrogenerators. IntechOpen.

Weiß, C., 2015. Transform matrix. URL:
https://www.cfd-online.com/Forums/paraview/
117815-paraview-slice-type-cylinder-2.html.

White, F., 2016. Fluid Mechanics. McGraw-Hill series in mechanical engineering,
McGraw-Hill Education. URL:
https://books.google.no/books?id=7AEzjwEACAAJ.

59

https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1
https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1
https://www.skf.com/group/products/rolling-bearings/ball-bearings/deep-groove-ball-bearings/productid-6006-2RS1
https://books.google.no/books?id=RvBZ-UMpGzIC
https://www.cfd-online.com/Forums/paraview/117815-paraview-slice-type-cylinder-2.html
https://www.cfd-online.com/Forums/paraview/117815-paraview-slice-type-cylinder-2.html
https://books.google.no/books?id=7AEzjwEACAAJ

60

Appendices

A 3D Model Comparison with the Prototype B 2D Model

(a) Laminar. (b) k-ω-SST .

Figure 1: Velocity plot, 2D simulation at r/R = 3/4.

(a) k-ω-SST . (b) Pressure.

Figure 2: Kinematic pressure plot, 2D simulation at r/R = 3/4.

61

(a) Velocity (b) Pressure

Figure 3: k-ω-SST , Cylindrical plot, 3D simulation at r/R = 3/4.

By comparing the velocity fields of the 2D and the 3D simulation, it is evident that the 3D
model has a higher inlet and maximum velocity. Upon investigation and revision of the
script controlling the 2D model, it is evident that the script has failed to either calculate or
set the adjusted inlet velocity caused by the blockage of the hub diameter. This results in
a lower inlet velocity (axial direction) than experienced in the 3D model.

62

B Control Volume Calculation

1 c l e a r a l l
2 c l o s e a l l
3 c l c
4

5 %R e s u l t from 3D CFD−model (k−omega−SST)
6 P CFD = 0 . 0 1 9 4 ; %[W]
7

8 %D e n s i t y
9 rho = 1000 ; %[kg / m3]

10

11 %R o t a t i o n a l speed
12 o m e g a r o t = 1 * 6 . 1 2 5 ; %[r a d / s]
13

14 %I n l e t v e l o c i t y
15 u i n l e t = 0 . 6 9 7 ; %[m/ s]
16

17 %T o t a l volume f l o w r a t e (Q = d o t (V))
18 Q t o t = 20 /60*10 ˆ −3 ;%[m3 / s]
19

20 %Radius
21 r p i p e = 0 . 0 2 5 4 / 2 ; %[m]
22 r h u b = 0 . 0 1 ; %[m]
23

24 %O u t l e t a n g l e (from CAD model)
25 a l p h a 2 = 59* p i / 1 8 0 ; %[r a d]
26

27 %Number o f s e c t i o n s
28 N s e c t i o n s = 1 0 ˆ 3 ; %[−]
29

30 %S e c t i o n wid th
31 dr = (r p i p e − r h u b) / N s e c t i o n s ; %[m]
32

33 %T o t a l u n o c c u p i e d a r e a o f t u r b i n e
34 A t o t = p i * (r p i p e ˆ2 − r h u b ˆ 2) ; %[m2]
35

36 %T o t a l a r e a o f p i p e
37 A pipe = p i * (r p i p e ˆ 2) ; %[m2]
38

39 %V a r i a b l e s
40 A sum = 0 ;
41 Q sum = 0 ;
42 Q = 0 ;
43 P = 0 ;
44 P z = 0 ;

63

45

46 R = 0 . 0 1 + 0 . 5 * dr : d r : 0 . 0 1 2 7 − 0 . 5 * dr ;
47

48 f o r r = 0 . 0 1 + 0 . 5 * dr : d r : 0 . 0 1 2 7 − 0 . 5 * dr
49 %C a l c u l a t e i n l e t a n g l e t o t u r b i n e , f u n c t i o n o f r a d i u s
50 t h e t a 1 = a t a n (o m e g a r o t * r / (u i n l e t * (A pipe / A t o t))) ;
51

52 %C a l c u l a t e c r o s s − s e c t i o n a r e a o f t h e t u r b i n e b l a d e
53 dA = p i * ((r +0 .5* dr) ˆ2 −(r −0 .5* dr) ˆ 2) ;
54

55 %Checking t h a t t h e a r e a p i e c e s adds up t o t o t a l c r o s s
s e c t i o n s a r e a

56 A sum = A sum+dA ;
57

58 %C a l c u l a t i n g f o r c e on CV, u s i n g dA / A t o t t o c a l c u l a t e
mass f low t h r o u g h dA

59 F t h e t a = rho * Q t o t * (dA / A t o t) * s q r t (u i n l e t ˆ 2 + (
o m e g a r o t * r) ˆ 2) * (s i n (a l p h a 2) − s i n (a l p h a 1)) ; %[N]

60

61 %Checking t h a t t h e volume f low r a t e adds up t o t o t a l
volume f low r a t e

62 Q sum = Q sum + Q*(dA / A t o t) ;
63

64 %C a l c u l a t e Torque of s e c t i o n
65 T = F t h e t a * (r) ; %[Nm]
66

67 %Add t o g e t h e r t o t a l power o f t h e t u r b i n e
68 P = P + T* o m e g a r o t ; %[W]
69 end
70

71 %check t h a t sum of a r e a and volume f low r a t e c o r r e c t
72 i f ((A sum / A to t −1) < N s e c t i o n s) && ((Q sum / Q to t −1) <

N s e c t i o n s)
73 d i s p (’Sum a r e a and Sum Q i s OK’)
74 e l s e
75 d i s p (’Sum a r e a and Sum Q i s n o t OK’)
76 end
77

78 d i s p ([’P / P CFD : ’ , num2s t r (P / P CFD)])

64

C Cylinder to 2D Plane Filter

In order to compare the fields created by the 2D model and the 3D model a cylinder to
plane filter was created. The filter created in Paraview uses the function ”Programmable
filter” where the following code is entered in script.

“input = self.GetInputDataObject(0,0)
inp copy = input.NewInstance()
inp copy.ShallowCopy(input)
inp copy.UnRegister(None)
cutter = vtk.vtkCutter()
transf = vtk.vtkTransform()
transf.RotateX(90)
cyl = vtk.vtkCylinder()
cyl.SetCenter(0,0,0)v cyl.SetRadius(0.009375)
cyl.SetTransform(transf)
cutter.SetCutFunction(cyl)
cutter.SetInputData(inp copy)
cutter.Update()
self.GetOutputDataObject(0).ShallowCopy(cutter.GetOutputDataObject(0))”

Posted online at cfd-online.com by Wyldckat/Santos (2015). The code creates a hollow
cylinder, without front or back wall and at a predefined radius as seen in figure 4.

Figure 4: Cylindrical cut created by programmable filter.

65

Before applying the calculator function, the cylinder must be cut in half using the clip-
function. The calculator uses a transformation vector to project the half cylinder wall onto
a flat 2D plot shown in figure 5. The calculator equation is the following:

“0∗iHat+(asin(coordsY/(coordsX2+coordsY 2)(1/2))∗(coordsX2+coordsY 2)(1/2))∗
jHat+ coordsZ ∗ kHat”

posted by Nephi/Weiß (2015).

Figure 5: Cylindrical cut transformed to a 2D surface by the calculator function.

66

D Slurm-Script

1 # ! / b i n / sh
2 ##
3 # Running openFOAM c l u s t e r j o b #
4 ##
5 #
6 #SBATCH −− p a r t i t i o n =CPUQ # p a r t i t i o n t h e b a t c h

j o b w i l l be p u t i n
7 #SBATCH −− a c c o u n t = s h a r e − iv − e p t
8 #SABTCH −− a c c o u n t = s i n d r t r # Account f o r

consumed r e s o u r c e s
9 #SBATCH −− t ime =1 20 : 00 :0 0 # t h e w a l l t i m e

l e n g t h o f t h e j o b (eg . 30 m i n u t e s)
10 #SBATCH −−nodes =2
11 #SBATCH −−mem=40GB # number o f nodes

r e q u e s t e d
12 #SBATCH −− n t a s k s −per −node =20 # number o f

p r o c e s s e s p e r node
13 #SBATCH −−job −name=” t u r b i n e ” # name of t h e j o b
14 #SBATCH −− o u t p u t = t u r b i n e . o u t # name of o u t p u t f i l e
15 #SBATCH −J t u r b i n e # Name f o r t h e j o b
16

17 WORKDIR=${SLURM SUBMIT DIR}
18

19 echo ”we a r e r u n n i n g from t h i s d i r e c t o r y : $SLURM SUBMIT DIR
”

20 echo ” t h e name of t h e j o b i s : $SLURM JOB NAME”
21 echo ”Th j o b ID i s $SLURM JOB ID”
22 echo ” The j o b was run on t h e s e nodes : $SLURM JOB NODELIST”
23 echo ”Number o f nodes : $SLURM JOB NUM NODES”
24 echo ”We a r e u s i n g $SLURM CPUS ON NODE c o r e s ”
25 echo ”We a r e u s i n g $SLURM CPUS ON NODE c o r e s p e r node ”
26 echo ” T o t a l o f $SLURM NTASKS c o r e s ”
27

28 module purge
29 module l o a d GCC/ 8 . 3 . 0
30 module l o a d OpenMPI / 3 . 1 . 4
31 module l o a d OpenFOAM/ 7
32

33 s o u r c e $FOAM BASH
34

35 # run t h e a p p l i c a t i o n :
36 decomposePar >l o g . decomposePar
37 mpirun −np 40 pimpleFoam − p a r a l l e l 2>&1 | t e e l o g .

pimpleFoam

67

38 r e c o n s t r u c t P a r >l o g . r e c o n s t r u c t P a r
39

40 uname −a

68

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Sindre Trefall

Numerical Simulation of a Pico
Turbine

Master’s thesis in Mechanical Engineering
Supervisor: Reidar Kristoffersen
November 2021

M
as

te
r’s

 th
es

is

	Preface
	Acknowledgment
	Abstract
	Sammendrag
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Variables
	Introduction
	Theory
	Hydro Power Turbines
	Control Volume Analysis
	Control Volume Analysis of Runner

	Entry Length for Turbulent Pipe Flow
	Computational Fluid Dynamics
	Governing Equation
	Finite Volume Method
	3D Descretization
	Pressure-Velocity Coupling
	Handling of Non-Orthogonal Mesh
	Turbulence Modeling
	Dynamic Mesh

	Kinematic Pressure
	3D Printing

	Design
	Runner Design
	Prototype A
	Prototype B

	CFD Model
	OpenFOAM, Propeller Tutorial
	OpenFOAM, Pico Turbine
	Meshing Process
	SnappyHexMesh
	Import Geometry, Defining Cell Regions and Castellation
	Snapping

	Domain
	Mesh Quality
	Constants
	Initial Conditions
	Velocity and Pressure
	Turbulence Modeling

	Boundary Conditions
	OpenFOAM Settings
	High Performance Computing

	Design of Laboratory Experiment
	Entry Length
	Generator

	Laboratory Concept 1: 90° Bend or T-Pipe
	Laboratory Concept 2: Rim Driven Transmission
	Laboratory Concept 3: Internal Generator
	Final design

	Results and Discussion
	3D CFD Model
	Verification
	Validation
	Runner Efficiency
	Turbulence

	Conclusion
	Runner Design
	CFD Model
	Laboratory Experiment

	Further Work
	Bibliography
	Appendices
	3D Model Comparison with the Prototype B 2D Model
	Control Volume Calculation
	Cylinder to 2D Plane Filter
	Slurm-Script

