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A B S T R A C T   

Safe CO2 storage requires conformance verification, i.e. confirmation that the pressure and CO2 accumulation are 
consistent with modelling forecasts within a given uncertainty range. Quantitative estimates of relevant reservoir 
parameters (e.g. pore pressure and fluid saturations) are usually derived from geophysical monitoring data (e.g. 
seismic, electromagnetic and/or gravity data) and potential prior knowledge of the storage reservoir. We 
describe a two-step strategy combining geophysical and rock physics inversions for quantitative CO2 monitoring. 
A Bayesian formulation is used to propagate and account for uncertainties in both steps. We demonstrate our 
workflow using datasets from the Sleipner CO2 storage project (Norwegian North Sea) and combining seismic 
Full Waveform Inversion and rock physics inversion. We derive rock frame properties from baseline data and use 
them as input to obtain 2D spatial distribution of CO2 saturation with uncertainty assessment from monitor data. 
We also discuss the need for advanced rock physics models, considering the way fluid phases are mixed (uniform 
to patchy mixing) and the trade-off effects of pore pressure and fluid saturation on geophysical measurements. 
We consequently recommend a joint rock physics inversion approach, where multi-physics, and multi-parameter 
inversion can be used for better discrimination of pressure, saturation, and fluid mixing effects towards more 
quantitative conformance verification.   

1. Introduction 

With increasingly visible effects of climate change and a growing 
awareness of the possible consequences, Carbon Capture and Storage 
(CCS) technologies are gaining momentum (IPCC, 2005). Recent studies 
show that large-scale (gigatonne) CO2 storage is feasible (Ringrose and 
Meckel, 2019), and several large-scale CCS projects are now running or 
are under development (e.g. Sleipner, Quest, Tomakomai, Lula, or 
Northern Lights/Longship). However, the safety of geological CO2 
storage and whether the CO2 will stay in the reservoir are questions 
often raised by policy makers and by the general public. Several argu-
ments support the safety of CO2 storage (Furre et al., 2019), the three 
strongest ones being:  

• CO2 storage, and associated monitoring, has been implemented for 
over 20 years, e.g. in the North Sea at the Sleipner storage site (Eiken 
et al., 2011; Furre et al., 2017; Eiken, 2019).  

• With geophysical monitoring, we can track the CO2 accumulation in 
the storage complex and evaluate whether the CO2 is contained in 
the reservoir or leaking through the overburden.  

• Operators are able to demonstrate conformance with respect to 
existing regulations (e.g. EU, US, and Norwegian directives (EC, 
2011)). 

An extended review of the state-of-the-art in CO2 storage is given by 
Davis et al. (2019) while Pawar et al. (2015) review advances in risk 
assessment of an entire CO2 storage project, i.e. from the pre-injection 
site characterisation to the post-closure phase. Since the risk assess-
ment is site-specific and contains time-dependent uncertainties, they 
recommend using probabilistic approaches. They also explain that the 
CO2 storage operators are facing increasing requests from policy makers 
to provide "meaningful quantitative indicators", e.g. leakage rates or 
spatially anomalous CO2 saturations. 

Measurement, Monitoring and Verification (MMV) programs 
(Bourne et al., 2014; Dean and Tucker, 2017) play a critical role in 
evaluating storage performance and assessing the risks associated with 
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CO2 storage. MMV plans need to fulfil containment and conformance 
requirements to ensure safe CO2 storage during injection and after site 
closure. The containment monitoring aims at verifying the security of 
CO2 storage by the surveillance of plume migration and the early 
detection of potential leakage. The conformance monitoring should 
prove that the operator understands the behaviour of the CO2 in the 
reservoir, i.e. that there is consistency between the model-based pre-
dicted behaviour and the CO2 accumulation estimated from monitoring 
data. In addition, contingency plans should provide adequate mitigation 
measures in case of non-conformance. For reliable conformance verifi-
cation, the monitoring (from well log measurements or geophysical 
data) should, in addition to locating the CO2 plume, provide quantitative 
information, ideally on both CO2 saturation and pore pressure, to be 
compared to reservoir modelling predictions. Pore pressure and its 
development over time in the reservoir and the overburden is a critical 
parameter for storage safety and it is also the main limiting factor for 
large-scale storage of CO2 (Ringrose and Meckel, 2019). After defining 
the monitoring tasks (e.g. CO2 plume migration monitoring, pressure 
development in the storage complex, seal integrity, injection and legacy 
wells integrity, etc), a careful and fit-for-purpose selection of the 
monitoring techniques must be done by the operator. The resulting 
monitoring plan should offer the best compromise between cost and 
efficiency. 

For example, at Sleipner (Norwegian North Sea), the oldest CO2 
storage site, the containment monitoring is validated using time-lapse 
seismic methods (Arts et al., 2004). The pressure effects in Sleipner 
are shown to be negligible due to the large size and large permeability of 
the Utsira sand aquifer (Chadwick et al., 2012). On the other hand, at the 
Snøhvit site (Barents Sea), pressure unconformities (i.e. unexpected 
pressure build-up) have been observed after 3 years of injection and 
were related to unforeseen reservoir pressure barriers. Mitigation mea-
sures have been implemented, including stopping the injection and 
changing the injection target from the Tubåen formation to the over-
lying Stø formation (Hansen et al., 2013). 

MMV plans heavily rely on sparse geophysical measurements (both 
in time and space) that must be acquired, processed, and interpreted to 
evaluate the consistency between modelled forecasts (e.g. fluid flow 
modelling in the reservoir) and the geophysical monitoring measure-
ments. Such evaluation requires deriving and comparing measurable 
quantities, i.e. relevant subsurface properties affected by the CO2 in-
jection. Geophysical methods for CO2 monitoring include seismic, 
electromagnetic, electrical and gravimetric surveys, each of them having 
different sensitivities to subsurface property changes caused by CO2 

injection. For example, injection of supercritical CO2 in a high-porosity, 
brine-saturated reservoir creates a large decrease in seismic P-wave 
velocity due to partial saturation as well as a decrease in density and an 
increase of resistivity. 

Monitoring of CO2 storage sites with geophysical methods is 
currently considered as standard and many examples can be found in the 
literature. At Sleipner, Chadwick and Noy (2010) use a qualitative 
interpretation of time-lapse seismic to history match the plume top layer 
migration. Wang et al. (2018) derive detection thresholds of a potential 
leakage through the primary seal by interpretation of time-lapse seismic 
data. Roach and White (2018) use a similar approach to track the CO2 
plume migration at the Aquistore storage site while Glubokovskikh et al. 
(2020) focus on the qualitative identification of a small CO2 leakage 
with acoustic inversion of time-lapse seismic data. Grude et al. (2013) 
apply the approach suggested in Landrø (2001) to the Snøhvit dataset 
and demonstrate that pressure and saturation effects can be discrimi-
nated from Amplitude Versus Offset (AVO) time-lapse data. As a com-
plement to seismic surveys, electrical or electromagnetic surveys may be 
used to monitor CO2 storage. Bhuyian et al. (2012) perform an extended 
sensitivity analysis of the use of CSEM (Controlled-Source ElectroMag-
netic) for CO2 plume monitoring. They show that resistivity anomalies 
can be detected and constitute a good complement to seismic-based 
monitoring as the resistivity is more sensitive to changes of saturation 
than seismic P-wave velocity for high CO2 saturation levels. Commer 
et al. (2016) recommend, with examples at Cranfield and Escatawpa 
sites, to carry out ERT (Electrical Resistivity Tomography) in 3D to avoid 
2D approximation related artifacts. Bergmann et al. (2012) also show an 
application of surface to downhole ERT for CO2 plume migration at 
Ketzin. 

To verify conformance reliably, quantitative interpretation of 
geophysical data (estimating rock and fluid properties) is very valuable. 
Doyen (2007) and Bosch et al. (2010) give a good overview of geo-
statistical methods for oil and gas reservoir characterisation. Such 
quantification of reservoir parameters, namely rock and fluid properties 
(rock facies, porosity, fluid saturation…) are usually carried out from 
seismic reflectivity data using a combination of AVO inversion and rock 
physics inversion in sequential or integrated steps (Coléou et al., 2005; 
Grana, 2016; Azevedo et al., 2019). In this context, sampling algorithms 
such as MCMC (Markov Chain Monte-Carlo) can be used to evaluate 
uncertainties associated with the recovered parameters (de Figueiredo 
et al., 2019b; Fjeldstad and Grana, 2018; Azevedo and Demyanov, 
2019). For example, Jullum and Kolbjørnsen (2016) estimate rock 
physics properties from seismic post-stack reflectivity data by 

Fig. 1. Generic framework for quantitative monitoring (two-step approach). The top row describes the generic two-step approach with sequential geophysical and 
rock physics inversions. The bottom rows give specific cases depending on data types that can be run independently or combined in a joint inversion framework. The 
rock physics properties finally estimated can be different depending on the target and the available data. 
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linearizing the rock physics model. Using Sleipner AVO data, they derive 
1D profiles of CO2 saturation estimates with uncertainty. 

In this paper, we are presenting a generic quantitative approach that 
considers uncertainties through a Bayesian framework to support 
conformance verification. The main goal is to obtain estimates (with 
proper uncertainty assessment) of rock physics properties that (1) can be 
used to verify conformance, (2) are affected by the CO2 injection, and (3) 
have an effect on observed geophysical data. By generic, we mean that 
our workflow can handle various independent geophysical inversions of 
seismic, electrical, EM or gravimetric data and gather this information in 
an integrated second step of joint rock physics inversion. We first 
introduce the two-step approach for the inversion of geophysical data, 
combining waveform-based geophysical inversion and rock physics 
inversion. Then, we discuss the rock physics models linking geophysical 
observables to rock and fluid properties and the associated sensitivities, 
especially CO2 saturation and pore pressure. We finally present exam-
ples of the monitoring workflow on the real dataset at Sleipner (focusing 
on CO2 saturation), and we discuss how to handle more complex cases 
and the added value of geophysical data integration. 

2. Quantitative inversion approach 

Our proposed two-step approach combines geophysical and rock 
physics inversions for a quantitative characterisation where spatial 
distributions of selected properties (or property changes) are derived. 
Geophysical inversions are mainly seismic inversions but other methods 
like CSEM, ERT and gravity inversion can be used. Recent advances in 
seismic Full Waveform Inversion (FWI) allow high-resolution mapping 
of selected geophysical properties of the subsurface directly from the 
raw data seismograms. Acoustic to visco-elastic approximations of the 
seismic wave propagation are commonly used to solve the associated 
forward problem (Virieux and Operto, 2009) with the actual computer 
resources (Trinh et al., 2018). Some attempts are made to use poroelastic 
wave propagation theory to have a more realistic representation of the 
porous medium (De Barros et al., 2010; Morency et al., 2009). However, 
the inverse problem is highly under-determined and ill-posed, and the 
computational burden is very large. We consequently choose an alter-
native approach, splitting the inverse problem into two steps (Dupuy 
et al., 2016a, b), similarly to the conventional AVO-rock physics inver-
sion approaches (Buland and Omre, 2003; Grana, 2016). 

This two-step approach is described in Fig. 1. The first step consists of 
independent inversions of geophysical data (usually seismic data and 
possibly additional data such as CSEM, ERT or gravimetric data). The 
geophysical inversion, usually based on gradient-based local optimiza-
tion methods, provides a first quantitative parametrization of the sub-
surface properties such as seismic velocities, densities and/or 
resistivities. These geophysical properties are then quantitatively 
"interpreted" as rock physics properties using a second inversion step. 
This rock physics inversion step aims at combining the different physics 
(e.g. of seismic and electromagnetic) to derive relevant rock physics 
properties. For example, P-wave velocity and resistivity are both 
affected by the porosity and fluid saturations. 

3. Bayesian formulation of the two-step inversion approach and 
uncertainty quantification strategy 

Quantification of monitoring parameters must be done with proper 
uncertainty assessment for reliable conformance verification and asso-
ciated decision making. A Bayesian formulation (Tarantola, 2005) is 
appropriate for probabilistic estimations and provides a convenient 
framework to propagate uncertainty in the two-step inversion approach. 

The first step usually requires solving a large-scale, non-linear in-
verse problem where local or ensemble-based optimization algorithms 
are used to minimize a distance between modelled and observed data 
(Virieux and Operto, 2009). The Bayesian inference framework is used 
to incorporate prior information, uncertainties, and to derive 

conditional probability distributions of the estimated properties (Fang 
et al., 2018). In our approach, posterior covariance analysis is the 
method chosen to assess uncertainty from the first step. The posterior 
model covariance describes variances of, and covariances between, 
derived model parameters and is calculated as a reduction of the prior 
model covariance by the information gained from the geophysical 
inversion (Duffet and Sinoquet, 2006; Zhu et al., 2016; Eliasson and 
Romdhane, 2017). The posterior covariance CFWI

post from an initial FWI 
step can be written: 

CFWI
post =

(
J†C− 1

DFWI
J + C− 1

prior

)− 1
(1)  

where H = J†C− 1
DFWI

J is the Gauss-Newton approximation of the data 
misfit Hessian. J is the Fréchet derivative of the forward modelling 
operator with respect to the model parameter vector and J† is its adjoint 
operator. CDFWI is the data covariance matrix describing seismic data 
uncertainties while Cprior is a prior model covariance. The posterior 
covariance is estimated using few algebraic reformulations and Singular 
Value Decomposition (SVD) to exploit the low-rank property of the FWI 
Hessian (Bui-Thanh et al., 2013). Eliasson and Romdhane (2017) show 
how the approach allows calculating an ensemble of equivalent models, 
equally well explaining the observed data, and estimating the posterior 
variance of the P-wave velocity and resistivity models. Ayani et al. 
(2020) show that CSEM inversion can be run using stochastic Bayesian 
inversion formulation for a simple synthetic model (Johansen formation 
in the North Sea). 

For the second step (rock physics inversion), a Bayesian inference 
framework is also implemented. For example, Grana (2016) and Grana 
et al. (2017) linearize the rock physics models and derive a Bayesian 
formulation to estimate rock and fluid properties based on seismic 
reflection data. Similar probabilistic reservoir characterisation ap-
proaches are summed up in the review of Bosch et al. (2010). Dupuy 
et al. (2019) specifically propose the use of a Bayesian framework to 
propagate uncertainties derived from the FWI step. The posterior 
covariance CFWI

post is then transformed into a data covariance matrix 
CDRPI = CFWI

post . The model m posterior probability density distribution 
σRPI

post(m) is formulated such as: 

σRPI
post(m)∝ ρprior(m) L

(
m|d

)
(2)  

with L(m|d) being the data likelihood function. Assuming a multidi-
mensional Gaussian distribution, it is described as: 

L
(

m|d
)

∝ exp
[

−
1
2
(d − g(m) )

T C− 1
DRPI

(d − g(m) )

]

(3) 

The model vector m contains the selected rock physics parameters, e. 
g. CO2 saturation, pore pressure and porosity. The observed data vector 
d contains the input data to the rock physics inversion, e.g. P-wave ve-
locity and resistivity. g is a non-linear rock physics model allowing the 
computation of geophysical observables (seismic velocities, density, 
resistivity) from the rock physics parameters (fluid and rock properties). 
ρprior(m) is a probability density distribution describing prior information 
about the model parameters. Bayesian inference is by definition a pro-
cess where the prior distribution is updated to the posterior distribution 
by making use of the observed information (Tarantola, 2005). The 
choice of the prior model probability distribution is consequently critical 
in a Bayesian framework. A priori information on rock physics properties 
is elaborated from well log data, interpreted seismic results, laboratory 
tests or regional geology knowledge. 

Finally, sampling techniques such as Monte-Carlo Markov Chains 
must be used to get statistically relevant estimation of σRPI

post(m) (de Fig-
ueiredo et al., 2019a, 2019b). Sambridge (1999) combines a first stage 
to explore the model space efficiently with a neighbourhood algorithm 
(search stage) with a second stage resampling the ensemble obtained in 
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the first stage to get a statistical appraisal of the ensemble of models 
(appraisal stage). An approximation of the posterior probability density 
function is derived and allows calculation of Bayesian integrals and 
meaningful estimates of confidence over the model parameters (e.g. 
posterior probability densities). 

4. Rock physics models for CO2-brine saturated porous media 

The rock physics inversion rests upon a calibrated rock physics 
model. Gassmann-Biot theory (Gassmann, 1951; Biot, 1962) is widely 
used for fluid substitution problems and is shown to be appropriate for 
high porosity aquifer sandstones usually encountered in CO2 storage 
sites, such as the Utsira sandstone, which is the main reservoir formation 
of the Sleipner CO2 storage pilot (Dupuy et al., 2017). We give the 
complete description of the rock physics model in section 5 and 
Appendix A. If porosity and rock frame properties are known, e.g. from 
well log data or baseline inversion, the main parameters affecting the 
P-wave velocity are the fluid saturations and the fluid properties. The 
fluid bulk moduli and densities of each phase are derived given the 
reservoir pressure and temperature conditions of the aquifer. A 
description of those conditions at Sleipner is provided in Ghaderi and 
Landrø (2009) and in Furre et al. (2015). The way the two fluid phases 
are mixed in the pore space and the associated partial saturation model 
is an ongoing research topic. In this context, it is worth clarifying the 
terminology conventionally used to describe the partial saturation 
models:  

• Gassmann’s equations (Gassmann, 1951) are commonly used even 
though they are defined for a single fluid saturating the pores. This 
requires deriving properties of an effective fluid phase to be plugged 
into the Gassmann’s equations (Domenico, 1976). The widely used 
“Gassmann-Hill” or “Gassmann-Wood” wordings describe the way 
the effective fluid bulk modulus is calculated (Hill or Wood averages) 
and plugged into the Gassmann’s equations for a single fluid phase.  

• Lower and upper bounds for the effective fluid bulk modulus are 
defined by Reuss and Voigt averages, respectively (Mavko et al., 
2009). The upper bound shows an almost linear dependency of 
P-wave velocity versus brine saturation while the lower bound shows 
a sharp P-wave velocity decrease as soon as a few percent of gas or 
supercritical CO2 is present (fizz-gas effect). Curves describing these 
phenomena are given in e.g. Dupuy et al. (2017) and Papageorgiou 
et al. (2018).  

• Depending on the way the fluid phases are mixed in the pore space, a 
full range of effective models falls between the lower and upper 
bounds. Brie et al. (1995) equation (given in Appendix A) is a 
convenient way to span the full range of models between these 
bounds by varying the exponent e called Brie, fluid mixing or 
patchiness exponent. Papageorgiou et al. (2016) propose a similar 
derivation for the patchiness exponent.  

• “Patchy” and “uniform” saturations are terms often used to try to 
give a physical meaning to the way the effective fluid phase is 
calculated. Usually, “patchy saturation” corresponds to low fluid 
mixing exponent values (down to 1) and to curves close to the upper 
bound while “uniform saturation” corresponds to high fluid mixing 
exponent values (up to 40) and curves close to the lower bound. 
Depending on authors (Carcione et al., 2006; Queißer and Singh, 
2013; Bergmann and Chadwick, 2015; Ghosh et al., 2015; Falcon--
Suarez et al., 2018; Williams and Chadwick, 2012), the “patchy 
saturation” term is used for fluid mixing exponent values in the range 
from 1 to 5. As “patchy saturation” is not appropriate for an effective 
fluid phase (see next bullet point), we recommend using the term 
“patchy mixing” for behaviours close to the upper bound (fluid 
mixing exponent close to 1), and “uniform mixing” for behaviours 
close to the lower bound (fluid mixing exponent close to 40, with the 
two fluid phases being mixed at the finest scale) and “semi-patchy 
mixing” for all behaviours in between.  

• The term “patchy saturation” refers to more complex rock physics 
theories based on the precursory works of White (1975) and Dutta 
and Odé (1979), where spherical patches of porous medium satu-
rated with the more mobile fluid (supercritical CO2) are embedded in 
the porous medium saturated with the least mobile fluid (brine). 
These models agree better with observed attenuations at seismic 
frequencies (Pride et al., 2004; Rubino et al., 2011). They are how-
ever difficult to use for quantitative inversion due to the large 
number of parameters involved in the models. 

Laboratory measurements on Utsira sandstones (Falcon-Suarez et al., 
2018) confirm that it is not straightforward to describe the way the brine 
and CO2 phases are mixed together. Dupuy et al. (2017) also show that 
the introduction of the fluid mixing exponent as an additional degree of 
freedom causes a strong trade-off effect (between CO2 saturation and the 
mixing exponent) which is difficult to resolve when P-wave velocity is 
the only input to the rock physics inversion. 

5. Pore pressure effects and pressure-saturation discrimination 

At Sleipner, where CO2 is injected into a large open aquifer, the 
pressure build-up due to the injection is very weak and the pore pressure 
effects on geophysical observables are consequently negligible (Chad-
wick et al., 2012). These effects should, however, be considered for 
other CO2 storage sites (e.g. Snøhvit (Grude et al., 2014), In Salah or 
Weyburn (Verdon et al., 2013)) because they can strongly affect the 
observed 4D effects on geophysical data (Landrø, 2001). Pore pressure is 
also a key parameter in addition to saturation to establish conformance 
analysis. We give here more details about the main geophysical ob-
servables (and related rock physics parameters) and their dependencies 
on the two main quantities we are interested in, i.e. CO2 saturation 
(SCO2 ) and pore pressure (Pp). The main quantitative observables (with 
dependencies on pore pressure and CO2 saturation highlighted with blue 
text) obtained from geophysical data are:  

• the bulk density ρ (density model from seismic tomography or FWI or 
density changes from seabed gravimetric survey). It can be defined 
with respect to porosity φ and grain mineral and fluid densities, 
respectively ρs and ρf (the latter one being dependent on pore pres-
sure and saturation):  

(4)    

• the resistivity Rt (from CSEM or ERT surveys), defined by Archie’s 
law (Archie, 1942) with respect to brine resistivity Rw, porosity φ, 
and cementation m and saturation n exponents:  

(5)    

• the P-wave velocity VP from seismic inversion (tomography, FWI, 
AVO inversion, velocity analysis, etc) defined with respect to satu-
rated (undrained) porous medium bulk KU and shear G moduli and 
bulk density ρ:  

(6)   

B. Dupuy et al.                                                                                                                                                                                                                                  



International Journal of Greenhouse Gas Control 106 (2021) 103217

5

Fig. 2. Sketch summarizing the different dependencies between seismic observables and pore pressure and saturation changes. Due to CO2 injection, pore pressure 
(Pp) and CO2 saturation (SCO2 ) will increase. Pore pressure will both affect the fluid phase properties (top left) and the rock frame properties (bottom left), leading to 
effects on seismic observables, e.g. decrease of P-wave velocity. On the other hand, the change of saturation will affect fluid bulk modulus and density, leading to a 
change in seismic observables as well, e.g. a decrease in P-wave velocity. The thicker arrows and boxes are the dominating effects. The detailed equations and 
dependencies are given in the text. 

Fig. 3. Sketch summarizing the inverse problem when CO2 injection is affecting geophysical observables and the link with pore pressure and saturation changes (and 
fluid mixing exponent and porosity). 
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Fig. 4. Schematic framework of the quantita-
tive monitoring at Sleipner including uncer-
tainty assessment and time-lapse strategy. FWI 
stands for Full Waveform Inversion and RPI 
stands for Rock Physics Inversion. The two-step 
workflow described in Fig. 1 is used for baseline 
(left) and monitor (right) stages. The details of 
each method (acoustic FWI, uncertainty quan-
tification for FWI, Bayesian RPI) are given in 
the text. The rock physics parameters derived in 
the first stage (KD, GD and ϕ) as well as the data 
from well logs and core measurements are used 
as prior models in the rock physics inversion.   

Fig. 5. P-wave velocity models obtained by acoustic FWI for baseline (a) and monitor (b) vintages. Input seismic data are extracted from the 3D seismic survey at 
Sleipner (inline number 1874). The rectangles give the location of the target model area used for the rock physics inversion tests (displayed in Fig. 6). The small cross 
rectangle stands for the projection of the injection point. 
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• the S-wave velocity VS from seismic inversion (elastic FWI, AVO 
inversion, velocity analysis, surface wave tomography, etc) defined 
with respect to saturated (undrained) porous medium shear modulus 
G and bulk density ρ:  

(7)    

• the quality factors (seismic attenuations) can also give information 
about Pp and SCO2 but are more difficult to estimate. 

The detailed formulas, including Gassmann’s (Gassmann, 1951) and 
effective fluid phase equations are given in Appendix A. Fig. 2 summa-
rizes the effects of pore pressure and saturation changes on the seismic 
observables. It is worth noting that the sensitivities of geophysical 
properties to pore pressure and saturation changes are quite different, i. 
e.:  

• the saturation SCO2 is affecting the resistivity Rt and the bulk density 
ρ via the effective fluid density ρf . It is affecting seismic velocities VP 

and VS via bulk density ρ and porous medium bulk modulus KU (only 
VP).  

• the pore pressure Pp is affecting bulk density ρ via the effective fluid 
density ρf and the seismic velocities via the bulk density ρ and the 
porous medium bulk modulus KU. Looking more in details (see full 
formulation in Appendix A), the effect of the pore pressure can be 
divided into two parts:  
o on one hand, the effective fluid properties (density ρf and bulk 

modulus Kf ) are dependent on pore pressure. Pressure-Volume- 
Temperature (PVT) thermodynamics models (Span and Wagner, 
1996; Lindeberg, 2013) or more empirical models (Batzle and 

Wang, 1992) can be used to derive pore pressure (but also tem-
perature and salinity) dependencies of each fluid phases. The 
effective fluid phase is then calculated via various averages (Reuss, 
Voigt, Brie averages) given in Appendix A.  

o on the other hand, the dry rock frame bulk KD and shear GD moduli 
involved in the Gassmann’s equations are the only parameters 
dependent on pore pressure. Basically, when pore pressure in-
creases, the rock frame (arrangement of grains) is modified, and its 
mechanical moduli decrease. Many models (empirical, phenome-
nological or based on physical principles) exist to link rock frame 
moduli to differential pressure (equal to confinement pressure 
minus pore pressure). Screening the validity and complexity of 
these models is out of the scope of this paper, but the reader is 
referred to Hertz-Mindlin (Mindlin, 1949; Mavko et al., 2009), 
Walton (Walton, 1987; Pride, 2005), pore space stiffness (Mavko 
and Mukerji, 1995; Dinh and Van der Baan, 2019), compliant 
porosity (Shapiro, 2003; Shapiro and Kaselow, 2005), or cracks 
(Sayers and Kachanov, 1995; Pride et al., 2017) models for more 
details on the different approaches. 

Deriving pressure effects from geophysical observables (especially 
seismic data) is not straightforward as pressure effects are competitive 
with saturation effects. Fig. 3 summarizes the complexity of the inverse 
problem when different rock properties are affected by the CO2 injection 
and these changes have variable effects on the geophysical observables. 
A simple approach based on AVO parameters changes (Landrø, 2001) 
can discriminate pressure and saturation in specific cases but more 
advanced approaches are required for quantitative estimations. 
Including the rock physics models with pressure-dependent rock physics 
properties (both fluid and rock frame parameters) in our rock physics 
inversion algorithms is straightforward. However, optimal model 
parametrization is complex and requires additional inputs. Joint rock 
physics inversion is then even more meaningful. We can also think that 

Fig. 6. Close ups of the corresponding P-wave velocity models target areas obtained by acoustic FWI for (a) baseline and (b) monitor vintages. These close-ups are 
extracted from the models given in Fig. 5. 
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extracting more information from the seismic data, using multiparam-
eter inversion will be valuable. For example, saturation can strongly 
affect the seismic attenuations (Pride et al., 2004; Rubino et al., 2011). 
On the other hand, seismic shear wave propagation is mainly affected by 
pressure effect (saturation playing only a minor role in the bulk density 
term), so combining P- and S-wave velocity data might be valuable to 
handle the trade-offs between saturation and pore pressure effects. As 
our real data application focuses on the Sleipner dataset, pore pressure 
effects are not considered in the following section. 

6. Case study at Sleipner using baseline and monitor seismic 
data 

We present an application of the two-step quantitative approach to 
Sleipner CO2 storage monitoring data. The workflow is summarized in 
Fig. 4. We use prestack seismic data from 1994 (before CO2 injection, 
baseline) and 2008 vintages (after 12 years of injection, around 10.15 
Mt CO2 injected, monitor). The two-step process is first applied to the 
baseline data for the estimation of selected reservoir properties, with 

uncertainty, prior to injection. Then, in a second stage, the same process 
is applied to the monitor data, where, in addition, the rock physics 
inversion is using information derived from the baseline results as prior 
knowledge. For both baseline and monitor inversions, prior models of 
mineral grains and fluids properties are defined from log and core 
measurements. The models for the monitor inversion are also partially 
derived from baseline inversion, especially the rock frame properties 
(porosity and dry bulk and shear moduli). Similar tests are run for the 
seismic inline 1836 (Yan et al., 2019). We present here the results for the 
inline 1874 which is located further away from the injection point and 
following the main channel path towards North (Furre et al., 2015). 

We perform two separate acoustic FWI runs (baseline and monitor) 
using frequencies up to 33 Hz. Following the workflow presented in 
Fig. 4, we first obtain high-resolution 2D P-wave velocity models (Fig. 5) 
and we select a target area around the injection point where the CO2 is 
expected to migrate (Fig. 6). Local uncertainty assessment is carried out 
providing a posterior covariance matrix. P-wave velocity models around 
the target are compared between baseline and monitor cases. The 
signature of the injected CO2 is clearly visible through a velocity drop of 

Fig. 7. Estimated reservoir properties: a) porosity, b) dry bulk and c) shear moduli before injection. The input data of this rock physics inversion is the P-wave 
velocity map obtained by FWI and given in Fig. 6a. 
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a few hundred m/s (Fig. 6). Velocities outside of the target area (over-
burden and underburden especially) are slightly different between the 
baseline and monitor inversions while there are supposed to not be 
affected by the CO2 injection. This can be explained by several factors, 
among them being the difference in data quality between the two sur-
veys (1994 versus 2008), some uncertainty propagation outside of the 
target due to smearing effects (Queißer and Singh, 2013; Romdhane and 
Querendez, 2014) and uncertainties due to the limited available offset 
range of the seismic data. 

In the second stage, rock physics inversion is applied using the input 
P-wave velocity model derived from the first stage using baseline data. 
Prior to CO2 injection, we focus on relevant reservoir parameters, 
namely porosity, bulk and shear rock frame moduli (Fig. 7). We use well 
logs and core measurements from the literature (Bøe and Zweigel, 2001; 
Chadwick et al., 2004; Ghaderi and Landrø, 2009; Falcon-Suarez et al., 
2018) to define prior values of the other poroelastic parameters, i.e. 
fluid parameters (full saturation of brine whose properties are 

dependent on pressure and temperature), mineral grain parameters (the 
mineral compositions of Utsira sandstone reservoir and Nordland shale 
caprock are well-known) and additional rock frame properties (perme-
ability and cementation factor). We notice a high porosity (low bulk and 
shear moduli) layer between 900 and 1000 m depth. Assuming multi-
variate Gaussian distributions, we derive uncertainties in porosity and 
dry rock moduli estimates (Fig. 8). The uncertainties in the three rock 
frame parameters are higher when the porosity is low and when the dry 
bulk and shear moduli are high, i.e. in less good reservoir quality layers. 

Given that the Utsira sand is purely siliciclastic (no carbonate min-
erals) and that the pressure build-up is negligible (Chadwick et al., 
2012), it is meaningful to assume that the porosity and dry rock moduli 
estimated with baseline data will not change due to CO2 injection. We 
consequently use the porosity, bulk and shear dry rock moduli mapping 
as prior knowledge (fixed values) for the rock physics inversion of 
monitor data (second stage, see workflow in Fig. 4). Using the P-wave 
velocity model and associated uncertainty derived from monitor seismic 

Fig. 8. Uncertainties in estimated reservoir properties: a) porosity, b) dry bulk and c) shear moduli before injection. These uncertainties are related to the estimates 
given in Fig. 7. 
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data (Fig. 6b), and prior models from baseline rock physics inversion 
(Fig. 7) and well logs and core data, the spatial distribution of CO2 
saturation is estimated with uncertainty assessment (Fig. 9). High CO2 
saturations (up to 50 %) are observed in the top layers, between 850 and 
900 m depth and between 950 and 1050 m depth. The caprock is located 
at 850 m depth approximately. The high saturation top layer is widely 
spread laterally while presence of CO2 deeper down with saturation 
around 20 % is more localized. The uncertainties in saturation are 
slightly varying in space, between 10 and 20 % uncertainty in absolute 
values. It is worth noting that the very low CO2 saturation values above 
the primary seal at 800 m depth are consistent with zero saturation 
values (given the associated, equally low, uncertainty). This confirms 
containment of the CO2 in the main reservoir. 

The CO2 estimates presented in Fig. 9 are obtained with a fixed value 
of fluid mixing exponent: e = 5. Fig. 10 shows joint estimation of CO2 
saturation and fluid mixing exponent with the same input data. CO2 
saturation distribution and amplitudes are similar to those of Fig. 9, with 
a higher saturation uncertainty when the fluid mixing exponent is 
inverted for due to the higher number of degrees of freedom in the in-
verse problem. The results also show that the fluid mixing exponent is 
higher (suggesting more “uniform mixing”) for high CO2 saturations. 
The uncertainties in the fluid mixing exponent are quite constant where 
the CO2 is present, i.e. between 5 and 10 in absolute values. 

To constrain the trade-off between these two parameters (saturation 
and fluid mixing exponent), Subagjo et al. (2018) propose to combine 
the input from seismic and electromagnetic inversions in a joint rock 
physics inversion process. The synthetic test results of Fig. 11 and 
Table 1 illustrate how combining resistivity and P-wave velocity inputs 
result in reduced uncertainty on saturation estimates. Synthetic “one 
point” inversions are run based on generic Utsira sand properties. The 
results of Fig. 11 show the distribution of low misfit models and the 
trade-off between saturation and fluid mixing exponent. When the 
P-wave velocity is considered, we observe that values between 0 and 75 
% of CO2 saturation associated with values between 1 and 40 of fluid 

mixing exponent fit the input data well. This trade-off is also observed 
when P-and S-wave velocities or P-wave velocity and bulk density inputs 
are considered. However, when P-wave velocity is combined with bulk 
resistivity, these “low misfit” models are localised in the vicinity of the 
true model with a smaller spread. 

Table 1 gives more insights about this trade-off between saturation 
and fluid mixing exponent and how to solve it by integrating more input 
data. When only P-wave velocity is used as input, the inversion system is 
highly underdetermined (one input data, two free parameters to be 
inverted, the other rock physics parameters being fixed in this test) and 
the obtained values (lowest misfit model) are far from the true model 
(5–25% of error). As soon as an additional input data is considered in 
addition to P-wave velocity (S-wave velocity, bulk density or bulk re-
sistivity), the inversion is converging towards the true model and the 
errors of estimations are quite low (0.03–1.23% of error depending on 
the case and the parameter). However, as observed in Fig. 11, the spread 
of the misfit/likelihood function is quite large for the cases where VP is 
combined with VS or ρ. This is leading to large uncertainties in the 
estimation of the CO2 saturation and fluid mixing exponent even if the 
inversion is converging towards the true model. When the P-wave ve-
locity is combined with the bulk resistivity, the estimation error is very 
low for both parameters (0.005 and 0.41 % for SCO2 and e respectively) 
and the uncertainty in these estimates is also quite small as shown in 
Fig. 11d. 

To summarize, the trade-off between saturation and fluid mixing 
exponent is only slightly reduced when additional seismic or gravity 
data is used (shear wave velocity and density) while the use of resistivity 
in combination with P-wave velocity is critical to ensure good conver-
gence and low uncertainty for saturation and fluid mixing exponent. 
This observation is valid for the Sleipner data but the trends might be 
different for other cases where the pore pressure effect is not negligible, 
i.e. where the injection affects the rock frame properties in addition to 
the fluid properties. 

From a practical point of view, deriving resistivity maps is done using 

Fig. 9. Estimated CO2 saturation (a) and associated uncertainties (b). The input data of this rock physics inversion is the P-wave velocity map obtained by FWI and 
given in Fig. 6b. Rock physics properties obtained in the baseline stage (Fig. 7) are also used as prior models. 
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Fig. 10. Estimated CO2 saturation and associated uncertainties in case of joint inversion of saturation and fluid mixing exponent. The fluid mixing exponent (Brie 
exponent) and associated uncertainties are also given. a) CO2 saturation, b) uncertainty in CO2 saturation, c) fluid mixing exponent and d) uncertainty in fluid mixing 
exponent. The input data of this rock physics inversion is the P-wave velocity map obtained by FWI and given in Fig. 6b. Rock physics properties obtained in the 
baseline stage (Fig. 7) are also used as prior models. 
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CSEM in offshore settings (Bhuyian et al., 2012; Park et al., 2013) or ERT 
surveys (Bergmann et al., 2012; Commer et al., 2016) (mainly onshore, 
with well-to-surface and cross-well acquisitions). The resolution is 
nevertheless not comparable to seismic inversion results and scaling 
issues must be addressed carefully. Different joint inversion approaches 
(Dell’Aversana, 2014; Colombo and Rovetta, 2018; Giraud et al., 2019) 
can be used but are not within the scope of this paper. At Sleipner, only 
one 2D CSEM survey has been acquired in 2008 with a different survey 
azimuth compared to the one used for the 3D seismic survey acquired in 
the same year. To run joint inversion on the Sleipner datasets, it is thus 
needed to work with the 3D seismic data or to consider 1D profiles 
where the CSEM and seismic inlines are crossing. 

7. Conclusions 

We describe a quantitative monitoring approach which relies on a 
two-step inversion methodology. The first step consists of conventional 
geophysical inversion while the second step, the rock physics inversion, 
uses the results of the first step as input. Uncertainty is assessed in both 
stages and accounted for via a Bayesian formulation. Quantitative esti-
mates of relevant rock physics properties such as porosity, rock frame 
moduli, CO2 saturation, fluid mixing/distribution are then derived from 
geophysical data. 

We show an example of inversion of Sleipner data where seismic FWI 
is combined with rock physics inversion to estimate (1) rock frame 
properties (using baseline data, before CO2 injection) and (2) CO2 
saturation and fluid mixing exponent using monitor data. We estimate 
CO2 saturation values between 0 and 50 % showing a migration towards 
high porosity upper layers. When the fluid mixing exponent is inverted 
together with the saturation, similar saturation distributions are ob-
tained but with higher uncertainty. Estimates of CO2 saturation above 
the seal are close to 0 % with low uncertainty, confirming containment 
within the main reservoir. 

We show that it is recommended to combine seismic P-wave velocity 
with resistivity inputs to mitigate the trade-off between the saturation 
and the fluid mixing exponent and reduce the uncertainty in their esti-
mates. We also show that discriminating pressure and saturation effects 
from geophysical observables is not straightforward and can benefit 
from a multi-physics-based approach. 

The proposed approach is useful for conformance verification, i.e. 
ensuring that observed time-lapse effects due to CO2 injection are 
consistent with a fluid flow-based modelling prognosis. CO2 saturations 
derived from inversion may be compared to predicted saturations from 
reservoir modelling (Watson et al., 2019). This in turn can support 

a) b)

d)c)

Fig. 11. Inversion results from synthetic data tests for estimation 
of CO2 saturation (1 – brine saturation) and fluid mixing exponent 
(e = 1 being patchy mixing and e = 40 being uniform mixing) at a 
single point in space. Four different input data parametrizations 
are represented: a) VP, b) VP + VS, c) VP + ρ and d) VP + Rt (VP and 
VS are P- and S-wave velocities, ρ is the bulk density and Rt is the 
bulk resistivity). The red cross is the true model (SCO2 = 20 %, 
e = 5 = semi-patchy mixing). Each point is an inversion model with 
a colour associated with a misfit between 0 and 1%. The models 
with the lowest misfit found are given in Table 1. The results of 
Figure a), in which VP is the only input data, correspond to results 
for a single point of Fig. 10 and are modified after Yan et al. 
(2019).   

Table 1 
Best estimated models of CO2 saturation (1-Sw) and fluid mixing exponent e 
showing the lowest misfit in the tests shown in Fig. 9. The true values are 
SCO2 = 20 % (Sw = 80 %) and e = 5. The results are given for various combina-
tions of P-wave velocity VP, S-wave velocity VS, bulk density ρ and bulk re-
sistivity Rt .  

Input data Parameter Best model Deviation from true value (%) 

VP  
Sw (%) 83.7 4.63 
e 6.25 25 

VP + VS  
Sw (%) 80.2 0.25 
e 5.06 1.2 

VP + ρ  Sw (%) 80.02 0.025 
e 5.02 0.4 

VP + VS + ρ  Sw (%) 79.99 0.0125 
e 5.002 0.04 

VP + Rt  
Sw (%) 80.004 0.005 
e 5.02 0.4  
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history matching processes where the update of fluid flow-based reser-
voir models is addressed by Ensemble Kalman Filter (EnKF) methods 
(Evensen, 2009) or by building an optimisation problem where the 
reservoir model is updated by monitoring results (Vasco et al., 2019; 
Anyosa et al., 2019). 
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Appendix A 

Gassmann’s equations and effective fluid relationships 

The Gassmann’s equations (Gassmann, 1951) allows calculating the saturated (undrained) bulk KU and shear G moduli of the single fluid saturated 
porous medium from the dry rock frame bulk KD and shear GD moduli, the porosity φ, the mineral grains bulk modulus Ks and the fluid phase bulk 
modulus Kf . The Gassmann’s equations are given here with underlined dependencies to pore pressure Pp and CO2 saturation SCO2 : 

(8)  

(9) 

With the additional Δ parameter defined as: 

(10) 

As mentioned in the main text, the Gassmann’s equations are derived for a porous medium saturated with a single fluid. Effective fluid properties 
must be calculated to be plugged into these equations. The effective fluid density is usually calculated with an arithmetic average such as: 

(11) 

Brine and CO2 densities are dependent on pore pressure (and the brine density is also dependent on temperature and salinity) and can be estimated 
with empirical relationships (Batzle and Wang, 1992) or complex models based on thermodynamics (Span and Wagner, 1996, Lindeberg, 2013). There 
are several ways to calculate the effective fluid bulk modulus (discussed in detail in the main text). The Brie relation (Brie et al., 1995) is given (with 
respect to the fluid mixing or fluid mixing exponent e) by: 

(12) 

Similar to densities, the brine and CO2 bulk moduli are dependent on pore pressure and can be calculated with empirical or thermodynamic-based 
models. Alternative ways to calculate the effective fluid bulk modulus are the Reuss average (lower bound), corresponding to high numbers of fluid 
mixing exponents (up to 40) and so-called “uniform mixing”: 

(13)  

or the Voigt average (upper bound), corresponding to low numbers of fluid mixing exponents (down to 1) and so-called “patchy mixing”: 

(14) 

Papageorgiou et al. (2016) and Wollner and Dvorkin (2018) give Brie-like relationships and different expressions of the fluid mixing exponent. 
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