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Abstract. As the existing building stock is responsible for high energy use and greenhouse
gas emissions, energy upgrading projects have been acknowledged as crucial for the energy
performance improvement of existing buildings, as well as for environment preservation and
rational use of resources. The aim of this article is to investigate the definition of a nearly zero-
energy building (nZEB) level for the energy upgrading of single-family houses. In particular,
the findings from a research project, i.e., “energy upgrading of wooden dwellings to nearly
zero energy level” (OPPTRE), are presented and discussed. A core task of OPPTRE was to
carry out an architectural competition, where six interdisciplinary teams proposed innovative
solutions for upgrading to a nZEB level representative Norwegian wooden single-family houses,
from the period 1950-1990. The upgrading measures proposed in the OPPTRE competition
focused on several aspects, such as architectural quality, indoor thermal environment, energy
use/generation, carbon footprint, and cost effectiveness. General principles for a nZEB level
achievement in upgrading projects are discussed in this article, as deducted from the evaluation
of the results of the OPPTRE architectural competition. In particular, the focus is on examining
the solutions proposed for upgrading building envelope and technical building systems. Energy
use, energy generation, investment costs, and CO2 emissions are examined across the various
OPPTRE projects, striving to define a trade-off among different parameters for the achievement
of a nZEB level. The findings of this paper support the creation of knowledge in nearly zero-
energy upgrading of wooden single-family houses, aiming to a more systematic definition of a
nZEB level in such projects. This can be relevant for several stakeholders, such as governmental
institutions, homeowners, builders, and private or public decision makers, towards the market
uptake of nZEB upgrading by 2030.

1. Introduction
Existing buildings are highly responsible for energy use and green-house gas (GHG) emissions
[1]. The energy upgrading of the existing building stock is therefore needed to reduce the
environmental impacts of buildings and to achieve positive economic and social effects, such
as the reduction of future energy-related costs and the improvement in the indoor thermal
environment. Energy upgrading projects imply the use of energy-efficiency measures for the
building envelope and/or the technical building systems. To achieve the energy and emission
reduction targets, the concept of zero-energy building (ZEB) was explored in Europe aiming to
buildings with a very high energy performance and a very low or nearly zero amount of delivered
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energy1 [2]. Norway has lately strengthened the target of reducing GHG emissions of at least
50% by 2030, compared with the 1990 level [3]; this brings focus on the energy upgrading of
existing buildings. The Norwegian dwelling stock is primarily made of wooden single-family
houses, which were built in the period 1950-1990 and are now reaching the phase when major
upgrading is needed [4]. However, only half of the upgrading projects of Norwegian existing
buildings also performs an energy upgrading; one reason for this is an insufficient energy advice
[5].

One of the main challenges in the implementation of deep energy upgrading projects is the
lack of standardised guidelines and strategies. Therefore, the main objective of this article
is to discuss the definition of a nearly zero-energy building (nZEB) level for the upgrading of
Norwegian single-family houses, by presenting and reviewing the findings of a Norwegian research
project, i.e., “energy upgrading of wooden dwellings to nearly zero energy level” (OPPTRE).
The focus in this article is on examining heat losses, energy use, energy generation, investment
costs, and CO2 emissions across the various projects in OPPTRE, striving to define a trade-off
among different parameters for the achievement of a nZEB level. The remainder of the paper is
organised as follows. Subsection 1.1 presents a literature review of energy upgrading strategies
towards a nZEB level in Europe and Norway. In section 2, the OPPTRE research project is
introduced, together with the case study buildings. Then, in section 3, the main findings are
presented and discussed. Finally, conclusions and future outlooks are drawn in section 4.

1.1. Building energy upgrading to nZEB level: state of the art
In Europe, the energy performance of buildings directive (EPBD) recast [2] and the amending
Directive 2018/844 [6] stated that each European country should establish a long-term renovation
strategy to support the upgrading of existing buildings towards a highly energy efficient and
decarbonised building stock by 2050. This would also facilitate the cost-effective transformation
of existing buildings into nZEBs.

Policies and measures needed to be strengthened by all countries to successfully support
an economic and energy efficient upgrading of existing buildings. The integration of cost-
optimal energy efficiency and nZEB concepts was investigated in several research works, such
as [7, 8]. The main goal of these studies was to support the development of national nZEB
definitions in building upgrading, under the framework of the EPBD recast. The importance of
an overall performance assessment in nearly zero-energy upgrading projects was also recognised
as a key step for a broader market uptake of nZEBs towards 2030, as pointed out in [9]. The
latter concluded that the market success for zero-energy renovation of dwellings depends on
the homeowners’ priorities for improved home qualities, based both on quantitative indicators
for environmental and economic performance, and on qualitative indicators for social aspects
and usability. Furthermore, as demonstrated in [10], the whole life cycle of buildings should be
considered when upgrading towards the zero-energy level, to achieve a balance of the operational
and embodied energy. In nZEBs, the energy use during the operational phase generally assumes
less significance than the embodied energy during the construction phase, which instead becomes
particularly relevant; this is also evident in ambitious energy upgrading projects.

The nZEB definition given in the EPBD recast allowed different European states to freely
define some aspects, such as type and period of energy balance, energy uses, renewable
energy sources, normalisation and conversion factors. This led to different energy requirements
around Europe for nZEB levels in new and existing buildings [11]. An attempt of
benchmarking the Nordic countries’ nZEB requirements against the European Commission
(EC)’s recommendations is shown in [12]. The results illustrated that the national values could

1 Amount of energy delivered to the building without adjustment for any energy loss in the generation,
transmission, and distribution of that energy to the building
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not be directly compared because of differences in primary energy factors, energy flows included,
and input data; therefore, a reference building was needed for the comparison, but only one
Nordic country’s nZEB requirement complied with the EC specifications.

In Norway, Killingland et al. [13] suggested that nZEBs should have an energy use that is
70% lower than the energy requirement in the national building code at that time, calculated as
net delivered energy2. A revised nZEB level definition was provided in [14], where the energy
requirements in the current Norwegian building code (TEK17) [15] were considered, but the
nZEB level was also defined in relation to different building categories. The target value for the
yearly net delivered energy given in [14] for residential buildings was 40 kWh/m2.

2. Methods
To investigate the definition of a nZEB level for the energy upgrading of single-family houses,
the results from the architectural competition in the OPPTRE research project were analysed
and systematised in this article.

2.1. The OPPTRE research project
OPPTRE is a research project (2018-2021) [16] supported by the Research Council of Norway,
a Norwegian government enterprise (Enova), and other partners. The project has also the
goal of proposing a target level for the upgrading of Norwegian single-family houses to nZEBs.
One of the main steps of OPPTRE was an architectural competition among six project
proposals for the energy upgrading of representative Norwegian wooden single-family houses.
Six interdisciplinary teams were involved in the competition, where the focus was on several
aspects, such as architectural quality, building physics, indoor thermal environment, energy use,
energy generation, carbon footprint, and cost-effectiveness.

During the architectural competition two workshops were held, focusing on architectural
and housing quality, energy use, embodied energy in materials, and ventilation solutions.
The six teams could rely on the support of experts in building physics for the choice of the
building envelope measures, and they received a handbook about building practices according
to Norwegian requirements. Furthermore, all project teams were provided with an excel-based
tool for the life cycle assessment (LCA) evaluations, which contained an extensive material
database and a standard analysis layout that allowed an easier comparability of results. The
CO2 emissions were calculated in a 60-year perspective and with the Norwegian electricity mix,
which is characterised by only 25 g CO2 eq./kWh due to the predominant electricity generation
from hydropower. For the energy calculations, the project teams could freely choose the tool to
use; SIMIEN, IDA ICE, and TEK-sjekk [17] were the main programs employed. Almost all the
projects had available data for the measured delivered energy in the previous years. Furthermore,
all the teams made a calculation of the energy demand3 of the existing buildings before the
implementation of the upgrading measures. All the LCA, energy, and cost calculations carried
out by the six project teams were double checked by different experts involved in OPPTRE.

The nZEB goal in the OPPTRE architectural competition included the following main points:

(i) Satisfy the energy requirements of the Norwegian building code, TEK17. According to
TEK17, the total energy demand for single-family houses should not exceed the energy
limit of (100 + 1600/A2) kWh/m2 per year, where A2 expresses the heated floor area of
the house. Note that in OPPTRE, the energy target for the upgraded buildings was less
ambitious than in TEK17 and was set in terms of net delivered energy; therefore, the
energy requirements given in TEK17 for the net energy demand had to be fulfilled by the
net delivered energy.

2 Amount of delivered energy with the deduction of the energy supplied to the building by renewable energy
technologies
3 Electrical and thermal energy needed by the building, without taking into account system losses and conversions
from one energy type to another
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(ii) Comply with the minimum requirements given in TEK17 for building components (i.e., U-
value limits for external walls, windows, roof, and floor on ground/unheated zone) and for
building airtightness. However, exceptions were possible where practical conditions could
be of a hindrance, as for instance in the insulation of the floor against the ground and the
airtightness requirement achievement.

2.2. Systematisation of OPPTRE findings
The OPPTRE architectural competition led to several different findings, but the focus in this
article was on examining the solutions proposed for upgrading the building envelope and the
technical building systems, as well as the energy use/generation, the investment costs, and the
CO2 emissions. Therefore, representative results obtained for the six analysed projects were
assessed and weighed against each other, striving to define a trade-off among different indicators
for the achievement of a nZEB level.

3. Results and discussion
Table 1 shows a summary of general information on the projects, together with the features of
building envelope and technical building systems before and after the upgrading projects, as
provided by the OPPTRE architectural competition teams. Note that the name of each project
includes a reference to the specific geographical location; the dwellings are placed throughout
Norway and are characterised by typical Norwegian climate conditions.

Table 1. Main features of the six OPPTRE projects.

Nesodden 1972 Malvik 1957 Hamar 1963 Malvik 1989 Kristiansand 1972 Sandefjord 1972
Before After Before After Before After Before After Before After Before After

General
information

Heated floor area (m2) 120 142 127 127 175 175 274 278 196 210 192 192
Heated floors (No) 2 2 2 2 2 2 3 3 2 2 2 2
Dry-bulb temperature,
yearly average (◦C)

6.4 5.5 4.3 5.5 7.5 7.1

Building
envelope

U-value
(W/m2/K)

External walls 0.29 0.13 0.44 0.17 0.35 0.14 0.35 0.21 0.58 0.18 0.55 0.27
Roof 0.18 0.09 0.27 0.14 0.12 0.07 0.21 0.18 0.40 0.10 0.11 0.11
Floor on ground,
unheated room

0.23 0.10 1.49 0.21 3.2 0.09 0.24 0.24 1.24 0.23 0.29 0.26

Windows 3.06 0.64 2.80 0.80 2.9 0.90 2.10 0.90 2.61 0.80 2.23 1.20
Airtightness at 50 Pa (h-1) 4 0.3 6 0.3 3 1.8 4 2.5 7 2 4.3 2

Building
systems

Heating system EH EH+WBS EH+FP
EHP, EH,
WBS, FP

EH
EHP, WBS,
EH

HP+EHF HP+EHF EH+FP EH+FP EH
EHP, EH,
WBS

Ventilation system NV CHP NV BMV NV CHP NV BMV NV BMV NV CHP
Renewable energy
generation

20 m2PVs 40 m2PVs 8 m2STs

EH: electric heater; WBS: water-borne system; FP: fireplace; EHP: exhaust heat pump; EHF: electric heating
floor; BMV: balanced mechanical ventilation with heat recovery; NV: natural ventilation; CHP: Compact heat
pump with BMV and EHP; PVs: photovoltaics panels; STs: solar thermal collectors.

The U-values of the building components in the OPPTRE projects satisfied the TEK17 value
limits, with some few exceptions. The airtightness values after the upgrading measures given in
some projects, such as Nesodden 1962 and Malvik 1957, were considered unrealistic. Achieving
such a low airtightness value in this kind of upgrading projects is challenging; a complete sealing
of the existing floor towards basement is, for instance, very difficult to realise especially in
presence of a vertical ventilation shaft.

Figure 1 illustrates the energy use for all the single-family houses, as measured in the last years
and as calculated before and after the upgrading projects. All the proposals showed a significant
improvement in the energy performance after the upgrading project and were generally within
the OPPTRE competition target. The only exception was the ”Malvik 2020” project with the
net delivered energy slightly above the energy target. For almost all the projects, the delivered
energy measured before the upgrade (131-184 kWh/m2 per year) was significantly lower than the
calculated delivered energy (183-356 kWh/m2 per year). This can be explained by the prebound
effect related to the occupant use of the buildings, which can lead to an overestimation of the real
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Figure 1. Energy use for the six OPPTRE projects before and after the energy upgrading.
1 Standardised calculation according to TEK17 parameters, including the use of Oslo climate file.
2 Calculation where realistic parameters were used, including the actual climate files for the project locations.

potential for energy savings. The calculated delivered energy, excluding the energy generated
by photovoltaics (PV), was generally as low as 50-120 kWh/m2 per year. The two projects with
PV panels (PVs) showed a very low net delivered energy, i.e., 16 and 30 kWh/m2 per year.

In Figure 2, the net delivered energy of the six proposals is plotted against the CO2 emissions.

Figure 2. Yearly CO2 emissions vs. yearly net delivered energy in the OPPTRE projects after
the energy upgrading.
The blue circle around New building (nZEB) and New building (TEK17) represents the value uncertainty.

Both the CO2 emissions and the net delivered energy in the OPPTRE projects were lower
than those of a typical new single-family house built according to TEK17. Furthermore, all
the projects had lower CO2 emissions than a new nZEB; however, the net delivered energy of
the proposals was generally higher than that of a new nZEB. This is because a new building
built to the zero-energy level generally provides the use of PVs for the energy generation, but in
OPPTRE, PVs were only adopted in two projects. Furthermore, the LCA results reflected the
different environmental ambitions of the proposals, as for instance in the choice of materials with
very low emissions. The main contribution to CO2 emissions was, in fact, from the material
production and replacement in all the projects. For a new TEK17 building, the total CO2

emissions were calculated as the sum of 8.1 kg CO2 eq. per m2 per year for material production
[18] and approximately 2.8 kg CO2 eq. per m2 per year for the energy use during the operation
phase (25 g CO2 eq./kWh * ca. 110 kWh/m2, where 25 g CO2 eq./kWh refers to the Norwegian
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electricity mix and 110 kWh/m2 is approximately the TEK17 energy limit). Note that the LCA
assessment for the new TEK17 building was simplified and the system limits were not identical
to the OPPTRE projects’ ones; the construction phase was, for example, not included in this
simplified evaluation. Typical values for delivered energy in a new TEK17 building were instead
defined based on Norwegian energy label statistics [19]. For a new nZEB building, representative
data for both CO2 emissions and delivered energy values were deduced from [20].

Figure 3 illustrates the investment costs for the existing building envelope upgrading,
expressed in Norwegian kroner (NOK4) per heated floor area, plotted against the difference
between the specific heat loss before and after implementing the upgrading measures. Note that
the heat loss was evaluated through external walls, windows, roof, and floor on ground/unheated
zone and was normalized by the building heated floor area. As shown in Figure 3, the ∆ heat
loss was not directly proportional to the investment costs for the existing building envelope
measures in the OPPTRE projects. Malvik 1957 was, for instance, the project with the highest
investment costs for building envelope upgrading, but with an average value of the ∆ heat loss
among the other projects. This was because Malvik 1957 had relatively high heat loss in the
current condition and, even implementing costly measures, the total heat loss remained relatively
high. Note that the original conditions of the analysed houses were not completely comparable,
and this led to the choice of different measure and costs for the building envelope upgrading.

Figure 3. Investment costs for building envelope upgrading vs. ∆ specific heat loss in the
OPPTRE projects.

Figure 4 shows the net delivered energy plotted against both the investment costs for
upgrading the existing building systems (a) and the investment costs for upgrading the existing
building envelope (b). The graph in Figure 4 (a) points out that, in all the projects, the higher
the investment for upgrading the existing building systems, the lower the net delivered energy.
Hamar 1963 and Nesodden 1962 achieved the lowest net delivered energy with the highest
investment costs due to the PVs. However, higher investment costs for the building envelope
renovation were not necessarily associated to lower delivered energy, as shown in Figure 4 (b).
Furthermore, the investment costs for building envelope upgrading were generally higher than
those for technical building systems, but there was no inverse proportionality between these
two cost categories, i.e. higher costs for the building envelope did not lead to lower costs for
the building systems. The teams focused separately on building envelope and building systems
to achieve a total energy use reduction; therefore, a trade-off between different appropriate
measures on the building envelope and the building systems was generally not pursued.

4 1 NOK=0.098 EUR at the time of writing
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(a) (b)

Figure 4. Yearly net delivered energy in the OPPTRE projects vs.: (a) investment costs for
upgrading the existing building system; (b) investment costs for upgrading the existing building
envelope.

Figure 5 illustrates the energy balance for the six projects, in terms of yearly energy use and
energy generated. Energy use is meant as the energy demand, considering also the efficiency of
the technical building systems. The blue area in the graph of Figure 5 denotes a nZEB based on
the definition of the OPPTRE competition. Almost all the projects fall within the nZEB area
as their energy use is lower than the limit value; however, Hamar 1963, Nesodden 1962, and
Kristiansand 1972 are not placed on the edge of the blue area since they also generate energy.

Figure 5. Energy balance for the OPPTRE projects in terms of energy use and energy
generated.

4. Conclusions
This article investigated the definition of a nearly zero-energy building (nZEB) level for
the energy upgrading of Norwegian wooden dwellings. The findings from an architectural
competition in the research project “energy upgrading of wooden dwellings to nearly zero energy
level (OPPTRE)” were systematised and discussed.

The results of the OPPTRE architectural competition showed that a substantial reduction
of the net delivered energy was feasible through specific upgrading measures on the building
envelope and/or the building systems. In particular, the measures on the latter resulted to be
even more economically viable than those on the building envelope in all the projects. However,
building materials contributed most to the total CO2 emissions in all the projects, so the choice of
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materials to employ in the upgrading measures should be carefully thought from different points
of view. The architectural competition also showed that the teams considered energy measures
on the building envelope and systems separately and not in a holistic way, as proposed by the
EPBD methodology. As regards the building envelope, almost all the building components in
the OPPTRE projects were upgraded to a level fulfilling the Norwegian building code (TEK17)’s
requirements. However, the addition of insulation was not always feasible, especially for the floor
on ground/unheated room, leading to higher building heat losses and airtightness. As deduced
from OPPTRE, upgrading single-family house to a high-energy efficiency level can be more
economically and environmentally feasible than building a new house according to the current
Norwegian building code. CO2 emissions and net delivered energy in all the OPPTRE proposals
were, in fact, lower than those of a new building built according to TEK17. However, a more
detailed analysis that also includes the demolition and waste handling phases should be carried
out for an overall assessment.

The findings of this article contribute to the creation of knowledge for nearly zero-energy
upgrading of dwellings, aiming to a more systematic definition of a nZEB level in such projects.
The results of the article can be relevant for several stakeholders, including private and public
decision makers, such as governmental institutions, homeowners, and builders, towards the
market uptake of nZEB upgrading projects by 2030.
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