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Abstract: Control barrier functions (CBFs) ensure safety of controlled dynamical systems, by
restricting the control inputs to render desired sets forward invariant. In this paper we propose
a dynamic guidance scheme for autonomous vehicles, using CBFs to reactively generate an
obstacle-free trajectory. By implementing the safety constraints on a kinematic guidance level,
rather than on a lower-level control layer, we do not need to account for uncertainty in the ship
dynamics explicitly. Moreover, for ships with well-proven and resilient control systems, this is an
appropriate interface level, since it does not require modification of lower-level feedback control.
The guidance scheme is applied to maneuvering of underactuated ships, using a virtual vessel
with unicycle dynamics to trace out a feasible trajectory.
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1. INTRODUCTION

Control barrier functions (CBFs) (Ames et al. (2019))
ensure safety of controlled dynamical systems, by restrict-
ing the control input to admissible sets that depend on
the instantaneous state of the system. In CBF design,
the safety objective is solved separately from the nominal
control objective, thus providing flexibility in the design
process. The standard CBF formulation assumes that
the system dynamics are exactly known, which precludes
safety guarantees for systems with unknown dynamics (Xu
et al. (2015)). A robust CBF formulation is proposed by
Emam et al. (2019), where the safety-critical control input
accounts for an assumed worst-case bounded disturbance.
In Taylor and Ames (2020), the authors propose adaptive
CBFs to ensure safety of systems with parametric uncer-
tainty. A drawback of the proposed adaptive CBFs is that,
similar to adaptive control Lyapunov functions (CLFs),
each sublevel set of the CBFs, not just the subzero level
set, is rendered forward invariant, imposing unnecessary
restrictions on the system dynamics. Improvements to
adaptive CBF designs are proposed by Maghenem and
Sanfelice (2021) and Isaly et al. (2021).

CBF designs for obstacle avoidance for autonomous ships
are proposed by Thyri et al. (2020) and Basso et al. (2020),
with safety constraints implemented on the actuator level.
In the former, the system dynamics of the ship are as-
sumed fully known. The latter accounts for unknown ocean
currents, using integral action to solve the path-following
problem with zero tracking error, and the robust CBF
formulation of Emam et al. (2019) for obstacle avoidance.
While this guarantees safety of the ship, large transients

? Research supported in part by the Research Council of Norway
through the Centre of Excellence NTNU AMOS (RCN prj 223254),
SFI AutoShip (RCN project 309230), and the Air Force Office of
Scientific Research under grant FA9550-18-1-0246.

occur following an evasive manuever, due to integral wind-
up when the ship is forced to deviate from the path.

In this paper we propose implementing the safety con-
straints on a dynamic guidance level, reactively modifying
the desired trajectory if unknown obstacles are encoun-
tered during the voyage. This is solved by having a virtual
vessel tracing out the desired trajectory. The virtual vessel
follows a reference path when safety allows it, and deviates
from the reference path when safety demands it. Feedback
from the ship to the guidance system is enabled by a direc-
tional gradient feedback term, along the direction of the
reference path. Feasibility of the trajectory is achieved by
having the virtual vessel emulate the dynamic capabilities
of the ship. As a recurring example, we present a guidance
design suitable for underactuated ships at transit speeds.

The remainder of this paper is organized as follows.
The problem formulation is stated in Section II. The
maneuvering problem is briefly reviewed in Section III.
In Section IV we review and expand on the theory of
CBFs. The main contribution of this paper is found in
Section V, where a reactive guidance scheme is proposed.
Numerical simulations are presented in Section VI. Section
VII concludes the paper.

Notation: R is the set of real numbers and Rn is the
n-dimensional Euclidean space. R≥0 and R>0 are the set
of non-negative and positive numbers, respectively. For a
function f : Rn → Rm, the Jacobian matrix is denoted
∂f
∂x ∈ Rm×n. When convenient, we use the Lie derivative

notation: LfB(x) := ∂B
∂x f(x), where B : Rn → R is a

scalar function. For a set K, ∂K and IntK denote the
boundary and interior, respectively. We use Ke to denote
extended class-K functions, i.e. the family of functions
α : R → R that are strictly increasing with α(0) = 0.

Finally, ẋ is the time derivative of x, and |x| :=
√
x>x.



Preliminaries: We adopt the unit circle representation of
orientation used in Marley et al. (2020). Accordingly, we
define the unit circle as S1 := {z ∈ R2 : z>z = 1}, and
group of planar rotations as SO(2) := {R ∈ R2×2 : R>R =
I, det(R) = 1}. The map R : S1 → SO(2) is defined by
R(z) := [z Sz], where

S :=

[
0 −1

1 0

]
∈ SO(2) (1)

is the 90 degree rotation matrix. For two vectors za, zb ∈
S1 corresponding to angles a, b ∈ R, we have the con-
venient calculation rules za+b = R(zb)za = R(za)zb and
za−b = R(zb)

>za. Note the relations R(z)>z = [1 0]> =:
ε1 and R(z)>Sz = [0 1]> =: ε2.

For a ship with position p ∈ R2, yaw angle ψ ∈ [−π, π),
yaw rate r ∈ R, and body-fixed linear velocities ν ∈ R2,
the kinematics is commonly expressed as

ṗ =

[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]
ν, ψ̇ = r. (2)

An equivalent representation, with z representing the
vessel orientation, is given by ṗ = R(z)ν and ż = rSz.

Central to this paper is the notion of forward invariance,
defined below for the differential inclusion

ẋ ∈ F (x), (3)

with state x ∈ Rn and set-valued mapping F : Rn ⇒ Rn.

Definition 1. The set K ⊂ Rn is (strongly) forward in-
variant for (3) if each solution x : [0, T )→ Rn of (3) with
x(0) ∈ K satisfies x(t) ∈ K for all t ∈ [0, T ).

If K is a safe set, we refer to forward invariance of K
as safety. Definition 1 does not require solutions to be
complete. For instance, ifK is a non-compact set, solutions
may escape to infinity inside the set K.

2. PROBLEM FORMULATION

The path-following problem for autonomous vehicles is
for the vehicle to converge to, and thereafter follow, a
geometric path, while satisfying a dynamic assignment
along the path (typically a prescribed velocity profile).

Let y ∈ Rp be the output of the nonlinear system

ẋ = f(x, u) y = h(x), (4)

with state x ∈ Rn and input u ∈ Rm. If (4) represents
a vehicle, the output y will typically be the position or
pose (position and orientation) of the vehicle. Given a
sufficiently smooth map s 7→ yr(s) ∈ Rp, the reference
path Yr is a one-dimensional manifold defined by

Yr := yr(R) = {y ∈ Rp : ∃s ∈ R s.t. y = yr(s)}. (5)

The geometric task of convergence to the path may be
solved by driving the error |y(t)− yr(s(t))| → 0, with the
path-variable s as a controlled state. Contrary to trajec-
tory tracking, there are no temporal specifications in path
following. This increases flexibility in the control design
process (Aguiar et al. (2004)), and improves robustness
(Skjetne et al. (2005)). In particular, it enables feedback
from the vehicle output to the guidance system.

In path-following design, it is common to assume that the
path is safe. For systems evolving in dynamic or uncertain
environments, this may not be the case. If y is the output

of a system that is affine in the control input, we may
construct a CBF that ensures safety, forcing y to leave
the set Yr if safety demands it. However, as discussed in
the introduction, this approach has two major limitations:
1) accounting for uncertainty in the system dynamics in
the CBF formulation is non-trivial, 2) adaptive control
schemes that rely on integrating the tracking error will
result in poor performance if the system output is forced
to deviate from the desired trajectory.

To mitigate these potential issues, we propose using an
auxiliary point yd ∈ Rp to reactively trace out a safe
trajectory for y to follow. Contrary to yr, yd is not
constrained to the manifold Yr, but can move freely in the
output space Rp. Path-following for y is then achieved by
controlling |y(t)− yd(t)| → 0, and simultaneously |yd(t)−
yr(s(t))| → 0. To enable feedback from the vehicle to
the guidance system, we introduce a feedback term in the
dynamics of yd, along the direction of the path tangent

τ(s) :=
∂yr
∂s

(s). (6)

Problem statement: Given a sufficiently smooth reference
path represented by the map s 7→ yr(s), design a guidance
system that reactively traces out a safe trajectory. The
desired position yd shall adhere to the following control
objectives:

(1) Nominal objective: yd shall converge to and follow the
reference path, i.e. limt→∞ |yd(t)− yr(s(t))| = 0.

(2) Safety objective: Given some unsafe domain Ku ⊂ Rp,
render Ks := Rp \Ku forward invariant for yd.

The safety objective shall have the highest priority. More-
over, the design shall enable feedback from the vehicle to
the guidance system.

2.1 Recurring example

We will use a recurring example to exemplify our design,
where we design a guidance system for underactuated
ships. We let p ∈ R2 represent the position of the ship, and
pd ∈ R2 represent the desired position. The reference path,
represented by the map s 7→ pr(s), is assumed sufficiently
smooth and feasible for the ship to follow. The objective
is to guide the ship along the path with constant reference
speed vr ∈ R>0, while avoiding obstacles encountered
during the voyage. For ease of exposition we assume the
path tangent has unit length, i.e. |∂pr∂s (s)| = 1, which

implies τ(s) = ∂pr
∂s (s) ∈ S1.

3. THE MANUEVERING PROBLEM

To motivate our reactive guidance design, in particular
the directional gradient feedback term introduced in Sec-
tion 5.1, we review the maneuvering problem as defined
in Skjetne et al. (2004) and Skjetne (2005). The tradi-
tional maneuvering problem is a guidance scheme for path
following, where the control objective is separated into
a geometric task (converge to the desired path), and a
dynamic task (typically following the path at a prescribed
speed). Given a speed assignment υ(s) for ṡ, the two tasks
are stated as:

• Geometric task: limt→∞ |y(t)− yr(s(t))| = 0.



• Dynamic task: limt→∞ |ṡ(t)− υ(s(t))| = 0.

3.1 Maneuvering control design

The geometric task is equivalent to stabilizing the set

A := {(s, x) ∈ R× Rn : h(x) = yr(s)}. (7)

Let V : R × Rn → R≥0 be a control Lyapunov function
(CLF) relative to the set A. Feedback from y to yr(s) is
obtained by the assignment

ṡ = fs(s, x) := σ(s, x)υ(s)− ωs(s, x). (8)

where ωs : R× Rn → R is a gradient feedback given by

ωs(s, x) := µs
∂V

∂s
(s, x), µs ≥ 0. (9)

With sufficiently large gain µs this will quickly move yr to
a point that (at least locally) minimizes V . In (8), we have
additionally allowed for a smooth gain σ : R×Rn → [0, 1],
that shall satisfy (s, x) ∈ A =⇒ σ(s, x) = 1. A similar
strategy was used in Skjetne et al. (2011), and enables us
to slow down the reference point yr(s) when (s, x) /∈ A. If
A is rendered asymptotically stable, by appropriate design
of the vehicle controller, the dynamic task is solved in the
limit since (s, x) ∈ A =⇒ fs(s, x) = υ(s).

The maneuvering guidance system, represented by the
update law ṡ = fs(s, x) and the map s 7→ yr(s), outputs
the reference position yr(s) with dynamics

ẏr(s) = τ(s)(σ(s, x)υ(s)− ωs(s, x)), yr(s0) ∈ Yr. (10)

Moreover, τ(s)υ(s) often serves as reference signal for ẏ.

3.2 Recurring example

For a ship with ν1 � |ν2|, i.e., surge speed much greater
than sway speed, the kinematics are approximated by
ṗ ≈ ν1z. Accordingly, the unicycle model

ṗd = vdzd, vd ∈ R, zd ∈ S1, (11)

is a reasonable representation of an underactuated ship in
transit. The system (11) will serve as basis for the dynam-
ics of our virtual vessel. We solve the maneuvering problem
for (11) relative to the path pr(s), with orientation zd and
speed vd as control inputs. To this end, define the error
variable

e := R(τ(s))>(pd − pr(s)). (12)

We refer to e1 = ε>1 e = (pd − pr(s))>τ(s) as the along-
track error, and e2 = ε>2 e = (pd − pr(s))

>Sτ(s) as the
cross-track error. To drive e2 → 0, we orient zd towards
some point in front of pr(s), along the direction of the path
tangent τ(s). This is achieved by

zd = κz(s, pd) := R(τ(s))z∆(e), (13)

where

z∆(e) :=
1√

∆2 + e2
2

[
∆

−e2

]
(14)

is the Line-Of-Sight (LOS) algorithm (Fossen (2011))
represented on vector form, with lookahead-distance ∆ >
0.

Since |τ(s)| = 1, ∀s ∈ R, the dynamic task becomes
ṡ→ vr. At this point we directly assign vd = vr, and let ṡ
adhere to the along-track speed of pd. This is obtained by

fs(s, pd) := ε>1 z∆(e)vr + µse1, (15)

where µs ∈ R>0 must be positive to drive the along-track
error to zero. Note that ε>1 z∆(e) is the along-track speed
of pd. Stability is shown by the Lyapunov function

V (s, pd) :=
(pd − pr(s))>(pd − pr(s))

2
=
e>e

2
. (16)

Differentiating V in (16) along the solutions of

ṗd = vrκz(s, pd), ṡ = fs(s, pd), (17)

results in

V̇
∂V

∂pd
ṗd +

∂V

∂s
ṡ = − vre

2
2√

∆2 + e2
2

− µse2
1. (18)

This shows uniform global asymptotic stability (UGAS) of
the set {pd, s : |pd − pr(s)| = 0} (Skjetne et al. (2011)).
Moreover, limt→∞ ṡ(t) = vr, since |pd − pr(s)| = 0 =⇒
fs(s, pd) = vr.

4. CONTROLLED FORWARD INVARIANCE

To satisfy the safety objective, we will use control barrier
functions. CBFs, first introduced in Wieland and Allgöwer
(2007), merge the ideas of CLFs (Artstein (1983)) and
barrier certificates (Prajna et al. (2007)). While CLFs are
used to asymptotically stabilize some desired set, CBFs
are used to render safe sets controlled forward invariant,
independent of the underlying control objective.

4.1 Control barrier functions

We consider affine control systems on the form

ẋ = f(x) + g(x)u, (19)

with state x ∈ Rn and input u ∈ U ⊂ Rm, where
U is a convex set. The mappings f : Rn → Rn and
g : Rn → Rn×m are assumed continuous. The following
definition of CBFs is modified from (Ames et al., 2017,
Definition 5):

Definition 2. Let B : Rn → R be a continuously differen-
tiable function that defines the set

K := {x ∈ Rn : B(x) ≤ 0}. (20)

B is a CBF for (19) if there exists α ∈ Ke and a set X
with K ⊂ IntX, such that, ∀x ∈ X,

inf
u∈U

[
LfB(x) + LgB(x)u

]
≤ −α(B(x)). (21)

Remark 3. Note that we, contrary to much existing lit-
erature, have defined CBFs to be negative on IntK, to
highlight the strong connection with CLFs. �

The following theorem states safety of (19) with inputs
constrained to the admissible input set

UB(x) := {u ∈ U : LfB(x) + LgB(x)u ≤ −α(B(x))} .
(22)

Theorem 4. If B is a CBF on Rn defining K, then K is
forward invariant for the system

ẋ ∈ FB(x) := {f(x) + g(x)u : u ∈ UB(x)}. (23)

Proof. K ⊂ IntX implies that X contains an open
neighborhood of K. ∀x ∈ X \K and ∀u ∈ UB(x) we have

Ḃ = LfB(x) + LgB(x)u ≤ −α(B(x)) < 0. (24)

The proof follows from (Maghenem and Sanfelice, 2021,
Theorem 1). �



In Theorem 4 we have made use of the fact that u ∈ UB
implies that B is decreasing on a neighborhood outside the
safe set. This allows us to omit the commonly assumed
regularity properties in existing CBF literature: Lipschitz
continuity of f(x) + g(x)u and ∂B

∂x 6= 0,∀x ∈ ∂K. Clearly,
Theorem 4 does not require α ∈ Ke: it suffices that
α(φ) ≥ 0,∀φ ≥ 0. A salient feature of CBF design is the
use of extended class-K functions in the construction of
UB . This ensures a smooth transition from the practically
unconstrained dynamics on the interior of K, to the
constrained dynamics when approaching the boundary of
K. In addition, K is rendered locally attractive, which
adds robustness.

Remark 5. In view of Theorem 4, we observe that B is not
required to be continuously differentiable, or even defined,
outside the set X ⊃ K. �

4.2 Higher order control barrier functions

Higher order CBFs (HOCBFs) bear resemblance to back-
stepping of CLFs, and allow us to construct CBFs for
systems where LgB(x) = 0,∀x ∈ Rn. HOCBFs is a gen-
eralization of the exponential CBFs proposed in Nguyen
et al. (2016). The following definition is modified from Xiao
and Belta (2019):

Definition 6. For the system (19), let B1 : Rn → R be a
continuously differentiable function that defines the set

K1 := {x ∈ Rn : B1(x) ≤ 0}. (25)

B1 is a HOCBF candidate of order q if

LgL
q−i
f B1(x) = 0, ∀x ∈ Rn, ∀i ≥ 2, (26)

LgL
q−1
f B1(x) 6= 0, for some x ∈ Rn. (27)

Given a HOCBF candidate, the set of admissible control
inputs may be obtained by iteratively constructing new
CBFs until the control input appears. Let Bi, for i ∈
{2, .., q}, be defined by

Bi(x) :=LfBi−1(x) + αi−1(Bi−1(x)), (28)

where αi−1 ∈ Ke are sufficiently differentiable functions.

From (26)-(27) it follows that LgBq(x) = LgL
q−1
f B1(x) 6=

0 for some x ∈ Rn.

Definition 7. Let B1 be a HOCBF candidate of order q
that defines the set K1. Let Bi, i ∈ {2, .., q} be defined as
in (28), and define the safe set

K :=

q⋂
i=1

Ki, Ki := {x ∈ Rn : Bi(x) ≤ 0}. (29)

B1 is a HOCBF of order q if there exists αq ∈ Ke and a
set X with K ⊂ IntX, such that, ∀x ∈ X,

inf
u∈U

[
LfBq(x) + LgBq(x)u

]
≤ −αq(B(x)). (30)

Note that we do not require X ⊃ Kq. The inequality
(30) needs to hold only on a neighborhood of K ⊂ Kq.
While we do not require LgBq(x) 6= 0,∀x ∈ Rn, sufficient
control authority is required for there to exist a function
αq that satisfies (30). If the control authority vanishes at
critical points, safety may be achieved using synergistic
CBFs (Marley et al. (2021)). Similar to before, let Bq and
αq define the admissible input set

UBq
(x) := {u ∈ U :

LfBq(x) + LgBq(x)u ≤ −αq(Bq(x))}. (31)

The theorem below states safety, with respect to K1, for
solutions starting in K ⊂ K1.

Theorem 8. If B1 is a HOCBF on Rn defining K1 then
K ⊂ K1 is forward invariant for the system

ẋ ∈ FBq
(x) := {f(x) + g(x)u : u ∈ UBq

(x)}. (32)

Proof. Suppose, for the moment, that X ⊃ Kq. Then, by
Theorem 4, Kq is forward invariant. ∀x ∈ Kq \Kq−1,

Ḃq−1 = LfBq−1(x) ≤ −αq−1(Bq−1(x)) < 0, (33)

which shows forward invariance of Kq ∩ Kq−1. By recur-
sively applying similar arguments, K is forward invariant.
Since solutions starting in K cannot leave K, it suffices
that X ⊃ K. �

Remark 9. Theorem 8 is similar to (Xiao and Belta, 2019,
Theorem 5), but omits the requirement of Lipschitz con-
tinuity of f(x) + g(x)u. A consequence of omitting the
Lipschitz requirement is that X must contain a neighbor-
hood of K. See (Maghenem and Sanfelice (2021)) for an
in-depth theoretical presentation of barrier functions. �

4.3 Safety-critical controller

Given a nominal control law κ : Rn → U , and a CBF defin-
ing UB : Rn ⇒ U , an optimal safety-critical controller, in
the least-square sense, is obtained by

κB(x) := arg min
u∈UB(x)

(u− κ(x))>P (u− κ(x)), (34)

with positive definite cost matrix P ∈ Rm×m. If U = Rm
and P is diagonal, the closed-form solution

κB(x) =

κ(x), κ(x) ∈ UB(x)

κ(x)− ab>

bb>
κ(x) /∈ UB(x)

a := LfB(x) + LgB(x)κ(x) + α(B(x)),

b := LgB(x)P−0.5,

(35)

follows from the KKT-conditions (see e.g. Nocedal and
Wright (2006)), where P−0.5 is the inverse of the principal
square root of P . Xu et al. (2015) showed that κB is locally
Lipschitz, provided that f , g and κ are locally Lipschitz.

4.4 Recurring example

Selecting linear acceleration and heading rate as control
inputs transforms (11) into an affine system,

ṗd = vdzd, v̇d = ud1 , żd = ud2Szd, (36)

with input ud = (ud1 , ud2) ∈ R2. The function

B1(pd) := ro − |pe|, pe := pd − po, (37)

defines a safe set Ks = {pd ∈ R2 : |pe| ≥ ro}, relative
to a circular obstacle domain centered at po ∈ R2 with
radius ro. While the arguably simpler quadratic function
B1(pd) = r2

o−p>e pe defines the same safe set, the formula-
tion in (37) is preferred since the magnitude of the gradient
of B1 on a neighborhood of ∂Ks becomes independent of
obstacle radius ro.

The time derivative of B1 is given by

Ḃ1 =
∂B1

∂pd
ṗd = − p

>
e

|pe|
vdzd. (38)



From this we define

B2(pd, vd, zd) := − p
>
e

|pe|
vdzd + α1(B1(pd)). (39)

Selecting α1(φ) = φ/t1, with time constant t1 ∈ R>0,

yieldsB2 = Ḃ1+B1/t1. This is equivalent to the commonly
used CBF formulation for obstacle avoidance (see e.g.
Borrmann et al. (2015)). To better shape the gradient of
B2 with respect to pd, we select the saturating function

α1(φ) := vr arctan
φ

δ
, (40)

where δ ∈ R>0 regulates the slope. The multiplying term
vr is included to ensure that vd = vr implies B2 < 0 for
sufficiently large |pe|, and any orientation zd. The key idea
behind α1 in (40) is that the gradient,

∂α1

∂φ
(φ) = vr

δ

δ2 + φ2
(41)

attains its maximum at φ = 0, and decays to zero as
φ→ ±∞. We select a time constant t2 ∈ R>0 to define

UB2(pd, vd, zd) :=

{
ud ∈ R2 : Ḃ2 ≤

−B2

t2

}
, (42)

where

Ḃ2 = − v2
d

|pe|

(
p>e
|pe|

S>zd

)2

− vrδ

δ2 +B1(pd)2

p>e
|pe|

vdzd

− p>e
|pe|

[
zd vdSzd

]
ud. (43)

UB2
: R2×R×S1 ⇒ R2 is well-defined on a neighborhood

of Ks × R× S1. Then any ud ∈ UB2
ensures that pd does

not enter the obstacle domain, provided that obstacles
are detected sufficiently early. The slope parameter δ and
time constant t2 are selected depending on the dynamic
capabilities of the ship to be guided, ensuring feasibility of
the desired trajectory during evasive maneuvers.

5. REACTIVE GUIDANCE CONTROL DESIGN

We now deduce a safe maneuvering guidance design for
the general system before returning to the ship case. Let
yd be the output of a second-order affine control system
with desired dynamics:

ẋd = fd(xd) + gd(xd)ud, yd = hd(xd), (44)

with state xd ∈ Rnd , input ud ∈ Rmd and output map

hd(xd) :=
[
Ip×p 0p×(nd−p)

]
xd, (45)

such that yd is the first p elements of xd, i.e. yd = hd(xd) =
[xd1 , ..., xdp ]>. This enables the feedback term from vehicle
to the guidance system, introduced in Section 5.1.

Let κd : R×Rnd → Rmd be a nominal controller that solves
the maneuvering problem for the closed-loop system

ẋd = fd(xd) + gd(xd)κd(s, xd), ṡ = fs(s, xd). (46)

Assumption 10. The set

Ar := {s, xd ∈ R× Rnd : hd(xd) = yr(s)} (47)

is UGAS for the system (46).

5.1 Directional gradient feedback

We augment the system (44) with a feedback term that
enables us to move the desired point yd along a trajectory

parallel to yr(s), to a position that minimizes the distance
|yd − y|. (Or, more precise, to a point that minimizes a
CLF that is positive definite with respect to |yd−y|). This
is achieved by

ẋd = fd(xd) + gd(xd)ud + γ(s)w, γ(s) :=

[
τ(s)

0nd−p

]
, (48)

where w ∈ R is an additional feedback speed in the
direction of the path tangent τ . If Assumption 10 holds,
the geometric task |yd(t)−yr(s(t))| → 0 is satisfied for the
system

ẋd = fd(xd) + gd(xd)κd(s, xd) + γ(s)w, (49)

ṡ = fs(s, xd) + w, (50)

where w has been added to the update law for s. Path-
following for y is then solved by driving |y(t)− yd(t)| → 0.

Let Vd : Rnd × Rn → R be a CLF relative to the set

Ad := {xd, x ∈ Rnd × Rn : hd(xd) = h(x)}. (51)

A directional gradient feedback from y to yd is obtained
by the assignment w = −ωw(s, xd, x), where

ωw(s, xd, x) := µw
∂Vd
∂xd

(xd, x)γ(s), (52)

with µw ∈ R≥0. Recall that we have selected (44) to
be a second-order system, which implies Lgdhd(xd)ud =
0. With the direct assignment w = −ωw(s, xd, x) the
dynamics of yd becomes

ẏd =Lfdhd(xd)− τ(s)ωw(s, xd, x). (53)

We recognize this structure from the dynamics of yr given
in (10), with the key difference that yd is not constrained
to the path Yr. However, to accomodate safety constraints
using CBFs, we require that ẇ exists and is available.
Accordingly, we propose a filtered directional gradient
feedback law,

ẇ = −λw(w − ωw(s, xd, x)), (54)

with λw ∈ R>0. To show stability we adopt the strategy
from (Skjetne et al., 2004, Theorem 3.2). The time deriva-
tive of the augmented Lyapunov function

Vd,2(xd, x, w) := Vd(xd, x) +
1

2λwµw
w2, (55)

is given by

V̇d,2 =
∂Vd,2
∂xd

ẋd +
∂Vd,2
∂x

ẋ+
∂Vd,2
∂w

ẇ. (56)

Restricting our attention to the feedback term γ(s)w in
the dynamics of xd, and inserting the update law in (54)
for ẇ, we obtain

∂Vd,2
∂xd

γ(s)w +
∂Vd,2
∂w

(−λw(w − ωw(s, xd, x))

=w

(
∂Vd,2
∂xd

γ(s)− λw
λwµw

(
w + µw

∂Vd,2
∂xd

γ(s))

))
=− 1

µw
w2 ≤ 0.

(57)

5.2 Introducing safety guarantees

Let ξ := (s, w, xd) ∈ R × R × Rnd =: Ξ collect the states
that constitute the guidance system. Defining



f̄(ξ) :=

 fs(s, xd) + w

−λww
fd(xd) + γ(s)w

 , ḡ(ξ) :=

01×md

01×md

gd(xd)

 (58)

γ̄(ξ, x) :=

 0

λwωw(s, xd, x)

0nd

 (59)

we obtain an affine control system

ξ̇ = f̄(ξ) + ḡ(ξ)ud + γ̄(ξ, x), (60)

with control input ud and disturbance x.

Given a safe operating region in the output space, Ks ⊂
Rp, let B̄1 : Ξ→ R satisfy

B̄1(ξ) ≤ 0, ∀h̄(ξ) ∈ Ks,

B̄1(ξ) > 0, ∀h̄(ξ) ∈ Rp \Ks,
(61)

where h̄ : Ξ→ Rp is the output map satisfying yd = h̄(ξ).
Then B̄1 defines a safe set K̄1 = R×R×Ks×Rnd−p ⊂ Ξ.
By construction, LḡB̄2(ξ) = 0 and ∂B̄1

∂ξ (ξ)γ̄(ξ, x) = 0,

which implies ˙̄B1 = Lf̄ B̄1. This allows us to construct
a CBF

B̄2(ξ) := Lf̄ B̄1(ξ) + ᾱ1(B̄1(ξ)), (62)

with ᾱ1 ∈ Ke. In the next step we must account for
the perturbation term γ(s)w. Differentiating B̄2 along the
solutions of (60), we obtain the admissible input set

ŪB2(ξ, x) := {ud ∈ Rmd : Lf̄ B̄2(ξ) + LḡB̄2(ξ)ud

∂B̄2

∂ξ
(ξ)γ̄(ξ, x) ≤ −ᾱ2(B̄2(ξ))}, (63)

for some suitable choice of ᾱ2 ∈ Ke. Applying the safety-
critical controller

κ̄B2
(ξ, x) :=

arg min
ud∈ŪB2

(ξ,x)
(ud − κd(s, xd))>P (ud − κd(s, xd)), (64)

to the open-loop system (60), we arrive at the reactive
guidance system

ξ̇ = f̄(ξ) + ḡ(ξ)κ̄B2
(ξ, x) + γ̄(ξ, x). (65)

The system (65) outputs a safe trajectory yd(t) =
h̄(ξ(t)) ∈ Ks, provided that solutions start in K̄ := K̄1 ×
K̄2, where K̄2 is the safe set defined by B̄2. Moreover,
xd serves as a continuous reference signal for the desired
dynamics of the vehicle.

κ̄B2 : Ξ × Rnd → Rmd is explicitly dependent on the
vehicle states x through the update law for w. Equally
important, the instantaneous value of w shrinks or enlarges
the projection of K̄2 onto Rnd . As a result, during evasive
manuevers, the feedforward states xd implicitly depend
on the vehicle state x. This fact influences the tuning
of the gains µw and λw. In Skjetne et al. (2004) it
is shown that a separation of time scales is obtained
by selecting sufficiently large gradient feedback gains,
such that the feedback dynamics of the guidance system
are significantly faster than the dynamics of the vehicle.
For the reactive guidance design proposed herein, best
performance is obtained by selecting comparatively lower
gradient feedback gains.

Remark 11. The virtual control input ud = κB2 may also
be used in the lower-level vehicle controller, to obtain a
(possibly discontinuous) reference signal for ÿ. Reference

signals for higher-order derivatives are also possible, by
increasing the relative degree of virtual vehicle represented
by the system (44). Safety-constraints are then imple-
mented by using a HOCBF of required order. In this
case, the order of the dynamics of s and w must also be
increased, to ensure that the resulting admissible input set
is well-defined. �

5.3 Recurring example

Feedback from p to pd is achieved by the system

ṡ = fs(s, pd) + w,

ẇ = −λw(w + µw(p− pd)>τ(s)),

ṗd = vdzd + wτ(s), v̇d = ud1 , żd = ud2Szd,

(66)

with fs(s, pd) defined in (15). The update law for w was
designed using the CLF V = (p− pd)>(p− pd).
A CBF for the system (66) is constructed by differentiating
B1 defined in (37), along the solutions of (66), resulting in

B̄2(ξ) := − p
>
e

|pe|
(vdzd + wτ(s)) + α1(B1(pd)), (67)

where ξ := (s, w, pd, vd, zd) collects the states that consti-
tute the guidance system. The set ŪB2 is obtained similar

to (42), with Ḃ2 replaced with

˙̄B2 := − (vd + w)2

|pe|

(
p>e
|pe|

S>
vdzd + wτ(s)

|vdzd + wτ(s)|

)2

− vrδ

δ2 +B1(pd)2

p>e
|pe|

(vdzd + τ(s)w)

− p>e
|pe|

(
τ(s)ẇ +

∂τ(s)

∂s
ṡw

)
− p>e
|pe|

[
zd vdSzd

]
u. (68)

Before continuing, we design a nominal controller κd :=
(κd1 , κd2) for (ud1 , ud2) that asymptotically stabilizes |pd−
pr(s)| = 0. To drive vd → vr we simply select

ud1 = κd1(vd, vr) := −k1(vd − vr), k1 ∈ R>0. (69)

To steer the vehicle towards the path, we use ud2 to
drive zd to κz(s, pd) in (13). This is equivalent to driving
z̃ := R(κz(s, pd))

>zd → ε1. We select the control law

ud2 = κd2 := −k2
z̃2√

1− λ2z̃2
1

+ ω∆ + ωr, (70)

with gain k2 ∈ R>0 and regularization parameter λ ∈
(0, 1). The first term is the non-hybrid feedback controller
proposed in Marley et al. (2020), while

ω∆ := − vde2∆

(∆2 + e2
2)3/2

(71)

is the rotational velocity of z∆, and

ωr := −τ(s)>S>
∂τ(s)

∂s
vr (72)

is the feedforward rotational velocity of the path.

Applying the safety-critical controller

κB(ξ, p) := arg min
ud∈ŪB2

(ξ,p)
(ud − κd)>P (ud − κd) (73)

to the system (66) finalizes the design. Selecting P as
P := diag(P1, P2), with P1 � P2 > 0, will result in turning
as the preferred evasive maneuver.



Remark 12. When approaching an obstacle centered on
the path, pd may slow down significantly, or even get stuck
in an equilibrium position in front of the obstacle. While
increasing P1 mitigates this issue, too large P1 will result in
chattering, especially for noisy measurements of obstacle
position. A preferred solution is to use the hybrid CBF
formulation presented in (Marley et al. (2021)), where only
heading rate is used as the evasive control input. �

6. NUMERICAL SIMULATIONS

A simulation study is performed with the dynamics of p
emulating an underactuated ship of length L = 100m,
moving in an unknown current with speed 1 m/s towards
North.

6.1 Controller for the numerical ship model

The numerical model of the ship has independent actua-
tion in surge and yaw. The speed controller uses propor-
tional feedback, combined with reference feedforward, to
drive the surge speed to vd. The heading controller uses the
integral Line-Of-Sight (iLOS) algorithm of Børhaug et al.
(2008) to account for the unknown sideslip. Proportional-
derivative feedback, combined with reference feedforward,
is used to drive the yaw angle towards the desired heading
given by the iLOS algorithm. The heading rate of the
virtual vessel, obtained from the safety-critical controller
(73), is included in the feedforward heading rate.

The iLOS algorithm achieves zero cross-track error under
the assumption of constant sideslip. Due to the combi-
nation of current and non-constant path curvature, this
assumption does not hold for the simulations presented
herein. The sideslip further implies that the total ship
speed |ν| differs from vd, resulting in a non-zero along-
track error of p relative to pd. Moreover, the feedforward
terms use speed-over-ground ν as input, as opposed to
velocity relative to current, resulting in yet another source
of tracking error.

6.2 Parameters for guidance system

The lookahead distance of the ship is 2L, while the
lookahead distance for the virtual vessel is set to ∆ = 10L.
This achieves reasonably fast convergence of p to pd,
and moderate convergence of pd to pr(s). The remaining
parameters for the guidance system are: gradient gains
µs = 5s−1, µw = 0.05s−1 and λw = 1s−1; nominal
controller gains k1 = 0.1s−1, k2 = π/180rad/s and λ =
0.95; CBF parameters δ = 100s, t2 = 50s, and cost matrix
P = diag(10, 1). The reference path is a circular path

pr(s) = 10000
[
(sin s− sinπ/3) (− cos s+ cosπ/3)

]>
m,

with speed assignment vr = 5m/s. A static obstacle with
radius of ro := 200m is centered slightly North of the path
at po := (1150, 2800)m.

For comparison purposes, simulations with the commonly
used CBF formulation obtained by replacing α1 in (40)
with α1(φ) := φ/t1 are also presented. A time constant
of t1 = 20s was used, to obtain a comparable evasive
maneuver initiated at approximately the same distance
from the obstacle.

Fig. 1. Trajectory of pr, pd and p. All trajectories start at
the origin. Obstacle domain shown in solid black.

Fig. 2. Along-track error (blue) and cross-track error (red)
of p relative to pd, along the direction zd.

6.3 Simulation results

Simulations are initialized with p and pd on the path,
moving at the prescribed velocity, but with the integral
state of the ship iLOS algorithm set to zero. The initial
states of the guidance system are s0 = π/3, p0 = pd,0 =
pr(s0), z0 = zd,0 = τ(s0), vd,0 = vr and w0 = 0.
The resulting trajectories are shown in Fig. 1. As can be
observed, pd traces out a safe trajectory, deviating from
the path when approaching the obstacle, and converging
back towards the path when safety allows it.

The tracking error of the ship is shown in Fig. 1. Initially,
the ship deviates from the desired trajectory due to the
unknown current, before the integral action steers the
ship back towards pd. The tracking error increases during
the evasive maneuver, due to sideslip induced by turning.
However, no integral wind-up is observed, illustrating
the advantage of implementing safety constraints on the
guidance level. Increased feasibility of the trajectory may
be achieved by augmenting the virtual vessel with sway
dynamics, to emulate the sideslip experienced by ships
during turning.

A closer view of the desired trajectory during the evasive
manuever is shown in Fig. 3, with corresponding heading
rate of the virtual vessel presented in Fig. 4. The trajectory
and heading rate resulting from the alternative CBF
formulation B2 = Ḃ1 + B1/t1 is included for comparison.
Selecting α1 as the saturating function in (40) results in
favorable behavior: the evasive maneuver is less aggressive,
with reduced deviation of the desired trajectory from the
reference path.

7. CONCLUSION

This paper proposed a reactive guidance design for path
following, that facilitates safety of autonomous vehicles,
using control barrier functions to enforce safety of the
desired trajectory. Feedback from vehicle to the guidance
system was maintained by replacing the previously used
gradient feedback term with a directional gradient feed-
back term, in the direction of the reference path. The



Fig. 3. Trajectory of the virtual vessel for the two choices of
α1 in the definition of the CBF B̄2. Trajectories start
in the bottom left corner. Dashed black line shows
reference path. Obstacle domain shown in solid black.

Fig. 4. Heading rate of the virtual vessel for the two choices
of α1 in the definition of the CBF B̄2.

design process was illustrated using a unicycle model as
a virtual vessel to guide an underactuated ship.

An alternative CBF formulation for planar vehicles was
proposed, using a saturating function to shape the gradient
of the CBF with respect to vehicle position. This result was
enabled by the theory of higher-order CBFs (HOCBFs),
which yields a constructive way to design CBFs for control
systems of relative degree 2 or higher.
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