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Abstract: Oil production optimization is usually formulated by applying mass and momentum
balances of the production network. By including temperature as a variable in pipe pressure
drop, pump, and compressor models one may improve their accuracy, as well as the accuracy of
the overall production system model. In addition, it is sometimes desirable to add temperature
constraints to avoid flow assurance issues (e.g. wax and gas hydrates). The introduction of
temperatures in the optimization problem requires thermodynamic properties of the fluid as
functions of pressure and temperature. In this paper, a unifying fluid model for optimization
using B-splines is presented. The fluid model can be constructed based on a Black-Oil model
or from PVT simulations. The B-spline has properties that make it suitable for optimization.
The applicability of the method is demonstrated in two examples, and the results are compared

with realistic Olga simulator output.
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1. INTRODUCTION

Model-based approaches are increasingly used to improve
the economic profit and safety of the operation in subsea
oil and gas production; several testimonials to this can be
found in the literature, cf. (Stenhouse, 2008; Foss, 2012).

The mass and momentum balances in the oil production
network have been modeled in several works (Gunnerud
and Foss, 2010; Codas and Camponogara, 2012). In the
recent work by Grimstad et al. (2015a), B-spline surrogate
models were used to model the nonlinear relationship be-
tween flow rates, pressure, and temperatures in multiphase
pipe flow. This work did include temperature drop models,
but assumed constant fluid properties. To extend this
work, we propose to also model the fluid characteristics
with B-splines.

In this work, we build a fluid model by fitting splines to
a PVT table or black-oil model of the fluid. The splines
approximate fluid properties such as the gas mass fraction
and densities. The splines are nonlinear functions of the
pressure and temperature that may act as surrogates
for PVT simulations. When the underlying fluid model
is a black-oil model, splines are used also to represent
the gas compressibility factor, gas heat capacity, effective
molecular weight of oil and the bubble point factor of the
Lasater correlation.

An advantage with using splines is that, regardless of
what the underlying fluid model is (PVT or black-oil), the
resulting splines will be smooth functions with analytical
derivatives readily available (Piegl and Tiller, 1997). Note
that the B-spline model is nonparametric; consequently, a
new B-spline must be constructed if conditions such as the
oil composition were to change.

* Financial support for this research was provided by Center for
Integrated Operations in the Petroleum Industry (IO Center).

To display the versatility of the spline fluid models we
consider two modeling applications. First, we consider the
modeling of subsea manifolds (commingled flows). Our
objective is to find the temperature of the outlet stream
from the flow rates and the temperatures of inlet streams.
For this, we use the energy balance of mixing processes
based on the inflow and outflow of the enthalpy.

Next, we develop a model for the heat transfer from the
three-phase petroleum fluid into the environment through
the pipe walls. Since the pipe properties and ambient con-
ditions change slowly with time, we apply a steady-state
model for the heat transfer. However, calculating the heat
transfer coefficients (conductive and convective) requires
extensive modeling efforts; it requires the consideration of
pipe geometry, insulations and ambient fluid properties.
Instead, we obtain the model from input-output data
where the cubic B-splines are used for this modeling.

This paper is organized as follows. The spline approxima-
tion theory is described in Section 2. Then, this theory is
used to define the fluid models in Section 3. Two applica-
tions of the fluid models are presented in Sections 4 and 5
which are basis for the energy balance model. The energy
balance model is tested in two case studies in Section 6.
Finally, the concluding remarks are given in Section 7.

2. SPLINE SURROGATE MODELS

A surrogate model can be written as
N
®(z) = ZQ‘@‘(I)’ (1)
i=1
where ¢; are the coefficients and ¢; are the basis func-
tions. Remark that the surrogate model is linear wrt. the
coefficients; the basis functions are in general nonlinear in
x € R™, making ® a nonlinear function wrt. . The choice
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of basis functions determines the characteristics of ®. For
example, when ¢; are B-spline basis functions (piecewise
polynomials), ® becomes a spline function. Another class
of basis functions are the radial basis functions. For such
cases, ® sometimes is referred to as a radial basis function
network. An example of the latter is the thin-plate spline:
#i(7) = ||z — 2;]|3 In(]|z — 24]|2), where z; is a fixed point.

Next, consider the process of constructing of a surrogate
model @ R™ — R that approximates a (possibly
unknown) function F : R” — R.

(1) Sampling of the target function F
(2) Fitting the surrogate model ® to the data samples
(3) Assessing the approximation error ||F — ®||

(a) If error is acceptable: stop

(b) Otherwise: go to Step 1

An important trade-off related to this process is that of
achieving a low approximation error (which may require
many sample points) with few sample points (in cases
where F is expensive to evaluate). Furthermore, if the
evaluation of F contains random noise, care must be taken
to avoid overfitting the data. A general rule of thumb
— based on the principle of Occam’s razor — is to select
among models with acceptable approximation error, the
one with the fewest basis functions.

Consider Step 1: Sampling of F. We denote the set of
sample points {z;,y;} for ¢ = 1,..., M and collect the
outputs in the vector y = [y;]};.

In Step 2 we use the sample points to build the surrogate
model. To do this, we construct the matrix A € RM*N
by evaluating the basis functions, so that A;; = ¢;(z;).
Since the surrogate model is linear in the coefficients, the
problem of fitting ® to the data can be written as the
following least-squares problem:

min||dc — |3 2)

where the variables are the coefficients ¢ = [¢;];. As-
suming that we have at least as many samples as ba-
sis functions (M > N}?, the general solution to (2) is
c* = (ATA)"'ATy = Aly, where AT denotes the Moore-

Penrose pseudoinverse.

In the special case where M = N, ||Ac* —y|| = 0 since it is
possible to select the coeflicients so that all sample points
are interpolated. This illustrates that it is not sufficient to
assess the approximation error from the value of the least-
squares objective function alone. Additional sampling is
required to gauge how well ® fits the F. This is done in
Step 3 of the surrogate building process. It is also worth
noting that the objective in (2) may be augmented with a
regularization term to combat overfitting.

In this work we have favoured cubic B-spline basis func-
tions, yielding a cubic B-spline surrogate model. The cubic
B-spline can be constructed to obtain a high degree of
smoothness — under mild assumptions it yields the inter-
polant in C? that minimizes the second-order derivative
(Piegl and Tiller, 1997). Furthermore, there are fast and
numerically stable algorithms for evaluating the B-spline
and its derivatives, which make them suitable for optimiza-
tion, as advocated by Grimstad et al. (2015a).
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Fig. 1. Spline model for gas heat capacity, ®(P,T')
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Fig. 2. Spline model for oil heat capacity, ®2(P,T)

3. FLUID MODELS

Petroleum is a volatile mixture of different hydrocarbons;
it expands in low pressures and light hydrocarbons (C1-
C4) leave the liquid phase. Therefore, the fluid properties
change for different pressures and temperatures. The gas
mass fraction and other fluid properties (e.g. viscosity and
density) at different pressures and temperature conditions
can be obtained from PVT simulations or a Black Oil
Model (Ahmed, 2010).

The composition of the petroleum is defined by the mole
fraction or mass fraction of different light and heavy
hydrocarbons, ranging from C1 to C40 or even heavier
components. The composition must be known in order to
perform a PVT simulation. PVTsim® is a widely used
commercial package for this purpose. The results of the
PVT simulation from PVTsim® are exported in tables and
used as input data for flow simulators such as OLGA®. In
the PVT tables, each data point corresponds to a specific
pair of pressure and temperature.

In this work, we fit cubic splines to the PVT tables, fol-
lowing the model building process in Section 2. This yields
nonlinear approximations in pressure and temperature,
referred to as spline surrogate models. The fluid properties
used in the proposed energy balance model are listed in
Table 1. The spline models for the gas heat capacity and
the oil heat capacity are shown Figures 1 and 2.
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Table 1. Spline fluid models

Fluid property Symbol  Unit Spline Model
Gas heat capacity Cs J/(kg-C) @L(P,T)
Oil heat capacity Cc3 J/(kg-C) ®E(P,T)
Water heat capacity —C} J/(kg-C) @¥(P,T)
Gas density P8 kg/m3 DE(P,T)
Oil density p° kg/m3 Q0(P,T)
Water density pv kg/m3 oy (P, T)
Gas mass fraction o8, kg/kg ®E(P,T)

4. ENERGY BALANCE OF MANIFOLDS

A manifold can be modeled as a mixing process in which
different well streams are inlets and the outlet goes to
a flowline. Fig. 3 shows such a process where two inlet
streams and one outlet stream are shown. There is no ac-
cumulation of mass and energy in this mixing process, and
no mechanical (shaft) work is done here. For simplicity, the
process can be assumed adiabatic (no heat loss).

Q% Q3 QY]

[C5 Cg O]
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T

Fig. 3. Three phase mixing process

First, we formulate the energy balance when constant heat
capacity is assumed. The mass balance gives

’fTLg = ’rh1 + mz [kg/s]
and the energy balance H,,; = H;, gives
H3:H1—|—H2 [J/S]

where H denotes the enthalpy. No reaction takes place
and we choose the three streams at T,.; to be at the
reference state. With constant heat capacity C, [J/kg-C],
the (absolute) enthalpy is H = mCp,(T — Tyey).

By combining the energy balance and mass balance, the
outlet temperature T3 is expressed as

11 Cpi T + 112 CpoTh

 Cpa(ry +102)

mlcpl + m20p2>

s (1 Cps(my + 1) ) ®)
By choosing T}..y = 0° C, the second term in (3) is omitted,
and we get

M1 Cp1T1 + 12 CpaTh Hy + Hy

15 = - - = . . (4)
Cpg(ml + mg) Cpg(ml + m2)

Similarly, the outlet temperature of a general manifold
with N inlet streams is calculated as follows.
T >, H S Gy (5)

’ ij Zf\; m; ij Zi\[:l m;
where the subscript j denotes the outlet. It is not possible
to calculate Cp; directly; because T would be needed for

T3

the spline fluid models. Instead, we use the average of Cy;
weighted by mass flow rates.
Zivz 1 Cpg
Cpj = (6)
Dim1 i

By combining (5) and (6) we get
N N .
Tj _ Zi:l H; _ Ei:1 miCpiTi'

S miCp Sy i

Next, we consider the mixing of three phase streams. The
average heat capacity of a three-phase mixture is found by
averaging heat capacities of phases weighted by their mass
flow rates,
o f - f
O — Zf:{g,o,w} m; C};])c - Zf:{g,o,w} m; <I>(J:C(P’L7 TZ)
pi = - - f )
2 f={gow} M 2 f={gow} M

where the superscript f denotes the phase. Assuming there
is no mechanical work and choosing T;..y = 0° C, we get

H; = Z Tyl ®1(P;, Ty). [1/s] (8)
f={g,0,w}
In steady-state the combined three-phase mass flow rate
of each stream is the same as in the standard conditions,
i = p5QF + p% Q% + PLQT (9)
The water phase is incompressible and this follows
my = pg Q7 - (10)
The gas and the oil mass flow rates can be obtained from
the gas mass fraction af,.
m§ = of, (05 QF + peQ7) (11)
g = (1—af)(p5QF + p%@7) (12)
All densities and volumetric flow rates in (9)-(12) are given

for the standard conditions. After calculating the heat
capacities and the mass rates, we apply (7) to get Tj.

(7)

5. HEAT TRANSFER FROM FLOWLINES

The objective is to estimate the outlet temperature of a
flowline Tyt from the inflow boundary conditions and the
outlet pressure. The temperature model is assumed to be
on the form

Tout:]:T( s ;)n7 pud T‘in;Pout)-

in? in» (13)
In flow simulators, the inlet flow rates, the inlet tem-
perature, and the outlet pressure are usually set as the
boundary condition. These are independent variables set
by the user. In the same way, these are inputs of the
model in (13). The model has five input arguments and
the modeling requires input-output data samples in five
dimensions. If the data sampling grid is chosen such that
there are 10 points in each dimension, we require 10°
data samples. The experimental design, even a simulation
setup, to obtain such a data-set is very time-consuming.
Therefore, we aim for a model with fewer dimensions.

5.1 First principle energy balance of pipeline

Assuming no energy accumulation in the pipe and no
shaft (or electrochemical) work along the pipe, the energy
balance of the pipeline (Fig. 4) becomes

Hin — Howe = Q = CLA(Ty — To), [J/sor W] (14)

where @ is the heat transfer rate. The cross-section
area of the pipe A and the heat transfer coefficient
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Ch, [W/(m?°C)] are constant values. In addition, the ambi-
ent temperature T, is a constant which is usually equal to
4°C for the offshore pipelines. However, the fluid temper-

Ta
Hout
% Pouta Tout?

Hipn Q i
Pin: ’Tl é) Tf
Fig. 4. Energy Balance of pipeline.

ature Tt along the pipe is not constant and, in general, the
temperature profile is not linear. Hence it is not possible
to pick an average value as the T¢. The inflow enthalpy Hiy,
in (14) can be calculated from (8), but it is not possible
to obtain H,,;, because the outlet temperature would be
needed for ®f (P, T).

5.2 Energy balance of pipeline using splines

The inlet enthalpy in (8) contains the flow information.
In other words, the effective features of the flow rates
on the energy balance are encapsulated in the enthalpy.
Therefore, we can remove the three flow rates from the
model in (13) and instead use the enthalpy. We get the
following model structure with three inputs.

Tout = q)T(Hina 71in, Pout) (15)
In addition to the inlet enthalpy H;i,, the inlet temperature
Tin is included in the model, because T,y has a direct and
approximately linear relationship with Tj,. Although the
model is able to produce acceptable predictions without
the pressure, including the pressure increases the accuracy.

In order to implement the proposed model ®r in (15) by
a B-spline all the input arguments must be independent
variables. However, the inlet enthalpy Hj, is dependent on
other variables. To generate the data set required for the
modeling, we changed the inlet flow rate Wj,, the inlet
temperature T}, and the outlet pressure P, and we get
Nyw X Np x Np data points.

Before using Hj, as input data to construct the &1 B-
spline, we perform a pre-processing on the data. For this,
we generate Np ‘thin plate splines’ to make Np models for
given pressure values.

Tgut = I‘Zr( ilaniln)v i=1...Np, Pou = Pou(i) (16)
Here, the two the input arguments H! and 7} and the
output 7, i . have the same dimension of Ny x Nr, and

H! is calculated from (8). Then, we use '}, splines to

generate a 3-D data set for the modeling of ®.
6. EXAMPLES
6.1 Heat loss from flowline

We have simulated a horizontal pipe (Fig. 5) in the OLGA
simulator. The pipeline has 10 inches diameter and 4000

SOURCE
[ OUTLET

PIPELINE ﬁ

Fig. 5. Single pipeline case used in Olga simulations

INLET

Table 2. Boundary conditions of Olga model

Training data Validation data

WC (%] 50 10, 20, 30, 40, 50

Win [kg/s]  3:3:15, 20, 25:5:70 10, 17, 22, 33, 42, 53, 63
T [°C] 15, 30, 45, 60, 75, 90 20, 40, 60, 80

Pou [bar] 30, 50, 70, 90, 110 20, 40, 60, 80, 100

Validation data

Model prediction

o €]

40

0
T, [C] 20 T.cr 2 W, [kgis]

Model error Model error %

Error [C]
% Error

-0.1
-0.2 -1
80 80

60 60 60 60
40 40 40 40

20
T [ 20 20

0
W, [kg/s] T, [C] W, [kg/s]

Fig. 6. Validation data for WC = 20% compared to model

prediction (Tout = P (Hin, Tin, Pout))

Table 3. Maximum error [C] in model predic-
tion for different pressures and water-cuts

Pout =40  Pout =60  FPout =80  Pout = 100
WC=10% 0.33 0.25 0.26 0.25
WC=20% 0.28 0.18 0.19 0.18
WC=30% 0.19 0.14 0.13 0.13
WC=40% 0.13 0.12 0.12 0.12
WC=50% 0.26 0.26 0.26 0.26

meters length. We use the ‘Parametric Study’ functionality
in the simulator to generate two data sets for the model
training and validation. The inlet mass flow rate Wi,, the
inlet temperature T;, and the outlet pressure P, are the
boundary conditions of the model used for the parametric
study. The boundary conditions used for the training and
validation of the model are given in Table 2. To verify
that the model works for different inflow conditions, we
used a fixed value of 50% water-cut for the training case,
and used different values of water-cut for the validations
case. Although, the water cut does not appear in the model
explicitly, it is included in enthalpy calculations.

To create the B-spline model ®1(Hjy,, Tin, Pout), we use the
function approximation software SPLINTER (Grimstad
et al., 2015b), which supports B-splines and radial basis
functions in any dimension.

As mentioned earlier, we generated the model for a fixed
value of 50% water-cut. Fig. 6 shows the model prediction
on the validation data set where we have used 20% for the
water-cut. The maximum error of the model prediction is
less that 0.2 °C' (1% error). Table 2 shows the maximum
error in the model prediction for different values of the
outlet pressure and the water-cut. The accuracy of the
model is acceptable also when changing the water-cut.
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Fig. 7. OLGA-model: Oil gathering system

6.2 Gas-lift optimization with temperature constraint

Here, we consider production optimization for an oil gath-
ering network. Fig. 7 shows the network as modeled in the
Olga simulator. The network consists of two gas-lift oil
wells connected to a common pipeline-riser system through
a subsea manifold. The riser leads the fluid to a topside
separator. The two wells have the same dimensions, but
produce from separate reservoirs with different pressures
and temperatures. We have P, = 160bar and T, = 90°C
for well 1, and P, = 170bar and T, = 115°C for well 2.

The objective function aims at maximizing an economical
value, based on the oil production and the gas injection at
the given prices r, and 7. The decision variables are gas
injection rates for the two wells and pressure drops of the
three control valves in the system. In addition, we include
the manifold pressure in the decision variables to retain
five DOF, because there is an equality constraint imposed
by the manifold pressure.

AP, wls APw2a APtop, Pm]T
The optimization problem is formulated as follows.
S+ %) — (il + )

s.t. i Pyo=Pp (T, a8, in, APsop),
Tiop > 36,
b} <u < by,
where Py, is the manifold pressure, and ®; ., is a spline
model for the manifold pressure. The two wellheads are
connected to the manifold, and the two wellhead pressures
are given as

inj . inj

u= [mwl7 My2)

(17)

max ro(rg

Pm + APle
Py + APys.
The wax deposition occurs at low temperatures (Bai and

Bai, 2005). In this example, we set 36°C as the lower limit
of the topside temperature T}, to prevent the wax.

Pwhl =
Pwh2:

First, we calculate the manifold temperature based on the
mixing formula in (7).

m — Twl Z m\{vl

f=g,0

wl +TW2 Z mw2 pw27 (18)
f=g,0

Hn

Trn = X N .
Zf:g,o m\J:IICzjzc,wl + Zf:g,o m\{VQCf,WQ

(19)

Then, we apply the model proposed in (15) to calculate
the topside temperature,

Ttop = qDT,top (Hnm TII]7 A]Dt<:-p)~ (20)
The optimization model includes also the mass balance,

. g . o . g . o
Min = My +mw1+mw2+mw2’
94 384
OZg_anl—i_n’Lw2
m . )

Min

where o8, is the gas mass fraction at the manifold, directly
calculated from the mass rates. The heat capacities of the
gas and liquid are described by the B-spline models.

Cs = 05(P,T),

C, =o(P,T).
Similarly, the flow and temperature models for the two
wells are also described by B-splines.

m?)vl = CI)owl( whi, T wjl)a
mwQ = 0w2( wh2, 11 ivaz)a
mgl = q)gwl( whi, 11 wj1)7
e, g2 (Pun2, 1y,
Tw1 —(I)Twl( whis Ty ),

Tyo = @1 wa(Pun2, 1 :,“2)
The two gas-lift oil wells are open-loop unstable for low
gas injection rates, and they are stabilized by low-level
controllers. A minimum pressure drop must exist over the
control valves for the controllability reason. The bound
constraints for the decision variables are defined as follows.

bl = [2.0,2.0,20 x 10°,20 x 10°,20 x 10°,30 x 10°]T
bl, =[0.5,0.5,3.0 x 10°,3.0 x 10°,1.5 x 10°,15 x 10°)T

To solve the optimization problem in (17), we use IPOPT
(Wéachter and Biegler, 2005) interfaced with Matlab. The
oil price is assumed to be the normalized value of r, = 1,
and we consider two gas price scenarios.

Cheap gas scenario:  First, we assume the normalized gas
price is rg = 0.25. The solver converges to this value:
[1.63,1.64,3.0 x 10°,3.0 x 10°,1.5 x 105,25.54 x 10°]T
The solution is shown in Fig. 8 where the optimal value is
31.04 indicated by the star. For demonstration purposes,
we use uq + uo and ug +ug on the X and Y axis. Here, the
three constraints on the pressure drop over the valves are
active. The dashed line in Fig. 8 shows the sum of pressure
constraints on the two wellhead valves. It is as expected
that the valves are open as much as possible to increase the
production rate. The topside temperature at the optimal
solution is 36.89 °C.

By a visual inspection of Figures 8, it may seem like the
solver has not converged to the optimal point. However,
the equality constraint related to the manifold pressure
does not allow for any further increase in the objective
function. This is the added limitation imposed on multi-
well systems, and an accurate evaluation of the manifold
pressure as a function of temperature thus becomes impor-
tant. Without this equality constraint, the problem would
simplify to the optimization of each well individually.

Ezxpensive gas scenario:  Here, we assume the normalized
gas price is 7y = 3. The solver converges to this value:

[1.2199,1.3233,3.0 x 10°,3.0 x 10°, 1.5 x 10°,22.66 x 10°]T
The solution is shown in Fig. 9 where the optimal value is
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Fig. 8. Objective function for cheap gas scenario
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Fig. 9. Objective function for expensive gas scenario

Table 4. Comparison between optimizer pre-
diction and Olga output

oy kefs]  gke/s]  Tiop°C
Olga output 14.85 16.64 35.92
Optimizer prediction  14.83 16.62 36.00

23.84. For this case, in addition to the three constraints on
the pressure drop over the valves, the nonlinear inequality
constraint for the topside temperature also is active, and
the temperature at the solution is 36 °C.

Without the temperature inequality constraint, the solver
converges to [0.89,0.88,3.0x10°,3.0x10°, 1.5x10%,19.25x
10°]T, and the optimal value changes to 24.92. For the
unconstrained case, the top temperature becomes 33.99
°C. However, by including the temperature constraint, the
system needs to inject more gas to produce at a higher flow
rate. Injecting more gas reduces the objective value, but as
we saw in the temperature model, the outlet temperature
increases by an increase of the inlet flow (less heat loss).

To test the accuracy of the spline models used for the
optimizer, we simulated the Olga model with the optimal
solution. The optimizer prediction is compared to the Olga
output in Table 4. The error in flow rates is only 0.02 kg/s,
and the error in the temperature is 0.08 °C.

7. CONCLUDING REMARKS

We have presented a systematic approach to model fluid
properties and energy balance in an oil production net-
work. The proposed method was tested in two examples.
In the first example, the temperature model of pipeline
was very accurate (99%).

The spline fluid models were successfully applied in an op-
timization problem including the temperature constraint.
The good match between the optimizer and the Olga
simulator suggests that, given an accurate temperature
model, the production optimization problem can be linked
with the flow assurance problem.

We showed the accuracy and other favorable numerical
properties of the fluid models when described by B-splines.
Thus this approach is recommended for other purposes
such as in the development of flow and reservoir simulators.
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