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Abstract

Background

Excess bodyweight and related metabolic perturbations have been implicated in kidney can-

cer aetiology, but the specific molecular mechanisms underlying these relationships are

poorly understood. In this study, we sought to identify circulating metabolites that predis-

pose kidney cancer and to evaluate the extent to which they are influenced by body mass

index (BMI).

Methods and findings

We assessed the association between circulating levels of 1,416 metabolites and incident

kidney cancer using pre-diagnostic blood samples from up to 1,305 kidney cancer case–

control pairs from 5 prospective cohort studies. Cases were diagnosed on average 8 years

after blood collection. We found 25 metabolites robustly associated with kidney cancer risk.

In particular, 14 glycerophospholipids (GPLs) were inversely associated with risk, including

8 phosphatidylcholines (PCs) and 2 plasmalogens. The PC with the strongest association

was PC ae C34:3 with an odds ratio (OR) for 1 standard deviation (SD) increment of 0.75

(95% confidence interval [CI]: 0.68 to 0.83, p = 2.6 × 10−8). In contrast, 4 amino acids,

including glutamate (OR for 1 SD = 1.39, 95% CI: 1.20 to 1.60, p = 1.6 × 10−5), were posi-

tively associated with risk. Adjusting for BMI partly attenuated the risk association for some

—but not all—metabolites, whereas other known risk factors of kidney cancer, such as

smoking and alcohol consumption, had minimal impact on the observed associations. A

mendelian randomisation (MR) analysis of the influence of BMI on the blood metabolome

highlighted that some metabolites associated with kidney cancer risk are influenced by BMI.

Specifically, elevated BMI appeared to decrease levels of several GPLs that were also

found inversely associated with kidney cancer risk (e.g., −0.17 SD change [ßBMI] in 1-(1-

enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) levels per SD change in BMI, p = 3.4 × 10−5).

BMI was also associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10−3).

While our results were robust across the participating studies, they were limited to study par-

ticipants of European descent, and it will, therefore, be important to evaluate if our findings

can be generalised to populations with different genetic backgrounds.

Conclusions

This study suggests a potentially important role of the blood metabolome in kidney cancer

aetiology by highlighting a wide range of metabolites associated with the risk of developing

kidney cancer and the extent to which changes in levels of these metabolites are driven by

BMI—the principal modifiable risk factor of kidney cancer.
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underlying the Mendelian randomization analyses

are available at the University of Bristol data

repository, data.bris, at https://doi.org/10.5523/

bris.33bq35s9lbos026r1xukxijoqu. Individual level

data and GWAS results from EPIC-Norfolk can be

requested by bona fide researchers for specified

scientific purposes via the study website (https://

www.mrc-epid.cam.ac.uk/research/studies/epic-

norfolk/). Data will either be shared through

an institutional data sharing agreement or

arrangements will be made for analyses to

be conducted remotely without the necessity for

data transfer. For information about accessing

individual level data and GWAS results from

the INTERVAL BioResource, please contact

helpdesk@intervalstudy.org.uk. For information

about accessing individual level data from the

Fenland Study please contact datasharing@mrc-

epid.cam.ac.uk. The Biocrates GWAS results from

the Fenland Study and the z-score-based meta-

analysis are available at: https://omicscience.org/

apps/crossplatform/. Metabolon GWAS results will

be made available via www.omicscience.org and

can until then be requested by contacting

omicscience.org@gmail.com.
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Author summary

Why was this study done?

• Several modifiable risk factors have been established for kidney cancer, among which

elevated body mass index (BMI) and obesity are central.

• The biological mechanisms underlying these relationships are poorly understood, but

obesity-related metabolic perturbations may be important.

What did the researchers do and find?

• We looked at the association between kidney cancer and the levels of 1,416 metabolites

measured in blood on average 8 years before the disease onset. The study included 1,305

kidney cancer cases and 1,305 healthy controls.

• We found 25 metabolites robustly associated with kidney cancer risk.

• Specifically, multiple glycerophospholipids (GPLs) were inversely associated with risk,

while several amino acids were positively associated with risk.

• Accounting for BMI highlighted that some—but not all—metabolites associated with

kidney cancer risk are influenced by BMI.

What do these findings mean?

• These findings illustrate the potential utility of prospectively measured metabolites in

helping us to understand the aetiology of kidney cancer.

• By examining overlap between the metabolomic profile of prospective risk of kidney

cancer and that of modifiable risk factors for the disease—in this case BMI—we can

begin to identify biological pathways relevant to disease onset.

Introduction

Kidney cancer is the 14th most common cancer worldwide, with renal cell carcinoma (RCC)

making up the majority of cases [1]. There are important geographical variations in kidney

cancer incidence that are only partly understood [2]. Excess bodyweight and related condi-

tions, such as hypertension, diabetes, and related metabolic perturbations, are among the most

robustly implicated risk factors for kidney cancer, with support from both traditional observa-

tional studies and genetic studies [2–7]. For instance, in the United Kingdom, an estimated

24% of kidney cancer cases are attributable to overweight and obesity, making this the leading

modifiable risk factor for the disease [8]. Germline mutations responsible for an inherited pre-

disposition to kidney cancer (a small proportion of kidney cancer cases) have a key role in reg-

ulating cellular metabolism [9], and this, together with evidence of extensive metabolic
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reprogramming within tumours themselves [10], have led to the characterisation of kidney

cancer as a metabolic disease. However, the molecular mechanisms predisposing kidney can-

cer remain largely unknown. Given the likely metabolic underpinnings of kidney cancer, stud-

ies of circulating metabolites, the downstream products of cellular regulatory processes, may

improve our understanding into pathways relevant to kidney cancer aetiology [11].

Metabolite variations are the result of genetic and nongenetic factors and provide a readout

of physiological functions [12]. Metabolomics technologies based on mass spectrometry (MS)

and nuclear magnetic resonance (NMR) have enabled the systematic quantification of hun-

dreds of metabolites (the “metabolome”) from a single biological sample. The analysis of

metabolites has enabled a more thorough exploration of an individual’s metabolic status, pro-

viding important insights into the biological pathways leading to diseases such as cancer

[11,13,14] and has enabled the discovery and development of new drug targets [15]. Already,

global metabolic profiling of blood [16–19], urine [20–24], and tissue samples [24–27] has

been used to characterise kidney cancer and identify novel potential diagnostic biomarkers.

However, because of the cross-sectional or retrospective design of these studies, they could not

inform the identification of biomarkers for incident disease development. Prospective cohort

studies, where healthy individuals initially donate blood at recruitment and are longitudinally

followed over time for incident disease, can circumvent many of the problems of retrospective

study designs—particularly where the focus is on identifying risk factors for disease onset.

The aim of this study was to identify circulating metabolites associated with the develop-

ment of kidney cancer in a prospective case–control framework. We used 2 complementary

metabolomics platforms [28] to quantify over 1,000 metabolites in blood samples donated by

research participants later diagnosed with kidney cancer along with matched control partici-

pants. In a series of follow-up analyses, including a 2-sample mendelian randomisation (MR)

analysis, which uses genetic variants as proxies for an exposure of interest [29], we evaluated

the extent to which the metabolomic signature of disease risk could be explained by body mass

index (BMI), the leading modifiable risk factor for kidney cancer.

Methods

Analytical strategy (Fig 1)

The primary analysis was predefined and involved investigating the association between

circulating levels of metabolites and kidney cancer risk using pre-diagnostic metabolomics

measurements in a case–control study nested within multiple large-scale prospective

cohorts (the MetKid consortium). Adjustment for known risk factors for kidney cancer (BMI,

hypertension, alcohol consumption, and smoking) [2] was then carried out to evaluate the

extent to which these could explain the associations between blood metabolites and kidney

cancer risk.

A natural complementary analysis would have been to interrogate the potentially causal

role for the identified risk-associated metabolites in kidney cancer aetiology through MR anal-

yses. However, given the methodological constraints of MR in this context, specifically, wide-

spread pleiotropic instruments, which would violate the MR assumptions, we chose not to

pursue this analysis. Our analysis plan was therefore revised, and as a secondary analysis, we

rather used a 2-sample MR approach to estimate the causal effect of BMI on the blood metabo-

lome. This analysis complemented the main risk analysis by quantifying the extent to which

BMI—the central risk factor of kidney cancer—influenced the identified risk metabolites. This

study is reported as per the Strengthening the Reporting of Observational Studies in Epidemi-

ology (STROBE) and STROBE-MR guidelines (S1 and S2 Tables) [30,31].
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Study population, sample collection, and follow-up

Our study population consisted of kidney cancer nested case–control studies drawn from 5

independent cohorts: the European Prospective Investigation into Cancer and Nutrition

(EPIC), The Melbourne Collaborative Cohort Study (MCCS), Northern Sweden Health and

Disease study (NSHDS), University of Tartu—Estonian Biobank (Estonian BB), and The

Trøndelag Health Study (HUNT) (Table A in S3 Table; details of the cohorts are described in

the S1 Methods). Cases were defined as participants diagnosed with incident malignant neo-

plasm of the kidney or renal pelvis (International Classification of Diseases for Oncology, 3rd

Edition [ICD-O-3] code C64/C65) who gave a blood sample at recruitment. In each indepen-

dent cohort, one randomly selected control without history of kidney cancer was matched to

each case based on age, sex, and date of blood collection. There were small variations between

the cohorts in the tightness by which controls were matched to cases according to their age

and date of blood draw (see S1 Methods), owing to inherent differences in demography and

availability of controls. The study was approved by the International Agency for Research on

Cancer (IARC) Ethics Committee.

Metabolite data acquisition and quality control

Plasma and serum samples from 2,614 participants (1,307 cases and 1,307 controls) were ana-

lysed. Samples from all cohorts were analysed using the Biocrates targeted MS assay. Samples

from EPIC and NSHDS (n = 1,596) were additionally analysed using Metabolon’s untargeted

MS platform. Samples from matched case–control pairs were assayed in adjacent wells (in ran-

dom order) and in the same analytical batch. Laboratory personnel were blinded to case–con-

trol status of the samples.

An overview of the quality control (QC) pipeline is shown in S1 Fig. All the QC steps were

performed for each cohort separately before pooling the data.

Targeted metabolomics—Biocrates. All samples from EPIC and MCCS were assayed at

the IARC, while samples from NSHDS, HUNT, and the Estonian BB were assayed by the

Metabolomics Core Facility of the Genome Analysis Center of the Helmholtz Zentrum Mün-

chen [32]. The targeted metabolomics approach was based on LC-ESI-MS/MS and FIA-E-

SI-MS/MS measurements using the AbsoluteIDQ p180 Kit (BIOCRATES Life Sciences,

Innsbruck, Austria). The assay allows simultaneous quantification of 188 metabolites using 10-

μL plasma or serum. Sample preparation and MS measurements were performed as described

in S1 Methods. The median intra- and inter-batch coefficients of variation (CV) were 5.6%

and 6.9%, respectively (interquartile range = 1.7% and 2.8%, respectively). The lower limits of

detection (LODs) were set to 3 times the values of the zero samples (PBS solution).

Values lower than the lower limit of quantification (LLOQ) or higher than the upper limit of

quantification (ULOQ), as well as lower than batch-specific LOD (for compounds semiquanti-

fied: acylcarnitines, glycerophospholipids (GPLs), and sphingolipids), were imputed with half of

the LOD/LLOQ or the ULOQ. For NSHDS, metabolites with internal standard out of range

were left as missing (n = 205). Metabolites with less than 100 values above LOD/LLOQ in any

individual cohort were excluded from the analyses. In our samples, a total of 164 metabolites

were retained for statistical analyses (30 acylcarnitines, 21 amino acids, 10 biogenic amines, 88

GPLs, 14 sphingolipids, and the sum of hexoses). In addition to individual metabolites, 22 ratios

or sums selected for their capacity to provide detailed insight into a wide range of disorders of

the metabolic disease spectrum were computed (listed in Table B in S3 Table). Among them, the

Fischer ratio, a clinical indicator of liver metabolism and function, was calculated as the molar

ratio of branched chain amino acids (leucine + isoleucine + valine) to aromatic amino acids

(phenylalanine + tyrosine). Lower Fischer ratio values are associated with liver dysfunction.

PLOS MEDICINE The blood metabolome of incident kidney cancer

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1003786 September 20, 2021 5 / 26

Research Council of Norway and the Norwegian

University of Science and Technology. MMB was

funded by the German Institute of Human Nutrition
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Untargeted metabolomics—Metabolon. Untargeted metabolomic analyses were per-

formed at Metabolon (Durham, North Carolina, United States of America) on a platform con-

sisting of 4 independent ultra-high performance liquid chromatography—tandem mass

spectrometry (UPLC–MS/MS) methods. Detailed descriptions of the platform and workflow

to identify features, including extraction of raw data, peak identification, and internal quality

control (QC) processes can be found in the S1 Methods and in published work [33–35]. Sam-

ples from EPIC and NSHDS were processed as 2 independent experimental batches. The

median intra-batch CV were 5% and 4% for EPIC and NSHDS, respectively, while the median

inter-batch CV were 11% for both EPIC and NSHDS. A variety of curation procedures were

Fig 1. Conceptual framework of the study design. This study includes 3 main analytical steps: (i) the investigation of the associations between circulating levels of

metabolites and kidney cancer risk using pre-diagnostic measurements in a case–control study nested within multiple large-scale prospective cohorts; (ii) the

assessment of the causal effect of BMI, the leading modifiable risk factor for kidney cancer, on circulating metabolites levels; and (iii) the evaluation of the overlap

between the metabolic footprint of BMI and that of kidney cancer risk. The orange X’s indicate the time at which a participant is diagnosed with kidney cancer

when his follow-up is stopped. Controls have been selected among participants free of cancer at the time their matched case was diagnosed. Metabolites from all

samples have been measured on the Biocrates platform, while only samples from EPIC and NSHDS cohorts have been measured with Metabolon platform. BMI,

body mass index; EPIC, The European Prospective Investigation into Cancer and Nutrition; Estonian BB, University of Tartu—Estonian Biobank; HUNT, The

Trøndelag Health Study; LC–MS, liquid chromatography–tandem mass spectrometry; MCCS, The Melbourne Collaborative Cohort Study; MR, mendelian

randomisation; NSHDS, Northern Sweden Health and Disease study; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pmed.1003786.g001
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carried out by Metabolon to ensure that a high-quality data set was made available for statisti-

cal analysis and data interpretation (S1 Methods). Each metabolite was rescaled to set the

median equal to 1 and missing values imputed with the minimum observed value. Data

returned for EPIC comprised a total of 1,308 metabolite features, 982 of known identity

(named biochemicals) and 326 compounds of unknown structural identity (unnamed bio-

chemicals). Data returned for NSHDS comprised a total of 1,302 metabolite features, 979 of

known identity (named biochemicals) and 323 compounds of unknown structural identity

(unnamed biochemicals). A total of 1,275 metabolites were available across the 2 data sets with

the total number of unique metabolites reaching 1,335. Metabolites were categorised by Meta-

bolon as belonging to 1 of 8 mutually exclusive chemical classes: amino acids and amino acid

derivatives (subsequently referred to as “amino acids”), carbohydrates, cofactors and vitamins,

energy metabolites, lipids, nucleotides, peptides, or xenobiotics. An asterisk (�) at the end of

the metabolite name indicates the metabolite identity has not been confirmed by comparison

with an authentic chemical standard. After the exclusion of metabolites for which less than 100

participants had values recorded (86 and 176 for EPIC and NSHDS, respectively), 1,230

metabolite features remained for analysis (1,222 and 1,126 for EPIC and NSHDS, respectively;

1,118 in common).

Statistical analysis

Primary statistical analysis: Prospective observational analysis of circulating metabo-

lites and kidney cancer risk. Log-transformed and standardised (z-score) metabolite con-

centrations were used in all analyses. Crude conditional logistic regressions were performed to

estimate the odds ratio (OR) for kidney cancer per 1 standard deviation (SD) increment in

log-transformed metabolite concentrations, conditioning on the individual case–control sets.

To consider multiple comparisons while accounting for the correlation between the different

metabolites, we estimated the effective number of independent tests (ENT) performed as the

number of principal components explaining more than 95% of the variance in our metabolite

matrices. Metabolites with p-values equal or below 0.05/ENT in the pooled analyses and equal

or below 0.05 in at least 2 cohorts independently were deemed robustly associated with kidney

cancer risk. For these metabolites, we carried out additional conditional logistic regressions

adjusted for BMI, smoking history (smoking status: never, former, current smokers, and pack

years of smoking), lifetime alcohol consumption (in g/day), and hypertension (ever/never). To

avoid comparing different sets of participants due to missingness in risk factor data, we

restricted these analyses to study participants with complete risk factor information.

To further characterise the epidemiological properties of the association between metabo-

lites and kidney cancer risk, we also carried out conditional logistic regression stratified by age

at blood collection, sex, country, BMI, waist-to-hip ratio, smoking status, alcohol consump-

tion, hypertension, and time to diagnosis (number of years between blood draw and

diagnosis).

Secondary statistical analysis: mendelian randomisation and profile comparison analy-

ses. We initially investigated pleiotropy among potential SNP instruments for the circulating

metabolites associated with kidney cancer risk in prospective analyses (Biocrates and Metabo-

lon) with a view to conducting a 2-sample MR analysis for metabolites (as the exposure) and

kidney cancer risk (as the outcome). SNP–metabolite associations were extracted from the

largest genome-wide association studies (GWASs) currently available for circulating metabo-

lites and included summary statistics for 174 Biocrates metabolites [36] (N = ranged from

8,569 to 56,040 for different metabolites, depending on the platform used in each contributing

study) and 913 Metabolon metabolites (N = 14,296). Specifically, pleiotropy was assessed by
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estimating the variance explained in all metabolites by the single nucleotide polymorphisms

(SNPs) (i.e., the potential “instruments”) associated with each of our candidate risk metabolites

(see S1 Methods for more details of how instruments were selected). Where the variance

explained in other metabolites (i.e., those not associated with risk in the prospective analysis)

was similar to that explained in the candidate risk metabolite, we inferred low metabolite spec-

ificity for current GWAS results, and thus violation of the MR assumptions necessary to infer

potential single exposure causality.

To evaluate the extent to which the metabolomic signature of disease risk could be

explained by BMI, we first conducted a 2-sample MR analysis to provide estimates of the

causal relationships between BMI and circulating metabolites (Biocrates and Metabolon). A

total of 549 independent SNPs (R2 < 0.01) that were robustly associated with BMI at genome-

wide significance were selected as instruments from the largest GWAS meta-analysis for BMI

from the Genetic Investigation of Anthropometric Traits (GIANT) consortium (n = approxi-

mately 700,000 [37]; see Table C in S3 Table). SNP–exposure associations were extracted from

the BMI GWAS meta-analysis [37], and SNP–outcome associations were extracted from the

metabolite GWAS described above. A BMI effect estimate was generated for each metabolite

measured and calculated as an SD unit increase in log-transformed metabolite level per SD

increment in BMI. The primary MR analysis was conducted using the inverse-variance

weighted (IVW) method [38]. We performed the following sensitivity analyses to attempt to

account for potential unbalanced horizontal pleiotropy: (1) MR–Egger regression to test over-

all directional pleiotropy and provide a valid causal estimate, taking into account the presence

of pleiotropy [39]; and (2) weighted median [40], which provides a consistent estimate of

causal effect if at least 50% of the information in the analysis comes from variants that are valid

instrumental variables. To account for multiple testing, we used the same p-value threshold as

used in our observational analyses (p< 8.3 × 10−4 and p< 1 × 10−4 for Biocrates and Metabo-

lon, respectively).

To examine the extent to which kidney cancer–associated metabolites are driven by BMI,

we assessed the correlation between the kidney cancer–associated metabolite profile (metabo-

lites associated with kidney cancer risk in the prospective observational analyses) and the

BMI-associated metabolite profile (metabolites associated with BMI levels in the MR analyses)

using Spearman rank correlation analyses. Effect estimates from both the prospective and MR

analyses were divided by the standard error of the estimate before conducting the correlation

analyses.

Negative control analyses. The presence or absence of overlap between metabolite pro-

files flagged by prospective analysis and those derived from BMI MR is only informative in the

context of a null or negative control comparator. To allow this, we repeated the profile com-

parison analysis described above (with BMI as the exposure) in an analysis in which we used

dental disease as a negative control exposure (i.e., an exposure not likely to be a risk factor for

kidney cancer) and one that we would therefore expect to deliver a null. This strategy of

repeating an experiment under conditions that are expected to deliver a null result has previ-

ously been advocated within observational epidemiology [41]. In our analysis of the causal

relationship between dental disease and circulating metabolites, 47 independent (R2 < 0.01)

SNPs that were robustly associated at genome-wide significance (p< 5 × 10−8) were selected

from the largest GWAS for dental disease (n = 487,823) (detailed information for instrumental

variables for dental disease are presented in Table D in S3 Table). SNP–exposure associations

were extracted from the largest dental disease GWAS meta-analysis [42], and SNP–outcome

associations were extracted from the metabolite GWAS described above. Effect estimates were

calculated as SD unit increase in metabolite levels per logOR increase in dental disease. Meth-

ods used in the 2-sample MR analyses were as described above.
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All MR analyses were performed using the TwoSample MR R package version 0.4.13

(http://github.com/MRCIEU/TwoSampleMR) [43].

Results

Population characteristics and metabolites overview

Demographic and baseline characteristics for the 1,305 cases and 1,305 matched controls are

presented in Table 1. The mean age at diagnosis for cases was 65.6 years (SD = 9.79), and cases

were diagnosed on average 8 years after blood collection. The majority (58%) of samples were

collected after fewer than 6 hours of fasting. Overall, 186 metabolites or ratios/sums of metabo-

lites were measured using the Biocrates assay on 2,610 samples (all cohorts), and 1,230 metab-

olites were measured using the Metabolon platform on 1,596 samples (EPIC and NSHDS

cohorts). Mean concentrations of the 1,416 metabolites by case–control status are shown in

Table E in S3 Table.

Prospective observational analysis of circulating metabolites and kidney

cancer risk

We identified 25 metabolites robustly associated with kidney cancer risk (i.e., metabolites asso-

ciated with risk after correction for multiple testing in the pooled analysis and nominally sig-

nificant in at least 2 cohorts; Fig 2, Table 2). Among these metabolites, 12 were measured with

the Biocrates assay, and 13 were measured with the Metabolon platform. Two metabolites—

glutamate and 1-linoleoyl-GPC (18:2) (known as lysoPC a C18:2 in Biocrates)—were mea-

sured on both platforms and resulted in similar risk association estimates (for glutamate OR:

1.34 in Biocrates and 1.39 in Metabolon; for 1-linoleoyl-GPC (18:2), OR: 0.77 in Biocrates and

0.76 in Metabolon). Pearson correlations among risk metabolites are displayed in S2 Fig.

We found that increased concentrations of 14 individual GPLs were associated with

reduced kidney cancer risk. These included 8 phosphatidylcholines (PCs; overall p-values

ranging from 6 × 10−4 to 3 × 10−8), among which PC ae C34:3 had the strongest association

(OR = 0.75, 95% confidence interval [CI]: 0.68 to 0.83, p = 2.61 × 10−8). Similar associations

were identified for the lysophosphatidyl-cholines, lysoPC a C18:1, and lysoPC a C18:2 (labelled

as 1-linoleoyl-GPC (18:2) in Metabolon) (p-values between 1.60 × 10−5 and 9.65 × 10−7). Two

plasmalogens were also inversely associated with risk, 1-(1-enyl-palmitoyl-2-oleoyl-GPC (P-

16:0/18:1) (p = 1.27 × 10−5) and 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2)

(p = 2.79 × 10−5), as well as the lysoplasmalogen 1-(1-enyl-palmitoyl)-GPC (P-16:0)

(p = 8.32 × 10−6).

Among 274 metabolites involved in amino acid metabolism, we found 4 positively associ-

ated with kidney cancer risk, including glutamate, formiminoglutamate, hydantoin-5-propio-

nate and the Fischer ratio (p-values between 1.25 × 10−4 and 5.11 × 10−7). For example, the

relative odds of kidney cancer associated with an SD increment in log-transformed glutamate

levels was estimated at 1.39 (95% CI: 1.20 to 1.60) when measured on the Metabolon platform.

Another amino acid, cysteine-glutathione disulphide was inversely associated with risk (OR:

0.77, 95% CI: 0.69 to 0.86, p = 7.42 × 10−6). The 2 peptides gamma-glutamylvaline

(p = 1.22 × 10−7) and gamma-glutamylisoleucine (p = 1.07 × 10−6) were positively associated

with risk. Finally, we found beta-cryptoxanthin negatively associated with kidney cancer risk

(OR: 0.73, 95% CI: 0.65, 0.83, p = 4.83 × 10−7), while an unidentified metabolite (X-12096) was

positively associated (OR: 1.33, 95% CI: 1.17, 1.51, p = 9.97 × 10−6). Adjusting for the fasting

status of the samples (more versus less than 6 hours) did not modify the OR estimates for the

identified risk metabolites (Table F in S3 Table).
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Table 1. Population characteristics of the 2,610 kidney cancer cases and controls from 5 independent cohorts

with pre-diagnostic blood samples included in our analyses.

Cases Controls

Mean (SD) or N (%) Mean (SD) or N (%)

Total 1,305 1,305

Age at blood collection (years) 57.6 (10.1) 57.6 (10.1)

Length of follow-up from blood collection (years) 7.95 (4.98) -

Histology

Clear cell 931 (71.3) -

Other 282 (21.6) -

Unknown 92 (7.1) -

Sex

Male 725 (55.6) 725 (55.6)

Female 580 (44.4) 580 (44.4)

Cohort

EPIC 634 (48.6) 634 (48.6)

Estonian BB 115 (8.8) 115 (8.8)

HUNT 254 (19.5) 254 (19.5)

MCCS 139 (10.6) 139 (10.6)

NSHDS 163 (12.5) 163 (12.5)

Education

None 43 (3.3) 52 (4)

Primary school 468 (35.9) 456 (34.9)

Technical school 233 (17.9) 222 (17)

Secondary school 239 (18.3) 236 (18.1)

University 216 (16.6) 242 (18.5)

Unknown 106 (8.1) 97 (7.4)

BMI

Mean (SD) 27.79 (4.62) 26.95 (4.28)

BMI classes

<18.5 6 (0.5) 6 (0.5)

[18.5 to 25] 364 (27.9) 458 (35.1)

[25 to 30] 596 (45.7) 581 (44.5)

> = 30 335 (25.7) 254 (19.5)

Unknown 4 (0.3) 6 (0.5)

Smoking status

Never 553 (42.4) 603 (46.2)

Former 418 (32) 445 (34.1)

Current 315 (24.1) 233 (17.9)

Unknown 19 (1.5) 24 (1.8)

Smoking quantity

Pack years; mean (SD) 11.77 (17.13) 9.63 (15.34)

Min–max 0.00 to 153.45 0.00 to 100.00

Alcohol consumption (g/d)

Mean (SD) 13.85 (25.14) 14.87 (29.61)

Diabetes

No 1,069 (81.9) 1,099 (84.2)

Yes 80 (6.1) 54 (4.1)

Unknown 156 (12) 152 (11.7)

(Continued)
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Associations with risk of kidney cancer for all metabolites analysed are presented in

Table G in S3 Table.

The influence of kidney cancer risk factors on kidney cancer–associated

metabolites

We assessed the extent to which known modifiable risk factors could explain the observed

associations by multivariable analyses. For all 25 metabolites found to be associated with risk

in the primary analysis, we found that adjustments for BMI partly attenuated the OR estimates

for some metabolites, although they all remained at least nominally significant (i.e., p-value

below 0.05, Table 2). The association most modified by adjustment for BMI was that of gluta-

mate (from 1.34, 95% CI: 1.17 to 1.53, p = 1.62 × 10−5 to 1.24, 95% CI: 1.08 to 1.42,

p = 2.46 × 10−3), followed by PC ae C42:3 and PC aa C42:1 (OR increased by 6% for both

metabolites: from 0.82, 95% CI: 0.74 to 0.92, p = 4.17 × 10−4 to 0.87, 95% CI: 0.78 to 0.98,

p = 1.75 × 10−2 and 0.83, 95% CI: 0.75 to 0.93, p = 6.27 × 10−4 to 0.88, 95% CI: 0.79 to 0.99,

p = 2.59 × 10−2 for PC ae C42:3 and PC aa C42:1, respectively). Conversely, association for PC

ae C38:6 was not influenced by adjustment for BMI (OR:0.85, 95% CI: 0.77 to 0.93,

p = 5.06 × 10−4 to 0.86, 95% CI: 00.78 to 0.95, p = 1.85 × 10−3). Results adjusted for all individ-

ual risk factors on participants with complete information on these risk factors are shown in

Table H in S3 Table (N = 1,162 and 996 for Biocrates and Metabolon, respectively). Adjust-

ment for smoking and alcohol consumption did not modify any OR by more than 1.5% and

1.2%, respectively, whereas adjusting for hypertension partly attenuated the associations of

lysoPC a C18:1 and lysoPC a C18:2, albeit to a lesser extent than BMI (5% change for both). In

fully adjusted models, risk associations remained nominally significant (p-value below 0.05)

for 10 out of 25 metabolites with all effect estimates in the same direction as in the primary

analysis, although, due to missing data for some risk factors, this analysis included only 581

and 498 case–control pairs for Biocrates and Metabolon, respectively.

In stratified risk analyses by time to diagnosis (Figs A–Y in S3 Fig), several metabolites

appeared to display a stronger risk association closer to diagnosis, including 1-(1-enyl-palmi-

toyl)-2-linoleoyl-GPC (P-16:0/18:2) (heterogeneity p = 0.02) (Fig M in S3 Fig) and the metabo-

lite of unknown structural identity X-12096 (heterogeneity p = 0.02) that was measured on the

Metabolon platform (Fig Y in S3 Fig). The lysophosphatidyl-choline lysoPC a C18:2, as

Table 1. (Continued)

Cases Controls

Mean (SD) or N (%) Mean (SD) or N (%)

Hypertension

No 612 (46.9) 718 (55)

Yes 433 (33.2) 333 (25.5)

Unknown 260 (19.9) 254 (19.5)

Fasting status

Fasting for less than 6 hours 768 (58.8) 759 (58.2)

Fasting for 6 hours or more 476 (36.5) 497 (38.1)

Unknown 61 (4.7) 49 (3.7)

BMI, body mass index; d, days; EPIC, The European Prospective Investigation into Cancer and Nutrition; Estonian

BB, University of Tartu—Estonian Biobank; g, grams; HUNT, The Trøndelag Health Study; MCCS, The Melbourne

Collaborative Cohort Study; N, number of participants; NSHDS, Northern Sweden Health and Disease study; OR,

odds ratio; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1003786.t001
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Fig 2. Volcano plot depicting the association between circulating metabolites measured by either Biocrates (triangles) or

Metabolon (dots) with kidney cancer risk in 5 prospective cohorts. Metabolites that are labelled have a p-value below the

threshold (p< 0.05/ENTs) in the pooled analyses and are nominally significant in at least 2 cohorts separately. � Metabolite

identity not yet confirmed by comparison with an authentic chemical standard. ORs and CIs were estimated for 1 SD of log-

transformed metabolite levels by logistic regression conditioned on case set. Estimated ENT are 60 and 499 for Biocrates and

Metabolon metabolites, respectively. p-Values threshold are thus 8.33E-04 and 1.00E-04 for Biocrates and Metabolon

metabolites, respectively. CI, confidence interval; ENT, effective number of test; OR, odds ratio; SD, standard deviation.

https://doi.org/10.1371/journal.pmed.1003786.g002
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measured by Biocrates, showed a stronger association when alcohol consumption was above

the median compared to lower (heterogeneity p = 0.03) (Fig D in S3 Fig); this pattern was evi-

dent for the same metabolite measured in Metabolon but was not statistically significant (het-

erogeneity p = 0.3) (Fig P in S3 Fig).

Two-sample mendelian randomisation and profile comparison analyses

We identified genetic instruments for 17 of the 25 risk metabolites but observed substantial

pleiotropy for the instruments defined for 16 of the 17 instrumented metabolites. The total var-

iance explained from a risk metabolite’s instruments was typically similar across classes of

metabolite (lipids and 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2), for example) and

Table 2. Metabolites robustlyC associated with kidney cancer risk.

Crudea Adjusted for BMIb

Metabolite name Class Npairs OR 95% CI p-Value Npairs OR 95% CI p-Value

Biocrates
Glutamate Amino acid 1,300 1.34 1.17 to 1.53 1.62E-05 1,290 1.24 1.08 to 1.42 2.46E-03

Fischer ratio Amino acid (ratio) 1,300 1.18 1.09 to 1.29 1.25E-04 1,290 1.14 1.04 to 1.24 5.02E-03

PC ae C34:3 GPLs 1,304 0.75 0.68 to 0.83 2.61E-08 1,294 0.79 0.71 to 0.88 1.05E-05

lysoPC a C18:2 GPLs 1,304 0.77 0.70 to 0.86 9.65E-07 1,294 0.81 0.73 to 0.90 1.35E-04

PC ae C34:2 GPLs 1,304 0.78 0.70 to 0.87 8.47E-06 1,294 0.82 0.73 to 0.91 4.00E-04

lysoPC a C18:1 GPLs 1,304 0.77 0.69 to 0.87 1.60E-05 1,294 0.81 0.72 to 0.92 8.04E-04

PC ae C40:1 GPLs 1,304 0.81 0.73 to 0.90 4.57E-05 1,294 0.84 0.76 to 0.93 8.96E-04

PC ae C32:2 GPLs 1,304 0.78 0.69 to 0.89 1.27E-04 1,294 0.81 0.72 to 0.92 1.31E-03

PC ae C36:3 GPLs 1,304 0.82 0.73 to 0.91 2.12E-04 1,294 0.85 0.76 to 0.95 3.24E-03

PC ae C42:3 GPLs 1,304 0.82 0.74 to 0.92 4.17E-04 1,294 0.87 0.78 to 0.98 1.75E-02

PC ae C38:6 GPLs 1,304 0.85 0.77 to 0.93 5.06E-04 1,294 0.86 0.78 to 0.95 1.85E-03

PC aa C42:1 GPLs 1,304 0.83 0.75 to 0.93 6.27E-04 1,294 0.88 0.79 to 0.99 2.59E-02

Metabolon
Formiminoglutamate Amino acid 798 1.34 1.20 to 1.50 5.11E-07 794 1.28 1.14 to 1.45 4.23E-05

Glutamate Amino acid 798 1.39 1.20 to 1.60 5.79E-06 794 1.30 1.11 to 1.51 8.02E-04

Cysteine-glutathione disulphide Amino acid 798 0.77 0.69 to 0.86 7.42E-06 794 0.79 0.70 to 0.89 6.99E-05

Hydantoin-5-propionate Amino acid 798 1.25 1.12 to 1.39 6.17E-05 794 1.22 1.09 to 1.36 3.76E-04

Beta-cryptoxanthin Cofactors and vitamins 798 0.73 0.65 to 0.83 4.83E-07 794 0.76 0.67 to 0.86 1.81E-05

1-linoleoyl-GPC (18:2) GPLs 798 0.76 0.67 to 0.86 7.03E-06 794 0.79 0.70 to 0.89 2.04E-04

1-(1-enyl-palmitoyl)-GPC (P-16:0)� GPLs 798 0.73 0.64 to 0.84 8.32E-06 794 0.77 0.67 to 0.88 1.71E-04

1-(1-enyl-palmitoyl)-2-oleoyl-GPC (P-16:0/18:1)� GPLs 798 0.79 0.71 to 0.88 1.27E-05 794 0.83 0.74 to 0.93 1.41E-03

1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2)� GPLs 798 0.80 0.72 to 0.89 2.79E-05 794 0.84 0.76 to 0.94 1.61E-03

N1-methyladenosine Nucleotide 798 1.40 1.23 to 1.60 6.50E-07 794 1.35 1.18 to 1.55 8.74E-06

Gamma-glutamylvaline Peptide 798 1.38 1.23 to 1.56 1.22E-07 794 1.32 1.17 to 1.49 1.24E-05

Gamma-glutamylisoleucine� Peptide 798 1.40 1.22 to 1.61 1.07E-06 794 1.33 1.15 to 1.53 1.01E-04

X– 12096 Unknown 798 1.33 1.17 to 1.51 9.97E-06 794 1.27 1.12 to 1.45 2.40E-04

� Metabolite identity not yet confirmed by comparison with an authentic chemical standard.
a ORs and CIs were estimated for 1 SD of log-transformed metabolite levels by logistic regression conditioned on case set.
b ORs and CIs were estimated for 1 SD of log-transformed metabolite levels by logistic regression conditioned on case set and adjusted for BMI
C p-Values below 0.05/ENT in the pooled analyses and at least nominally significant in 2 cohorts independently.

Estimated ENT are 60 and 499 for Biocrates and Metabolon metabolites, respectively. p-Values threshold are thus 8.33E-04 and 1.00E-04 for Biocrates and Metabolon

metabolites, respectively.

BMI, body mass index; CI, confidence interval; ENT, effective number of test; GPL, glycerophospholipid; Npairs, number of case control pairs included in the analyses;

OR, odds ratio.

https://doi.org/10.1371/journal.pmed.1003786.t002
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far from specific to the given risk metabolite being instrumented. Further, the variance

explained was often higher for an alternative metabolite compared to the risk metabolite (see

Figs A–Q in S4 Fig). Following these observations, we chose not to carry out a formal MR anal-

ysis of the relation between individual metabolites and kidney cancer risk because the pro-

found pleiotropy across metabolites clearly violates the MR assumptions.

Rather, to complement the risk analyses, and to gain further understanding of how BMI—

the leading modifiable risk factor of kidney cancer—might explain our findings, we conducted

a 2-sample MR analysis to evaluate the extent to which the measured metabolites are driven by

differences in BMI. Using the IVW method, 60 metabolites (22 Biocrates and 38 Metabolon)

were associated with BMI. In an MR framework, there was consistent evidence between both

platforms that BMI was associated with decreased concentrations of many GPLs and increased

concentrations of several amino acids and nucleotides, as well as acylcarnitines, sphingomye-

lins, and several metabolites of unknown identity (S5 Fig). Estimates from MR–Egger and

weighted median analyses were consistent with the IVW estimates (Tables I and J in S3 Table).

When comparing the metabolic profile of kidney cancer (metabolites associated with kid-

ney cancer risk in the prospective analyses) and BMI (metabolites associated with BMI levels

in the MR analyses), we observed moderate correlation between the BMI-driven metabolite

profile and metabolite profile associated with kidney cancer risk (Fig 3) (r = 0.53,

p = 2.2 × 10−6 for Biocrates metabolites and r = 0.36, p = 2.2 × 10−6 for Metabolon metabolites).

Specifically, elevated BMI appeared to decrease levels of several GPLs that were also found

inversely associated with kidney cancer risk, including 1-(1-enyl-palmitoyl)-2-linoleoyl-GPC

(P-16:0/18:2)�, 1-linoleoyl-GPC (18:2) (lysoPC a C18:2), lysoPC a C18:1, and PC ae C34:3. For

instance, 1 SD increment in BMI was associated with a 0.17 SD decrease in 1-(1-enyl-palmi-

toyl)-2-linoleoyl-GPC (P-16:0/18:2) levels ([ßBMI], p = 3.4 × 10−5). We also found that BMI

was associated with increased levels of glutamate (ßBMI: 0.12, p = 1.5 × 10−3), which was posi-

tively associated with kidney cancer risk. Several metabolites associated with kidney cancer

risk in our prospective analysis did not appear to be strongly influenced by BMI, but we note

that for all but 2 metabolites (PC ae 32:2 and PC ae 42:3), estimates were directionally concor-

dant (i.e., positively correlated) but with the effect size estimates from the BMI MR being closer

to the null than those seen in the observational analysis. Conversely, some of the metabolites

that were most strongly affected by BMI (e.g., phenylalanine and valine) were not associated

with kidney cancer risk.

Negative control analyses

There was little evidence that genetic predisposition to dental disease influenced circulating

metabolite levels with no metabolites reaching our predetermined threshold for a statistically

significant association (Tables K and L in S3 Table). We observed low correlation between the

dental disease metabolite estimates from MR analyses and the kidney cancer metabolite esti-

mates from the prospective analysis for both Biocrates (r = 0.15, p = 0.06) and Metabolon

metabolites (r = 0.12, p = 0.002) (S5 Fig). None of the 25 metabolites that were associated with

kidney cancer risk in prospective analyses were associated with dental disease from the MR

analyses (S5 Fig). These findings suggest that when the profile comparison analysis is con-

ducted using a hypothetically unrelated exposure (dental disease), we see no meaningful rela-

tionship between metabolite associations from the prospective analysis and the MR.

Discussion

This study describes the relationship between the pre-diagnostic blood-metabolome and risk

of developing kidney cancer based on data from 5 longitudinal population cohorts. This is the
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Fig 3. Scatter plot comparing the metabolite profile associated with kidney cancer from prospective observational analyses with the BMI-driven metabolite profile

from MR analyses. Metabolites that are labelled have a p-value below the threshold (p< 0.05/ENTs) in the prospective pooled analyses and are nominally significant in

at least 2 cohorts separately. Metabolites measured by the Biocrates platform that are below the p-value threshold are represented by triangles, those measured by the

Metabolon platform that are below the p-value threshold are represented by dots, and those that are measured by either the Biocrates or the Metabolon platform that are

above the p-value threshold are represented by an x. � Metabolite identity not yet confirmed by comparison with an authentic chemical standard. On the y-axis, the OR

and SE were derived from the logistic regression analyses conditioned on case set estimating the associations between circulating metabolites and kidney cancer risk in 5

prospective cohorts. On the x-axis, the beta and SE were derived from the MR analyses evaluating the effect of BMI on circulating metabolites levels. BMI, body mass

index; ENT, effective number of test; MR, mendelian randomisation; OR, odds ratio; SE, standard error.

https://doi.org/10.1371/journal.pmed.1003786.g003
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first comprehensive metabolomics analysis of incident kidney cancer to be conducted using a

prospective design, and as such, complements existing work characterising the metabolic pro-

file (in tissue and biofluids) of the disease itself [16–26]. We investigated 1,416 metabolites in

relation to the occurrence of kidney cancer using 2 complementary analytical methods and

observed 25 metabolites to be robustly associated with risk. These metabolites included 14

GPLs inversely associated with risk, 5 amino acids positively associated, and 1 inversely associ-

ated with risk, as well as risk associations for a carotenoid, 2 peptides, a nucleotide, and an

unidentified feature. Results of an MR analysis designed to evaluate the extent to which BMI

influences the key risk-associated metabolites suggest that differences in BMI may be responsi-

ble for part of the metabolite profile associated with the development of kidney cancer.

The majority of metabolites found to be associated with kidney cancer risk in this study can

be classified as GPLs. GPLs are the main component of cell membranes and are essential for

maintaining cellular structure and for regulating cell signalling. The circulating metabolite

associations we see here pre-diagnosis appear to intersect with the known cellular metabolic

programming observed within kidney tumour tissue. For example, it has been proposed that

clear cell RCC cells use exogenous lipids for membrane formation and cell signalling [44]. The

relationship between lipid metabolites and prospective kidney cancer risk reported in our

study could, theoretically, be capturing increased uptake of lipid metabolites by preclinical kid-

ney carcinogenesis.

GPLs can be broadly classified into 2 types based on their biochemical structure—diacyl

(aa) or acyl-alkyl (ae)—and can be further characterised according to their lipid side chain

composition, specifically the number of carbons and their degree of (un)saturation (number

of double bonds). The association of a subset of long chain unsaturated (mainly acyl-alkyl)

PCs, lysophophatidylcholines (LPCs), and plasmalogens with reduced kidney cancer risk is

consistent with some limited existing literature. Specifically, lower levels of total PC/choline

have been reported in the serum of diagnosed kidney cancer patients compared to control par-

ticipants [17], and numerous studies have found decreased LPCs in both tumour and normal

kidney tissues [27,45,46], as well as in the circulation of kidney cancer patients [18,47]. The

mechanisms underpinning these associations are not well understood, but some of these mole-

cules (e.g., plasmalogens) have been proposed as antioxidants [48]. Low levels of plasmalogens

in cancer patients have been proposed as a potential mechanism by which increased oxidative

stress could drive cancer progression [49].

We assessed the extent to which known risk factors could explain the observed metabolite

associations and observed that adjusting for BMI—the main modifiable risk factor for kidney

cancer—partially attenuated (less than 9% change in OR) the risk association for some specific

metabolites. To further understand the relation with BMI for the kidney cancer risk-associated

metabolites, we estimated the causal influence of BMI on metabolite levels using MR. This

analysis clearly demonstrated that some—but not all—metabolites inversely associated with

kidney cancer risk are also decreased by elevated BMI (e.g., several GPLs), whereas other

metabolites positively associated with risk (e.g., glutamate) are also increased by elevated BMI.

The association of long chain unsaturated (mainly acyl-alkyl) GPLs with both lower risk of

RCC and lower BMI is consistent with extensive literature linking lower levels of these and

similar molecules to a range of common diseases that include a metabolic component such as

obesity and hypertension [50–52], type 2 diabetes [53], type 1 diabetes development [54], and

nonalcoholic fatty liver disease [55].

Glutamate was found to be positively associated with both kidney cancer risk and BMI and

was also the metabolite for which adjusting for BMI resulted in the greatest attenuation in its

OR estimate. Glutamate and glutamine are both found to be increased in kidney tumour tissue

[44]. This observation provides further evidence of overlap between metabolites relevant to
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disease development and those whose levels are perturbed in the disease state [10,56]. Consis-

tent with our findings, glutamate has previously been shown to be increased in visceral obesity

[57,58], and glutamine-derived glutamate has been linked to tumour cell metabolism [59],

with RCC being no exception [60]. α-Ketoglutarate, generated from glutamine-derived gluta-

mate, enters the tricarboxylic acid (TCA) cycle providing both energy and biosynthetic inter-

mediates [61]. A large intracellular glutamate pool is also important for nonessential amino

acid synthesis in addition to cellular redox regulation [61]. Two previous NMR-based studies

found lower levels of glutamine in serum of kidney cancer cases taken at diagnosis compared

to controls [16,17]. While we did not identify a robust association of glutamine in our study,

the point estimate was consistent with a weak inverse association with risk of kidney cancer.

A final overarching observation was that in comparison with previously published prospec-

tive metabolomics analyses on other cancer sites [62–64], the sheer number of metabolites

found to be associated with risk in the current study suggests that the blood metabolome is

particularly important in the aetiology of kidney cancer.

Strengths, limitations, and prospects for future studies

The chief strength of our study was the design of the primary risk analysis wherein control par-

ticipants were individually matched to incident kidney cancer cases with pre-diagnostic blood

samples from 5 independent population cohorts, a design that minimised differential bias and

allowed for identification of novel and robust risk metabolites of kidney cancer. The use of 2

complementary metabolomics platforms also increased the overall coverage of the metabo-

lome. The well-characterised cohorts offered the opportunity to carefully assess the influence

of known kidney cancer risk factors (i.e., potential confounders) on identified risk-associated

metabolites, as well as the robustness of their risk associations across the independent cohort

studies. Well-designed prospective studies can provide compelling evidence in favour of a role

of molecular risk factors in cancer aetiology, but residual confounding from imperfectly mea-

sured risk factors may still bias the association estimates. We therefore complemented the

main risk analysis with a genetic analysis to assess the influence of BMI on the identified risk

metabolites. We believe that this independent analysis provided important independent evi-

dence when interpreting the relation between the identified risk metabolites and kidney cancer

risk in the context of BMI—the principal risk factor of kidney cancer.

Limitations of our study include the presence of measurement error in the (semi-) quantifi-

cation of metabolites. However, by using well-established platforms with built-in validation

procedures along with randomisation schemes to ensure any batch variation was orthogonal

to the outcome of interest (in this case kidney cancer case status), we can be confident there

was no systematic bias in our estimates as a result of measurement error. In addition, the con-

sistency in estimates we see for metabolites that appear on both platforms provides increased

confidence in our results, but we note that statistical power to identify risk metabolites exclu-

sive to the Metabolon platform was lower than for metabolites exclusive to the Biocrates plat-

form due to the lower sample size. In this study, we focused on those metabolites that

demonstrated consistency in risk associations across the 5 participating cohorts. While this

approach ensured the robustness of the estimates, any risk marker present in specific popula-

tions would not be highlighted. Although we only measured metabolite levels at a single time

point, we do not believe this represents a major limitation as the majority of measured metabo-

lites have a high within person stability over time (stable over 4 months to 2 years) [65–67].

Another limitation of our study is the lack of detailed data on body composition. It is possible

that some individual risk markers may reflect a certain adiposity distribution that is specifically

strongly associated with kidney cancer risk. While the current literature on kidney cancer
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aetiology does not highlight any specific aspect of obesity as being particularly important in

kidney cancer aetiology, evaluating the identified risk markers in relation to detailed body

composition (e.g., using DEXA scan data) represents an appealing future focus of our kidney

cancer research. The remaining limitations relate to the generalisability of our findings. Given

evidence for specific metabolic alterations by kidney cancer histotype [10], it is possible that

kidney cancer subtypes have different dependencies on circulating metabolites. In this case,

findings from this study are likely most relevant to the major histological subtype—clear cell

RCC—which made up 71% of kidney cancer cases. Furthermore, our study does not inform

on the extent to which the identified risk markers translate to populations of non-European

descent. Addressing these limitations should constitute an important focus for future studies

addressing the role of the blood metabolome in the aetiology of kidney cancer.

While the results of our prospective risk analysis are consistent with circulating metabolites

playing an important role in kidney cancer aetiology, it is appealing to complement such

observational analyses with MR studies to further inform causal inference. However, we chose

not to carry out an MR analysis on kidney cancer risk for individual metabolites for a number

of reasons related to characteristics specific to circulating metabolites. Firstly, owing to high

correlational structure of many metabolites, few SNPs have been found associated with specific

metabolites, leading to pleiotropic instruments for most metabolites [36]. Secondly, there is a

high degree of pleiotropy for metabolite-associated SNPs with modifiable risk factors and

other disease endpoints. That few metabolites have a sufficient number of instruments is par-

ticularly problematic as applying statistical methods aiming to correct for these biases is not

possible (e.g., MR–Egger and MR-PRESSO), nor is the use of techniques designed to evaluate

the effect of multiple correlated exposures (e.g., multivariable MR [68]). While the genetic

architecture of blood metabolites is complicated for the reasons outlined above, there are hun-

dreds of independent SNPs robustly associated with BMI [37], and this gave us greater confi-

dence in the application of this analysis [69]. Better characterising of the genetic architecture

of circulating metabolites together with methodological advancements may allow for more

robust causal inference in future metabolomics studies.

Conclusions

This study points to a particularly important role of the blood metabolome in kidney cancer

aetiology, specifically by identifying positive risk associations for several amino acids, as well

as negative risk associations with multiple lipids, including PCs, LPCs, and plasmalogens.

Downstream analyses indicated that some—but not all—risk metabolites are influenced by

BMI, which partly explains their associations with kidney cancer risk, whereas the risk associa-

tions for other metabolites could not be explained by known risk factors. These results provide

important insight into the metabolic pathways underpinning the central role of obesity in kid-

ney cancer aetiology and clues to novel pathways involved in kidney cancer aetiology.
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