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An evolutionarily stable strategy (ESS) is an evolutionary strategy
that, if adapted by a population, cannot be invaded by any devi-
ating (mutant) strategy. The concept of ESS has been extensively
studied and widely applied in ecology and evolutionary biology
[M. Smith, On Evolution (1972)] but typically on the assump-
tion that the system is ecologically stable. With reference to a
Rosenzweig–MacArthur predator–prey model [M. Rosenzweig, R.
MacArthur, Am. Nat. 97, 209–223 (1963)], we derive the mathe-
matical conditions for the existence of an ESS when the ecological
dynamics have asymptotically stable limit points as well as limit
cycles. By extending the framework of Reed and Stenseth [J. Reed,
N. C. Stenseth, J. Theoret. Biol. 108, 491–508 (1984)], we find that
ESSs occur at values of the evolutionary strategies that are local
optima of certain functions of the model parameters. These func-
tions are identified and shown to have a similar form for both
stable and fluctuating populations. We illustrate these results
with a concrete example.

ecology | evolution | population dynamics | dynamical systems |
limit cycles

1. Introduction
Natural systems exhibit both ecological and evolutionary dynam-
ics. Nevertheless, many studies focus only on either the ecologi-
cal or the evolutionary dynamics, assuming the other nonchang-
ing and fixed. There are many excellent exceptions (see, e.g.,
refs. 1 and 2). Here, we study the ecological and evolutionary
dynamics in both ecologically stable as well as periodically fluc-
tuating populations of predator and prey, using the Rosenzweig–
MacArthur predator–prey model (3) (see also refs. 4–9). Our
overall aim is to understand under what conditions evolution-
arily stable strategies (ESSs) will exist. Specifically, we focus on
evolutionary stability in stable as well as periodically fluctuating
ecological systems.

The concept ESS was originally coined by Maynard Smith (10)
(see also Smith and Price) (11), as an extension of Hamilton’s
(12) “unbeatable strategy.” Maynard Smith (10) defined it as
a strategy that, once adopted by a majority of the members of
a population, cannot be overturned by any alternative strategy
that is initially rare. It is essentially a Nash equilibrium that is
evolutionary stable (13). The concept of ESS was used initially
in behavioral ecology and sociobiology but Lawlor and Smith
(14)—see also Roughgarden (15) and Nowak (16)—extended its
use to ecological dynamics of competing populations.

Many ecological systems are characterized by fluctuating
dynamics, some of which have periodic fluctuations: the famous
lemming and small rodent cycles (see, e.g., refs. 17–19) and
the North American hare–lynx cycle (see, e.g., ref. 20). The
predator–prey models of the kind presented by Rosenzweig and
MacArthur (17) are therefore of broad ecological interest. Sev-
eral studies have analyzed these—and related—models from an
ecoevolutionary perspective (5, 21–26). However, no one has

addressed this from an ESS perspective, particularly for the
limit-cycle case. This we do in the present contribution.

Models for predatory–prey interactions have played a major
role within the field of ecology since the pioneering contribution
by Lotka (27, 28) and Volterra (29) (see, e.g., ref. 30). Depending
on the choice of parameters, such models are known to accom-
modate equilibrium populations that are constant or fluctuating
(including limit-cycle dynamics).

The biological contribution of this paper will be the theo-
retical question regarding the existence of ESS in periodically
fluctuating populations exemplified by Rosenzweig–MacArthur
predator–prey systems. Specifically, we establish sufficient con-
ditions for the existence of ESSs in such models. We consider
populations that become stable (constant) over time and period-
ically fluctuating populations or systems exhibiting stable limit-
cycle dynamics. Extending the approach of Reed and Stenseth
in ref. 31, we show that ESSs occur at values of the evolutionary
strategies that are local optima of certain functions of the model
parameters. We identify these functions and show that they have
a similar form for both stable and fluctuating populations. These
results are illustrated with a concrete example.

The main mathematical contribution is that we prove Lya-
punov stability through an adaptation of classical linearization
arguments, variation of parameter formulas, and Floquet-type
analysis. The main finding is the case of limit cycles, where
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we establish stability of two-dimensional limit cycles in a four-
dimensional system of ordinary differential equations. Within
the approach of Reed and Stenseth (31) to evolutionary games
and ESS, we then show that these stability results lead to suffi-
cient conditions for ESSs for both types of equilibrium solutions.
These sufficient conditions could be of independent interest in
game theory.

In section 2, we state the model and results about equilibrium
solutions. Then, in section 3, we combine ecology and evolu-
tion: evolutionary strategies, an extended ecological model, and
the concept of ESS are introduced. The strategies are model
parameters that can be changed over time by the populations
to ensure a more beneficial evolution, and the extended model
includes mutant populations for predators and prey satisfying the
same model equations at different (i.e., mutant) values of the
strategies. An ESS is introduced as an extension of the defini-
tion of Reed and Stenseth (31) to include periodically fluctuating
populations—it is a choice of evolutionary strategies for which
mutant populations cannot survive in the long run. Evolution can
be seen as a competition between different species and be mod-
eled as a game (13). An ESS is then a Nash equilibrium (32), in
the sense that no population can improve their own survivability
acting alone. A game can only move away from an ESS when the
original populations change their strategies. An ESS is therefore
a type of locally optimal evolutionary strategy for the original
populations.

When time becomes large, the populations will approach
limit populations, a (stable) equilibrium solution of the model.
Examples of equilibrium solutions are constants (limit points)
and periodic solutions (limit cycles). In sections 4 and 5, we
study such solutions for the extended ecological model. We first
observe that equilibrium solutions of the two-population model
remain equilibrium solutions in the extended model when the
mutant populations are zero. Then, we establish conditions to
guarantee the (Lyapunov) stability of these solutions. Stability
here means that solutions starting near an equilibrium solution
will over time converge to the equilibrium solution. These results
extend earlier results for models with two populations. By taking
into account the dependence on the strategies in our extended
model, we use the stability results and our definition of ESS to
give conditions that guarantee ESS. In section 4, we give the
results for equilibrium points (constant populations in the limit),
and in section 5, we give the results for limit cycles (periodic limit
populations). ESSs are shown to occur at values of the evolu-
tionary strategies that are local optima of certain functions of
the model parameters. These results are the main contribution
of our paper. In section 4, we also discuss examples of functional
dependencies that lead to an ESS: loosely speaking, if we take
the predation rate to be an increasing bilinear function of the
evolutionary strategies, then we find that the rate constants of
prey growth and predator mortality have to be decreasing convex
functions. We give a concrete example where the latter two rate
constants are quadratic functions of the evolutionary strategies.

2. The Ecology of Predator–Prey Models
Let x1 and y1 denote the population sizes of prey and predator,
respectively. We will assume that the dynamics follow a logistic
Gause-type model:

d

dt

(
x1
y1

)
=

(
x1(f1(x1)− y1ϕ11(x1))
y1(−c1 + kx1ϕ11(x1))

)
=F1(x1, y1). [1]

Here, the rate of predation is x1y1ϕ11(x1), where ϕ11 is given by

ϕ11(x ) =
a

b11 + x
[2]

for positive constants a and b11. The quantity ϕ11(x )x is referred
to in ecological literature as the functional response curve, with
a being the saturation point and b the half-saturation constant
in the sense that xϕ11(x )|x=b11 = a/2 (33, 34). Furthermore, the
predator mortality rate is given by c1y1 for c1> 0, and the prey
growth rate x1f1(x1) by the commonly used logistic model, where

f1(x ) = r1
(

1− x

K

)
, [3]

r1> 0 is the rate constant and K > 0 the carrying capacity of the
prey population. Note that f1 is decreasing, with f1(0) = r1 and
f1(K ) = 0.

This model goes into a long tradition of predator–prey models
of the form

dx

dt
= xF (x , y),

dy

dt
= yG(x , y), [4]

first identified by Kolmogorov (35) in 1936 (see also ref. 36). The
system in Eq. 1 has been intensively studied in the literature (see,
e.g., refs. 37–39 and the references therein).

For this system, the first quadrant is an invariant region (i.e.,
the populations can never become negative). Under some rea-
sonable assumptions, the system has three limit points and up to
one limit cycle. These results along with stability results are given
in the next theorem (also see Fig. 1).

Theorem 2.1 (37). Assume that x1(0) = x0 ∈ (0,K ) and y1(0) =
y0 ∈ (0,∞).

(a) Solutions (x1(t), y1(t)) of Eq. 1 are positive and bounded.
(b) Define σ= ak/c1 and x̂ = b11/(σ− 1) if σ> 1. Then:
(i) If σ≤ 1 or K ≤ x̂ , then the critical point (K , 0) is asymptoti-

cally stable and

lim
t→∞

x1(t) =K , and lim
t→∞

y1(t) = 0. [5]

(ii) If x̂ <K ≤ b11 + 2x̂ , then the critical point (x̂ , ŷ), with ŷ =
(r1/a)(1− x̂/K )(b11 + x̂ ), is asymptotically stable and

lim
t→∞

x1(t) = x̂ , and lim
t→∞

y1(t) = ŷ . [6]

(iii) If K > b11 + 2x̂ , then (x̂ , ŷ) is unstable and there exists exactly
one limit cycle in the first quadrant in the (x1, y1) plane, which
is an (asymptotically) stable limit cycle.

Further properties can be found in SI Appendix.

3. Evolution: The Extended Ecological Model
Evolutionarily, there is a “conflict” or “arms race” between the
predator and the prey regarding predation: the prey “wants” to
evolve to avoid being caught by the predator, whereas the preda-
tor “wants” to be able to catch prey as efficiently as possible, even
when the prey is at low abundance. However, this will come at
some costs: we assume that for the prey, a decreased predation
rate will lead to a reduced growth rate, whereas for the predator,
an increased predation rate may lead to an increased mortality
rate. A natural way to analyze this situation is through (differen-
tial) game theory and concepts like Nash equilibriums and ESS;
we refer to refs. 13, 14, 40, and 41 for more information. We
will follow the simplified approach of Reed and Stenseth (31),
an approach explicitly emphasizing that a new mutant will have
to establish itself through competition, even though rare initially.

Let α1 and β1 represent the strategies of prey and predator,
respectively. All model parameters are assumed to depend on α1

and β1, i.e., different mutations correspond to different values of
the various constants in Eqs. 1–3. The idea is that over time, the
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Fig. 1. The phase diagram of Eq. 1 with a = 2.8, b11 = 0.7, c1 = 1.35, r1 =

3.5, k = 1.5, and K = 1.4, which corresponds to case (iii) in Theorem 2.1. (A)
The full phase diagram. Dashed curves as well as the coordinate axes are
isoclines. The brown points give the stationary points. The red curve is the
limit cycle. (B) A close-up of the full diagram in A. If K> b11 + 2x̂, then (x̂, ŷ)
is unstable and there exists exactly one limit cycle in the first quadrant in
the (x1, y1) plane, which is an (asymptotically) stable limit cycle.

populations can modify their own strategies in order to increase
their chances of survival.

We now make some assumptions about how the different
model parameters depend on α1 and β1. We know from, e.g.,
studies of the hare–lynx cycle (42) that the predator and the prey
mutually “disagree” on the value of the half-saturation constant;
for instance, large b and hence low predation is beneficial for the
hare, while the opposite is the case for the lynx. We therefore
take

b11 = b(α1,β1).

To simplify, we then assume that K and k are constants, while

r1 = r(α1) and c1 = c(β1).

We assume the following reasonable constraints/tradeoffs among
the parameters under evolution:

dr1
dα1
≤ 0,

dc1
dβ1
≤ 0,

∂b11
∂α1

> 0, and
∂b11
∂β1

> 0. [7]

The interpretation is the following: an increase in b11 (which
means smaller ϕ11) should result in both a decrease in r1 and c1.
This means that a lower predation rate, which is beneficial for the
prey, comes at the cost of lower prey growth rates. Lower pre-
dation rates are bad for the predators and are compensated by

lower mortality rates. Thus with X1 =

(
x1
y1

)
, Eq. 1 can be written

as
d

dt
X1 =F1(X1,α1,β1). [8]

In this paper, the strategies (i.e., the ecological parameters under
evolution) do not depend on X1 or time t .

In the next step, we extend the model to include mutants. Let
x1 and y1 denote the original prey and predator populations,
respectively, and x2 and y2 denote the corresponding mutant
populations. The extended mode then takes the form

dx1
dt

= x1 (f1(x1 + x2)− y1ϕ11(x1 + x2)− y2ϕ12(x1 + x2)),

[9a]
dy1
dt

= y1 (−c1 + kx1ϕ11(x1 + x2) + kx2ϕ21(x1 + x2)), [9b]

dx2
dt

= x2 (f2(x1 + x2)− y1ϕ21(x1 + x2)− y2ϕ22(x1 + x2)),

[9c]
dy2
dt

= y2 (−c2 + kx1ϕ12(x1 + x2) + kx2ϕ22(x1 + x2)), [9d]

where for i , j = 1, 2,

ϕij (x ) =
a

bij + x
, [10]

fi(x ) = ri
(

1− x

K

)
, [11]

and ci , k , a, bij , ri ,K are positive constants. Note that the rate of
predation of yj upon xi is xiyjϕij (x1 + x2). Also note that

ϕ′ij (x ) =− 1

a
ϕ2

ij (x ),

ϕij (x )−ϕkl(x ) =
1

a
(bkl − bij )ϕij (x )ϕkl(x ),

0≤ϕij (x )≤ a/bij and 0≤ xϕij (x )≤ a when x ≥ 0, and 0≤
(xϕij (x ))′≤ a/bij .
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We now introduce evolutionary strategies (α1,β1), (α2,β2)
for (x1, y1), (x2, y2), respectively. As before, we assume for i =
1, 2 that

ri = r(αi), ci = c(βi), and bij = b(αi ,βj ), [12]

and require that

dri
dαi
≤ 0,

dci
dβi
≤ 0,

∂bij
∂αi

> 0, and
∂bij
∂βj

> 0. [13]

Note that the dependence in i , j is through αi and βj only and
that the mutants and original populations satisfy the same model
equations, only for different values of the strategies. With X2 =(
x2
y2

)
, Eq. 9 can then be rewritten as follows:

d

dt

(
X1

X2

)
=M (X1,X2,α1,β1,α2,β2), [14]

where M denotes the right-hand side of Eq. 9.
Remark 3.1:

(i) If X̂1 is an equilibrium point (stable or not) for Eq. 8, then
(X̂1, 0) is an equilibrium point for Eq. 14 and

M (X̂1, 0,α1,β1,α2,β2) =

(
F1(X̂1,α1,β1)

0

)
.

(ii) If γ(t) is a periodic solution (a limit cycle) for Eq. 8, then
(γ(t), 0) is a periodic solution for Eq. 14 and

M (γ(t), 0,α1,β1,α2,β2) =

(
F1(γ(t),α1,β1)

0

)
.

(iii) If (α1,β1) = (α2,β2), then by Eq. 12, ri = r(α1), ci = c(β1),
and bij = b(α1,β1) for i , j = 1, 2, and hence (x1 + x2, y1 +
y2) is a solution to (the nonlinear) Eq. 8. This is consistent
since now there are no mutants, and the populations should
then be determined by Eq. 8 alone.

An ESS corresponds to the situation where the original popu-
lation (x1, y1) cannot be invaded by mutants (x2, y2) when only
small evolutionary deviations are allowed.
Definition 3.2: Assume we are given an asymptotically sta-
ble equilibrium point (limit cycle) X̂1 to Eq. 8 with corre-
sponding constant strategy (α̂, β̂). Then (α̂, β̂) is called an
ESS if (X1,X2) = (X̂1, 0) is an asymptotically stable equilib-
rium point (limit cycle) to Eq. 14 for all constant strategies
(α̂, β̂,α2,β2) 6= (α̂, β̂, α̂, β̂) sufficiently close to (α̂, β̂, α̂, β̂).

An ESS has the Nash equilibrium-like property that if (α̂, β̂)

does not change, mutants with strategy (α2,β2) 6= (α̂, β̂) will
never survive in the long run.
Remark 3.3: The ESS, as defined in Definition 3.2, is stable
against mutations in one or both populations at the same time.
Single population mutations are realized simply by letting the
other mutant population be zero over time.

The issue of time scales for the ecological and evolutionary
processes is important here (see, e.g., Carroll et al.) (43). The
approach of Reed and Stenseth (31) emphasizes the ecological
interaction between the common wild-type strategy (with its cor-
responding phenotype) and the rare mutant strategy (with its

corresponding phenotype). If the mutant strategy cannot (eco-
logically) invade the wild-type ecological system, there will be
evolutionary stability (here in the form of ESS). If the mutant
strategy can invade the wild-type ecological system, it will even-
tually change into a new one. The result will depend upon many
features of the different populations—issues that are beyond
our current discussion but are essentially addressed by Dercole
et al. (44), Dercole and Rinaldi (45), Doebeli (46), and Cortez
and Weitz (26). This all refers to ecological processes and time
scales. The overall question being addressed in this contribution
is under which conditions will we have evolutionary stability in
ecologically varying (periodically fluctuating) systems.

The evolutionary processes and time scales enter in relation to
how frequent new mutant strategies appear in the two popula-
tions (through the process of mutation and/or invasions)—issues
outside of our current discussion. The discussion by Khibnik and
Kondrashov (47) are relevant here.

4. Equilibrium Points, Stability, and ESS
SI Appendix, Eq. 1 has three equilibrium points: (0, 0), (K , 0),
and (x̂ , ŷ), where

ϕ11(x̂ )x̂ =
c1
k

, [15a]

ŷ =
f1(x̂ )

ϕ11(x̂ )
=

k

c1
f1(x̂ )x̂ . [15b]

Theorem 2.1 states that the equilibrium point (x̂ , ŷ) is asymptot-
ically stable provided σ= ak

c1
> 1 and x̂ <K < b11 + 2x̂ , making

the eigenvalues λ1,λ2 for Eq. 1 negative. These eigenvalues are
also eigenvalues of the full system Eq. 9.

We show in SI Appendix that the eigenvalues λ3 and λ4 for the
Jacobi matrix dM of the full system Eq. 9 are

λ3 = f̂2− ϕ̂21ŷ , [15]

λ4 =−c2 + c1
ϕ̂12

ϕ̂11
. [16]

When λ1, . . . ,λ4 are negative at (x̂ , ŷ , 0, 0), then this point is an
asymptotically stable equilibrium point for the full system Eq. 14.
We summarize this discussion in the following result.

Lemma 4.1. The equilibrium point (x̂ , ŷ , 0, 0) is asymptotically
stable if σ= ak/c1> 1, x̂ <K < b11 + 2x̂ ,

r2(b21 + x̂ )< r1(b11 + x̂ ), and x̂ (ak − c2)< c2b12.

See SI Appendix, Lemma 9.5 and below in SI Appendix for a full
proof. From this result and our definition of an ESS, we find the
following conditions that guarantee an ESS when the system has
a stable equilibrium point as the global attractor or omega limit
point. In other words, at this ESS the original populations are
nearly constant after some time.

Theorem 4.2 (Conditions for ESS—Equilibrium Point Case).
Assume Eq. 12. A constant evolutionary strategy (α̂, β̂) is an ESS
for Eq. 14 if

(i) σ= ak

c(β̂)
> 1,

(ii) x̂ <K < b(α̂, β̂) + 2x̂ ,
(iii) the function e1(α2) = r(α2)(1− x̂

K
)(b(α2, β̂) + x̂ ) has a

strict local maximum at the point α2 = α̂,
(iv) the function e2(β2) = c(β2)b(α̂,β2)(ka − c(β2))−1 has a

strict local minimum at the point β2 = β̂.

Proof: Note that by the definition of x̂ , the second inequality in
Lemma 4.1 can be written as c1b11/(ak − c1)< c2b12/(ak − c2)
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Fig. 2. The function r(α).

when ak − c2> 0. The result then follows from Eq. 12, the
definition of an ESS, and Lemma 4.1.

Now, we consider an example where b, r , and c are given as
bilinear, quadratic, and rational functions, respectively, of α and
β. In this case, we use Theorem 4.2 to find the values of the ESS.
We also check that Eq. 13 is satisfied near these ESSs.
Example 4.3: Assume b(α,β) =Bαβ, c(β) = ak(C1(β−β0)2 +
C2)/

(
1 +C1(β−β0)2 +C2

)
, and r(α) =R(α−α0)2 for pos-

itive constants B ,C1,C2,R,α0,β0. Then, the conditions of
Theorem 4.2 are satisfied for (α̂, β̂), where

α̂=
ak − c(β̂)

3ak − c(β̂)
α0,

β̂=
1

3

(
2β0 +

(
β2
0 −

3C2

C1

)1/2)
,

under the conditions

β2
0 >

3C2

C1
,

1<
K

B α̂β̂

(
ak

c(β̂)
− 1

)
< 1 +

ak

c(β̂)
.

Note that α̂∈ (0,α0) and β̂ ∈ (0,β0). We conclude that (α̂, β̂) is
an ESS for Eq. 14. From a direct calculation, it now follows that

dr

dα
(α̂)< 0,

dc

dβ
(β̂)< 0,

d2r

dα2
(α̂)> 0, and

d2c

dβ2
(β̂)> 0.

In other words, the natural relations Eq. 13 hold at the ESS, and
the functions r and c are convex decreasing at the ESS (Figs. 2
and 3).

Note that we need C2> 0. If C2 = 0, then β̂=β0, c(β̂) = 0, and
dc
dβ

(β̂) = 0. However, this is unrealistic since the predator mortal-
ity rate constant c must be strictly positive. Eq. 13 is also violated.
See SI Appendix, Remark 9.7 for further computations on this
example.

Biologically, this example may be interpreted as follows. An
ESS will exist when the evolutionary strategies α1 and β1 are
linked, respectively, to the logistic growth rate constant r for
the prey and the mortality rate constant c for the predator, in a

decreasing convex fashion, while at the same time, the predation
half-loading constant b is bilinearly increasing.

5. Limit Cycles, Stability, and ESS
We now find conditions for when there exist (asymptotically)
stable limit-cycle solutions of Eq. 9 with the two last compo-
nents x2 and y2 equal to 0. Thereafter, we will look at the
parameter dependent system Eq. 14 and identify ESSs. When
x2 and y2 are identically 0, our model reduces to Eq. 1. To
prove the existence of a limit cycle inside the first quadrant,
both the position and the stability of the three equilibrium points
(0, 0), (K , 0), and (x̂ , ŷ) play an essential role. If there exists a
limit cycle inside the first quadrant, it must surround at least
one equilibrium point. In our case it must surround (x̂ , ŷ),
which lies in the first quadrant by Theorem 2.1 if we assume
that σ1 = ak

c1
> 1. By the same theorem, it follows that (x̂ , ŷ)

is a stable node or spiral if K < b11 + 2x̂ and all phase paths
inside the first quadrant end up in (x̂ , ŷ). In this case there
cannot exist a limit cycle. If, on the other hand, K > b11 + 2x̂ ,
then there exists at least one limit cycle surrounding (x̂ , ŷ). To
establish the existence of an asymptotically stable limit cycle is
much harder than establishing the existence of an asymptotically
stable equilibrium point, but the main ideas behind are quite
similar.

In ref. 37, it has been shown that every limit cycle surround-
ing (x̂ , ŷ) is asymptotically stable. As an immediate consequence
it then follows that there is at most one limit cycle in the first
quadrant, since an asymptotically stable limit cycle cannot be
surrounded by another asymptotically stable limit cycle. The
key ingredient in the argument is the following theorem, which
is taken from ref. 48 (Corollary, p. 216) and adjusted to our
notation and assumptions.

Theorem 5.1. Let γ(t) = (x (t), y(t)) be a periodic solution of Eq.
1 of period T , and assume that the right-hand side of Eq. 1, F1, is
continuously differentiable. Then, γ(t) is an (asymptotically) stable
limit cycle if ∫ T

0

∇·F1(γ(s))ds < 0. [17]

Remark 5.2: The condition in Eq. 17 in Theorem 5.1 plays a sim-
ilar role for limit cycles in R2 as checking the eigenvalues to
determine the stability of equilibrium points. It is derived by a
topological argument that makes it possible to compute the sign
of the generalized eigenvalues for the limit cycle of Eq. 1.

Fig. 3. The function c(β). Note that C2 → 0 implies β̂→ β0.
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In our case, this condition, which has been checked in ref. 37,
reads,∫ T

0

x (s)
(
f ′1(x (s))− y(s)ϕ′11(x (s))

)
ds

=

∫ T

0

x (s)

(
f ′1(x (s)) +

1

a
ϕ11(x (s))f1(x (s))

)
ds

−
∫ T

0

1

a
ϕ11(x (s))x ′(s)ds

=

∫ T

0

x (s)(f ′1(x (s)) +
1

a
ϕ11(x (s))f1(x (s)))ds < 0. [18]

Here, we used that ϕ′11 =−ϕ
2
11
a

and xyϕ11(x ) = xf1(x )− x ′.
Moreover, the last integral in the second line equals Φ(x (T ))−
Φ(x (0)) for a Φ satisfying Φ′=ϕ11 and hence is 0 by the
periodicity of x .

Based on the discussion in this section for Eq. 1, we are
going to identify conditions under which the solution Γ(t) =
(x (t), y(t), 0, 0) is an asymptotically stable limit cycle for Eq. 9.
To be more precise, we show strong Lyapunov stability for Γ(t)
by looking at it as a perturbation of the asymptotically stable limit
cycle γ(t) for Eq. 1. We follow the same strategy as is used for
proving the stability of equilibrium points for a nonlinear system,
i.e., one studies first the stability of the linearized system and
then uses the variation of parameter formula and Floquet-type
arguments to conclude for the nonlinear system.

We have the following result.

Lemma 5.3. Assume σ= ak/c1> 1 and b11 + 2x̂ <K . Then, the
limit cycle Γ(t) = (x (t), y(t), 0, 0) will be asymptotically stable if∫ T

0

1

b21 + x (s)

(
1− x (s)

K

)
(r2 (b21 + x (s))

−r1 (b11 + x (s)))ds < 0,

and ∫ T

0

ak − c2
b12 + x (s)

(
x (s)− c2b12

ak − c2

)
ds < 0.

The proof is given in SI Appendix. We then show for which
choices of parameters we can have an ESS. By Definition 3.2 and
the discussion in this section, we have the following conditions.

Theorem 5.4 (Conditions for ESS—The Limit-Cycle Case). Assume
Eq. 12. A constant strategy (α̂, β̂) is an ESS for Eq. 14 if

(i) σ= ak

c(β̂)
> 1,

(ii) b(α̂, β̂) + 2x̂ <K ,
(iii) the function

e1(α2) =
1

T

∫ T

0

1

b(α2, β̂) + x (s)

(
1− x (s)

K

)
×
(
r(α2)

(
b(α2, β̂) + x (s)

)
−r(α̂)

(
b(α̂, β̂) + x (s)

))
ds

has a strict local maximum at the point α2 = α̂, and at the same
time

(iv) the function

e2(β2) =
1

T

∫ T

0

ak − c(β2)

b(α̂,β2) + x (s)

(
x (s)− c(β2)b(α̂,β2)

ak − c(β2)

)
ds

has a strict local maximum at the point β2 = β̂.

Proof: The proof follows from Lemma 5.3 and the fact that
e1(α̂) = 0 = e1(β̂) by definition.

With this result, we have given conditions that will ensure
the existence of an ESS in a periodically fluctuating population
(exhibiting a limit cycle). This is an important contribution of this
paper. With empirically derived functions r(α), c(β), b(α,β), we
can now give the ESS values of α and β. It is, however, beyond
the current contribution to do so.

6. Red Queen Type of Continued Evolution or Stasis
Our analysis is related to the issue of Red Queen type of con-
tinued evolutionary evolution of stasis (cf. Van Valen) (49); see
also Schaffer and Rosenzweig (50) and Rosenzweig et al. (51).
In Example 4.3, we have assumed that both the predator and
the prey have equal influence on the determination of the over-
all half-saturation parameter b. For this system, we find that
evolution will lead to an ESS without evolutionarily fluctuating
dynamics. If the two interacting species (the predator and prey)
had asymmetric influence on the overall half-saturation constant,
this might not be the case [see, e.g., Nordbotten and Stenseth
(52)]. A further analysis of this would indeed be worthwhile. The
contributions by Dercole and coworkers (44, 45), Doebeli (46),
and Cortez and Weitz (26) are all important stepping stones in
such further analysis.

7. Discussion
We establish conditions that guarantee stability of equilibrium
solutions of the extended ecological model. This model has four
equations, and, for periodic solutions, such a result appears to be
previously undescribed. We prove full Lyapunov stability of the
periodic solutions. The proof relies on an adaptation of classical
linearization arguments, variation of parameter formulas, as well
as Floquet-type analysis. The approach of Reed and Stenseth in
ref. 31 to evolutionary games and ESS is extended to include fluc-
tuating populations. ESSs are then shown to occur at values of
the evolutionary strategies that are local optima of certain func-
tions of the model parameters. We identify these functions and
express them in a similar way for both stable and fluctuating pop-
ulations. A concrete example to illustrate our results is given.
Mathematically, these results are obtained from the abovemen-
tioned stability results, and our characterizations of ESSs seem to
be previously undescribed and could be of independent interest
in game theory.

The concept of ESSs was developed with a stable ecological
setting in mind. However, typically ecological systems vary in
time, often with more or less periodic fluctuations. Predator–
prey systems are such examples. If we are to link ecology and
evolution, we must allow for varying ecological population fluc-
tuations. With this contribution, we have extended the ESS
concept to be applicable for periodically fluctuating ecological
systems.

The application of ESS to ecology is similar to the “adap-
tive dynamics” approach in that it models the time evolution
of populations. See Dieckmann et al. (53); see also Kang and
Fewell (54). The “adaptive dynamics” approach focuses on how
strategies evolved under changing ecological conditions. The
ESS approach, on the other hand, focuses on finding the unbeat-
able fixed strategy within a population. To our knowledge, it has
not been shown before that such unbeatable ESS strategies do
exist when the ecological system exhibits a periodically fluctuat-
ing dynamics. With this contribution, we derive the mathematical
conditions for such fixed ESSs to exist when the ecological system
exhibits limit cycle-type dynamics.

By extending the approach presented by Reed and Stenseth
(31), it furthermore becomes clear that evolution occurs through
the ecological process of a variant type being able to invade an
ecological system (or population) when it is at its stable state—be
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this a stable equilibrium or a limit cycle. Whenever such ecolog-
ical invasion occurs (i.e., the wild type is not an ESS), evolution
will occur—and the ecology of the system changes. This empha-
sizes the interlinkages between ecology and evolution: it is a
matter of realizing both that “nothing in biology makes sense
except in the light of evolution” (55) as well as “very little in
evolution makes sense except in the light of ecology” (56).

Data Availability. There are no data underlying this work.
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