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Summary

Autonomous systems extend upon human capabilities and can be equipped with
superhuman attributes in terms of durability, strength, and perception to name a
few, and can provide numerous benefits such as superior efficiency, accuracy and
endurance, and the ability to explore dangerous environments. Delivering on this
potential requires a control system that can skillfully operate the autonomous sys-
tem to complete its objectives. A static control system must be carefully designed
to handle any situation that might arise. This motivates the introduction of learn-
ing in the control system since a learning system can learn from its experiences to
manage novel unexpected events and changes in its operating environment.

Traditional formal control techniques are typically designed offline assuming ex-
act knowledge of the dynamics of the system to be controlled. These knowledge-
based approaches have the important benefit that the stability properties of the
control algorithm can be analyzed and certified, such that one can have confidence
in the control system’s ability to safely operate the controlled system. However,
linear control techniques applied to nonlinear systems (which all real systems are
to some extent) lead to increasingly conservative and therefore suboptimal con-
trol performance the more nonlinear the controlled system is. Nonlinear control
techniques often have considerable online computational complexity, which makes
them infeasible for systems with fast dynamics and for embedded control applica-
tions where computational power and energy are limited resources.

Reinforcement learning is a framework for developing self-optimizing controllers,
that learn to improve its operation through trial-and-error and adjusting its beha-
viour based on the observed outcomes of its actions. In general, reinforcement
learning requires no knowledge about the dynamics of the controlled system, can
learn to operate arbitrarily nonlinear systems, and its online operation can be de-
signed to be highly computationally efficient. It is therefore a valuable tool for
control systems where the dynamics are fast, nonlinear, or uncertain, and difficult
to model. A central challenge of reinforcement learning control on the other hand
is that its behaviour is complex and difficult to analyze, and it has no inherent
support for specification of operating constraints.

An approach to remedy these challenges for reinforcement learning control is to
combine its learning capabilities with an existing trusted control technique. In Part
I of this thesis, we employ reinforcement learning for optimization of the model
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iv Summary

predictive control (MPC) scheme, a powerful yet complex control technique. We
propose the novel idea of optimizing its meta-parameters, that is, parameters af-
fecting the structure of the control problem the MPC solves as opposed to internal
parameters affecting the solution to a given problem. In particular, we optimize the
meta-parameters of when to compute the MPC and with what prediction horizon,
and show that by intelligently selecting the conditions under which it is computed,
the control performance and computational complexity can be simultaneously im-
proved. We subsequently present a framework in which these meta-parameters as
well as any other internal parameter of the MPC can be jointly optimized with a
configurable objective. Finally, Part I of the thesis also considers how an existing
controller can be used to accelerate the learning process of a learning controller.

Control of unmanned aerial vehicles (UAVs) is precisely such an embedded ap-
plication with limited computational- and energy-resources, and moreover where
the dynamics are highly nonlinear and affected by significant disturbances such
as turbulence. In Part II of this thesis, we propose the novel idea of employ-
ing deep reinforcement learning (DRL) for low-level control of fixed-wing UAVs,
a UAV-design that exhibit superior range and payload capacity compared to the
popular multirotor drone design. We present a method capable of learning flight-
worthy DRL controllers with as little as 3 minutes of interaction with the con-
trolled system, and demonstrate through field experiments with the real UAV that
the DRL controller is competitive with the state-of-the-art existing autopilot, gen-
erating smooth responses in the controlled states and in the control signals to the
actuators.
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1

Introduction

1.1 Background and Motivation

Human history has been marked by continual development and introduction of
new technologies, which allow people to accomplish their tasks more efficiently,
freeing them up to focus on more productive objectives. The emergence of agricul-
ture enabled the creation of permanent settlements and domestication of livestock.
When combined with technological innovations such as the animal-driven plough,
this eventually led to a significant food surplus such that only a fraction of the com-
munity needed to dedicate their time to food acquisition, and people were now free
to specialize into other tasks. The ultimate technology in this sense is automation,
as it has the potential to entirely eliminate the need for human participation in the
process loop. Today, automation is ubiquitous and rapidly expanding; factories
are increasingly automatized with robotic assembly lines, nearly every household
contains appliances such as washing machines and dishwashers, and companies
are starting to experiment with automatic last-mile delivery using unmanned aerial
vehicles (UAVs). Tomorrow, the automotive industry’s push towards self-driving
cars has revolutionized transportation. However, as pointed out by Lisanne Bain-
bridge in her article ”Ironies of Automation” [14], the more efficient the automated
system is, the more crucial the role of the human operator. As the complexity and
scope of automated systems grows, the consequences of their errors and the diffi-
culty in correcting the errors is ever increasing as well. Therefore, I would argue,
that a truly autonomous system needs to be antifragile [177].

An antifragile system is one that is not merely resilient to stressors and volatility
but rather improves in the face of unexpected events and stressors. The evolution-
ary nature of biological life exhibits exactly these properties. A process starting
from humble single-cell origins with seemingly no intelligent driving force behind
it has developed an unimaginable richness and complexity, all while surviving
countless catastrophic events such as asteroid impacts, volcanic eruptions and ice
ages. Random mutations of the genome and a ruthless survival-of-the-fittest nat-
ural selection process together constitute an antifragile system that can continually

1



2 Introduction

adapt to and increasingly master its environment, as opposed to a perfectly engin-
eered robust system that would need to envision and account for every possible
event in order to ensure its continued operation. One way to enable antifragility
for autonomous systems is to equip them with the capability of learning. For a
learning system, unexpected events and uncertainty constitute information and an
opportunity to improve itself for the future. One might object that the evolutionary
process has taken billions of years to develop intelligent behaviour, however, con-
sider then the faster replicating viruses that mutate and develop novel strains that
are continuously able to circumvent the defense systems of their targets. Thus, for
a machine learning system, the rate at which it can be improved even through such
a simple learning paradigm as evolution is simply a question of compute power
(i.e. replication speed), which has been increasing exponentially the last decades.

Machine learning is the study of how computer algorithms can incorporate and
learn from new information in order to improve its operation. It is broadly cat-
egorized into three types: 1) supervised learning, for which the objective is to
learn a mapping between known input-output pairs, 2) reinforcement learning
(RL), which is concerned with learning optimal sequential decision making for
dynamical systems, and 3) unsupervised learning, which involves identifying pat-
terns and structure in data. Of these, the two former are the most applicable forms
of machine learning for control of autonomous systems, and they can enter into the
control-loop of autonomous systems shown in Figure 1.1 in several ways [138]. In
this depiction of the traditional control-loop, the plant block is the controlled sys-
tem whose state is observed (or estimated) by the internal observation block. This
observation in conjunction with an observation of the external environment of the
plant is used by the kinematic and dynamic controllers to regulate the system. The
kinematic control block decides reference signals for the dynamic control block
by comparing the state of the plant to the desired state. The dynamic control block
corresponds to the lowest-level controller and decides how the actuators of the
plant are used to regulate the controlled states of the plant to the reference signals.

Figure 1.1: The control-loop consists of several blocks relating to estimation and control,
in which learning can enter in numerous ways.

Supervised learning can be used as a tool for system identification, that is, to learn
a model of the plant’s dynamics. The learned model can then be employed in a



1.1. Background and Motivation 3

number of ways, e.g. to simulate the plant block in order to facilitate learning or
tuning of other blocks in the control loop, it can be used for estimation of system
states [181, 50], or it can be used in the control blocks as is done in [107] where the
learned dynamics model is employed in a model predictive control (MPC) frame-
work. It should be noted that combining data-driven system identification and
control is a well established field within control theory known as adaptive control
[120]. However, while adaptive control typically considers parametric uncertainty
in the model, learning-based control models typically employ machine learning
for estimation of unknown parameters or unknown functions of the system model
[181, 162]. Supervised learning can also be used for kinematic control where on-
line analysis of the environment is complex, e.g. because the observation of the
external environment consists of camera images [68]. Finally, it can also be used
directly in the dynamic control block by learning to mimic an existing controller
[203], the learned controller can then be superior in terms of lower online compu-
tational complexity or not requiring access to hidden state information.

When it comes to developing novel control laws and control strategies the most
relevant machine learning technique is RL, which is applicable when one can for-
mulate a feedback signal describing the utility of the state of the plant, called the
reward function. RL is a framework for self-optimization of a policy (analogous to
a controller in control engineering terminology) that maps states to actions, using
a trial-and-error process and the evaluative feedback received in terms of rewards
and state transitions. This basic RL problem has due to its generality been studied
in many different contexts and under many different names. Its roots can be traced
back to the 1950s and ’60s in the fields of artificial intelligence, optimal control,
and dynamic programming. Following the success of deep learning, RL has seen a
resurgence in interest with the advent of deep reinforcement learning (DRL) which
combines RL algorithms with neural networks (NNs) as function approximators.
In 2013, Mnih et al. [137] demonstrated that DRL could learn to play a wide range
of Atari video games with minimal prior knowledge, exceeding the performance of
contemporary methods and even human players. This method operated in discrete
action spaces, and as such was not immediately applicable to continuous control
problems. This was rectified in 2015 when Lillicrap et al. [117] presented the deep
deterministic policy gradients (DDPG) algorithm allowing the potential of DRL to
be harnessed for continuous control.

As is the case for supervised learning, RL can be applied for several tasks in the
control-loop. Historically, RL has been applied for kinematic control [196, 90,
114, 94] as this block often involves complex-decision making processes on con-
flicting objectives as well as path planning in uncertain environments where craft-
ing a fixed rule-based system can be difficult. RL is also applied for dynamic
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control [84, 148, 40, 8, 191], and even for incorporating both the kinematic and
dynamic control blocks into a single control scheme, as is done in [123] for a non-
holonomic wheeled mobile robot. In general, RL requires no knowledge about the
system to be optimized and it is therefore applicable to a large class of control prob-
lems where no model suitable for real-time control exists or is readily obtainable.
However, the learning nature of RL makes its behaviour and stability properties
difficult to analyze, especially when combined with function approximation.

Traditional formal control approaches on the other hand are knowledge-based and
designed offline assuming knowledge of the system dynamics, which enables their
closed-loop behaviour to be studied and therefore trust to be put in their safe op-
eration of the plant. However, accurate modeling of systems is a difficult process,
often necessitating idealizations and assumptions of negligibility of certain effects
under certain conditions [184, 43], and further, simplifications of the system model
is often necessary for the model to be suitable for real-time control [99, 51]. For
nonlinear and uncertain systems, providing stability guarantees using linear con-
trol techniques yields increasingly conservative and therefore suboptimal control
performance the more nonlinear or uncertain the system is. Nonlinear control tech-
niques such as nonlinear model predictive control (NMPC) often have intractably
high online computational complexity for many embedded control applications or
systems with fast dynamics. Because RL controllers can be learned in a model-free
manner directly on the nonlinear and unknown dynamics through feedback gained
by operating the plant, RL is a valuable tool for dynamic control of nonlinear sys-
tems where the dynamics are unknown or affected by significant disturbances, or
where the hardware platform is computationally limited and can benefit from RL’s
efficient online operation.

1.2 Objectives

Motivated by the described challenges of traditional control approaches for control
of nonlinear systems, this thesis considers RL-based control. The applications
and experiments presented focuses on dynamic low-level control, but the methods
developed in this thesis are applicable also to kinematic control.

Part I of the thesis considers the combination of traditional approaches and rein-
forcement learning approaches to control, and how these can be combined in order
to leverage their unique strengths and shore up each of their weaknesses. In par-
ticular, the thesis focuses on the NMPC method and attempt to address some of
its challenges wrt. embedded control applications, namely its high online com-
putational complexity and the need to tune (and re-tune with time and changes in
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the controlled system) its parameters to the task at hand. Building upon previous
research considering the MPC’s dynamic model and cost objective as paramet-
ers to be learned with RL, Part I of the thesis investigates how RL can be used to
learn what we call the meta-parameters of the MPC scheme, which majorly impact
its computational complexity and control performance. Finally, a second research
question considered in Part I is when basing RL-control on tabula rasa control laws
(e.g. neural networks) instead of existing control methods (e.g. MPC), how can an
existing suboptimal control approach to the task be used to accelerate the learning
of a tabula-rasa control law.

Part II of this thesis considers the specific control application of attitude control
of fixed-wing UAVs, i.e. the lowest-level dynamic control of its orientation. This
is a highly complex control application due to several reasons: highly nonlinear
dynamics, significant disturbances from weather phenomena, and limited compu-
tational power available to the control system onboard the UAV. As a result, the
current state-of-the-art approaches are based on linear control approaches, yielding
a limited set of feasible operating conditions and maneuvers that can be performed
autonomously, which is together referred to as the flight envelope of the control
system. Extending the flight envelope of fixed-wing UAVs is therefore of great
interest especially for hazardous search and rescue missions in extreme weather
conditions and in general for more efficient operation of the control system. To
achieve an extended flight envelope, the control system must be nonlinear with
low online computational complexity, and Part II investigates how RL-based con-
trol approaches can fulfill this role.

1.3 Contributions

In light of the above, this thesis has contributed to the research community in the
following ways:

• Proposed the novel idea of optimizing meta-parameters of the MPC scheme
using RL, and showed that this approach can jointly optimize control per-
formance and computational efficiency, extending MPC’s viability for
computationally- or energy-limited applications.

• Developed an RL-based optimization (tuning) framework in which the above-
mentioned meta-parameters, as well as any other parameter (e.g. objective
function, constraints etc.) of the MPC scheme, can be jointly optimized.

• Improved the adaptivity of the Q-filter approach to guiding the exploration
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phase of RL controllers.

• Proposed and experimentally demonstrated the viability of RL for dynamic
control of fixed-wing UAVs.

• Developed an open-source Python flight simulator that has been widely ad-
opted by the research community [34, 35].

• Demonstrated a successful application of RL-based dynamic control, valid-
ated through field experiments.

1.4 Publications

Seven articles in total were produced and published in peer-reviewed international
conferences and journals during the PhD. This thesis is based on the following lists
of works:

Conference publications

• [26] Eivind Bøhn, Erlend M Coates, Signe Moe, and Tor Ame Johansen.
Deep reinforcement learning attitude control of fixed-wing uavs using prox-
imal policy optimization. In 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 523–533. IEEE, 2019

• [36] Eivind Bøhn, Signe Moe, and Tor Arne Johansen. Accelerating rein-
forcement learning with suboptimal guidance. IFAC-PapersOnLine, 53(2):
8090–8096, 2020. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.
2020.12.2278. 21st IFAC World Congress

• [37] Eivind Bøhn, Sebastien Gros, Signe Moe, and Tor Arne Johansen. Op-
timization of the model predictive control update interval using reinforce-
ment learning. IFAC-PapersOnLine, 54(14):257–262, 2021. ISSN 2405-
8963. doi: https://doi.org/10.1016/j.ifacol.2021.10.362. 3rd IFAC Confer-
ence on Modelling, Identification and Control of Nonlinear Systems MICNON
2021

• [38] Eivind Bøhn, Sebastien Gros, Signe Moe, and Tor Arne Johansen. Re-
inforcement learning of the prediction horizon in model predictive con-
trol. IFAC-PapersOnLine, 54(6):314–320, 2021. ISSN 2405-8963. doi:
https://doi.org/10.1016/j.ifacol.2021.08.563. 7th IFAC Conference on Non-
linear Model Predictive Control NMPC 2021
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Journal publications

• [28] Eivind Bøhn, Sebastien Gros, Signe Moe, and Tor Arne Johansen. Op-
timization of the model predictive control meta-parameters through rein-
forcement learning. IEEE Transactions on Cybernetics, 2021. Submitted

• [27] Eivind Bøhn, Erlend M. Coates, Dirk Reinhardt, and Tor Arne Jo-
hansen. Data-efficient deep reinforcement learning for attitude control of
fixed-wing uavs validated through field experiments. IEEE Transactions on
Neural Networks and Learning Systems, 2021. Submitted

Additionally, the following article was published during the PhD, but is not part of
the thesis:

Publications not included in this thesis

• [29] Eivind Bøhn, Signe Moe, and Tor Arne Johansen. On the effects of
properties of the minibatch in reinforcement learning. Accepted into the
4th International Conference on Intelligent Technologies and Applications,
2021

1.5 Outline

This thesis is organized into two main parts: Part I covers the contributions made
in combining existing control techniques based on system knowledge with model-
free RL for optimization and guiding of RL controllers, while Part II covers RL-
based dynamic control of fixed-wing UAVs experimentally verified in the field.
However, before this, Chapter 2 presents the fundamental methods that this thesis
is based upon.

The first chapter of Part I introduces and motivates the work that was performed
on optimization of the meta-parameters of the MPC scheme using RL as well as
a framework for adaptive guiding of RL controller’s exploration phase using an
existing controller. Chapter 4 considers the timing of when to compute the MPC
as a meta-parameter, and how this can be optimized with RL. Then Chapter 5
considers the prediction horizon of the MPC scheme as a meta-parameter to be
optimized, and we show how the optimal prediction horizon can be learned as a
function of the state. Chapter 6 asserts that the meta-parameters considered in the
two preceding chapters are interconnected, and presents a unified framework that
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jointly optimizes these meta-parameters. Finally, Chapter 7 presents an alternative
use of the framework from Chapter 6 for guiding, something that would have been
investigated with more time for the PhD, before presenting the adaptive Q-filter
guiding method.

In Part II of the thesis, Chapter 8 motivates the importance of fixed-wing UAVs.
Chapter 9 presents a proof of concept of dynamic control of fixed-wing UAVs
using RL in a simulated environment. The next chapter then builds on this en-
couraging result, where we target control of the real UAV in the field. To this end,
Chapter 10 presents a new method for developing RL controllers for the UAV con-
trol problem with a focus on data efficiency, as well as presenting the experimental
results obtained during flight experiments, demonstrating that RL-based control
has comparable performance to the existing state-of-the-art autopilot.

Finally, the third and last part in Chapter 11 summarizes the work that has been
performed in this PhD and offers some perspectives on the work and possible fu-
ture directions.



2

Preliminaries

We consider in this thesis control problems on the form:

xt+1 = f(xt, ut), min
x,u

T∑
t=0

Ct(xt, ut) (2.1)

where x is the state vector, u is the control input vector, the function f defines
the (discrete-time) system dynamics and C describes some cost objective to be
minimized. The system runs in an episodic fashion, beginning in some initial
state x0 and terminating after some predetermined time T has passed. For any
statement that holds regardless of the time, we omit the time subscript. To denote
a contiguous sequence of points we use the subscript xt:t+n, i.e. the sequence of
states from time t to time t+n. We denote the time dimension of variables internal
to any controller scheme with a subscript k, e.g. the future states in the optimal
control problem (OCP) solved by the MPC. Finally, matrices are denoted with bold
uppercase letters, e.g. A.

2.1 Model Predictive Control

MPC is a control method in which a model of the plant-to-be-controlled is used
to predict the response to the controlled variables, in order to identify the optimal
control inputs that yield the most desirable behaviour. To this end, the MPC solves
a numerical OCP at every time step with the current state of the plant as the initial
conditions, yielding the sequence of inputs over the prediction horizon that min-
imizes the objective function of the OCP, as well as yielding the predicted state
trajectory. The first input of this sequence is then applied to the plant, and the
OCP is solved again at the subsequent time step. The recomputation of the OCP
is motivated by the assumption that the model of the plant is not an exact rep-
resentation of the true plant dynamics, and thus the predicted state trajectory will

9
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increasingly drift from the true system trajectory as the time since the OCP was
solved increases. One can therefore limit the effects of the model mismatch by
recomputing the OCP as new information is available at the current time. Note
that in this thesis we use MPC to refer to both linear and nonlinear MPC, but state
explicitly which one we refer to (e.g NMPC) when it is appropriate.

In this thesis, we consider nonlinear state-feedback discrete-time MPC [4, 155].
The MPC receives as arguments the current state of the plant, x̄t, current (possibly
time-varying) exogenous input variables (e.g. reference signals), p̂t, as well as the
prediction horizon, Nt, for the OCP. We label the MPC control law (for a given
horizon, this will be elaborated on in Chapters 5 and 6) as:

uMt:t+Nt−1, x̂t:t+Nt = πM
θM(x̄t, p̂t, Nt) (2.2)

where the first return value is the optimal input sequence, the second return value
is the predicted optimal state trajectory, and θM are the tunable parameters of the
MPC scheme. The OCP is formulated as:

min
x,u

Nt−1∑
k=0

ρk�θM(xk, uk, p̂k) + ρNtmθM(xNt), (2.3)

s.t. x0 = x̄t (2.4)

xk+1 = f̂θM(xk, uk, p̂k) ∀ k ∈ 0, . . . , Nt − 1 (2.5)

hθM(xk, uk) ≤ 0 ∀ k ∈ 0, . . . , Nt − 1 (2.6)

Here, �θM is the stage cost, consisting of a task-specific objective (e.g. C) and
the input change term Δu�k DθMΔuk where DθM is the input-change weight and
Δuk = uk − uk−1, mθM is the terminal cost, ρ ∈ (0, 1] is the discount factor, f̂θM
is the MPC dynamics model (which might differ from the real system dynamics
f ), and hθM is the constraint vector. The state and control inputs must satisfy
the constraints over the whole optimization horizon for the MPC solution to be
considered feasible.

2.1.1 Adaptive Horizon Model Predictive Control

The stage cost evaluates the computed solution locally up to Nt − 1 steps, the
terminal cost mθM(xNt) should therefore provide global information about the de-
sirability of the terminal state of the computed trajectory, which helps the MPC
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avoid local minima. Therefore, the more accurate the terminal cost is wrt. to the
total cost of the infinite horizon solution, the shorter horizons can be used in the
MPC scheme while still delivering good control performance [205, 121]. Due to
this synergistic relationship between the prediction horizon and the terminal cost,
we propose to learn the value function of the MPC, which measures the total cost
of the controller accrued over an infinite horizon, and use it as the terminal cost.
Moreover, the control performance sensitivity of the MPC to the prediction hori-
zon varies over the state space, an observation that motivated the adaptive horizon
model predictive control (AHMPC), for which the prediction horizon varies ac-
cording to some criteria (see Chapter 5 for some examples). In Chapters 5 and 6
we propose to learn the optimal prediction horizon as a function of the state using
RL.

2.1.2 Event-Triggered Model Predictive Control

We further consider a modification to the MPC framework called event-triggered
MPC, in which the OCP is not recomputed at every time step, but rather a trig-
gering policy decides at every time step whether the OCP should be recomputed.
The control algorithm then consists of two parts, a triggering policy that decides
when to compute the control law, and the control law itself. Note that we refer to
the triggering policy as the recomputation policy to better highlight its role in the
control algorithms presented in Chapters 4 and 6. Thus, not only the first input of
the MPC input sequence uMt is applied to the plant, but rather a variable number of
inputs uMt:t+n, n < Nt are applied sequentially at the corresponding time instance
until the recomputation policy triggers the recomputation of the OCP at time step
t+ n.

2.1.3 Note on Feasibility

There is no mechanism in the methods presented in Part I that ensures the recursive
feasibility of the MPC scheme or the stability of the control algorithm, a problem
which is made increasingly complex with the adaptive-horizon and event-triggered
formulations of the MPC. However, the control algorithm and optimization frame-
works we present are agnostic wrt. to the implementation of the underlying con-
trollers. As such, one could modify the MPC scheme in (2.3)-(2.6) by adding
e.g. assumptions on the form and magnitude of the disturbances, adding terminal
constraints, or entirely replacing the MPC scheme with more complex formula-
tions, e.g. robust MPC [20] or tube MPC [132]. Moreover, if one has information
about the plant to be controlled and the control system itself, such as the region
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of attraction, one could enable a “watchdog” component to monitor the learning
procedure to ensure that it only operates within regions that are deemed safe. Such
considerations are however outside the scope of this thesis.

The prediction horizon is one of the most important tunable parameters to achieve
stable control with the MPC scheme [133, 77]. Learning approaches can therefore
be an important tool in automatically identifying prediction horizons that yields a
stable control system. RL is an optimization procedure that seeks optimal beha-
viour wrt. its reward function, therefore, if it produces non-stabilizing solutions
this would suggest that the learning problem itself is ill-posed.

2.2 Value Function Estimation for Model Predictive Con-

trol

The ideal choice for the terminal cost mθM(xN ) in the MPC scheme would be the
optimal value function V π∗

(2.8) which is the value function corresponding to the
optimal control law π∗ that delivers the optimal control input at every step. A value
function measures the expected total sum of costs accrued from being in any given
state and from there always acting according to a given control law π, until the end
of the episode (or in an infinite horizon in the non-episodic case) (2.7). Equation
(2.8) is written as a recursive relationship in V π∗

called the Bellman equation,
where the value of a given state is decomposed into the one-step optimal cost
and the total value from the subsequent state. Computing V π∗

exactly from this
equation is however intractable for problems with continuous state and/or input
spaces, and iterative approaches such as Q-learning requires a prohibitively large
amount of data.

V π(xt, p̂t) = E

[
T∑

t′=t

ρt
′
�(xt′ , π(xt′ , p̂t′), p̂t′)

]
(2.7)

V π∗
(xt, p̂t) = min

u
�(xt, ut, p̂t) + ρV π∗

(xt+1, p̂t+1), ∀ t, x, p̂ (2.8)

The MPC scheme delivers local approximations to π∗, and as such the MPC’s
value function V M is a good surrogate for V ∗ as the terminal cost. This value
function is not necessarily directly computable either, as it would require running
the MPC with an infinite prediction horizon (or equal to the remaining steps of
the episode in episodic problems). However, it can be approximated using fitted
value iteration on data gathered by running πM

θM
on the system to be optimized.
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We label the approximated MPC value function V̂ M
θV

, where θV are the parameters
of the value function approximator. These parameters are iteratively updated to
minimize the mean squared Bellman error (MSBE):

θV ← argmin
θV

E

[(
y(x, p̂)− V̂ M

θV (x, p̂)
)2

]
(2.9)

y(xt, p̂t) = E

[
�(xt, π

M
θM(xt, p̂t, Nt), p̂t) + ρV̂ M

θV (xt+1, p̂t+1)
]

(2.10)

Here, (2.10) is called the regression target and corresponds to the condition on the
value function imposed by the one-step Bellman equation (2.8). Since the MPC
scheme delivers Nt-step approximations to the optimal control law π∗, one can
modify the update rule to instead regress onto the N-step target [121]:

y(xt, p̂t) = E

[
N−1∑
k=0

ρk�(xk, uk, p̂k) + ρN V̂ M
θV (xN , p̂N )

]
(2.11)

With this regression target, a larger share of the value of the future trajectory from
xt is known exactly (through the observed costs �) and the contribution of the
estimated bootstrapping component V̂ M

θV
(xN , p̂N ) is reduced by a factor of ρN .

This typically leads to accelerated convergence and better stability in the learning
process [182, 176].

2.3 Linear Quadratic Regulator

The linear quadratic regulator (LQR) [25] is a state-feedback controller that arises
as the optimal solution to unconstrained control problems where the dynamics
are linear, and the objective is quadratic. In this thesis we focus on the discrete-
time formulation of the LQR. In the infinite-horizon case, the control law (2.14)
consists of a feedback gain matrix, K∞ (2.13), that is derived from the dynamics
matrices A and B, the cost weighting matrices Q, R and N, and the solution S∞
to the discrete-time algebraic Riccati equation (DARE) (2.12) parameterized by
A,B,Q,R,N. In Chapter 6 we consider θL = [Q,R,N]� as parameters of the
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LQR controller that can be optimized:

0 =Q+A�S∞A− S

− (A�S∞B+N)(B�S∞B+R)−1(B�S∞A+N�)
(2.12)

K∞ =(B�S∞B+R)−1(B�S∞A+N�) (2.13)

uLk (xk) =πL
θL(xk) = −K∞xk (2.14)

The LQR control problem we consider is formally stated as:

min
x,u

∞∑
k=0

[
1

2
x�k+1Qxk+1 +

1

2
u�k Ruk + x�k Nuk

]
, (2.15)

s.t. Q−NR−1N� � 0, R > 0 (2.16)

xk+1 = Axk +Buk (2.17)

where the notation � indicates positive semidefiniteness. We also consider the
finite-horizon case, denoting the horizon by Ni. In this case, the Sk and Kk

matrices are time-varying, solved backwards in time using (2.18, 2.19) from the
initial starting point SNi = S∞. The other system matrices can also be time-
varying:

Sk =Qk +A�k Sk+1Ak − (A�k Sk+1Bk +Rk)

(Rk +B�k Sk+1Bk)
−1(B�k Sk+1Ak +R�k )

(2.18)

Kk =− (Rk +B�k Sk+1Bk)
−1(B�k Sk+1Ak +R�k ) (2.19)

uLk (xk) = πL
θL(xk) = −Kkxk (2.20)

The finite-horizon LQR control problem can then be formally stated as:

min
x,u

Ni−1∑
k=0

[
1

2
x�k+1Qxk+1 +

1

2
u�k Ruk + x�k Nuk

]
, (2.21)

s.t. Qk −NkR
−1
k N�

k � 0, Rk > 0 (2.22)

xk+1 = Akxk +Bkuk (2.23)
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2.4 Reinforcement Learning

The system to be optimized in the RL framework is typically formulated as a a
Markov decision process (MDP). The MDP is defined by a state space s ∈ S , a
set of actions a ∈ A, a transition probability matrix T that governs the evolution
of states as a function of time and actions, i.e. st+1 = T (st, at), a reward function
R(s, a) that describes the desirability of the states of the problem, and finally,
the discount factor γ ∈ [0, 1) (note the different limits from ρ) that describes the
relative importance of immediate and future rewards. Note that rewards, R, are
interchangeable with costs, C, through the substitution R = −C (i.e. rewards are
negative costs) and changing maximization of the objective to minimization. We
will discuss rewards in the context of RL as this is customary. Further, since we
in this thesis employ RL for control, we consider an extension to the MDP in the
form of a specified goal state, from a set of possible goals G. [164] show that value
functions conditioned on this additional goal parameter can successfully be trained
to generalize to unseen goals. We therefore include the goal state in the state s.

A policy π is a function that maps from states to actions, and the goal in RL is
to find the optimal policy π∗ that is optimal in the sense that it maximizes the
expected sum of discounted rewards, either over an infinite or finite horizon. A
policy can be deterministic, which we denote π(s), or stochastic, which we denote
π(a|s). In this thesis we study the finite horizon case, and state the RL objective
as:

JRL(π) =Es∼T (s,π(s))

[
R(sT ) +

T−1∑
t=0

γtR(st, π(st))

]

=E [G(τ)] = V π(s0), s0 ∈ S0

(2.24)

π∗ =argmax
π

JRL(π) (2.25)

Here, R(sT ) is the terminal reward, S0 is a distribution of initial states, G(τ) is
the observed return (i.e. sum of discounted rewards) over an episode described by
the trajectory τ = (s0, a1, s1, . . . , aT−1, sT ), ∼ signifies that the left hand side
is distributed according to the right hand side. The expectation is therefore taken
over the state-visitation distribution induced by the transition dynamics and the
(possibly stochastic) policy. V π is the value function for the current policy π,
measuring the total expected reward accrued when acting according to the corres-
ponding policy π from the state in question. A final useful primitive in the RL
framework is the state-action value function:
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Qπ(st, at) = R(st, at) + γV π(T (st, at)) (2.26)

this function, also called the Q-function, is identical to the value function V except
that the first action in the trajectory generated by the policy from the starting state
is left open. This function then allows one to compare the total reward obtained
by using the policies’ choice of action in the given state, with any other action.
The value function is in the RL context often referred to as the critic, while the
policy is often called an actor. Moreover, the instantiation of the RL algorithm that
undergoes the learning process is often called the agent.

When it comes to the taxonomy of RL algorithms, there are several meaningful
categories one can employ. One such categorization is between model-free and
model-based algorithms. Model-based RL algorithms use a model of the con-
trolled system, which can either be given or learned jointly with the policy, that is
incorporated into the policy to plan ahead and evaluate the future state of the sys-
tem to choose the best course of action, similar to the MPC scheme. A model-free
RL algorithm on the other hand assumes no knowledge of the system dynamics
and learns a policy mapping states to actions directly. These approaches both have
their strengths and weaknesses, model-based methods generally being more data-
efficient, while model-free methods are often more computationally efficient and
often have better asymptotic control performance because the control performance
of a model-based method is limited by the accuracy of the model.

Another useful categorization is on-policy vs off-policy algorithms, referring to
whether the algorithm requires the optimization data to be generated by the cur-
rent iteration of the policy (on-policy) or if it is able to learn from data generated
by any arbitrary policy (off-policy). Off-policy methods are therefore typically
significantly more data-efficient than on-policy methods, as they can reuse past
data gathered by previous iterations of the policy (or even learn entirely without
interaction with the environment, i.e. offline RL [113]), while on-policy methods
must discard the gathered data after it is used to update the policy.

A final categorization used here is between value-based and policy-based algorithms,
with the divide then being based on how the policy is developed. A policy-based
algorithm attempts to directly estimate the optimal policy, while a value-based al-
gorithm first estimates a value function and from this derives the policy as the
actions that maximize the value function, such as:

π∗ = argmax
a

Qπ∗
(s, a) ∀s ∈ S (2.27)



2.4. Reinforcement Learning 17

In this thesis, the focus is on model-free algorithms, and a mix of policy-based and
value-based methods are employed.

2.4.1 Policy Gradient Methods

Policy gradient algorithms optimize parameterized policies, denoted πθ, where θ is
the collection of parameters, directly in the parameter space of the policy, by estim-
ating the gradient of the objective (2.24) and applying a gradient ascent scheme.
The objective (2.24) however depends on the state-visitation distribution, which
would require perfect knowledge of the transition dynamics to evaluate. Thus,
policy gradients algorithms rely on the policy gradient theorem (2.28), which re-
moves this dependence on the state-visitation distribution from the gradient [176].
The parameters are then updated iteratively according to the gradient estimate and
the gradient ascent scheme (2.29)

∇θJ
PG(θ) = E

[
T∑
t=0

∇θ log πθ(at|st)G(τ)

]
(2.28)

θ = θold + η∇θJ
PG(θ) (2.29)

where η is the update step size, also called the learning rate. The expectation in
(2.28) can be replaced by sample averages, i.e. to evaluate this gradient, one simply
runs the policy on the system to be optimized, and observe the outcomes in terms of
returns and state trajectories. Since the update scheme described above is smooth
in the parameters, policy gradient methods have good convergence guarantees in
theory, but since it is a sampling-based approach it suffers from high variance in
the gradient estimates in practice [71, 149]. Thus, advances in these algorithms
typically revolve around reducing the variance in these estimates. One important
such measure is to alter the return in (2.28) by subtracting a baseline, e.g. replacing
G(τ) with the advantage function:

Aπ(st, at) = R(st, at) + γV π(st+1)− V π(st) (2.30)

The advantage function estimates the value of an action relative to the average
value of the actions that the policy would take in that state. Thus, actions that are
better than average have positive advantages and vice versa, such that the update
procedure above will raise the probability of good actions and decrease the prob-
ability of bad actions. This yields faster convergence as opposed to all sampled
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actions having their probability increased (assuming all rewards are positive) and
relying on the fact that better actions with higher rewards are increased in probab-
ility faster than bad actions.

2.5 Proximal Policy Optimization

Proximal policy optimization (PPO) [169] is a policy gradient RL algorithm, which
is popular due to its high data-efficiency (relative to other on-policy algorithms)
and simplicity, both in terms of implementation and run-time complexity. The in-
creased data-efficiency over other policy gradient algorithms is achieved by modi-
fying the standard policy gradient objective (2.28), to allow for multiple parameter
updates over the same set of data. We include the parameters of the advantage
estimator Âπθ (and consequently the parameters of the value function estimator
V̂ πθ ) also in the parameter vector θ.

2.5.1 Trust Region Policy Optimization

The PPO algorithm is inspired by the predecessor trust region policy optimization
(TRPO) [167], which in a principled way ensures that parameter updates improve
upon the objective. This is done by first estimating a region in parameter space
where updates are deemed safe in the sense that they will result in an improve-
ment of the objective, and then identifying the optimal parameter point within this
region:

max
θ

JTRPO(θ) =E

[
r(θ)Âπθold (s, a)

]
, r(θ) =

πθ(a|s)
πθold(a|s)

(2.31)

s.t. E [KL (πθold(a|s), πθ(a|s))] ≤ δ (2.32)

Here, r(θ) is the probability ratio between the policy under two different sets of
parameters, θ and θold, the latter of which represents the policy parameters frozen
at the start of the parameter update procedure, KL is the Kullback–Leibler probab-
ility divergence measure, and δ is the maximum allowed divergence. Implement-
ing this update procedure requires second-order information about the objective,
which is computationally expensive to obtain.
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2.5.2 The Proximal Policy Optimization Objective

PPO emulates trust region optimization using only first order information, and it
is thus considerably more computationally efficient and scalable, while simultan-
eously empirically demonstrating increased data-efficiency. The PPO algorithm
optimizes a surrogate objective function defined as:

JPPO(θ) = E

[
min

(
r(θ)Âπθold (s, a), clip (r(θ), 1− ε, 1 + ε) Âπθold (s, a)

)]
(2.33)

The probability ratio r(θ) measures for any given action the ratio of the probabil-
ity that it would be drawn from the policies in the numerator and denominator. As
more parameter updates are performed, the two policies will increasingly differ,
and the probability ratio will increasingly deviate from unity. It will be decreasing
for actions that are now less likely and increasing for actions that are more likely
under the new parameters. The clip operator ensures that its first argument will
be contained in the limits provided as its second and third argument, such that the
probability ratio is constrained to the range decided by ε, which typically takes on
values in the range 0.1 − 0.4. This ensures that when the advantage of the action
is positive the objective value is saturated when the action surpasses 1 + ε in in-
creased probability, while when the advantage is negative the objective saturates
when the action surpasses 1− ε in decreased probability. Lastly, the minimum op-
erator returns the unclipped objective when the advantage of an action is negative,
yet its probability has been increased under the new parameters. The unclipped
objective would then make the gradient decrease the probability of this action,
correcting the previous update which made the policy worse. This is the mech-
anism behind PPO’s first-order approximation of trust-region optimization. The
gradient of the PPO objective (2.33) is the same as (2.28), and is easily obtained
with auto-differentiation software.

In practice, the probability ratio r(θ) is implemented in log space as the difference
between the negative action-conditional probability of the policy under the two
parameterizations:

log r(θ) =
∑
ã∈B

− logPθ(ã|s)− (− logPθold(ã|s)) (2.34)

r(θ) = exp(log r(θ)) (2.35)

where the notation ã signifies an action drawn from the policy’s action distribution.
The training procedure involves running the policy in the environment for a num-
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ber of time steps, generating data on the form (st, ãt, R(st, ãt), st+1, Â
πθ(st, ãt))

which is stored in a buffer. Then, minibatches B are sampled from this buffer, the
objective (2.33) and its gradient are evaluated, and the parameters are updated ac-
cording to (2.29). This is repeated for the configured number of epochs such that
each data point is reused several times, increasing data-efficiency, after which the
data in the buffer is discarded and new data is gathered.

2.5.3 Advantage Function Estimation

The advantage function is estimated using the generalized advantage estimation
(GAE) algorithm [168]. The advantage is defined in terms of the low bias but
high variance information in the sampled rewards R, and the high bias but low
variance information estimated by the value function V . Equation (2.30) shows
the 1-step advantage estimate, which we now denote Â(1)

t , but this can be unrolled
further to produce an estimate that contains more information from R, and less of
the information from V . In GAE this bias-variance tradeoff is summarized as in
(2.36) and controlled through the factor κ ∈ [0, 1], where κ = 0 recovers the 1-
step advantage in (2.30) — which has the highest bias but lowest variance estimate
— and κ = 1 corresponds to using all the observed rewards R as an estimate,
which yields the lowest bias and the highest variance. The GAE algorithm (2.36)
for 0 < κ < 1 yields a compromise between bias and variance, controlled by κ,
where H is the length of the trajectory collected by the policy:

Âπθ(st, at) = δt + (γκ)δt+1 + · · ·+ (γκ)H−t+1δH−1 (2.36)

δt = R(st, at) + γV̂ πθ(st+1)− V̂ πθ(st) (2.37)

The value function in turn is estimated by a parameterized function approximator
V̂ πθ , that is iteratively improved using fitted value iteration in the manner described
by (2.9), where � corresponds to R, x and p̂ corresponds to s, u corresponds to a,
and ρ corresponds to γ.

2.6 Value-Based Deep Reinforcement Learning Algorithms

The DDPG [117] algorithm was the first algorithm to successfully demonstrate
continuous control with DRL. We will in this and the next section omit the im-
plicit superscript πθ indicating the policy whose value is estimated by the value
functions.
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DDPG and its derivations (e.g. twin delayed DDPG (TD3) [63]) are off-policy,
model-free, actor-critic algorithms, that are simultaneously policy-based and value-
based algorithms. That is, they simultaneously estimate the state-action value
function and a parameterized policy, and uses the fact that the neural network
function approximator employed for the state-action value function is differenti-
able wrt. to its inputs to provide gradients for the policy. Thus, the policy can probe
the state-action value function in order to iteratively identify the actions that max-
imizes the state-action value function, Q, similar to (2.27). This provides a unique
time-scale problem for these types of algorithms: Since the Q-function measures
the total cost obtained by a particular policy, changes in the policy therefore leads
to changes in the Q-values, and since these Q-values are again then employed to
further update the policy, the Q-function should ideally be allowed to converge
before it is used to update the policy. That is, the Q-function should converge on a
much faster time-scale than the policy, such that the policy essentially seems fixed
from the perspective of the Q-function.

As discussed earlier, off-policy RL algorithms like DDPG typically enjoy better
data-efficiency than on-policy algorithms like PPO, as they can reuse the gathered
data. However, one problem that arises with the reuse of past experiences is the
bias introduced by time-correlation in the data. Therefore, DDPG-style algorithms
save past experiences in a replay buffer, D, from which data is sampled uniformly
in time, breaking the time-correlation. Further, since the policy in these algorithms
is deterministic, it is necessary to introduce some means of exploration, which
is typically achieved by gathering data with a separate behaviour policy, which
is typically obtained by adding noise to the deterministic policy (2.38). The Q-
function is then learned in a similar fashion as described in Section 2.2 on data
sampled from the replay buffer:

πb
θ(s) = πθ(s) + ζb, ζb ∼ N (μb, σb) (2.38)

yDDPG(st, at) = R(st, at) + γQθQ′ (st+1, πθ(st+1)) (2.39)

JDDPG,Q(θQ) = E(st,ãt,R(st,ãt),st+1)∼B
[
(yDDPG(st, ãt)−QθQ(st, ãt))

2
]

(2.40)

where θQ is the parameterization of the Q-function, B is the minibatch of sampled
data, ãt is the action produced by the behaviour policy (2.38) in state st, μb and
σb are hyperparameters, and yDDPG

t is again the regression target. A final measure
proposed in the DDPG algorithm is the use of a target Q-function in the regression
target (2.39) to stabilize the learning process of the Q-function. The target Q-
function is a separate neural network whose parameters θQ

′
are Polyak averaged
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from θQ:

θQ
′

init ← θQinit (2.41)

θQ
′

new = �θQ
′

old + (1− �)θQ (2.42)

such that the (2.39) provides a slower moving target to regress towards, where � is
the Polyak averaging factor. Finally, the policy is iteratively improved to maximize
the Q-function over the sampled data, using gradient ascent with gradients from
the following objective:

JDDPG,π(θ) = argmax
θ

Es∼B [QθQ(s, πθ(s))] (2.43)

The gradients of (2.40) and (2.43) are readily obtained with automatic differenti-
ation software.

2.7 Twin Delayed DDPG

In [63] the authors identify several failure modes of DDPG, and proposes the twin
delayed DDPG (TD3) algorithm to rectify these failure modes. First, DDPG is
prone to overestimating the Q-values. High Q-values dominate the immediate
reward R(st, ãt) in the regression target (2.39), thus successfully leading to low
MSBE as the variance introduced by the immediate reward is negligible in com-
parison. This subsequently leads to a poor policy, as it is trained to optimize an
increasingly meaningless Q-function, perpetuating a vicious cycle. To remedy this
overestimation, TD3 employs two Q-functions whose parameters θQ,1 and θQ,2

are initialized differently, such that they provide different Q-value estimates, and
the minimum of the two Q-values are chosen for the regression target. Moreover,
to further disincentivize the policy to exploit erroneous Q-values, the action used
to calculate the target Q-value is sampled from a target policy (which again is a set
of parameters θ′ polyak averaged from θ) and further smoothed with noise ζa:

yTD3(st, at) = R(st, at) + γ min
i∈{1,2}

QθQ
′,i(st+1, a

′(st+1)) (2.44)

a′(s) = clip(πθ′(s) + clip(ζa,−ζamax, ζ
a
max), amin, amax), ζa ∼ N (0, σa)

(2.45)



2.8. Soft Actor Critic 23

where πθ′ is the target policy, ζamax is the maximum action noise, and amin, amax

are the minimum and maximum actions of the controlled system, respectively. Fi-
nally, to address the time-scale issue described earlier, TD3 updates the policy
less often than the Q-function with the frequency of policy updates being a hyper-
parameter of TD3. The objective functions of the TD3 algorithm are therefore as
follows, where both Q-functions are trained independently using (2.46):

JTD3,Q(θQ) =E(st,ãt,R(st,ãt),st+1)∼B
[
(yTD3(st, ãt)−QθQ(st, ãt))

2
]

(2.46)

JTD3,π(θ) = argmax
θ

Es∼B [QθQ,1(s, πθ(s))] (2.47)

and where the choice of which Q-function to optimize in (2.47) is arbitrary.

2.8 Soft Actor Critic

The last RL algorithm employed in this work is soft actor critic (SAC) [85]. Like
DDPG it is an off-policy, actor-critic, value-based algorithm, but it bridges the gap
towards the policy-gradient class of algorithms in that it maintains a stochastic
policy, and exploration is done on-policy. The defining characteristic of SAC com-
pared to DDPG and TD3 is that it is an entropy-regularized RL algorithm, which
is to say that in addition to maximizing the expected sum of rewards as in (2.24)
it jointly aims at maximizing the entropy of the policy (i.e. the randomness of the
policy). This changes the formulation of the value functions as well, then referred
to as soft value functions:

V (st) = Ea∼πθ(a|s),s∼T (s,πθ(a|s))

[
T∑

t′=t

γt
′(
R(st′ , at′) + χH(πθ(·|st′))

)]

(2.48)

Q(st, at) = Es∼T (s,πθ(a|s))

[
R(st, at) + γV (T (st, at))

]
(2.49)

whereH(πθ(·|s)) = Ea∼πθ(a|s) [− log πθ(·|s)] is the entropy, equal to the negative
log probability of the action-distribution of the policy in the state in question, and
χ is the weighting coefficient between the two objectives, balancing exploration
and exploitation. The authors propose in a later work a method to automatically
learn the appropriate value of the weighting factor χ [86].



24 Preliminaries

Because the policy is incentivized to act as randomly as possible while maxim-
izing the rewards, it tends to yield robust policies that are explicitly trained to
handle perturbations, it is inherently exploratory, and it can give rise to effects
such as multi-modal behaviour which can be beneficial in many situations. Fur-
ther, a highly random policy is less likely to specialize in certain behaviours such as
abusing quirks of a simulated training environment and therefore tends to transfer
better to other environments than non-entropy-regularized policies.

SAC maintains a value function parameterized by θV , two Q-functions paramet-
erized by θQ,1, θQ,2 as is the case for TD3, and a stochastic policy parameterized
by θ. The value function is trained with the following objective, where (2.51) is an
unbiased estimator of the gradient:

JSAC,V(θV ) = Est∼B
[
(VθV − Eat∼πθ

[QθQ(st, at)− log πθ(at, st)])
2
]

(2.50)

∇̂θV J
SAC,V = ∇θV VθV (st)

(
VθV (st)− min

i∈{1,2}
QθQ,i(st, at) + log πθ(at|st)

)
(2.51)

and where the actions at importantly are sampled from the current iteration of the
policy πθ, as opposed to sampled from the dataset. The two Q-functions are then
trained to minimize the soft MSBE as follows:

JSAC,Q(θQ) = Est,at∼B
[(
ySAC(st, at)−QθQ(st, at)

)2]
(2.52)

ySAC(s, a) = R(s, a) + γEs∼T
[
VθV

′ (st+1)
]

(2.53)

∇̂θQJ
SAC,Q = ∇θQQθQ(st, at)

(
QθQ(st, at)−R(st, at)− γVθV

′ (st+1)
)

(2.54)

where again θV
′

is the target function of the value function approximator. Finally,
the policy is optimized to minimize the following objective:

JSAC,π(θ) = Est∼B

[
KL

(
πθ(·|st),

exp(QθQ(st, ·))
ZθQ(st)

)]
(2.55)

where KL is the Kullback-Leibler divergence measure and ZθQ is a normalization
function ensuring that the second argument of the Kullback-Leibler divergence is
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a proper probability distribution. The objective in (2.55) is however not readily
optimizable because the expectation is taken over actions, which again depend on
the parameters of the policy that we want to optimize. Therefore, the policy is
reparameterized using a neural network transformation:

aθ(s, ξ) = tanh(μθ(s) + σθ(s)	 ξ), ξ ∼ N (0, I) (2.56)

here, μθ and σθ are two parameterized deterministic functions of the input, rep-
resenting the mean and covariance of the output, respectively. The notation 	
denotes element-wise matrix-multiplication and ξ is independently sampled Gaus-
sian noise. The entropy can therefore be controlled in a state-dependent manner
through the σθ function. Finally, the output is saturated with the hyperbolic tangent
function, which squashes the Gaussian’s infinite support to the domain [−1, 1],
limiting the adverse effects of extreme noise values and giving bounded outputs.
Note that when referring to the policy trained with SAC in later chapters of this
thesis, it is this transformed policy that is referred to and denoted by πθ to ensure
consistency with the standard RL nomenclature.

Using this reparameterization, the objective in (2.55) can be rewritten as (2.57)
where the expectation is now over the noise ξ and the objective is therefore differ-
entiable for θ. An approximate gradient for this objective is given in (2.58):

JSAC,π(θ) =Est∼B,ξ

[
log πθ(aθ(st, ξ)|st)− min

i∈{1,2}
QθQ,i(st, aθ(st, ξ))

]

(2.57)

∇̂θJ
SAC,π(θ) =∇θ log πθ(at, st)

+

(
∇aθ log πθ(at|st)−∇aθ min

i∈{1,2}
QθQ,i(st, at)

)
∇θaθ(st, ξ)

(2.58)

2.9 Hindsight Experience Replay

Hindsight experience replay (HER) [6] is a technique to improve the data-efficiency
of off-policy RL algorithms, particularly when solving MDPs with sparse rewards.
A sparse reward only yields a feedback signal for some subset of the state space
and is typically constant elsewhere. In these problems, only episodes where the
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agent reaches the episodes’ goal state will yield a learning signal, and without any
intelligent exploration or guidance measures undertaken, reaching the goal state
is dependant on the typically random exploration of the initial policy. To acceler-
ate learning in these scenarios, Andrychowicz et al. [6] proposed to retroactively
exchange the episodes’ goal state for some other state that was reached by the con-
troller during the episode, and recalculate the rewards as if this new state was the
intended goal state. In this way, learning signals are reached more quickly, and ex-
isting data can be augmented and reused to improve sample complexity. For each
real experience the agent has, several synthetic ones are inserted into the dataset
where the goal state and rewards are recalculated. How many such synthetic exper-
iences to generate and how to select the new goal state are hyperparameters of the
HER technique, but empirical observations suggest that states that were reached
sometime in the not too distant future from the current state serve as the best can-
didates for new goal states, and that 2-16 synthetic experiences per real experience
is optimal.
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3

Introduction

In this part of the thesis, we consider the combination of conventional control tech-
niques with reinforcement learning, both in the direction of enhancing existing
control approaches and conversely using existing control approaches to enhance
RL for control. The first three chapters concern automatic optimization of what
we call the meta-parameters of the MPC scheme. By meta-parameters we mean
parameters that affect the structure of the OCP (including when it is computed,
i.e. its initial conditions), as opposed to what we consider internal parameters
of the MPC that affect the solution to a given OCP. Chapter 4 considers optim-
ization of the recomputation meta-parameter, that is, instead of recomputing the
solution to the OCP at every step as is the default MPC paradigm, we consider
the timing of when to compute the MPC a decision variable that we optimize with
RL. In Chapter 5 we look at how one can learn the optimal prediction horizon
meta-parameter of the MPC as a function of the state using RL. Chapter 6 then
takes a more holistic approach; we argue that the questions of when and how to
compute the MPC are related and optimizing these meta-parameters in isolation
fails to consider the interconnections and indirect effects at play. We therefore de-
velop a single RL policy that can incorporate any parameter of the MPC scheme
(the described meta-parameters and any internal parameter), and jointly optimize
them in order to improve the control algorithm. While the method presented in
Chapter 6 therefore in a sense supersedes the two preceding chapters and their
methods, there is an argument to be made for simplicity and the fact that tuning all
meta-parameters might not make sense for every application. Moreover, a gradual
introduction of these concepts constitute a more accessible presentation and cor-
responds to the order in which these concepts were conceived and developed.

Finally, this part of the thesis concludes with Chapter 7 which presents a method to
accelerate the learning of an RL controller by guiding the initial exploration phase
with an existing (suboptimal) controller. While this topic might not seem directly
related to the other topics treated in this part of the thesis, in Chapter 7 we present
a relationship between the optimization framework presented in Chapter 6 and the
topic of guiding RL with existing solutions to the control problem, a relationship
we would have looked further into given more time.
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The following section serves as a shared introduction for the next three chapters,
in order to limit redundancy due to their overlapping subject matter. In this thesis
we implement the MPC with the CasADi framework [5], the Ipopt optimizer [192]
and the do-mpc Python library [122].

3.1 Motivation and Related Work

MPC is a powerful optimizing control technique, capable of successfully con-
trolling a wide range of systems with high control proficiency while respecting
system constraints. The NMPC (henceforth referred to as just MPC) can even
handle nonlinear dynamics and nonlinear constraints, and while not as simple as its
linear counterpart, is increasingly being considered for applications with fast dy-
namics [3, 74, 200, 95]. However, one of the main drawbacks of the MPC method
is its high computational complexity, which makes it ill-suited for applications
with low-powered hardware platforms or battery energy restrictions, necessitating
some form of compromise in its implementation, see e.g. [56] and [70].

The high computational complexity of the MPC comes as a result of its online op-
eration consisting of solving a numerical OCP at every time step, executing the first
control input of the computed optimal solution, and then solving the OCP again at
the subsequent time step. A further challenge of the MPC method is the need to
tune its parameters to the task at hand, greatly affecting the control proficiency, ro-
bustness and computational complexity of the controller. There are several ways to
reduce the computational requirements of MPC, with the two main tunable para-
meters being the optimization horizon length and the step time. Reducing the
optimization horizon can lead to the controller exhibiting myopic behaviour, fa-
vouring short term gains over long term performance, while large step sizes can
in turn lead to worse control performance as the controller is unable to respond
to high-frequency dynamics and transient disturbances. The primary technique
to reduce computational complexity is to reduce the number of iterations of the
optimization procedure. This early termination scheme [171] terminates optim-
ization before the optimality conditions are met, yielding a sub-optimal solution
and subsequent sub-optimal control performance. Some theoretical guarantees on
stability and sub-optimality bounds have been presented [171, 157]. Other notable
approaches are explicit MPC, semi-explicit MPC, and move blocking, the latter of
which is a technique to reduce the number of decision variables by assuming these
are constant over several contiguous steps [39]. In explicit MPC [21] the control
law is precomputed offline as a piecewise linear function, and online computation
consists of identifying the current operating region and evaluating the correspond-
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ing linear control law, while semi-explicit methods precompute some parameter-
ization of the OCP such that online computation is of lower dimension [69]. Other
parameters of the MPC scheme are also subject to tuning, e.g. discretization step
size, objective functions, optimality tolerances, etc., including some non-obvious
facets such as the constraints which can in some instances be tuned more aggress-
ively yielding better or safer behaviour. How to tune all these parameters for the
MPC scheme is a non-trivial question.

RL [176] is a field of machine learning concerned with optimal sequential decision
making. While RL has proven to be the state-of-the-art approach for certain classes
of problems requiring complex decision making over long time horizons, such as
game-playing [137, 23, 166] and dexterous robotic in-hand manipulation [8], it has
in general seen limited adoption for control. This is in large part due to its data in-
tensive nature, combined with its inability to handle constraints and therefore lack
of guarantees for safe operation of the system, both in the exploration phase and
in the exploitation phase. Several works have suggested approaches to incorporate
learning into the control algorithm in a safe manner by learning how to augment ex-
isting control techniques such as MPC [10, 159, 124, 185, 104, 57, 199, 116, 125].
However, concerns about the stability and recursive feasibility of the closed-loop
systems as is considered in these works are outside the scope of this thesis.

Other works have suggested combining RL and MPC in a model-based manner
where the dynamics are learned and then used in an MPC scheme [141, 107]. In
this thesis, we employ the approach of using the MPC as a function approximator
(i.e. to implement the policy) in RL following [72], which establishes that such
an approach can recover the optimal policy for the controlled system, even if the
underlying model in the MPC scheme is incorrect, by tuning of MPC objective
costs alone. The efficacy of this approach is also demonstrated in [134] for traject-
ory tracking of multirotor UAVs. Later works have extended these results to more
classes of RL algorithms, i.e. deterministic policy gradients [75] and stochastic
policy gradients [76]. The novelty in the methods of this thesis on the combination
of MPC and RL lies in considering the meta-parameters of the MPC scheme as
parameters that can be optimized using RL.
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4

Reinforcement Learning of the

Model Predictive Control

Computation Timing

This chapter represents our first foray into optimizing the meta-parameters of the
MPC scheme, in which we look exclusively at the problem of deciding when to
compute the MPC. While the method presented in this chapter is identical to the
recomputation part of the method in Chapter 6, the experiment we present is dis-
tinct: The system dynamics are different, featuring unmeasured process disturb-
ance rather than model mismatch between the plant and the MPC as is the case in
Chapter 6, and we impose an additional state constraint. Moreover, we present a
comparison to the suboptimal early-termination MPC as a baseline. This chapter
is based on the following article:

• [37] Eivind Bøhn, Sebastien Gros, Signe Moe, and Tor Arne Johansen. Op-
timization of the model predictive control update interval using reinforce-
ment learning. IFAC-PapersOnLine, 54(14):257–262, 2021. ISSN 2405-
8963. doi: https://doi.org/10.1016/j.ifacol.2021.10.362. 3rd IFAC Confer-
ence on Modelling, Identification and Control of Nonlinear Systems MICNON
2021

Note that since we in this chapter limit the scope to optimization of the recomputa-
tion meta-parameter, and not of the controllers themselves, the subscript indicating
the tunable parameters of the controllers described in Chapter 2 are omitted.

4.1 Introduction

As an alternative to the normal digital control system approach of measuring sys-
tem state and calculating control signals at equidistant points in time, one can in-
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stead select these points by some other criteria, yielding a control system that con-
sists of a control law and a triggering policy. This event-triggered control paradigm
could be used to increase control performance or reduce the frequency of compu-
tations based on how the triggering policy is designed [207, 88]. Event-triggered
MPC has been suggested in the literature to reduce resource usage particularly in
networked communication systems and multi-agent systems [93, 22, 115, 42]. In
these works, the triggering policy is a predetermined hand-crafted policy based
on domain knowledge about the system and the controller, a learned policy on
the other hand can be derived without requiring system knowledge and be adapt-
ive to changing dynamics and uncertain disturbances. In [198] the authors use a
learned empirical risk-minimization model to predict the unknown system noise in
an MPC framework, and use its output to determine the triggering thresholds. For
a recent review of machine learning applied to event-triggered networked control
systems, see [172].

In this chapter we look at the single agent setting and suggest learning the trig-
gering policy with RL. Several other works such as [16] and [197] have proposed
RL for learning a triggering policy, however these works simultaneously learn the
control law as opposed to our work which employs MPC for this purpose. The con-
tribution of this chapter lies in introducing a novel three-part control architecture,
combining a dual mode MPC and LQR control law [136] with an RL triggering
policy, and in deriving how the event-triggered MPC problem can be framed as an
MDP, facilitating RL. The MPC solves the OCP, providing a plan in the form of
an input sequence and the predicted state trajectory from executing said input se-
quence, while the LQR provides an additive compensatory input based on the state
trajectory prediction errors, extending the viability of the computed MPC input
sequence. Finally, the RL triggering policy, henceforth referred to as the recom-
putation policy, selects time instants when the improved control performance from
recomputing the MPC solution outweigh the computational costs. We empirically
demonstrate the effectiveness of the proposed architecture through an experiment
with the inverted pendulum system.

A motivation for this type of architecture can be found in the dual process the-
ory of the human mind [53]. This theory hypothesizes that the mind in principal
has two systems: the explicit system 2 which has to be actively engaged by the
consciousness and therefore consumes the limited resource of focus, while the
implicit system 1 is automatically engaged to decide reactions to external events
whenever the world behaves according to our expectations. System 1 is fast, react-
ive and based on heuristics, while system 2 is slower, planning and more proactive
in nature. In this analogy, the MPC acts as system 2, providing a plan that accounts
for all the nonlinearities and global effects of the controlled problem, the LQR is
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the fast heuristics-based system 1, while the learned recomputation policy acts as
the consciousness monitoring the controlled problem and activating system 2 as
needed.

4.2 Learning-based Event-Triggered MPC

4.2.1 Proposed Control Algorithm

In this chapter we employ the event-triggered MPC formulation [115] (see Sec-
tion 2.1.2 for a description). The recomputation policy πθ(a | s) is a stochastic
policy parameterized by θ, defining a probability distribution over a binary output
action, a, where at = 1 corresponds to recomputing the MPC solution at step t and
at = 0 corresponds to not recomputing it. The recomputation policy πθ receives a
state s that is not simply the real system state x, because πθ depends on the state
of the system when the MPC was last computed. For RL optimization theory to
apply for πθ the state s must be a Markov state. We will therefore define next an
augmented state space S that does have this property.

Assume that the MPC solution delivers an input sequence uMi:i+N−1 associated to
a measured state x̄i, at time instant i and that the sequence uMi:i+n is applied to the
system. The inputs received by the plant in the time interval i : i + n are then a
function of state x̄i at time i. Since n ∈ {0, . . . , N − 1} is not known a priori, one
ought to generally view the control system stemming from the triggering policy
and the MPC scheme as being a control law from an augmented state, s ∈ S ,
containing 1. the current state of the system, 2. the state of the system when the
last optimization took place, and 3. the number of time samples from which the
last optimization took place. Labelling the current time of the system as t and the
last time when the optimization occurred as i, that augmented state reads as:

si =

⎡
⎣ x̄t

x̄i
t− i

⎤
⎦ (4.1)

where i < t ≤ i + N − 1, x̄t has progressed from x̄i according to the real sys-
tem dynamics, and the deterministic state transition x̄i ← x̄t, i← t occurs when
at = 1 is drawn from the stochastic policy πθ(at | st). This Markov state st is illus-
trated in Figure 4.1. It is not necessary to include the MPC’s predicted trajectory
x̂i+1:i+N in s to ensure the Markov property, as the prediction is fully determined
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by x̄i and the (known) MPC control law. The MPC control law actually deployed
on the system then reads as:

πM(st) = uMt−i(x̄i) (4.2)

where uMt−i is the (t− i)th element of the MPC solution solved for the initial state
x̄i. The dual mode control law reads as:

πDM(st) =

{
uM
t−i(x̄i) + uL(x̂t − x̄t) , if πθ(at|st) = 0

uM
0 (x̄t) , if πθ(at|st) = 1

(4.3)

This control law defines the inputs actually applied to the plant in a closed-loop
system. The control system and the plant dynamics together define the state trans-
ition dynamics in the augmented state space S , where the states s does have the
Markov property. The event-triggered MPC problem is therefore an MDP in the
augmented state space S , such that classic RL can be applied on s. In that context
exogenous input variables (e.g. forecasts) p̂ can be seen as being part of the states
x̄i, x̄t.

Figure 4.1: A sufficient state representation to ensure the Markov property for the recom-
putation policy, illustrated for a system with a one-dimensional state space.

The proposed control system is described in Algorithm 1. The MPC solution is
computed at the first time step, generating an optimal predicted state trajectory
x̂1:N and a sequence of optimal inputs that produces this trajectory uM0:N−1. The
first input is then applied to the system as usual, but instead of discarding the rest of
the MPC solution, we allow a learned policy to decide based on an observation of
the current recomputation state, s, whether the last MPC solution is still of accept-
able quality, or if it should be recomputed. If the recomputation policy decides not
to recompute, a tracking LQR is applied to the state prediction error e to correct the
state trajectory to match the plan generated by the MPC. Algorithm 1 describes the
operation of the control system with a fixed recomputation policy, e.g. after the RL
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policy is done learning, as how and when the learning is performed would depend
on the chosen learning algorithm. In Algorithm 1, the function LQR produces the
gain matrix as a function of the LQR matrices as described in Section 2.3.

4.2.2 Reward Function

The objective of the recomputation policy is to reduce the frequency of the con-
trol algorithm computations while maintaining acceptable control performance. It
therefore needs to be incentivized to perform well on the control objective, respect
problem constraints and receive some penalty for engaging the computationally
expensive controller. With this in mind we employ a cost function of the form:

R(s, a) = RP (s
′) + λH(T − t)RH(s′) + λCRC (4.4)

Where s′ = T (s, a), i.e. the resulting state from applying action a in state s, and
λ∗ are weighting factors. RP is the control objective, e.g. the MPC stage cost �,
RH is a binary predicate indicating if a constraint has been violated upon which
the episode is ended, such that the cost is proportional to how many steps are left
in the episode. Finally, RC = a, indicating if a new plan is computed, and its
weight should therefore reflect the relative computational complexity of the two
controllers.

4.2.3 Initialization

As the objective of this architecture is to reduce the energy usage of the MPC
by identifying when it is viable to not recompute the MPC solution (as opposed
to when it is necessary to recompute), we initialize the recomputation policy to
(with high probability) mimic the standard MPC approach and always elect to
recompute. This is achieved by setting the bias term of the policy’s recompute
output to a high value. Further, since the LQR’s purpose in this architecture is
to execute the MPC’s plan, we tune it to be a local approximation to the MPC
scheme in steady-state. That is, we linearize the MPC model at the steady-state of
the system to obtain the A and B matrices, and then we set the Q and R weighing
matrices as the Hessian of the MPC objective also at the steady-state.

4.2.4 Policy Representation

We model the recomputation policy output as a Bernoulli random variable, where
the policy itself can be any approximator capable of outputting the moments of the
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distribution, e.g. logistic regression models or NNs. This yields a stochastic policy
such that exploration is done on-policy. See Section 4.3.2 for a specific example
of such a policy realization.

Algorithm 1: Control System Algorithm

A,B = ∇x,uf̂(x, u, p̂)|x=0,u=0 ;
Q,R = ∇2

x,u�(x, u, p̂)|x=0,u=0 ;
Initialize LQR: K = LQR(A,B,Q,R) ;
Compute initial MPC solution and execute input: i← 0, uM0 ;
for t = 1, 2, . . . , T do

Measure system state at next sampling instant: x̄t ;
if t = i + N or recomputation policy πθ(at | st) draws at = 1 then

Update MPC, state, and variables: i← t ;
Compute MPC solution: x̂i+1:i+N , uMi:i+N−1 = πM(xi, p̂i) ;
Execute MPC control input: uMi ;
Break loop ;

else

Compute prediction errors: et = x̂t − x̄t ;
Compute additive LQR input: ut = uMt−i + uL(et) ;
Apply input constraints: ut = projhut ;
Execute control input: ut ;

end

(Update θ as dictated by the RL algorithm)
end

4.3 Experiment

We illustrate the proposed control system on the classic control task of balancing
an inverted pendulum mounted on a small cart. This system has hard physical
constraints that must be respected, in terms of the carts’ position and the angle of
the pendulum, and has regions of the state space that are highly nonlinear while
stable conditions with the pendulum in the up position are approximately linear.
The MPC controller is therefore necessary to handle the constraints of the problem
and bring the system to stable conditions, while the LQR is sufficient to maintain
stability. Moreover, the cart pendulum system is an embedded system where the
energy source powering the controllers is finite, limiting the computation of the
control system is therefore of interest.
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The state space consists of x = [ψ, v, β, ω]� which is position and velocity of
cart along horizontal axis, and angle of pendulum to the vertical axis and angular
velocity of the pendulum, respectively. We discretize the system equations in (4.5-
4.6) with step time Δt = 0.04s, and add unmeasured process disturbance wt =
[0, 0, 0,N (0, 1)]�, which means that feedback control from the LQR is a necessary
addition to the MPC plan to stabilize the pendulum in between computations. We
sample initial states according to x0 = [0,U(−1, 1),U(−0.78, 0.78),U(−1, 1)]�
and a time-varying position reference ψr,t ∈ U(−0.5, 0.5) that is redrawn every
50 steps, where U is the uniform distribution. We put constraints on the input,
pendulum angle and position of the cart (4.7). Finally, the physical parameters are
the pendulum length and weight, l = 0.25, m = 0.2, the total weight of the cart
and the pendulum, M = 0.8, and the gravitational acceleration, g = 9.81.

The MPC is configured with prediction horizon N = 25, D = 0.1, �(xt, ut, pt) =
m(xN ) = Ekin−Epotential +10(ψr,t−ψt)

2. This objective function promotes sta-
bilization of the pendulum in the upright position through minimizing the kinetic
energy and the negative potential energy of the system, while tracking the position
reference ψr. We set λh = 10 and λC = 0.05. An episode is terminated after a
maximum of 150 steps, or when one of the state constraints are violated.

ψ̇ = v, v̇ =
mgsin(β)cos(β)− 4

3(u+mlω2sin(β))

mcos2(β)− 4
3M

(4.5)

β̇ = ω, ω̇ =
Mgsin(β)− cos(β)(u+mlω2sin(β))

4
3Ml −mlcos2(β)

(4.6)

− 10 ≤ ut ≤ 10, −90◦ ≤ βt ≤ 90◦, −1 ≤ ψt ≤ 1 (4.7)

4.3.1 Baseline Policies

To assess the quality of the RL policy we compare the learned policy to the fixed
baseline policies: standard MPC, never recomputing until end of horizon, and a
recomputation policy that statically recomputes every t time step. For the two
latter policies, the LQR is applied between computations as is the case for the RL
policy. We also compare with an early termination (suboptimal) MPC for which
the termination tolerances are relaxed compared to the standard MPC.



40 Reinforcement Learning of the Model Predictive Control Computation Timing

4.3.2 Training and Evaluation

We train and evaluate the policies in an episodic setting with randomly gener-
ated initial conditions, process-noise, time-varying exogenous variables etc. as
discussed above. To evaluate the policies and minimize the effects of the ran-
dom variables on the results, we construct a test set consisting of 100 episodes
where all random variables are drawn in advance such that the episode is consist-
ent across policy evaluations. During evaluation, we take the deterministic action
of the policy, i.e. the mode of the action distribution. We use the average negative
undiscounted return −G(τ) (i.e. set γ = 1) of the episodes as the objective to
compare models, where τ is the sequence of states and actions in the episode.

For PPO we use the hyperparameters suggested in the paper from [7], with the
following exceptions: the policy is a two-layer feed-forward neural network with
16 nodes in each layer, γ = 0.97. Furthermore, since RL algorithms are known
to be sensitive to the random initialization of its parameters, we train and report
mean results over 5 initialization seeds.

4.4 Results and Discussion
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Figure 4.2: Learning curves for the training phase of the RL recomputation policy show-
ing mean values and standard deviation (shaded region) over five different seeds. The
graphs correspond to the (dimensionless) components of the cost function (4.4).

Figure 4.2 shows the evolution of the learning process of the RL recomputation
policy evaluated every 20,000 time steps on the test set. It starts out emulating the
MPC strategy achieving similar objective value scores, and from there identifies
instances where similar control performance (or better) can be achieved without
recomputing the MPC solution. It converges after around 200,000 time steps cor-
responding to about 2 hours and 20 minutes of real-world data collection time
for the inverted pendulum system. For this system, we ensured feasibility for the
dual mode control law even with the lowest recomputation frequency by tuning
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the parameters of the MPC, and as such the RL policy always respect the con-
straints even during the learning process. See Section 2.1.3 for a discussion about
guaranteeing feasibility.

0 10 20 30 40 50
Cost

RL

Every10

EarlyTerm

Every5

MPC

Every20

HorizonEnd

Every15

R
ec

om
pu

ta
tio

n 
Po

lic
y

Inverted Pendulum Evaluation Dataset

total
control
computation
constraint

0.00 0.05 0.10 0.15 0.20
Seconds

Ours

EarlyTerm

MPC

C
on

tro
l S

ys
te

m

CPU Process Time

Figure 4.3: Left) Undiscounted return G over the test set for the different recomputation
policies, where each bar corresponds to the components of the cost function (4.4) (note
that none of the models violated any constraints). The bars for RL show mean values with
the lines representing one standard deviation, over the five initialization seeds. Right) Total
time spent calculating all the control signals of an episode, averaged over the episodes in
the evaluation set.

The trained RL policy is compared to the baseline controllers in Figure 4.3. It
outperforms the standard MPC approach by ∼30% on the overall objective. A
noteworthy result is that the improvement stems not only from reductions in com-
putation, but also a sizeable improvement in the control objective (∼20%), being
the only model to outperform the MPC standard paradigm (computed every step)
in this regard. The RL policy is able to uncover some synergistic relationship
between the MPC and LQR laws and realize a control algorithm that exceeds the
performance of either control law alone. As discussed in Section 4.2.3, we ini-
tialize the control algorithm to a “best guess” of the optimal control law, and any
improvements found by RL are therefore non-trivial to explain. We do however
observe that the LQR appears slightly more successful than the MPC at rejecting
the process noise added to the pendulum’s angular velocity, thus applying the LQR
in stable conditions would result in some control performance improvement. Fig-
ure 4.3 shows that there is no clear relationship between the control performance
and the frequency of recomputation, which suggests that RL has learned to apply
the recomputation strategically, rather than just some periodic function. With the
early termination MPC, computational complexity is nearly halved while the con-
trol performance is only reduced by a few percent. This variant of the MPC still
has considerably higher computational complexity than the control algorithm we
propose, while losing rather than gaining control performance.
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The right graph of Figure 4.3 shows the CPU process time to calculate the control
signals of the standard MPC approach, the early termination MPC, and control al-
gorithm we propose, summed over every step in an episode and then averaged over
the episodes in the evaluation test set. For our approach, this involves the calcula-
tion of the recomputation policy as well as the calculations of the MPC and LQR
control laws as selected by the policy. While this adds some overhead, it is small
compared to the MPC computation time, and the reductions in processing time are
therefore considerable at about∼ 60%. The algorithm we propose would therefore
significantly reduce the energy usage of the control system, and free up resources
for other components of the embedded system. The memory requirements are also
significantly reduced between MPC computations, but it is not clear how much
utility this intermittently freed memory has in an embedded context.

One major effect we do not account for in this work is the time it takes to obtain
the MPC solution, which is often significant compared to the sampling time. The
recomputation policy could therefore instead be trained as a self-triggering policy
predicting the number of time steps the current solution is viable for. The MPC
could then be scheduled so that a new solution is ready when needed, while also
giving the MPC more optimization time resulting in a higher quality solution.

4.5 Conclusion

In this chapter we have presented a novel three-part control algorithm architec-
ture involving a dual mode event-triggered MPC and LQR control law, and an
RL recomputation policy. The learned recomputation policy monitors the state
of the system, and dynamically decides on when to compute the MPC. We show
that optimization of the recomputation meta-parameter can provide significant im-
provements, both in terms of a decrease in computational expenditure and in terms
of an increase in control performance. This could open up new applications for the
MPC scheme, particularly for battery-driven systems and other applications where
energy is a limiting factor. The role of RL in the proposed control system could
be extended to act as the simple controller itself, or to co-optimize the two other
controllers by e.g. tuning parameters, as is done in Chapter 6.
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Reinforcement Learning of the

Prediction Horizon in Model

Predictive Control

In this chapter we continue the investigation into optimizing the meta-parameters
of the MPC scheme, this time focusing on the prediction horizon meta-parameter.
The prediction horizon is the single most impactful parameter wrt. the computa-
tional complexity of the MPC, and it therefore warrants a thorough examination.
In this work, we take a different approach to modelling the prediction horizon
parameter than the approach in Chapter 6, and use the valued-based off-policy RL
algorithm SAC rather than the on-policy policy-gradient PPO algorithm used in
Chapters 4 and 6. This provides better data efficiency and higher adaptivity of
the horizon selector to the state of the system. Note that we also submit the sub-
script indicating the tunable parameters of the MPC controller in this chapter. This
chapter is based on the following article:

• [38] Eivind Bøhn, Sebastien Gros, Signe Moe, and Tor Arne Johansen. Re-
inforcement learning of the prediction horizon in model predictive con-
trol. IFAC-PapersOnLine, 54(6):314–320, 2021. ISSN 2405-8963. doi:
https://doi.org/10.1016/j.ifacol.2021.08.563. 7th IFAC Conference on Non-
linear Model Predictive Control NMPC 2021

5.1 Introduction

The prediction horizon length is a key parameter of the MPC framework. In con-
junction with the step size it controls how far into the future the controller evaluates
the consequences of its actions. If chosen too short, the computed trajectories are
myopic in nature and might lead to instability and poor approximations of the in-
finite horizon solution, while the computational complexity grows at best linearly

43
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with increasing prediction horizon. Moreover, different regions of the state space
might have varying requirements on the horizon length for stability and to find
nearly optimal trajectories. This observation motivated the AHMPC scheme, and
several implementations of AHMPC have been suggested in the literature.

The AHMPC formulation was pioneered in [136], where the horizon is adapted
so that a terminal constraint is satisfied and the system enters a known region
of attraction of a second terminal controller. [105] proposes a heuristics-based
approach, presenting one ideal but not implementable approach, and one practical
method using iterative deepening search where stability criteria are checked on
each iteration to determine the lowest stabilizing horizon. A more direct approach
is presented in [170] where the prediction horizon is included as a decision variable
of the MPC scheme.

When it comes to learning-based approaches to AHMPC, [66] is the only work
we could identify in the literature. Their approach is based on supervised learn-
ing, and operates by first generating a rich dataset of numerous combinations of
states and MPC computations with varying horizons to obtain the cost objective
corresponding to a certain horizon in a given state, and then train a neural net-
work optimal horizon predictor in a supervised manner on this dataset. Of note
are also the works in [15, 150, 61], who all use derivative-free optimization to tune
the prediction horizon of the MPC scheme. However, these methods tune a single
global horizon as opposed to an adaptive horizon as is the case for our method.
In [15] and [150] the authors tackle the problem of identifying control-oriented
models that maximize closed-loop performance (as opposed to system identifica-
tion methods that aim at maximal prediction accuracy of the identified model), and
employ Bayesian optimization on data gathered in closed-loop experiments to up-
date the selected optimization parameters (including the prediction horizon) of the
control algorithm in order to improve closed-loop performance. Finally, [61] is a
follow-up work of [150] considering the effect of different hardware architectures
on the optimization procedure. Note that as is the case for the methods presented in
this thesis, none of the learning-based approaches described above treat the issue
of guaranteeing the closed-loop stability of the system.

In this chapter, we propose to learn the optimal prediction horizon length of the
MPC scheme as a function of the state using RL. To the best of our knowledge, this
is the first work to employ RL for AHMPC. The contribution of this chapter lies in
exploring how the RL problem of optimizing the MPC prediction horizon can be
formulated and showcasing its effectiveness on two control problems. Further, we
suggest jointly learning the MPC value function as described in Section 2.2 due
to its synergistic relationship with the prediction horizon, enhancing the adaptive
capabilities (note that we do not claim this to a be a novel proposal). While the
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non-learning-based AHMPC approaches described earlier can be designed with
favourable properties such as theoretical stability guarantees, they often assume
access to privileged information such as terminal sets and control Lyapunov func-
tions. Learning approaches on the other hand typically assume little is known, and
as such are applicable to more problems.

5.2 Learning the Prediction Horizon using SAC

5.2.1 Horizon Policy

We learn a policy πN
θ to output the prediction horizon N of the MPC scheme using

SAC. At every time step, the state of the system is measured and the policy then
outputs a prediction horizon. The MPC problem (2.3)-(2.6) is solved using this
prediction horizon, and the first element of its control sequence is applied to the
system and the process is repeated. The prediction horizon is a positive integer,
that for convenience we choose to upper bound. As such we modify the output of
the SAC policy by linearly scaling the output from the tanh’s limits of -1 and 1, to
1 and Nmax, and then round the output to the closest integer:

at = round
(
scale

(
πN
θ (st), [−1, 1], [1, Nmax]

))
(5.1)

The gradients of the RL problem are not affected by these transformations as the
transformations are applied in the environment, while the gradients are calculated
based on the unscaled and unrounded outputs from πN

θ (st). This does however
mean that the agent must “learn” that similar outputs from the policy will be roun-
ded to the same action in (5.1), and thus lead to the same subsequent state and
cost. We considered alternative ways of formulating the policy as a discrete distri-
bution from which integer horizon lengths could be drawn directly, such as N-head
NNs, Poisson models, and negative binomial models, but settled on the described
rounding approach due to its simplicity and favourable results.

The cost function of the horizon policy consists of a control performance cost RP ,
i.e. the MPC stage cost �, a constraint violation cost RC , and a computation cost
RN to encourage lower horizons when suitable:

R(s, a) = RP (s
′) + λC(T − t)RC(s

′) + λNRN (a) (5.2)

where λC , λN are weighting factors, and s′ = T (s, a). RC(s) is a binary variable
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indicating whether a hard constraint of the problem was violated — upon which
the episode is ended — and T − t is the number of steps left in the episode such
that the agent receives a penalty proportional to how early the episode is ended.
We assume the computational complexity of the MPC scheme grows linearly in
the horizon length, i.e. RN (a) = a, as a lower bound for the true complexity. This
generally holds true for the interior point method we use in the MPC scheme if one
assumes local convergence and an initial guess that is reasonable [154].

The RL state space S = {x, p̂} consists of the MPC state vector x and the time-
varying exogenous input variables p̂, as these are necessary to ensure the Markov
property.

5.2.2 MPC Value Function

The MPC’s value function is trained jointly with the RL horizon policy to minim-
ize the MSBE as described in Section 2.2, using 32-step bootstrapping. We found
that n-step learning provided sufficient stabilization such that other common tech-
niques in value estimation such as target networks and multiple estimators were not
needed [63]. We experimented with two types of approximators: two-layer fully
connected NNs and polynomial regression models. We found that for the problems
considered in this chapter, quadratic polynomial models achieved similar predic-
tion accuracy as higher-order polynomial models as well as the NNs. We therefore
employ a quadratic polynomial model as the value function estimator due to its
convexity, which contributes significantly less to the computational complexity of
the MPC scheme compared to the other models that were considered.

5.2.3 Evaluation

Since the environments are randomized we construct a test set consisting of 10
episodes for which all stochastic variables such as state initial conditions and ref-
erences are drawn in advance and thereby fixed for all policies, ensuring a fair
comparison. The learned horizon policy is compared against the standard MPC
scheme with a range of fixed horizons, to assess the contribution of the learning.
Each fixed horizon MPC also has its own value function estimated using a dataset
of 15k time steps.
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5.3 Experiments

We illustrate our approach on two systems. We set Nmax = 50 in (5.1), λN =
3 · 10−3, 1 · 10−3 and λC = 10, 2 in (5.2) for the inverted pendulum and collision
avoidance systems, respectively. We use the hyperparameters suggested in the
SAC paper [85], with the following exceptions: πN

θ is a 2-layer fully connected NN
with 32 nodes in each layer, a reward scaling (i.e. relative weighting of entropy
vs reward objective in SAC) of χ = 0.6 for the inverted pendulum system and
χ = 0.3 for the collision avoidance system, and γ = ρ = 0.97 discounting factors
for the MPC scheme and the RL algorithm, such that the controller values short
term rewards comparatively high in relation to long term rewards, and an effective
optimization horizon of

∑∞
t=0 γ

t = 1
1−0.97 ≈ 33 time steps for the RL horizon

policy.

5.3.1 Inverted Pendulum

The first system we experiment on is the classic control problem of stabilizing an
inverted pendulum mounted on a cart that is fixed on a track, so that the cart can
only move back and forth in one dimension. The cart’s position is constrained to
the size of the track and the pendulum angle is constrained to be above perpen-
dicular to the surface. The controller should also track a time-varying position
reference. As the position of the cart and stabilization of the pendulum are intric-
ately linked, respecting both of the constraints while tracking the position refer-
ence requires a fairly high optimization horizon. Each episode is terminated after
a maximum of 100 time steps, or when a constraint is violated.

The state space consists of the states x = [ψ, v, β, ω], where ψ and v is position
and velocity of the cart along the horizontal axis, while β and ω is the angle to the
upright position and the angular velocity of the pendulum. The system dynamics
are described by equations (5.3)-(5.6), where m = 0.2 and M = 0.8 are the mass
of the pendulum and total mass of cart and pendulum, and l = 0.25 is the length of
the pendulum. For the MPC model the dynamics are discretized with a step time
of Δt = 0.04s.

The stage cost �(xt, ut, p̂t) = Ekinetic − Epotential + 10 · (ψt − ψt,r)
2 + 0.1u2t

reflects the objective of stabilizing the pendulum in the up position, formulated
through minimizing the negative potential energy of the system, while tracking the
position reference ψk,r.
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ψ̇ = v (5.3)

v̇ =
mgsin(β)cos(β)− 4

3(u+mlω2sin(β))

mcos2(β)− 4
3M

(5.4)

β̇ = ω (5.5)

ω̇ =
Mgsin(β)− cos(β)(u+mlω2sin(β))

4
3Ml −mlcos2(β)

(5.6)

−5 ≤ u ≤ 5, −1.5 ≤ ψ ≤ 1.5, −90◦ ≤ β ≤ 90◦ (5.7)

5.3.2 Collision Avoidance

The second system we consider is a reference tracking problem, in which a vehicle
is controlled to follow a trajectory τ where obstacles are placed in the path that
needs to be avoided. The MPC receives information about the reference trajectory
as well as any obstacles in its vicinity (i.e. reachable at the maximum velocity
within the prediction horizon), however the position of the obstacles grows more
uncertain the farther away the obstacle is. This means longer horizons considers
increasingly uncertain information, and a short or medium horizon might be more
suited in some situations. The episode is ended when reaching the endpoint of the
trajectory, when colliding with an obstacle, or after a maximum of 150 time steps.

For the vehicle we employ a unicycle model (5.8)-(5.10) where the MPC provides
a forward velocity us as well as an angular velocity uω to turn the vehicle. The
MPC model is discretized with a step time of Δt = 0.1s. The positions and sizes
of the obstacles are randomly generated at the beginning of every episode, and
their projected positions supplied to the MPC are randomly drawn within a two-
dimensional cone originating from the vehicle, such that the uncertainty grows the
further away the object is from the vehicle. An episode is illustrated in Figure 5.1.

ψ̇x = us cos(β) (5.8)

ψ̇y = us sin(β) (5.9)

β̇ = uω (5.10)

0 ≤ us ≤ 5,−4 ≤ uω ≤ 4 (5.11)

The stage cost is defined as �(xt, ut, p̂t) = ||ψt−τt||22 where ψt = [ψx, ψy]
� and τt

is the vehicle position and trajectory reference at time t. Further, soft constraints
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Figure 5.1: An episode in the collision avoidance environment. The blue rectangle rep-
resents the vehicle tracking the trajectory (the orange dashed line) from left to right, while
avoiding the grey obstacles. The sensor beam’s inaccuracy grows with distance, such that
the projected position of the object in the beam is drawn from the yellow circle. The
vehicles’ size is enlarged for visual clarity.

with slack variables are added around each obstacle with 150% of the obstacles
radius.

5.4 Results

The standard MPC scheme with various prediction horizons and the learned RL
AHMPC are compared in Figure 5.3, where all models employ their correspond-
ing value function estimator V̂ M

θV
. The RL policy outperforms the standard MPC

scheme for all horizons lengths, improving on the second-best achieving policy
by about 4% and 8% for the inverted pendulum and collision avoidance systems,
respectively. The improvement is more significant for the latter system as the per-
formance objective varies more with the prediction horizons, and the RL policy
is able to identify when to use long and short horizons. For the inverted pendu-
lum system, all horizons capable of respecting the constraints achieve similar per-
formance costs, and as such, the difference lies mainly in the computation term,
although the RL policy achieves the lowest performance cost here as well. RL’s
ability to find improvement in a problem with such a noisy cost landscape and with
such little potential improvement speaks to its strength. Moreover, the gains from
reducing computation would be greater when using e.g. active set methods for the
MPC scheme which typically yields quadratic growth in computational complexity
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[108].
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Figure 5.2: Total cost improvement over the test sets with the value function as the ter-
minal cost in the MPC scheme.

In the collision avoidance environment, the best performing fixed horizon is the
short 10 step horizon. With the shortest 5 step horizon, the MPC is unable to nav-
igate around all the obstacles, preferring to stay still in front of large obstacles,
although the addition of the value function mitigates this issue to some extent.
Longer prediction horizons allow the MPC to recognize that sometimes the long
way around the closest obstacle yields a shorter total path due to other obstacle
locations, but its planned routes are more sensitive to the uncertainty in the pro-
jected locations. A robust MPC scheme could alleviate this deficiency, however
the RL policy is also able to recognize this issue and leverage the strengths of both
short and long horizons.

We found that implementing value function estimation in the MPC scheme could
significantly improve the performance when using horizons in a neighbourhood of
the horizon spectrum where performance changes abruptly, as illustrated in Fig-
ure 5.2, which shows the percentage improvement for each policy when including
V̂ M
θV

as the terminal cost. The RL horizon policy does not benefit as much from the
value function as we would expect, even being the best performing policy when
removing the value function from it but not from the fixed horizon MPCs. The
benefit would probably be more significant in problems that are more temporally
or spatially complex. In the collision avoidance problem, the shortest horizons
show the largest improvements, while for the inverted pendulum system the most
improved horizons are the ones that lie close to the apparent minimum horizon
required to successfully stabilize the pendulum and track the position reference.
For both systems, the longer horizons benefit less from the addition of the value
function. This is in part due to the fact that both these systems are heavily influ-
enced by future information that is not available to the value function estimator,
i.e. accurate information about distant obstacles and the future position reference
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Figure 5.3: Mean episode costs for the horizon policies on the test sets for the two systems
using the value function as the terminal cost, where lower is better. The objectives are
connected in that the policy does not accrue performance or computation cost after the
episode is terminated from a constraint violation. The top figure is cut off due to the
worst-performing policies having a significantly higher cost.
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Figure 5.4: The distribution of the horizons selected by the RL policy over the two test
sets.
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Figure 5.5: Total cost on the test set for the RL policy at different stages of the learning
process. The solid line is the mean score while the shaded region is one standard deviation
over three initialization seeds.
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for the cart.

We note that the performance costs and the value function improvement is not
monotonic wrt. the horizon length. This could partly be explained by the random-
ness in the data collection stage for the value function estimation.

The distribution of the horizons selected by the RL policy over the evaluation test
set is shown in Figure 5.4. The policy selects a wide range of horizons and has
a floor that in both cases largely agrees with the minimum horizons that achieve
the highest control performance in Figure 5.3. As discussed in Section 2.1.3, this
shows that RL is able to learn the range of stabilizing horizons. One interesting
thing to note is that in the collision avoidance environment it displays bi-modal be-
haviour, presumably corresponding to the short-long horizon dichotomy discussed
in the preceding paragraph. The mean, median and mode horizon are 28, 26, and
23, and 24.2, 25, and 26 for the inverted pendulum and collision avoidance envir-
onments, respectively.

Figure 5.5 shows the progression of the training process of the RL horizon policy.
It learns quickly, converging after around 15 thousand time steps for both systems.
Considering the sampling time of 0.04s and 0.1s for the inverted pendulum and
collision avoidance systems, this corresponds to about 10 and 25 minutes of run-
ning the systems in real-world time to collect data. Moreover, we find that the RL
horizon policy itself converges even faster and that the value function estimation is
the slower, less data efficient component. From these results, it seems evident that
RL is able to cope well with the rounding described in Section 5.2.1.

5.5 Conclusion

This chapter has shown that RL can be used to automatically tune and adapt the
prediction horizon of the MPC scheme online with only minutes of data collection,
at least for simple systems. An important further work is to investigate how this
affects the stability properties of the MPC framework, and if any guarantees can
be given.

The method presented in this chapter is quite significantly different from the method
to tune the prediction horizon that is presented in Chapter 6, and was showcased
on different systems. First, it uses the off-policy algorithm SAC as opposed to the
on-policy algorithm PPO that is used in Chapter 6. Off-policy methods are gener-
ally more data-efficient, and we observe as expected that the data requirement of
the method in this chapter is about an order of a magnitude lower than that of the
method in Chapter 6. Moreover, the horizon variable is in this chapter modelled as
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a Gaussian random variable that is then discretized into the integer values accepted
by the MPC scheme, instead of it being directly modelled as a discrete variable as
is the case in Chapter 6. While we empirically demonstrate that both approaches
work, in the sense that they both produce optimizing behaviour, it is not clear how
the discretization of the continuous horizon variable (which is not communicated
explicitly to the RL algorithm) affects the optimization procedure, and the discrete
horizon variable formulation therefore constitutes a more technically correct ap-
proach. As discussed in Section 6.5, even the most fitting discrete formulation
we could identify (i.e. the GP-2 variant of the generalized Poisson distribution
(GPD)) had its issues in terms of high minimum variance, necessitating variance
reduction techniques such as frame-skip. With the caveat that the control prob-
lems of Chapters 5 and 6 are different and it is therefore unclear how comparable
the resulting behaviour of the two methods are, the entropy-maximizing nature
of SAC seems to lead to the horizon policy’s output being more state-dependent,
even exhibiting multi-modality in the collision-avoidance experiment where this
was beneficial. The PPO based method on the other hand tended towards employ-
ing a small range of horizons that worked well over a large region of the state
space.
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A Complete Framework for

Optimization of Model Predictive

Control with Reinforcement

Learning

In this chapter, we conclude our research efforts into the optimization of meta-
parameters of the MPC scheme using RL, and develop a framework in which these
meta-parameters as well as any other parameters of the controllers can be jointly
optimized. This chapter is based on the following article:

• [28] Eivind Bøhn, Sebastien Gros, Signe Moe, and Tor Arne Johansen. Op-
timization of the model predictive control meta-parameters through rein-
forcement learning. IEEE Transactions on Cybernetics, 2021. Submitted

6.1 Introduction

Learning can be an important tool in assisting the tuning process of the MPC
scheme. In this chapter, we propose the novel idea of tuning the meta-parameters
of the MPC scheme using RL. By meta-parameters we mean parameters that affect
the structure of the OCP and under what conditions it is solved, rather than para-
meters that affect the solution to a given OCP, the tuning of which has previously
been demonstrated in the literature [72, 52]. This work extends upon the methods
presented in the two preceding chapters. Here, we propose a unified framework
in which these meta-parameters, as well as any other parameters of the control
algorithm, are jointly optimized to simultaneously maximize the control perform-
ance and reduce the computational complexity in a configurable manner. The con-
trol algorithm we propose consists of a recomputation policy that decides when
the MPC solution should be computed, a state-feedback controller (i.e. the LQR)

55
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that is applied on the predicted state trajectory produced by the MPC in between
MPC computations, and an RL algorithm that incorporates the parameters of these
controllers and optimizes them according to the specified objective. Although we
can enforce input constraints, there is no mechanism to ensure that the state con-
straints hold in our control algorithm, and the constraint satisfaction properties
will be determined by the behaviour identified as optimal through RL. While we
demonstrated in the preceding chapters the effectiveness of learning these meta-
parameters in isolation, it is clear that the questions of when and how (that is, wrt.
its tunable parameters) to compute the control algorithm are related, and treating
them separately fails to consider the interactions and indirect effects at play.

Introducing learning for the LQR problem has previously been suggested in the
literature [158, 179, 126, 54]. What separates our method from the aforementioned
works, is that in the control algorithm we propose, the dynamics matrices stem
from the MPC controller, and have a clear purpose in making the LQR compatible
with the MPC scheme. Since we therefore can assume that these matrices are
known and fixed, we can take advantage of the structure in the LQR problem in
terms of the Riccati equation, and calculate the gradients of the weighting matrices
through the Riccati equation. Introducing structure simplifies a learning problem
by restricting the solution space that is searched.

The contributions of this chapter can be summarized as:

1. We propose the novel idea of optimizing the meta-parameters of the MPC
scheme using RL.

2. We develop a novel MPC formulation in which the performance and com-
putational power usage are jointly optimized in a configurable, automated
manner, which could open up new applications for MPC.

3. To realize the proposed algorithm, we employ novel use of mixture distribu-
tions for RL.

6.2 Control Algorithm

The control algorithm we propose in this chapter consists of an event-triggered
adaptive-horizon nonlinear discrete-time MPC, denoted πM

θM
, and a discrete-time

time-varying LQR, denoted πL
θL

(see Chapter 2 for more details). The MPC is com-
puted whenever the recomputation policy πc

θc signals to compute, with a prediction
horizon as decided by the horizon policy πN

θN
. Due to the adaptive prediction ho-

rizon, we propose to use a value function as the terminal cost of the MPC scheme
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as described in Section 2.2. Finally, note that while we assume state-feedback for
the MPC for simplicity, the control algorithm could easily be extended with an
estimator such as the moving horizon estimator which can be tuned in unison with
the MPC [143].

The LQR [25] is a state-feedback controller that arises as the optimal solution
to unconstrained control problems where the dynamics are linear, and the cost is
quadratic. The role of the LQR in our control algorithm is to act as the linear feed-
back correction of the MPC, that can be applied to compensate for errors in the
open loop predicted state trajectory between MPC recomputations. To accomplish
this, we employ a time-varying LQR where the At and Bt matrices are obtained
from the MPC scheme as the linearization of the MPC model each time it is com-
puted:

Ai+1:i+Ni ,Bi+1:i+Ni = linearize(f̂θM)
∣∣
xi+1:i+Ni

,ui:i+Ni−1
(6.1)

A,B = linearize(f̂θM)
∣∣
xs
t ,u

s
t

(6.2)

After the horizon end (i.e. when t > i + Ni where i is the time of last MPC
computation), we set the LQR dynamics matrices as the time-invariant matrices
corresponding to the steady-state (equilibrium) of the system xst , u

s
t (6.2). The

specific linearization procedure depends on the implementation of the dynamics
model in the MPC, i.e. discrete vs continuous model and the accompanying dis-
cretization schemes. The Q and R cost-weighting matrices are initialized from the
MPC objective as follows, and then tuned further as described in Section 6.3.

Qinit ←
∂2�θM(x, u, p̂)

∂x2
|xs

0,u
s
0
, Rinit ←

∂2�θM(x, u, p̂)

∂u2
|xs

0,u
s
0

(6.3)

See Section 2.3 for a formal statement of the LQR control problem and its imple-
mentation.
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6.3 A Reinforcement Learning Parameter and Meta-Parameter

Optimization Framework for Model Predictive Con-

trol

6.3.1 A State Space with the Markov Property

For RL theory to hold for the control system we wish to optimize, the state space
needs to have the Markov property, i.e. future states should not depend upon past
states given the current state. This section outlines such a Markovian state.

Consider the input sequence uMi:i+Ni−1 and the predicted state trajectory x̂i+1:i+Ni

computed by the MPC at time i. As discussed in Section 2.1, a variable number
n ∈ {0, 1, . . . , Ni − 1} of these inputs are applied to the plant. Since n is not
known a priori, the state vector x is not a sufficient state representation to yield the
Markov property for the control system consisting of the recomputation policy, the
horizon policy, and the MPC and LQR control laws. We define an augmented state
s in (6.4) that contains the current plant state and exogenous variables, labeled x̄t
and p̂t, the state of the system, exogenous variables, and prediction horizon used
when the last MPC computation took place, labeled x̄i, p̂i, and Ni, as well as the
number of time steps since the MPC computation, t− i

st = [x̄i, p̂i, Ni, x̄t, p̂t, t− i]� (6.4)

where x̄t has evolved from x̄i according to the real system dynamics. When the
MPC problem is recomputed, the deterministic transition i ← t, x̄i ← x̄t, p̂i ←
p̂t, Ni ← Nt takes place. The MPC and MPC plus LQR control laws deployed
on the plant is then (6.5) and (6.6), respectively, while the total control system is
defined as (6.7), where the projh

θM
operator projects the control input onto the

constraint vector hθM (2.6):

πM
θM(st) =

{
uMt−i(x̄i, p̂i, Ni) , if t− i < Ni

0 , otherwise
(6.5)

πML
θM,L(st) =

{
uMt−i(x̄i, p̂i, Ni) + uLt (x̂t−i − x̄t), if t− i < Ni

uLt (x
s
t − x̄t) , if t− i ≥ Ni

(6.6)

πCS
θM,L(st) = projh

θM

(
πM
θM(st) + πML

θM,L(st)
)

(6.7)
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and where xst is the steady-state equilibrium of the system at time t, which is time-
variant in the case of time-varying references.

Assumption 1. The time-varying exogenous input variables p̂t are generated by a
Markovian process.

Proposition 1. The state s has the Markov property, i.e. P (st+1|st) = P (st+1|s0:t)

Proof. First, note that by definition from (2.1) x is Markovian given u

xt+1 = f(xt, ut) (6.8)

⇒ P (xt+1|xt, ut) = P (xt+1|x0:t, u0:t) (6.9)

However, the control law πCS
θM,L (6.7) that determines ut consists of πM

θM
(6.5) —

which depends on the state and exogenous variables x̄i, p̂i and the prediction ho-
rizon Ni at the last MPC computation — and πM,L

θML (6.6), which depends on the
current state xt and the (t − i)th element of the MPC’s predicted state trajectory,
and xst which depends on p̂t. Therefore, with s as defined in (6.4) we have:

P (ut|πCS
θM,L , st) = P (ut|πCS

θM,L , s0:t) (6.10)

Finally, note that the MPC input sequence uMi+1:i+Ni−1 and the predicted state
trajectory x̂i:i+Ni follows from πM

θM
and its arguments (which are all known), and

as such does not need to be contained in s for s to be Markovian:

⇒ P (st+1|st) = P (st+1|s0:t) (6.11)

6.3.2 Policies

We use the notation πθ(s) to label a deterministic function of the state s that is
parameterized by θ, and πθ(·|s) to label the stochastic version of the same func-
tion. The notation ·̃ signifies that the value is drawn from the policy’s probability
distribution. The implementation of the PPO algorithm employed in this chapter
requires the log probability of the policies, and as such we will list the probability
distributions, denoted P , and corresponding log probabilities, denoted logP , for
the policies we optimize. For brevity, we omit listing input-independent condi-
tional variables as arguments (e.g. covariance) of the distributions.
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Figure 6.1: An overview of the control algorithm. Not shown here is the connection of
each policy’s output to the RL algorithm that updates the policy’s parameters.

The Recomputation Policy

The recomputation policy πc
θc decides on each step whether the MPC problem

should be recomputed, or if the previously computed solution is still acceptable.
In other words, it is a binary variable that chooses among the two different options:
recompute or not. As such, we model it as a Bernoulli-distributed random variable,
where the policy outputs the logit of the probability that the OCP should be recom-
puted (6.12), from which we can deduce the probability of not recomputing. We
label the output of the recomputation policy c ∈ {0, 1}. The Bernoulli distribution
has the probability mass function (PMF) (6.13).

w =
1

1 + exp
(
−πc

θc(s)
) (6.12)

P c(c|s) =
{
1− w , if c = 0

w , if c = 1
(6.13)

The log probability can be expressed as follows:

logP c(c|s) = c log(w) + (1− c) log(1− w) (6.14)

Finally, the policy gradient of the recomputation policy is:

∇θc log π
c
θc(c|s) = ∇θc (c log(w) + (1− c) log(1− w)) (6.15)

= −c∇θcπ
c
θc(s)w +∇θcπ

c
θc(s)(1− c) (−1− w) (6.16)

= ∇θcπ
c
θc(s) (c− 1− w) (6.17)
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The Horizon Policy

The MPC prediction horizon N is a positive integer, which we model with the GP-
2 variant of the generalized Poisson distribution (GPD) [187]. Other models we
considered but decided against includes categorical classification models, as they
do not consider the ordinal information of the horizon variable, and the standard
Poisson distribution, which we found to be too inflexible due to its mean and vari-
ance being equal. The horizon model outputs the rate parameter of the GPD, μ, as a
function of s, while the dispersion parameter α is learned as an input-independent
variable.

PN(N |s) =
(

μ

1 + αμ

)N (1 + αN)N−1

N !
e

(
−μ(1+αN)

1+αμ

)
(6.18)

E(N) = μ, V(N) = μ(1 + αμ)2 (6.19)

In this model, α is restricted according to 1 + αμ > 0 and 1 + αN > 0. To
address these constraints, we introduce two hyperparameters Nmin and Nmax that
correspond to the minimum and maximum horizons that the MPC should operate
with. To constrain the rate parameter μ we apply the hyperbolic tangent function,
denoted tanh ∈ [−1, 1], and then linearly scale it to the limits defined by Nmin

and Nmax. Finally, the learned α parameter is clipped according to restrictions
outlined above

πN
θN(s) = scale (tanh(μ), Nmin, Nmax) (6.20)

αnew = max

(
α,− 1

Nmax

)
(6.21)

The log probability of the GPD and the policy gradient of the horizon policy is
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defined as follows:

logPN(N |s) =N log

(
μ

1 + αμ

)
+ (N − 1) log(1 + αN)

− μ(1 + αN)

1 + αμ
− log(N !)

(6.22)

∇θN log πN
θN(N |s) =∇θN

(
N(log(πN

θN(s))− log(1 + απN
θN(s)))

+
πN
θN
(1 + αN)

1 + απN
θN
(s)

) (6.23)

=∇θNπ
N
θN(s)

(
N

πN
θN
(s)

+
α

1 + απN
θN
(s)

+
1 + αN + πN

θN
(s)(α(1 +N + αN) + 1)

1 + 2απN
θN
(s) + (απN

θN
(s))2

) (6.24)

There are several techniques to sample from this distribution [49]. We favor the
normal approximation sampling technique for its low run-time complexity: With a
sufficiently high rate parameter (i.e. μ � 10), the GPD is approximately normally
distributed with mean and variance as given in (6.19):

πN
θN(N |s) ≈ clip(μ+

√
μ(1 + αμ)2ζ + 0.5�, Nmin, Nmax), ζ ∼ N (0, 1)

(6.25)

When optimizing the horizon policy in isolation (that is, not together with the rest
of the control system) we find that faster convergence and more stable solutions
are obtained by learning on an augmented MDP where every action selected by
the policy is repeated d > 1 times. Hence the policy only senses every d’th state,
and the rewards it receives are the cumulative reward over every step of the control
system in the d steps. This technique is known as ”frame-skip” in RL and is an
effective method to enhance learning for problems with discrete actions, see e.g.
learning to play atari-games [137, 31], but also for continuous control [96]. While
the exact mechanisms behind the improvements stemming from frame-skipping is
not fully understood, it is clear that in certain problems it increases the signal-to-
noise ratio of every data sample, which simplifies the credit assignment problem.
With high control frequency, the consequences embedded in the rewards of an ac-
tion are highly dependent on the actions that precede and come after the current
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action, which when sampling from the policy’s action distribution are often dis-
similar. Therefore, high control frequency can lead to noisier gradients. When
using d > 1 during exploration, we use d = 1 during exploitation (evaluation)
as this increases performance. We find that the horizon policy is not sensitive to
the exact value of d, and all values in d ∈ [2, T ] generally accelerate learning.
While d = T (that is, only one action per episode) might seem excessive, con-
sider that the standard MPC scheme employs one fixed horizon that is tuned by
selecting the horizon that on average performs best overall the operating ranges of
the control system. Finally, note that when optimizing the horizon policy and the
recomputation policy together, the latter electing to not recompute the MPC will
naturally enforce a form of frame-skipping, as the previous MPC solution com-
puted with the previously selected prediction horizon is employed until the MPC
is again computed.

The Controller Policies

To ensure sufficient exploration we formulate a stochastic version of the MPC, and
the MPC plus LQR control laws (denoted πML

θM,L(s) = πM
θM

(s)+πL
θL
(s)), modeling

them as Gaussian random variables (6.26). The mean is then the output of the
control laws, and the covariance of each controller is a learned input-independent
variable of the RL algorithm. To be concise, we use ∗ in place of the superscript
for the control laws as in (6.26). We will first develop these policies for the MPC
scheme with a given horizon N , where the output is made stochastic as follows:

π∗θ∗(u
∗|s,N) = N (π∗θ∗(s,N),Σ∗) , ∗ ∈ {M,ML} (6.26)

P u(u∗|s,N) =
1

Σ∗
√
2π

exp

(
−1

2

(
u∗ − π∗θ∗(s,N)

Σ∗

)2
)

(6.27)

Note that the argument N to the policies is redundant (and thus these policies are
equivalent to those in Section 6.3.1), as Ni in s will always reflect the latest N
that is decided by the horizon policy ahead of control law calculation. We use this
argument here to clarify the derivations. The log probability of the distribution and
the policy gradient is:



64 A Complete Framework for Optimization of Model Predictive Control with

Reinforcement Learning

logP u(u∗|s,N) =− 1

2Σ∗2
(u∗ − π∗θ∗(s,N))2 − 1

2
log(Σ∗

2
)− 1

2
log(2π)

(6.28)

∇θ∗ log π
∗
θ∗(u

∗|s,N) = Σ∗
−1
(π∗θ∗(s,N)− u∗)∇θ∗π

∗
θ∗(s,N) (6.29)

Then, note that the adaptive-horizon MPC control law is a distribution of the MPC
schemes over the range of prediction horizons, with weights PN assigned by the
horizon policy. We first query the horizon policy for which prediction horizon to
employ, and then the solution to the MPC problem (2.3)-(2.6) is computed with
the selected horizon

πMN
θM,N(s) = πM

θM

(
xt, p̂t, π

N
θN(s)

)
(6.30)

where the superscript N indicates that this is the adaptive-horizon MPC policy.
Using the indicator function

�A =

{
1, if A
0, otherwise

(6.31)

we can formulate the probability distributions and log distributions for the stochastic
adaptive-horizon control policies

PNu(u∗|s) =
Nmax∑

N=Nmin

PN(N |s)P u(u∗|s,N), ∗ ∈ {MN,MLN} (6.32)

logPNu(u∗|s) = log

⎛
⎝ Nmax∑

N=Nmin

PN(N |s)P u(u∗|s,N)

⎞
⎠ (6.33)

=

Nmax∑
N=Nmin

�N=Ñ

(
logPN(N |s) + logP u(u∗|s,N)

)
(6.34)

= logPN(Ñ |s) + logP u(u∗|s, Ñ) (6.35)

where the log operator can be applied inside the summation over the prediction
horizons in (6.34), because we know the value Ñ of the horizon variable N that is
sampled in advance of the calculation of the control laws [62].
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The Complete Policy

We collect all the parameters of the meta-parameter-deciding recomputation and
horizon policies described above, and the parameters of the controllers into a single
parameter vector θ =

[
θc, θN, α, θM, θL,ΣM,ΣML

]�, and define the complete
policy πθ, whose input is the state s and output is the action a =

[
c,N, uM, uML

]
Section 6.3.2 presents the recomputation problem of the MPC and the policy that
decides when to compute it. We now view the recomputation policy πc

θc as select-
ing the active controller between the two control laws. It is then clear that πθ is
a mixture distribution between the Gaussian control policies where the weights of
the mixture are assigned by the Bernoulli recomputation policy πc

θc . We label the
probability distribution of the complete policy πθ as P a and define it and the log
probability as follows:

P a(ã|s) =P c(0|s)PNu(ũMLN|s) + P c(1|s)PNu(ũMN|s) (6.36)

logP a(ã|s) =�c̃=0

(
logP c(0|s) + logPNu(ũMLN|s)

)
+

�c̃=1

(
logP c(1|s) + logPNu(ũMN|s)

) (6.37)

=�c̃=0

(
logP c(0|s) + logPN(Ñi|s) + logP u(ũML|s, Ñi)

)
+

�c̃=1

(
logP c(1|s) + logPN(Ñ |s) + logP u(ũM|s, Ñ)

)
(6.38)

where we again used the fact that we know the values of the sampled variables
c̃, Ñ to take the logarithm of the sums in (6.37) and (6.38), and Ñ represents the
output of the horizon policy at the current step t in the case the recomputation
policy signals to recompute the MPC. While (6.38) is all that is strictly needed
to use the PPO algorithm, we derive the policy gradient as well to highlight the
connection to the LQR gradient presented in Section 6.3.3, as well as for future
applications of this control framework with other RL algorithms.
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∇θ log πθ(ã|s) =∇θ logP
a(ã|s) (6.39)

=�c̃=0

(
∇θc log π

c
θc(0|s) +∇θN log πN

θN(Ñi|s)

+∇θM,L log πML
θM,L(ũ

ML|s, Ñ)
)
+

�c̃=1

(
∇θc log π

c
θc(1|s) +∇θN log πN

θN(Ñ |s)

+∇θM log πM
θM(ũ

M|s, Ñ)
)

(6.40)

=�c̃=0

(
∇θc log π

c
θc(0|s) +∇θN log πN

θN(Ñi|s) + (ΣML)−1

(πML
θM,L(s, Ñ)− ũML)(∇θMπ

M
θM(s, Ñi) +∇θLπ

L
θL(s))

)
+

�c̃=1

(
∇θc log π

c
θc(1|s) +∇θN log πN

θN(Ñ |s)

+ (ΣM)−1(πM
θM(s, Ñ)− ũM)∇θMπ

M
θM(s, Ñ)

)
(6.41)

With this policy, one can optimize any parameter of the MPC and LQR controllers
jointly, by providing the gradient of these controllers wrt. the parameters. In the
RL context, we show how one can obtain these gradients for the LQR controller in
Section 6.3.3. For the gradient of the MPC see e.g. [72, 76].

6.3.3 Optimizing LQR with Reinforcement Learning

The Time-Invariant Case

To apply the policy-gradient theorem to tune the LQR, we need to compute the
gradients of the K-matrix wrt. to the Q, R and N matrices. As equations (2.12)
and (2.13) show, the feedback matrix K is only implicitly defined in terms of the
these matrices, and so direct differentiation of equations (2.12) and (2.13) is not
possible. Since we obtain the system matrices A and B directly from the MPC
scheme and they have a clear purpose in making the MPC and LQR objectives
compatible, we assume that they are fixed wrt. Q,R,N such that ∇Q,R,NA =
∇Q,R,NB = 0:

Assumption 2. The weighting matrices {Q,R,N} values are such that the DARE
has a solution S∞.



6.3. A Reinforcement Learning Parameter and Meta-Parameter Optimization Framework for

Model Predictive Control 67

Proposition 2. We flatten the matrices S∞,K∞,Q,R and N into vectors, and
organize them as follows: y = {S∞,K∞} and z = {Q,R,N}, such that the
DARE and K-matrix equations can be written on the vector form F (y, z) = 0.
The gradient of K∞ wrt. the weighting matrices Q,R,N can then be found as:

∂y

∂z
= −∂F

∂y

−1∂F

∂z
= ∇Q,R,NS∞,K∞ (6.42)

Proof. We rewrite (2.12)-(2.13) on the general vector form F (y, z) = 0 where
y = {S∞,K∞} and z = {Q,R,N}.

A�S∞A− S∞ − (A�S∞B+N)K∞ +Q = 0 (6.43)

(B�S∞B+R)K∞ − (B�S∞A+N�) = 0 (6.44)

We then apply the implicit function theorem (IFT) which states that:

∂F

∂y

∂y

∂z
+

∂F

∂z
= 0 ⇒ ∂y

∂z
= −∂F

∂y

−1∂F

∂z
(6.45)

These gradients are easily obtained with automatic differentiation software.

Assumption 2 holds if Q −NR−1N� � 0 and R > 0, and further, it is required
that the symplectic pencil of the problem has eigenvalues sufficiently far from
the unit circle, which is satisfied if the pair (A,B) is stabilizable and the pair
(A, Q) is detectable [109]. These conditions can be ensured by estimating the
gradients as described above, and then solving a semidefinite program (SDP) using
the estimated gradients subject to these constraints. However, for simplicity and to
avoid constrained optimization, we set N = 0, simplifying the constraints on the
positive (semi)-definiteness to Q � 0 and R > 0. Further, we write Q and R in
terms of their Cholesky decompositions: Q = Q�CQC , R = R�CRC , and let the
RL algorithm adjust the elements of QC and RC , ensuring that the original Q and
R matrices are always positive definite.

Time-Varying Gradients

In what follows we will assume N = 0, for simplicity of the derivation and ex-
pressions (and the constraint reasons outlined above). We find the gradients with
respect to p, where p is an arbitrary scalar element of the Q and R matrices. The
full gradients ∇Q,RKk can then be found by solving (6.48) for each parameter of



68 A Complete Framework for Optimization of Model Predictive Control with

Reinforcement Learning

Q and R and arranging the results into the appropriate matrix structure. The de-
rivations involve repeated application of the chain rule and the following relation
for the gradient of the matrix inverse, where we define E for convenience:

Ek = R+B�k Sk+1Bk, ∇pE
−1 = −E−1∇pEE−1 (6.46)

∇pSk =∇pQ+A�k (∇pSk+1Ak −∇pSk+1BkE
−1
k B�k Sk+1Ak

+ Sk+1Bk(E
−1
k ∇pEkE

−1
k B�k Sk+1Ak −E−1k B�k∇pSk+1Ak))

(6.47)

∇pKk =−E−1k ∇pEkE
−1
k B�k Sk+1Ak +E−1k B�k∇pSk+1Ak (6.48)

Note that these gradients could easily be extended with time-varying Q and R
matrices. The time-varying gradients of Sk and Kk are given as follows:

∇Q,RSk =

{
∇pS∞

∣∣
p∈Q,R

, if k ≥ Ni

∇pSk

∣∣
p∈Q,R

, otherwise
(6.49)

∇Q,RKk =

{
∇pK∞

∣∣
p∈Q,R

, if k ≥ Ni

∇pKk

∣∣
p∈Q,R

, otherwise
(6.50)

∇θLπ
L
θL(st) = ∇Q,RKt−i(x̂t − x̄t) (6.51)

6.3.4 Summary of Control Algorithm with Learning

The complete control algorithm is outlined in Algorithm 2. This shows the con-
trol algorithm in the exploration phase, but the exploitation phase is identical with
the two exceptions: 1) there is no data collection (and therefore no parameter up-
dates), and 2) we use the deterministic version (i.e. the mode of the probability
distribution) of all policies except for the recomputation policy. The Bernoulli dis-
tribution of the recomputation policy does not generally tend to quasi-determinism
as exploration settles, unlike the other policies. As such, we find that the determ-
inistic version of this policy has worse control performance and less consistency
in the plant response than the stochastic version which we are in fact optimizing
the response for.

The system to be optimized runs in an episodic fashion, and every Z steps the RL
algorithm updates the parameters of the control system.
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Algorithm 2: Control Algorithm with Learning

while Running do

Initialize episode: x0, p̂0
Compute initial MPC solution: uM0:Nmax−1, x̂1:Nmax = πM

θM
(x0, p̂0, Nmax)

Execute first MPC input: uM0
Calculate LQR system matrices: A1:Nmax ,B1:Nmax

for t = 1, 2, . . . , T do

Measure system state: x̄t
if πc

θc(ct | st) draws c̃t = 1 then

Compute MPC solution: ũMN
t:t+Nt−1, x̂t+1:t+Nt = πMN

θMN(ũ
MN|st)

Execute control input: ũMN
t

Calculate LQR system matrices: At:t+Nt ,Bt:t+Nt

Update last computation states: i← t

else

Compute input: ũCS
t = πCS

θM,L,N(u
CS
t |st)

Execute input: ũCS
t

end

Collect data: D ← (st, ãt, R(st, ãt), st+1)
if size(D) = Z then

for e = 1, . . . ,NumEpochs do

for B ∈ D do

Evaluate PPO objective over minibatch B (2.33)
Update parameters (2.29)

end

end

Empty dataset: D = {}
end

end

end
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6.3.5 Reward Function

The RL reward function codifies the behaviour that the control algorithm is de-
signed to exhibit, wrt. stability, control performance, and computational complex-
ity. As RL is a trial-and-error based optimization approach, the control algorithm
will necessarily have to attempt risky maneuvers and experience the consequences
in order to learn how to control the system. However, with a feasible composition
of the learning problem in terms of hyperparameters and expressive power of the
learned components, the end result of the converged behaviour should be stable
and yield good control performance. A failure to achieve this would therefore in-
dicate a misalignment between the choice of the reward function, and the control
design requirements. With this in mind, we formulate a reward function on the
following form:

R(st, at) =R�(st+1) + λh(T − t)Rh(st+1) + λcRc(at)RN (at) (6.52)

Here, λh and λc are weighting factors that represent the relative importance of the
different terms. R� is the control performance term that incentivizes the RL policy
to achieve good control performance. We set it to be the same as the stage cost
from the MPC objective, i.e. R� = −� but this is not a strict requirement. Rh

is a term that indicates whether any system constraints are violated. If using hard
constraints as is the case in this chapter, this term is binary and is further weighted
by T − t, that is, the number of time steps remaining in the episode, since the
episode is prematurely terminated if any constraints are violated. If the system to
be controlled has soft constraints, the Rh term could be made continuous. The Rc

term indicates whether the MPC was computed at the current step (Rc = 1), and
as such, it should reflect the relative computational complexity of the two modes
of the control system. Finally, RN represents the computational complexity of the
MPC as a function of the prediction horizon N . We assume that the computational
complexity grows linearly in the prediction horizon, i.e. RN (Nt) = Nt, as a
lower bound for the true complexity. We favour a lower bound as this would bias
the RL policy towards better control performance rather than lower computation.
The relationship between the prediction horizon and the computational complexity
depends upon the algorithms used in the MPC implementation. We employ an
interior point method, which under the assumption of local convergence and a
guess of an initial solution that is reasonable, generally yields linear complexity
[154], while other methods such as active set methods typically yield quadratic
growth in computational complexity [108].
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6.3.6 Initialization of the Learning Procedure

How to initialize the control algorithm, that is, defining its behaviour before any
learning takes place is a question that has several valid answers. One could fa-
vour the most computationally expensive initialization, i.e. compute MPC every
step with the maximum horizon, which without any prior knowledge about the
task would be the “safest” initialization that is most likely to give the best control
performance. This is however not necessarily the initialization that would facilit-
ate the learning process most optimally and might trap the learned components in
local minima. To simplify the learning problem one might therefore instead favour
initializing the components in the center of their operating range and with high
entropy (wrt. to its output) such that exploration is maximal.

We offered some guidance in the case of the LQR in Section 6.2, i.e. the LQR
should be initialized such that it is compatible with the MPC. We view the purpose
of the recomputation policy as finding instances where comparable (or better) con-
trol performance can be achieved without computing the MPC, and as such, we
choose to initialize it to emulate the MPC paradigm and with high probability
elect to compute the MPC. For the horizon policy, we initialize it equal to the best
performing fixed horizon MPC scheme. Initializing the policies can be done by
adjusting the bias terms of the policy outputs:

πc
θc ← − log

(
1

cinit
− 1

)
(6.53)

πN
θN ← tanh−1

(
(Nmax −Nmin)(Ninit − (−1))

1− (−1) +Nmin

)
(6.54)

6.4 Numerical Results

This section illustrates the proposed control method as outlined in Section 6.3 on
the simulated inverted pendulum system. Additionally, to aid in highlighting the
contributions of the different meta-parameters of the control algorithm we also
present experiments for each meta-parameter in isolation.

We set Nmin = 1 and Nmax = 40, and note that this horizon does not cover a full
swing-up maneuver of the pendulum (requiring N > 100). The maximum horizon
is chosen to emulate the effects of a computationally limited embedded hardware
platform. The weighting terms of the reward function (6.52) are set to λh = −10
and λc = 10−2. This ensures that violating constraints incur a higher cost than
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finishing the episode, and makes the computation account for approximately 8%
of the total cost of the standard MPC scheme (i.e. MPC computed at every step)
with the highest prediction horizon.

While our method supports tuning parameters internal to the MPC (i.e. objective,
constraints etc.), doing so requires reevaluating the log-probabilities and recomput-
ing the OCP for every data sample after every parameter update, which is highly
relevant when using minibatches or several passes over a dataset as PPO does. This
adds considerable computation, and optimization of these parameters with RL has
been successfully demonstrated in previous works [52, 76]. Therefore, since this
chapter focuses on optimizing the meta-parameters of the MPC scheme (that is,
the prediction horizon and when to compute) we do not tune any parameters in-
ternal to the MPC in this example. We do however optimize the parameters of the
LQR to illustrate the concept, as the LQR is considerably less costly to evaluate
Finally, we omit learning the value function of the MPC, as it adds considerable
complexity to the experiments, and was found to not add much benefit for control
of similar systems in [38].

6.4.1 The Inverted Pendulum System

The inverted pendulum system is a classic control task in which a pendulum, con-
sisting of a rigid rod with a mass at the end, is mounted on top of a cart that is
fixed on a track. The control system exerts a horizontal force on the cart, which
moves the cart back and forth on the track, which subsequently swings the pen-
dulum. The control objective is to stabilize the pendulum in the up-position and
position the cart at the position reference, while respecting the constraint that the
cart’s position is limited by the physical size of the track. The dynamics of the
system are highly nonlinear, and further, the system is unstable, meaning that a
controller is necessary to guide the system to stable conditions and then to main-
tain the stability. We perturb the parameters of the MPC dynamics model such
that its dynamics differs from the plant dynamics, as shown in Table 6.1, and thus
the LQR is a useful addition to correct for prediction errors in between the MPC
computations. The state x consists of the cart position ψ and velocity v, pendulum
angle φ and angular velocity ω.

Each episode lasts a maximum of 150 steps (i.e. T=150), or until the position
constraint (6.57) is violated. We sample initial conditions according to (6.60), and
a position reference (6.59) that is redrawn every 50 steps, where U is the uniform
distribution. The MPC objective is defined as (6.62), i.e. minimize the kinetic
energy of the system and the distance of the cart to the position reference, while
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maximizing the potential energy.

v̇ =
mg sinφ cosφ− 7

3

(
u+mlω2 sinφ− μcv

)
− μpω cosφ

l

m cos2 φ− 7
3M

(6.55)

ω̇ =
3

7l

(
g sinφ− v̇ cosφ− upω

ml

)
, φ̇ = ω, ψ̇ = v (6.56)

−5 ≤ ut ≤ 5, −2 ≤ ψt ≤ 2 (6.57)

x = [ψ, v, φ, ω]� (6.58)

ψr(t) ∼ U(−1, 1) (6.59)

x0 ∼ [0,U(−1, 1),U(−π, π),U(−1, 1)]� (6.60)

xst = [ψr(t), 0, 0, 0]
� (6.61)

�(xt, ut, p̂t) = Ek − 10Ep + 10(ψt − ψr(t))
2 (6.62)

D = [0.1] (6.63)

Table 6.1: Parameters of the inverted pendulum system.

Name Plant MPC Description

m 0.1 0.2 Mass of pendulum
M 1.1 1.5 Mass of cart and pendulum
g 9.81 9.81 Gravitational constant
l 0.25 0.25 Half the length of the pendulum
μc 0.01 0.01 Friction coefficient between track and cart
μp 0.001 0.001 Friction coefficient between pendulum and cart
Δt 0.04 0.04 Discretization step size in seconds

6.4.2 Training and Evaluation

The hyperparameters of the PPO algorithm are listed in Table 6.2. The horizon
and recomputation policies are fully-connected NNs with 2 hidden layers with 64
nodes in each, whereas the value function is an NN with 2 hidden layers of 128
nodes, all using the tanh activation function. We use the same hyperparameters
for the isolated experiments, rather than tuning them specifically, and as such the
isolation experiments serve mainly to assess how the two meta-parameters contrib-
ute. For the horizon experiment, we use a frame-skip of d = 10, and for the other



74 A Complete Framework for Optimization of Model Predictive Control with

Reinforcement Learning

experiments, we use a varying d ∈ [1, 2, 3, 4] that is drawn at the start of every
episode (with d = 1 when evaluating).

Table 6.2: Hyperparameters of the PPO algorithm

Name Value Description

γ 0.99 Discount factor
Z 256 Length of trajectory collected by each actor
n envs 4 Number of actors run in parallel
ent coef 0 Coefficient for entropy loss term
η 3 · 10−4 Learning rate
vf coef 0.5 Coefficient for value function loss term
max grad norm 0.5 Maximum global norm of gradients
κ 0.9 Bias-variance tradeoff for GAE
nminibatches 1 Number of minibatch partitions for dataset
noptepochs 10 Number of passes over the dataset
ε 0.25 Clip parameter for the objective function

We initialize the recomputation policy using (6.53) to compute the MPC with 90%
probability, thus within two time steps there is a 99% probability that the MPC is
computed. It therefore initially mimics the traditional MPC scheme closely. The
horizon policy is initialized at the best performing fixed-horizon (Figure 6.2), i.e.
N = 31, using equation (6.54).

To evaluate the performance of the control system governed by the RL policy,
we construct a ”test-set” consisting of 25 episodes where all stochastic elements
are drawn in advance (i.e. initial conditions and position references) such that
the episodes are consistent across evaluations. This gives us an objective way to
compare and order policies on their performance, and to compare against the MPC
baselines. We set the cost objective (2.1) C = −R, and evaluate models based on
the total sum of costs over the episodes in the test-set.

Moreover, for every experiment we report the average over five random initial
seeds (referred to as models), which impact the initializations of NNs and the
randomness in exploration and episodes. Figure 6.2 shows the total cost of the
control system baselines as a function of a static prediction horizon, and a static
recomputation schedule. The minimum cost of the baselines is achieved with a
prediction horizon of N = 31 and a schedule of recompute at every step. It is
important to note that while this figure indicates that the optimization landscape as
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Figure 6.2: Total cost over the evaluation set for the MPC as a function of fixed hori-
zons and fixed recomputation schedules. The minimum is found at horizon N = 31 and
recompute every step with a cost of 781.

a function of these two variables is monotonic and amenable to optimization, the
reward landscape as a function of the parameters θ (which in this example consists
of the parameters of the LQR and the parameters of the recomputation and horizon
NNs) is likely very different — containing many valleys and hills to overcome in
order to minimize the cost objective.

6.4.3 Inverted Pendulum Results and Discussion

The results of the experiments are presented in Figures 6.5 and 6.4, and Table 6.3.
When reporting the cost of the tuned system, we average over the best perform-
ing policy of each model, as well as over five seeds to account for the stochastic
recomputation policy. When describing the policies’ behaviour as in Figure 6.4
however, we use the best performing policy and one specific seed. We summarize
our main findings as follows:

Learning improves both computational complexity and control performance.
The RL framework we propose is able to improve upon the total objective by
21.6%, which interestingly is not only due to reductions in the computation term
(71%) but also a sizable improvement on the control performance objective (18.5%).
For this example it takes about 20 hours of data of interaction with the system to
reach convergence, corresponding to 700 thousand data samples. Figure 6.5(a)
shows that generally the performance monotonically improves with more data,
we therefore do not view the data requirement as a major issue. Note that we
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did not spend significant time tuning the hyperparameters of the RL algorithm,
and we favored consistency over faster rate of improvement. Thus, the algorithm’s
data requirement could potentially be improved with hyperparameter optimization.
Moreover, DRL is a relatively new field, and more data-efficient algorithms are
likely to be developed in the near future. Finally, if the RL policies are learned in a
simulation environment before being deployed on the real system, the wall-clock
time can be made (nearly) arbitrarily small by parallelization and more compute
power.

Figure 6.5 shows that the recomputation meta-parameter is the most impactful
parameter, reaching a cost around 700 when optimized by itself, which is about
13% higher than the converged value of the optimized complete policy. It also
shows why we favor biasing towards higher computation, as while initializing the
recomputation policy to compute the MPC with 10% probability reaches the same
asymptotic performance as the 90% initialization, it is the only policy we trained
that intermittently violates the constraint.

Because we initialize the learning problem at a best-effort of optimal tuning, the
control performance improvements we observe are non-trivial to explain and arise
due to complex interactions between multi-step adaptive-horizon MPC and the
LQR control law. Figure 6.4 shows the distribution of the prediction horizon, and
the steps between MPC computations chosen by the policies. The horizon policy
has converged to only selecting the maximum horizon, while the MPC is mostly
computed at every step (70% of steps) with some significantly longer streaks. Be-
cause of the finite-horizon nature of the OCP the MPC will produce solutions of
varying optimality based on the exact initial conditions it is computed from. The
RL policy has learned to recognize a set of conditions for which the computed
solutions are more optimal than neighboring conditions, and therefore not recom-
puting and employing a longer section of the more optimal input sequence will
produce better control performance.

The control algorithm we propose adds some overhead compared to MPC, i.e.
evaluating the policies deciding if the MPC should be computed and with what
horizon, and computing the LQR gain-matrix as necessary. The CPU processing
time of our control algorithm vs the best performing MPC baseline is shown in
Figure 6.3. The overhead is however small compared to the execution time of the
MPC, and therefore our framework results in a 36% reduction in the total pro-
cessing time of the control system compared to the best performing MPC scheme.
This frees up resources for other on-board tasks the controlled system might have,
or could be leveraged to increase the battery life of the system. Figure 6.3 that
the calculation of the LQR gain matrices accounts for a significant portion of the
total processing time of our control algorithm, and as such the processing time
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Figure 6.3: Average processing time required to evaluate the control algorithms (our pro-
posed algorithm vs best performing MPC baseline) on the test set. For our control al-
gorithm, in addition to evaluating the MPC and LQR controllers, this includes calculating
the LQR gain-matrices K after MPC computations, and evaluating the policies deciding
the meta-parameters.

improvements of our method could be considerably improved by optimizing the
implementation of the LQR gain matrix calculation routine. Also note that the best
performing MPC baseline is computed at every step, and as such it is not necessary
to compute any LQR matrices for this control algorithm.

One of the models we trained for the complete policy, and one of the models for the
isolated recomputation policy got stuck in the local minima of computing the MPC
at every step, and since this didn’t give any interesting results (essentially main-
taining the initial behaviour and performance) we excluded them from Figure 6.5
and the discussions, replacing them with new models with new seeds. Since policy
gradient algorithms are local search methods it is to be expected that it finds local
minima, and random exploration can cause it to sometimes settle in sub-optimal
local minima. This is also a question of how much data is used to generate the
gradient.

Joint optimization delivers additional improvements. These results support the
conjecture stated in the introduction; by optimizing the different parameters of the
control algorithm together, we are able to enhance the control algorithm in ways
that we are not able to when optimizing the same parameters in isolation. The
horizon policy tends to a mean horizon of 28-31 when optimized by itself (Fig-
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Figure 6.4: Distribution of prediction horizons and steps between MPC computations
selected by the best performing policy on the evaluation test-set.

ure 6.5(c)), which is consistent with the best performing fixed horizon MPC as
seen in Figure 6.2. However, as Figure 6.4 shows the complete RL policy fa-
voured higher horizons when optimizing all meta-parameters together. As shown
in Table 6.3 this improves performance significantly, where imposing a maximum
horizon of 31 results in a 12% increase in cost. When solely tuning the LQR ap-
plied on an MPC on a fixed recomputation schedule, we were not able to achieve
any consistent improvements. We hypothesize that this is due to the model mis-
match (the MPC is overestimating the weight of the system by 36%) such that the
computed LQR is not very well suited for the actual control problem, and therefore
its gradients are flat and noisy. When combining LQR tuning with meta-parameter
optimization we are able to tune the LQR to achieve meaningful improvements,
with the tuned LQR improving by 1.95% over the initialization described in Sec-
tion 2.3. This might be due to the recomputation policy generating trajectories for
the LQR that are similar, thus yielding more consistent gradients. The tuned LQR
weights during training are shown in Figure 6.6. The last entry in Table 6.3 shows
a scenario where the same amount of computation is expended uniformly in time
rather than dynamically allocated by the recomputation policy.

Table 6.3: Ablation analysis: We take the best performing policy and alter one aspect at a
time, observing its effect on the cost.

Scenario Change

Default LQR tuning +1.95%

Max horizon 31 +13.41%

Recompute at the average frequency (every t = 4) +35.45%
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(b) Optimizing the recomputation meta-parameter in isolation.
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Figure 6.5: Training process for the proposed learned control algorithm, and for each
meta-parameter in isolation. In the isolated cases, we show that the tuning process is
capable of recovering from sub-optimal initializations.
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Figure 6.6: The evolution of the LQR weights as tuned by the complete RL policy.
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6.5 Conclusion

This chapter has introduced a novel control algorithm that is tuned with RL to
jointly improve the computational power usage and the control performance. We
focus on optimizing the meta-parameters of the MPC scheme and demonstrate its
efficacy on the classic control task of balancing an inverted pendulum. We show
that by selecting the conditions under which the MPC is computed, control per-
formance can be improved over the paradigm of computing at every step and that
the control algorithm can be further improved by considering all the optimized
parameters together. Seeing as MPC is increasingly being considered for applic-
ations with fast dynamics or limited computational power and energy resources,
our framework could be an important tool in enabling such applications to harness
the good control performance and constraint satisfaction abilities of the MPC. We
found that with model mismatch, tuning the dual mode MPC and LQR control law
was difficult. Future work could evaluate if state-dependent Q and R matrices
alleviate this issue, which would also provide a gain-scheduling property to the
control algorithm. Whether any stability guarantees and control satisfaction prop-
erties can be given under the learned meta-parameter-deciding policies should be
investigated.

The method presented in this Chapter produced good results on the experiment and
was stable in the sense that 5 of 6 models exhibits behaviour producing costs within
a few percent of each other on the experiment objective (with the sixth stuck in a
local minima near the initial behaviour). We did however find the variance of the
meta-parameter policies to be problematically high, necessitating such measures
as frame-skip and favouring the stochastic version of the recomputation policy in
evaluation, in order to decrease the volatility in system response from one iteration
of the parameters to the next. The chosen formulations of these meta-parameter
variables, i.e. logistic regression for the recomputation variable and the GPD for
the horizon variable, are convenient in that they make the log-probabilities used
in the optimization procedure simple and well-conditioned. However, one could
investigate other choices for this, e.g. replacing the logistic function with another
saturating function which might have lower variability. In this way, the horizon
formulation in Chapter 5 might be favourable, as the variance of the Gaussian
random variable can be made arbitrarily small as opposed to the variance of the
GPD.
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7

Accelerating Reinforcement

Learning with Suboptimal

Guidance: Improving the

Adaptivity of the Q-filter

Approach

The idea of using existing control approaches to enhance RL is something we
wanted to look more into given more time for the PhD. We were among other
ideas envisioning using the framework presented in Chapter 6 as a framework for
guiding a learning controller. Consider the recomputation policy of Chapter 6 that
chooses whether to recompute the MPC solution or not: One can instead view
this policy as selecting among two different controllers, where one is the guiding
controller, πguide

θg , and the other is the learning controller itself, πRL
θRL . Denoting

the selector policy πselector
θs , one can assemble a mixture-distribution policy that

incorporates both these controllers as follows:

π(s) = πselector
θs (s) · πcontroller

θRL,g (s) =

{
πRL
θRL(s), if πselector

θs (s) = 0

πguide
θg (s), if πselector

θs (s) = 1
(7.1)

where all parts of the framework, i.e. the selector component and the controllers
can be made fully differentiable and therefore optimizable. The selector policy
is initially biased towards predominantly selecting the guiding controller, and can
then autonomously decide when and in what situations to apply the learning con-
troller, initially to collect data for optimization, and later hopefully due to its su-
periority. If the learned controllers surpass the performance of the guiding control-
ler, one can look into how the learned controller’s strategy can be used to enhance
the guiding controller as well. With a sufficiently malleable guiding controller (i.e.
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its operation can be adjusted locally in the state space), this could be as simple as
making the guiding controller match the strategy of the learning controller in the
states that the learning controller is superior.

One potential issue with this type of guiding framework is similar to the time-
scale issue described for DDPG-style algorithms in Section 2.6. There, the critic
provides gradients for improvement of the actor, and should therefore converge
much faster than the actor such that it accurately provides information on how to
improve the actor. In this guiding approach, the selector policy should converge
at a much faster pace than the learning controller changes behaviour, such that the
learning controller effectively remains fixed from the perspective of the selector
policy, allowing the selector policy to accurately fulfil its objective of identifying
the superior policy in each state.

This chapter presents a different approach to guiding learning controllers. It presents
the work we performed on using existing control approaches to enhance RL-based
controllers, which takes the form of guiding the RL controller towards a viable
solution to the control problem which simplifies the exploration phase. This is
achieved through a combination of supervised learning and RL, where the learn-
ing controller is made to mimic the guiding controller, but only so long as the
guiding controller is deemed to be superior to the learning controller. This yields
adaptive supervision that allows the learning controller to eventually develop its
own strategy and surpass the guiding controller, as opposed to a fully supervised
approach. This chapter is based on the following article:

• [36] Eivind Bøhn, Signe Moe, and Tor Arne Johansen. Accelerating rein-
forcement learning with suboptimal guidance. IFAC-PapersOnLine, 53(2):
8090–8096, 2020. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.
2020.12.2278. 21st IFAC World Congress

The main contribution of this chapter is in enhancing the adaptivity of the Q-filter
method for guiding RL controllers.

7.1 Introduction

RL [176] is a field of machine learning concerned with sequential decision-making
problems. The theory and methods in RL have produced some impressive res-
ults in the last few years, ranging from high-level reasoning tasks such as game-
playing [173, 146] to control of fast dynamics such as actuation in robotics [83].
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RL has received much attention and interest due to its framework being very gen-
eral, capable of discovering optimal strategies for systems with complex nonlinear
dynamics without access to a model of the system, granted one can define some
notion of utility of different states of the system.

This utility measure, called the reward function in the RL framework, is central to
both the definition of the problem and the performance of the algorithm. Often,
a sparse reward function1 is preferable, as they are easier to formulate, easier to
estimate, and importantly, there is less room for ambiguity and misinterpreting the
objective of the task. The obvious downside is however that only a small region
of the problem space actually gives a learning signal to the agent, and a significant
portion of the training time is spent exploring the state space (often in a random
manner) until a minimally viable strategy2 is found, from which further progress
can be made.

Often in robotics and other control applications, one already has a controller, which
due to e.g. nonlinearities in the dynamics, uncertainties in model parameters, or
strict computational requirements might be suboptimal. This controller could be
used to guide the learning controller towards a minimally viable strategy, thereby
reducing the long initial exploration phase. Further, guiding in this manner can
offer more explainable behaviour from the learning controller, in the sense that its
behaviour is close to that of the guiding controller. In turn, this approach may also
lead to worse asymptotic performance, as the learning controller is searching for
an optimum of the policy space in the vicinity of the guiding controller, while the
global optimum might lie somewhere else. Getting to the global optimum might
entail climbing several unattractive regions of less optimal policies, which might
not be achievable with the usual reinforcement learning optimization instruments.

The most naive implementation of imitation learning (IL), that is, trying to directly
copy the pre-existing controller is seldom successful, mainly due to a data distri-
bution mismatch [160]. Furthermore, the potential performance of the learning
controller is bounded by the performance of the existing controller. The data dis-
tribution problem arises as the data collected by the demonstrator will only consist
of a subset of the state space, and will offer no guidance on how to course-correct
back into this subset when the learning controller inevitably makes a small devi-
ation from the controller it is imitating. Small errors therefore tend to accumulate
into trajectories that stray far from those produced by the demonstrator. Addition-
ally, when combining IL with RL there needs to be some mechanism in place to

1A sparse reward function is one that only yields signals in some subset of the state space, e.g.
in the subset defined as the set of goal states, and is typically constant elsewhere.

2That is, a strategy that consistently is able to reach reward-yielding states
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allow the learning controller to make different choices than the original controller
when appropriate, in order to exceed the performance of the existing controller.

In this chapter, we tackle the problem of automatically deciding when the learning
controller should imitate the pre-existing controller, and when it should develop its
own behaviour. We base our method on the concept of the Q-filter [142], which
makes the learning controller imitate the pre-existing controller only when the
pre-existing controller is deemed to yield a higher reward than what the learning
controller would achieve in that situation. The contribution of this work lies in
identifying some key issues with the original formulation of the Q-filter and pro-
posing modifications to mitigate these issues, resulting in improved adaptivity to
the difficulty of the task and to the proficiency of the pre-existing controller, and
thus also improved performance. Moreover, in [142], the authors only suggest
using this approach on a pre-gathered demonstration dataset which is mixed with
the learner’s own data during training. In this chapter we propose that the Q-filter
approach can be extended to the setting where one has online access to a guide,
and can thus employ the Q-filter guiding on all data gathered.

7.2 Related Work

The DAGGER algorithm [160] is an approach to mitigating the data distribution
mismatch problem. A learning controller is trained to mimic the behaviour of some
expert controller from a demonstration dataset, and then this learning controller is
used in the environment to collect more data. The newly collected data is appen-
ded to the training set, and the expert demonstrator is asked to label the new data
with its action choices. Our method builds upon the DAGGER framework in the
sense that we assume access to an online demonstrator, and iteratively expand the
dataset with the demonstrators knowledge. However, we account for suboptimality
in the demonstrator, consequently our learning controller is only made to mimic
the demonstrator in some selected states and this is only one of its optimization
objectives. Deeply AggreVaTeD [175] is a further extension of DAGGER to con-
tinuous state and action spaces and nonlinear function approximation with NNs.
Both these approaches are pure IL methods and thus do not allow for the agent to
surpass the demonstrator.

Another approach to extract knowledge from demonstration data is inverse rein-
forcement learning (IRL) [144], in which the aim is to recover the reward function
that the agent that generated the dataset was trying to optimize, rather than directly
learning how to act from the data. Armed with the reward function, the learn-
ing agent can reason on how the expert would act even in situations that are not
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covered in the dataset, or otherwise develop its own behaviour that is different but
also in some sense optimal with respect to the reward function.

Deep deterministic policy gradients from demonstrations (DDPGfD) [183] is a
method for leveraging demonstration data for RL algorithms in domains with con-
tinuous state and action spaces. In this work, human generated demonstrations are
included in the replay buffer for which a prioritized sampling technique is used to
ensure a suitable mix of demonstration data and self collected data in each training
batch. They further use a mix of 1-step and n-step return losses for training the
Q-networks. They show increased performance over the demonstrations, as well
as over regular DDPG, even when the latter uses hand-crafted shaped rewards and
DDPGfD uses sparse rewards.

[142] propose to address the problem of choosing when the learning controller
should emulate the demonstrator with the use of the Q-filter. The Q-filter is an
indicator function used to select when to apply a behaviour cloning loss on the
action chosen by the demonstrator. The filter evaluates to true when the estimated
value from the Q-function is higher for the demonstrator action than it is for the
action chosen by the learning controller. This provides a natural way to anneal
behaviour cloning loss during the training process that is adaptive to the task at
hand. Their demonstrations come in the form of a fixed set of trajectories collected
by a human demonstrator in a virtual reality version of the environment. In each
training batch, a portion of the data is sampled from the regular replay buffer and
a portion is sampled from the demonstration buffer, on which behaviour cloning
(BC) is applied for the actions selected by the Q-filter. Our method borrows the
concept of the Q-filter from this work, suggesting some important adjustments to
the concept. Further, their source of demonstrations consists of a fixed dataset,
while we assume online access to a guiding controller.

In [193] the authors propose Assisted deterministic policy gradients (AsDDPG), a
novel architecture for incorporating a simple controller to guide the initial explor-
ation phase. In their architecture, the critic module has an additional branch that
estimates the Q-values of the pre-existing controller’s action and the actor’s action
for the state in question. Based on these estimates the method greedily chooses
the one with the highest Q-value, and applies this action as the exploration ac-
tion during training. In this way, the guiding controller is used to show the actor
some primitives it can use to aid exploration. As in our method, online access to
the guiding controller is assumed, but the Q-filter is applied to select actions for
exploration instead of to shape the gradients of the optimization procedure.
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7.3 Improving the Adaptivity of the Q-filter

7.3.1 Problem Description

In our setup, we assume online access to a pre-existing sub-optimal controller
which is capable of reaching goal states from a nonempty set of initial states. We
also assume that we have access to the Q-function of this controller, denoted by
QG. However, we do not assume prior access to demonstration trajectories from
this controller.

7.3.2 Proposed Method

We modify the actor objective function of DDPG style algorithms (2.43) by adding
a BC loss term (7.2) weighted by λBC, and as in [142] we selectively apply this
loss with the indicator function conditioned on the Q-filter:

JBC(θ|s, a) = ‖a− πθ(s)‖2 �QG(s,a)>Q
πθ
θQ

(s,πθ(s))
(7.2)

J(θ) = max
θ

Es,ā∼B
[
Qπθ

θQ
(s, πθ(s))− λBCJ

BC(s, ā)
]

(7.3)

where �A>B =

{
1 if A > B

0 otherwise
(7.4)

Qπθ0 ← QG (7.5)

where ā is the action chosen by the guiding controller in the corresponding state.
Note that we employ the TD3 algorithm, a derivation of the DDPG algorithm
that shares the same objective for the actor. The suggested approach is therefore
equally applicable to all variants of the DDPG algorithm. We use the online avail-
ability of the pre-existing controller to apply the BC loss term to all samples in the
batch. This does not add considerable overhead, as the pre-existing controller’s ac-
tion can be evaluated once and then saved to the replay buffer alongside the other
data.3 In this work we suggest modifying the original formulation of the Q-filter
by replacing the left-hand side of the condition with the pre-existing controller’s
own estimated Q-function, which is kept static throughout the training process. As
the TD3 algorithm has two separate Q-networks, one can look at different ways of

3Training with a guiding controller increases the wall clock time of the training process by about
5% compared with normal training in our experiments.
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combining these to make up the Q-filter. In this work we have chosen to only use
the Q-network that is used in the optimization objective (2.47) as a basis for the
comparison.

In the original Q-filter formulation of [142], the same value function QθQ is used to
estimate the Q-value of both the action chosen by the agent and the action chosen
by the guide. The motivation behind the proposed modifications are therefore
based on two key insights:

First, the quantities that are compared, Qπθ

θQ
(st, πθ(st)) vs Qπθ

θQ
(st, āt), are of sim-

ilar magnitude especially for problems with a sparse reward function and for prob-
lems with low sampling time as is common in control applications.

QθQ(s, a) = R(s, a) + γQθQ (T (s, a), πθ(T (s, a))) (7.6)

≈ R(s, a) +G(τ), τ = (T (s, a), πθ(T (s, a)), . . . ) (7.7)

As shown in (7.6) and (7.7), the Q-value estimates two quantities: the immediate
reward and the return from the next state, e.g. the total discounted reward over the
trajectory produced by the controller from the next state. With low sampling time,
each action is applied only for a short time, and each state in a sequence is similar
to the previous even for very different actions, i.e.:

lim
Δt→0

|T (st, at)− st+1| = 0 ∀at ∈ A (7.8)

where Δt is the step size (sampling time) of the MDP. The two trajectories that are
compared are generated by the same controller from similar initial states and thus
have similar returns. The immediate rewards for the two controllers’ actions are
also similar, especially when using sparse rewards where they can only differ if the
current state is in close proximity to the border of the reward-yielding subset of the
state space, and the next state of the system crosses the border as a result of one
action but not of the other. Great accuracy is therefore needed to correctly assess
the superior action. By using the guiding controllers’ own Q-function on one side
of the inequality in (7.2) and the agent’s Q-function on the other we compare the
total value of two trajectories produced by different controllers, thus the difference
in the return is greatly increased, allowing for easier discrimination.

Second, as explained the Q-function needs to be highly accurate to properly assess
the values of the actions. The comparison will therefore be greatly impacted by the
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randomness inherent in an unconverged neural network. Since the actors’ objective
(2.47) in the TD3 algorithm is precisely to find the maximization of actions over
the Q-function, it will quickly learn to optimize the unconverged Q-network, and
therefore seemingly (most times erroneously) offer better options than the guiding
controller. The action comparison performed in the Q-filter is consequently highly
stochastic for much of the learning process. The Q-filter formulation in [142] will
henceforth be referred to as the naive method.

In practice, the naive Q-filter therefore tends to prefer the guiding controller’s ac-
tions infrequently in the beginning and converges to select the guiding controller
as superior with a non-zero frequency. The aim of a guiding approach is to have
the learning controller emulate the pre-existing controller to a large degree in the
beginning, and then have the BC loss taper off to allow the learning controller to
surpass the pre-existing controller. With the original formulation of the Q-filter
however, the BC loss does not seem to be strategically applied.

We obtain QG by running the TD3 algorithm with the guiding controller as the
actor until the objective (2.47) stabilizes. Since the actor in this case is the static
guiding controller, all data is on-policy and n-step updates can be used to learn
the Q-function for faster and more accurate convergence.4 See Section 7.5 for a
discussion on other ways of obtaining QG. In order for the actor’s and the guiding
controller’s Q-functions to have comparable magnitudes, the actor’s Q-network is
initialized to that of the guiding controller (7.5). This also provides a starting point
that should be closer to optimal than a random initialization.

7.4 Experiments

We train and evaluate our method on the OpenAI Gym Fetch environments [152],
which are based on the MuJoCo physics simulator [178]. The FetchReach envir-
onment is easy to solve for the RL algorithms even without the use of a guiding
controller, and as such has been excluded from the experiments. For each envir-
onment, a test set consisting of 100 random initial states and goal states has been
constructed, and the agents are evaluated on this set every 20k time steps. We
evaluate our method against the original formulation of the Q-filter, against an ap-
proach where the weight of the BC loss is linearly decayed with time steps, as
well as an unguided approach using TD3 + HER. We run each experiment with
five different random seeds and show mean results with one standard deviation
confidence bounds.

4Convergence was achieved after less than 100k time steps in our experiments for all environ-
ments.



7.4. Experiments 91

7.4.1 Guiding Controllers

The guiding controllers are handcrafted proportional controllers with some condi-
tional logic, e.g. move hand over block, then lower hand and grip block etc. The
guiding controllers exhibit varying proficiency levels, from a controller capable of
achieving any goal in the test set for the pick-and-place environment to a controller
achieving merely 21% of the goals in the slide task.

7.4.2 Configuration

Due to limited computational resources, we employed the TD3 algorithm instead
of DDPG, as convergence of the latter is often dependent on running several actors
in parallel. To increase sample efficiency we use HER with the future goal se-
lection strategy, generating four imagined goals for every real experience sample.
We use the Stable-Baselines [89] implementation of the algorithms, running on an
I7-9700k 8-core CPU and an RTX 2070 GPU.

Following the original paper introducing the Fetch environments [6], we use a de-
cay factor of 0.98 and clip the regression Q-targets (2.44) to the ranges possible in
the given environment, and also bootstrap on environment termination due to time
limit. We use the hyperparameters from TD3, with an actor and critic consisting
of two fully-connected hidden layers of 400 and 300 nodes respectively, a learning
rate of 0.001 for both actor and critic, and a replay buffer size of 106. Parameter
updates are performed every 1000 time steps of the environment for 1000 itera-
tions, with a batch size of 100. We apply an L2 regularization term with strength
0.01 to the pre-activation values of the actor’s output layer, in order to mitigate
vanishing gradients issues. The BC loss term weighting factor λBC (7.3) is set to
2.

The linear schedule is set to be fully decayed after 500k time steps, with an initial
value equal to that of the other methods. This schedule is not optimal for all
environments, but a static schedule was chosen to highlight some of the issues
with this approach.

7.4.3 Ablation Studies

It is conceivable that any improvements of our method stem mainly from the
knowledge encoded into QG and the initialization of QθQ to this. A pretrained
QG already contains information about which action would maximize the rewards
when further following the same action choices as the pre-existing controller at
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each state. The optimization procedure (2.47) implemented for the actor could
take advantage of this information to achieve some of the same benefits that the
BC loss offers. To test this hypothesis, we ran one version of our method without
the BC loss term, and one version where the naive implementation of the Q-filter
is also initialized to QG as in (7.5).

7.5 Results and Discussion

7.5.1 Results of Experiments

The right-most column of Figure 7.1 shows the fraction of samples in each min-
ibatch for which the Q-filter is activated. This figure illustrates the unwanted be-
haviours of the naive Q-filter as described in Section 7.3: it typically starts low
and converges to some value in the range of 0.3 - 0.5 for all environments even
with varying proficiency of the guide. Our method on the other hand delivers on
its promises of adaptivity: it copies a large portion of the actions produced by the
optimal guiding controller in the pick-and-place environment, selects only some
of the actions produced by the suboptimal pre-existing controllers in the slide and
push environments, and decreases the frequency of imitation as the agent improves.
The two Q-filter approaches have the same asymptotic performance for the push
and slide environments, but our Q-filter method has considerable more success in
the pick-and-place environment. The linear method matches the performance of
the adaptive methods for the push environment, but falls a bit short in the pick-
and-place environment, and is only able to find any success for a single seed in
the most difficult slide task. The linear scheduling method seems to be in general
the method with the quickest initial learning, due to indiscriminately imitating all
actions from the guiding controller at the start, while the two Q-filter approaches
seem to share a similar timing of when reward signals are converted into policy
improvements.

Note that the unguided baseline agent using only TD3 + HER is unable to achieve
any success at all in the time frame considered here, except for a single seed for
the FetchSlide environment. By comparing with the guided methods in Figure 7.1,
one can clearly see how much one can accelerate the learning curve and get bet-
ter consistency by incorporating knowledge from existing solutions to the task
in the training process of RL agents. Our results for the unguided TD3 + HER
method are considerably worse than the DDPG + HER results reported in [6] and
[152], in which they show that these methods are able to find working approaches
without guidance in the Fetch environments, albeit at a much slower pace than the
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guided approaches in this chapter. This discrepancy might stem from their work
leveraging extensive computational resources to run many data-collecting agents
in parallel, which generates more uncorrelated and diverse exploration data, and
that these methods are reliant on this trick. We also did not perform specific hy-
perparameter optimization for the unguided approach, but rather used hyperpara-
meters reported in previous works as described in Section 7.4.
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Figure 7.1: Results of experiments: The graphs show for each environment the success
rate on the test set, the BC loss, and the fraction of actions for which the indicator function
evaluates to true in each minibatch.

The results of the ablation experiments are shown in Figure 7.2. These experiments
show that initializing to QG is not enough in and of itself to explain the perform-
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Figure 7.2: The difference in performance when including initialization to QG in the
naive method and when removing the BC loss term from our method, compared to its
counterpart in Figure 7.1 as a baseline.

ance differences shown in Figure 7.1. Our method is significantly degraded by the
removal of the BC loss term, while the naive method is largely unaffected by the
addition of the initialization procedure. These results suggest that the observed
performance gains from our method stem in large part from an improved compar-
ison in the Q-filter. However, since the model without the BC term in the ablation
experiments and the unguided model in Figure 7.1 differ only in initialization, it is
clear that the algorithm is capable of utilizing the information contained in QG in
some way to achieve more success.
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7.5.2 Evaluation of Results

While our formulation of the Q-filter does lead to more deliberate application of
the BC loss, it does introduce a credit assignment problem: Since the two Q-
functions that are compared correspond to two different controllers, it is unclear
which actions in the future trajectory generated by the controllers that are respons-
ible for the observed difference in value. Imitating only the initial action is there-
fore a potential source of error, but introducing some randomness and perturbation
to the training process in RL is a known measure to avoid local minima, and there-
fore this might not be a significant issue.

Even though the linear scheduling method is less complex than the other methods
it can sometimes achieve similar or better performance in terms of time at which
the policy starts improving and asymptotic performance. The slide environment
clearly illustrates that this approach requires careful tuning, as the method is in this
case unable to represent a policy capable of achieving any goals for most seeds.
The Q-filters on the other hand are adaptive and provide reasonable performance
for any task with little tuning, and in particular, our method will imitate a good
guiding controller to a larger degree than a bad guiding controller, unlike the linear
scheduling method. Our version of the Q-filter does however require additional
information in the form of QG, and the linear method might therefore be preferable
in some scenarios despite its limitations.

The Q-function of the pre-existing controller need not be obtained in a complicated
manner such as Q-learning. Often, one has some historical data of usage of this
controller, which one could use to estimate the expected sum of rewards in an
entirely offline manner. Furthermore, one might not need a function approximator
as complicated as a neural network for this purpose, and some simpler methods
such as linear regression might be sufficient. This would remove the possibility of
directly initializing the Q-function of the actor to that of the pre-existing controller,
but one could simply pretrain the Q-network in a supervised manner on outputs
from the pre-existing controller’s Q-function to achieve much of the same effect.

7.6 Conclusion

We have shown that our method is capable of accelerating learning using guiding
controllers with a wide spread of proficiency levels. An important further work is
looking into how the optimality of the guiding controller affects the rate of conver-
gence and asymptotic performance of the learning controller.
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Having a pre-existing controller available online opens up many possibilities. If
one knows the stability properties of this controller, one can have the agent explore
freely while still in the region of attraction (RoA) of the guiding controller, and
then have the guiding controller assume control and stabilize the system when
necessary. In this way, one can achieve a form of safe training, in the sense that
only safe regions of the state space are visited, and the risk of damage to the system
is minimized. An interesting further work is a study on what fraction of actions
the agent needs to control itself for learning to be successful in such a scenario.
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Introduction

RL, and artificial intelligence in general, has become one of the most active fields
of research in the last few years, with tens of thousands of articles published every
year just on the topic of RL alone. This interest is at least to some degree war-
ranted, as the framework of RL is very general, and when combined with the em-
pirically demonstrated expressive power of NNs, DRL promises to solve many
problems previously unimaginable, such as beating humans at the board game of
Go [166]. However, the vast majority of the research on RL and results presented
are performed exclusively in simulated environments, and there is a clear lack of
commercial application of RL systems. This part of the thesis presents the work
undertaken in the PhD where we aim to contribute to the field of RL by demonstrat-
ing an RL-based, field-validated control application that is of particular importance
to Norway, namely control of fixed-wing UAVs.

Norway has an extensive coastline and vast offshore resources, thus, the sea has
always been an important domain for Norway. In fact, its two largest industries in
terms of revenue are the oil and gas sector and the seafood sector. Protecting these
interests require a great deal of monitoring and considering the size and expanse of
these areas, a key enabling technology are autonomous fixed-wing UAVs. These
are an excellent tool in the maritime environment as they can cover large geo-
graphical areas and carry multiple sensors and payloads, performing tasks such as
search-and-rescue, surveillance and transportation. Due to this importance, NTNU
has established the Unmanned Aerial Vehicle laboratory (UAV-Lab), which among
other research has greatly contributed to the modelling of the Skywalker X8 fixed-
wing UAV [80]. A sophisticated model enables simulation of the aircraft, which
facilitates the development of learning controllers for UAVs in a safe manner.

With this starting point, we targeted low-level dynamic RL-based control of the
Skywalker X8 aircraft shown in Figure 8.1. An open-source python flight sim-
ulator [34, 35] was developed based on the previous modeling efforts, and two
articles on this subject was published, constituting the two chapters of this part of
the thesis. Chapter 9 presents the first article we published on this topic, in which
we demonstrate a proof of concept in a simulation environment of the suitability
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of RL for attitude control of fixed-wing UAVs. In Chapter 10 we extend the work
presented in the preceding chapter, targeting control of the real UAV in the field,
and develop a new data-efficient method to this end.

Figure 8.1: The Skywalker X8 Fixed-Wing UAV in flight.
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Deep Reinforcement Learning

Attitude Control of Fixed-Wing

UAVs: A Proof of Concept

This chapter is based on the following article:

• [26] Eivind Bøhn, Erlend M Coates, Signe Moe, and Tor Ame Johansen.
Deep reinforcement learning attitude control of fixed-wing uavs using prox-
imal policy optimization. In 2019 International Conference on Unmanned
Aircraft Systems (ICUAS), pages 523–533. IEEE, 2019

The aforementioned article was the first to propose DRL for the attitude control
problem of fixed-wing UAVs. The main contributions of this chapter lie in propos-
ing the use of DRL for dynamic control of fixed-wing UAVs, contextualizing the
use of RL for flight control, detailing the simulated UAV model, and in presenting
convincing data on the suitability of RL for dynamic control of UAV based on sim-
ulations. In particular, we show that the DRL controller is capable of successfully
controlling the UAV in all the same operating conditions as the existing state-of-
the-art approach, while being more robust towards unmeasured disturbances in the
form of wind and turbulence.

9.1 Introduction

UAVs are extensively employed to increase safety and efficiency in a plethora of
tasks such as infrastructure inspection, forest monitoring, and search and rescue
missions. Many tasks can however not be accomplished fully autonomously, due
to several limitations of autopilot systems. Low-level stabilization of the UAV’s
attitude provided by the inner control loops is increasingly difficult as the attitude
and airspeed deviate from stable, level conditions, due to various nonlinearities.
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The outer control layers providing path planning and guidance has to account for
this and settle for non-agile and safe plans. Equipping the autopilot with the sta-
bilization skills of an experienced pilot would allow fully autonomous operation in
turbulent or otherwise troublesome environments, such as search and rescue mis-
sions in extreme weather conditions, as well as increasing the usefulness of the
UAV by for instance allowing the UAV to fly closer to its targets for inspection
purposes.

Autopilots for fixed-wing UAVs are typically designed using cascaded single-
variable loops under assumptions of decoupled longitudinal and lateral motion,
using classical linear control theory [19]. The dynamics of fixed-wing aircraft in-
cluding UAVs are however strongly coupled and nonlinear. Nonlinear terms in
the equations of motion include kinematic nonlinearities (rotations and Coriolis
effects), actuator saturation and aerodynamic nonlinearities, which are also un-
certain and difficult to model. The decoupled and linear designs are reliable and
well-tested for nominal flight, but also requires conservative safety limits in the
allowable range of flight conditions and maneuvers (flight envelope protection),
because linear controllers applied to nonlinear systems typically result in a lim-
ited region of attraction [100]. This motivates the use of state-of-the-art nonlinear
control algorithms.

Examples of nonlinear control methods applied to UAVs include gain schedul-
ing [67], linear parameter varying (LPV) control [161], dynamic inversion (feed-
back linearization) [98], adaptive backstepping [156], sliding mode control [41],
nonlinear model predictive control [129], nonlinear H-infinity control [65], dy-
namic inversion combined with mu-synthesis [135], model reference adaptive con-
trol [110] and L1 adaptive control [97]. Automated agile and aerobatic maneuver-
ing is treated in [112] and [33]. Several of these methods require a more or less ac-
curate aerodynamic model of the UAV. A model-free method based on fuzzy logic
can be found in [106]. Fuzzy control falls under the category of intelligent control
systems, which also includes the use of neural networks. An adaptive backstepping
controller using a neural network to compensate for aerodynamic uncertainties is
given in [111], while a genetic neuro-fuzzy approach for attitude control is taken
in [48]. The state of the art in intelligent flight control of small UAVs is discussed
in [163].

Control of small UAVs requires making very fast control decisions with limited
computational power available. Sufficiently sophisticated models incorporating
aerodynamic nonlinearities and uncertainties with the necessary accuracy to enable
robust real-time control may not be viable under these constraints. Biology sug-
gests that a bottom-up approach to control design might be a more feasible option.
Birds perform elegant and marvellous maneuvers and are able to land abruptly with
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pinpoint accuracy utilizing stall effects. Insects can hover and zip around with as-
tonishing efficiency, in part due to exploiting unsteady, turbulent aerodynamic flow
effects [19]. These creatures have developed the skills not through careful consid-
eration and modelling, but through an evolutionary trial-and-error process driven
by randomness, with mother nature as a ruthless arbiter of control design profi-
ciency. In similar bottom-up fashion, machine learning (ML) methods have shown
great promise in uncovering intricate models from data and representing complex
nonlinear relations from its inputs to its outputs. ML can offer an additional class
of designs through learning that is not easily accessible through first-principles
modelling, exhibiting antifragile properties where unexpected events and stressors
provide data to learn and improve from, instead of invalidating the design. It can
harbour powerful predictive powers allowing proactive behaviour while meeting
the strict computation time budget in fast control systems.

RL [176] is a subfield of ML concerned with how agents should act in order to
maximize some measure of utility, and how they can learn this behaviour from
interacting with their environment. Control has historically been viewed as a dif-
ficult application of RL due to the continuous nature of these problems’ state and
action spaces. Furthermore, the task has to be sufficiently nonlinear and complex
for RL to be an appropriate consideration over conventional control methods in
the first place. To apply tabular methods one would have to discretize and thus
suffer from the consequences of the curse of dimensionality from a discretization-
resolution appropriate to achieve acceptable control. The alternative to tabular
methods requires function approximation, which has to be sophisticated enough
to handle the dynamics of the task while having a sufficiently stable and tractable
training process to offer convergence. NNs are one of few models which satisfy
these criteria: they can certainly be made expressively powerful enough for many
tasks, but achieving a stable training phase can be a great challenge. Advances in
computation capability and algorithmic progress in RL, reducing the variance in
parameter updates, have made deep neural networks (DNNs) applicable to RL al-
gorithms, spawning the field of DRL. DNNs in RL algorithms provide end-to-end
learning of appropriate representations and features for the task at hand, allowing
algorithms to solve classes of problems previously deemed unfit for RL. DRL has
been applied to complex control tasks such as motion control of robots [201] as
well as other tasks where formalizing a strategy with other means is difficult, e.g.
game playing [137].

A central challenge with RL approaches to control is the low sample efficiency of
these methods, meaning they need a large amount of data before they can become
proficient. Allowing the algorithm full control to learn from its mistakes is often
not a viable option due to operational constraints such as safety, and simulations
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are therefore usually the preferred option. The simulation is merely an approxim-
ation of the true environment. The model errors, i.e. the differences between the
simulator and the real world, is called the reality gap. If the reality gap is small,
then the low sample efficiency of these methods is not as paramount, and the agent
might exhibit great skill the first time it is applied to the real world.

The premise of this research was to explore the application of RL methods to low-
level control of fixed-wing UAVs, in the hopes of producing a proof-of-concept
RL controller capable of stabilizing the attitude of the UAV to a given attitude
reference. To this end, an OpenAI Gym environment [32] with a flight simulator
tailored to the Skywalker X8 flying wing was implemented, in which the RL con-
troller is tasked with controlling the attitude (the roll and pitch angles) as well as
the airspeed of the aircraft. Aerodynamic coefficients for the X8 are given in [82].
The flight simulator was designed with the goal of being valid for a wide array of
flight conditions, and therefore includes additional nonlinear effects in the aerody-
namic model. The software has been made openly available [34, 35]. Key factors
impacting the final performance of the controller as well as the rate of progression
during training were identified. To the best of the authors’ knowledge, this is the
first reported work to use DRL for attitude control of fixed-wing UAVs.

9.2 Related Work

In general, the application of RL to UAV platforms has been limited compared to
other robotics applications, due to data collection with UAV systems carrying sig-
nificant risk of fatal damage to the aircraft. RL have been proposed as a solution to
many high-level tasks for UAVs such as the higher level path planning and guid-
ance tasks, alongside tried and tested traditional controllers providing low-level
stabilization. In the work of Gandhi et al. [64] a UAV is trained to navigate in an
indoor environment by gathering a sizable dataset consisting of crashes, giving the
UAV ample experience of how NOT to fly. In [87], the authors tackle the data col-
lection problem by constructing a pseudo flight environment in which a fixed-wing
UAV and the surrounding area is fitted with magnets, allowing for adjustable mag-
netic forces and moments in each degree of freedom (DOF). In this way, the UAV
can be propped up as one would do when teaching a baby to walk, and thereby
experiment without fear of crashing in a setting more realistic than simulations.

Imanberdiyev et al. [94] developed a model-based RL algorithm called TEXPLORE
to efficiently plan trajectories in unknown environments subject to constraints such
as battery life. In [202], the authors use an MPC to generate training data for an
RL controller, thereby guiding the policy search and avoiding the potentially cata-
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strophic early phase before an effective policy is found. Their controller general-
izes to avoid multiple obstacles, compared to the singular obstacle avoided by the
MPC in training, does not require full state information like the MPC does, and is
computed at a fraction of the time. With the advent of DRL, it has also been used
for more advanced tasked such as enabling intelligent cooperation between mul-
tiple UAVs [91], and for specific control tasks such as landing: Polvara et al. [153]
proposes to employ a hierarchy of deep Q-networks (DQNs) to map from camera
data to control input for landing UAVs autonomously in a wide range of conditions.
RL algorithms have also been proposed for attitude control of other autonomous
vehicles, including satellites [195] and underwater vehicles. Carlucho et al. [40]
applies an actor-critic DRL algorithm to low-level attitude control of an autonom-
ous underwater vehicle (AUV), similar to the proposed method in this chapter.
They also obtain experimental data from testing their method on the Nessie VII
AUV and find satisfactory results in terms of the transferability from simulation
training to real-world performance.

Of work addressing problems more similar in nature to the one in this chapter, i.e.
low-level attitude control of UAVs, one can trace the application of RL methods
back to the works of Bagnell and Schneider [13] and Ng et al. [145], both focus-
ing on helicopter UAVs. Both employed methods based on offline learning from
data gathered by an experienced pilot, as opposed to the online self-learning ap-
proach proposed in this chapter. The former focuses on control of a subset of the
controllable states while keeping the others fixed, whereas the latter work extends
the control to all six degrees of freedom. In both cases, the controllers exhibit
control performance exceeding that of the original pilot when tested on real UAVs.
In [2], the latter work was further extended to include difficult aerobatic maneuvers
such as forward flips and sideways rolls, significantly improving upon the state-of-
the-art. Cory and Tedrake [46] presents experimental data of a fixed-wing UAV
perching maneuver using an approximate optimal control solution. The control is
calculated using a value iteration algorithm on a model obtained using nonlinear
function approximators and unsteady system identification based on motion cap-
ture data. Bou-Ammar et al. [30] compared an RL algorithm using fitted value
iteration (FVI) for approximation of the value function, to a non-linear controller
based on feedback linearization, on their proficiency in stabilizing a quadcopter
UAV after an input disturbance. They find the feedback-linearized controller to
have superior performance. Recently, Koch et al. [101] applied three state-of-the-
art RL algorithms to control the angular rates of a quadcopter UAV. They found
PPO to perform the best of the RL algorithms, outperforming the proportional-
integral-derivative (PID) controller on nearly every metric.
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9.3 UAV Model

Following [19], the UAV is modeled as a rigid body of mass m with inertia tensor
I and a body frame {b} rigidly attached to its center of mass, moving relative
to a north-east-down (NED) frame assumed to be inertial {n}. The attitude is
represented using Euler angles Θ = [φ θ ψ]T , where φ, θ, ψ are the roll, pitch
and yaw angles respectively. The time evolution of the position p = [x y z]T and
attitude Θ of the UAV is governed by the kinematic equations

ṗ = Rn
b (Θ)v (9.1)

Θ̇ = TΘ(Θ)ω (9.2)

The matrix TΘ(Θ) relating the angular velocity ω = [p q r]T to the time deriv-
ative of the Euler angles can be calculated from Θ as follows:

TΘ(Θ) =

⎡
⎣1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ

⎤
⎦ (9.3)

The rotation matrix Rn
b transforms vectors from {b} to {n} and is given by the

following sequence of basic rotations:

Rn
b (Θ) = Rz,ψRy,θRx,φ (9.4)

The rates of change of the body-fixed velocities v and angular velocities ω are
given by the Newton-Euler equations of motion:

mv̇ + ω ×mv = Rn
b (Θ)Tmgn + F prop + F aero (9.5)

Iω̇ + ω × Iω = Mprop +Maero (9.6)

gn = [0 0 g]T , where g is the acceleration of gravity. Apart from gravity, the UAV
is affected by forces and moments due to aerodynamics and propulsion, that are
explained in the next sections. All velocities, forces and moments are represented
in the body frame.

9.3.1 Aerodynamic Forces and Moments

The UAV is flying in a wind field decomposed into a steady part vn
ws

and a stochastic
part vb

wg
representing gusts and turbulence. The steady part is represented in {n},

while the stochastic part is represented in {b}. Similarly, rotational disturbances



9.3. UAV Model 107

are modelled through the wind angular velocity ωw. The relative (to the surround-
ing air mass) velocities of the UAV is then defined as:

vr = v −Rn
b (Θ)Tvws − vwg =

⎡
⎣urvr
wr

⎤
⎦ (9.7)

ωr = ω − ωw =

⎡
⎣prqr
rr

⎤
⎦ (9.8)

From the relative velocity we can calculate the airspeed Va, angle of attack α and
sideslip angle β:

Va =
√

u2r + v2r + w2
r (9.9)

α = tan−1
(
wr

ur

)
(9.10)

β = sin−1
(
vr
Va

)
(9.11)

The stochastic components of the wind, given by vwg = [uwg vwg wwg ]
T and

ωw = [pw qw rw]
T are generated by passing white noise through shaping filters

given by the Dryden velocity spectra [180, 130], a realization of which is illustrated
in Figure 9.1 for severe turbulence conditions.

The aerodynamic forces and moments are formulated in terms of aerodynamic
coefficients C(∗) that are, in general, nonlinear functions of α, β and ωr, as well as
the right and left elevon surface deflections δr and δl, which acts as control inputs.
Note that there is no rudder on the Skywalker X8 UAV.

F aero = Rb
w(α, β)

⎡
⎣−DY
−L

⎤
⎦ (9.12)

⎡
⎣DY
L

⎤
⎦ =

1

2
ρV 2

a S

⎡
⎣CD(α, β, qr, δr, δl)
CY (β, pr, rr, δr, δl)
CL(α, qr, δr, δl)

⎤
⎦ (9.13)

Maero =
1

2
ρV 2

a S

⎡
⎣bCl(β, pr, rr, δr, δl)

cCm(α, qr, δr, δl)
bCn(β, pr, rr, δr, δl)

⎤
⎦ (9.14)

ρ is the density of air, S is the wing planform area, c is the aerodynamic chord,
and b the wingspan of the UAV. The rotation matrix transforming the drag force
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(a) Linear velocity (b) Angular velocity

Figure 9.1: An example of a realization of the Dryden turbulence model for severe turbu-
lence conditions.

D, side force Y and lift force L from the wind frame to the body frame is given
by:

Rb
w(α, β) =

[
cos(α) cos(β) cos(α) sin(β) − sin(α)
− sin(β) cos(β) 0

cos(β) sin(α) sin(α) sin(β) cos(α)

]
(9.15)

Aerodynamic coefficients are taken from [82], based on wind tunnel experiments
of the Skywalker X8 flying wing. The model has similar structure to the linear
coefficients in [19], but has added quadratic terms in α and β to the drag coefficient
CD. In addition, CD is quadratic in the elevator deflection δe. In this chapter, as
an attempt to extend the range of validity to a greater range of α and β-values, lift,
drag and pitch moment coefficients are made nonlinear using Newtonian flat plate
theory from [19] and [79].

9.3.2 Propulsion Forces and Moments

Assuming the propeller thrust is aligned with the x-axis of {b}, we can write

F prop =

⎡
⎣Tp

0
0

⎤
⎦ (9.16)

Where the propeller thrust Tp is given by [58] as presented in [18]:

Vd = Va + δt(km − Va) (9.17)

Tp =
1

2
ρSpCpVd (Vd − Va) (9.18)
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Vd is the discharge velocity of air from the propeller, km is a motor constant, Sp

is the propeller disc area, and Cp is an efficiency factor. δt ∈ [0, 1] is the throttle.
The propeller moments are given by

Mprop =

⎡
⎣−kQ(kΩδt)20

0

⎤
⎦ (9.19)

where kΩ and kQ are constants. Gyroscopic moments are assumed negligible.

9.3.3 Actuator Dynamics and Constraints

Note that collective and differential elevon deflections can be mapped to ”virtual”
aileron and elevator deflections δa and δe which are used as input to the aerody-
namic model. [

δa
δe

]
=

[
−0.5 0.5
0.5 0.5

] [
δr
δl

]
(9.20)

Constraints and dynamics are imposed on the transformed aileron and elevator de-
flections. δa ∈ [−30 π

180 , 30
π
180 ] and δe ∈ [−30 π

180 , 35
π
180 ]. Denoting commands

with superscript c, the control surface dynamics are given by the following second
order transfer function:

δ(∗)(s)

δc(∗)(s)
=

1002

s2 + 100
√
2s+ 1002

(9.21)

The throttle dynamics are given by the following first order transfer function:

δt(s)

δct (s)
=

1

0.2s+ 1
(9.22)

9.4 Learning an On-Policy Attitude Controller using PPO

PPO was the chosen RL algorithm for the attitude controller for several reasons:
first, PPO was found to be the best performing algorithm for attitude control of
quadcopters in [101], and secondly, PPO’s hyperparameters are robust for a large
variety of tasks, and it has high performance and low computational complexity.

The control objective is to control the UAV’s attitude, so a natural choice of con-
trolled variables are the roll, pitch and yaw angles. However, the yaw angle of
the aircraft is typically not controlled directly, but through the yaw-rate that de-
pends on the roll angle. In addition, it is desirable to stay close to some nominal
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airspeed to ensure energy-efficient flight, to avoid stall, and to maintain control
surface effectiveness which is proportional to airspeed squared. The RL controller
is therefore tasked with controlling the roll and pitch angles, φ and θ, and the air-
speed Va to desired reference values. At each time step, the controller receives an
immediate reward, and it aims at developing a control law that maximizes the sum
of future discounted rewards.

The action space of the controller is three dimensional, consisting of commanded
virtual elevator and aileron angles as well as the throttle. Elevator and aileron
commands are mapped to commanded elevon deflections using the inverse of the
transformation given by (9.20).

The observation vector (i.e. the input to the RL controller) contains information
obtained directly from state-feedback of states typically measured by standard
sensor suites. No sensor noise is added. To promote smooth actions it also in-
cludes a moving average of previous actuator setpoints. Moreover, since the policy
network is a feed-forward network with no memory, the observation vector at each
time step consists of these values for several previous time steps to facilitate learn-
ing of the dynamics.

9.4.1 Action Space

A known issue in optimal control is that while continually switching between max-
imum and minimum input is often optimal in the sense of maximizing the object-
ive function, in practice, it wears unnecessarily on the actuators. Since PPO during
training samples its outputs from a Gaussian distribution, a high variance will gen-
erate highly fluctuating actions. This is not much of a problem in a simulator
environment but could be an issue if trained online on a real aircraft. PPO’s hy-
perparameters are tuned wrt. a symmetric action space with a small range (e.g. -1
to 1). Adhering to this design also has the benefit of increased generality, training
the controller to output actions as a fraction of maximal and minimal setpoints.
The actions produced by the controller are therefore clipped to this range, and
subsequently scaled to fit the actuator ranges as described in Section 9.3.

9.4.2 Training of Controller

The PPO RL controller was initialized with the default hyperparameters in the
OpenAI Baselines implementation [89], and ran with 6 parallel actors. The con-
troller policy is an extended version of the default two hidden layers, 64 nodes
multi layer perceptron (MLP) policy: The observation vector is first processed in
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Table 9.1: Constraints and ranges for initial conditions and target setpoints used during
training of controller.

Variable Initial Condition Target

φ ±150◦ ±60◦

θ ±45◦ ±30◦

ψ ±60◦ -
ω ±60 ◦/s -
α ±26◦ -
β ±26◦ -
Va 12− 30m/s 12− 30m/s

a convolutional layer with three filters spanning the time dimension for each com-
ponent, before being fed to the default policy. This allows the policy to construct
functions on the time evolution of the observation vector while scaling more fa-
vourably in parameter count with increasing observation vector size compared to
a fully connected input layer.

The controller is trained in an episodic manner to assume control of an aircraft in
motion and orient it towards some new reference attitude. Although the task at
hand is not truly episodic in the sense of having natural terminal states, episodic
training allows one to adjust episode conditions to suit the agent’s proficiency, and
also admits greater control of the agent’s exploration of the state space. The initial
state and reference setpoints for the aircraft are randomized in the ranges shown
in Table 9.1. Episode conditions are progressively made more difficult as the con-
troller improves, beginning close to target setpoints and in stable conditions, until
finally spanning the entirety of Table 9.1. The chosen ranges allow the RL control-
ler to demonstrate that it is capable of attitude control, and facilitates comparison
with the PID controller as it is expected to perform well in this region. According
to [19], a typical sampling frequency for autopilots is 100 Hertz, and the simulator
therefore advances 0.01 seconds at each time step. Each episode is terminated
after a maximum of 2000 time steps, corresponding to 20 seconds of flight time.
No wind or turbulence forces are enabled during training of the controller.

In accordance with traditional control theory, where one usually considers cost to
be minimized rather than rewards to be maximized, the immediate reward returns
to the RL controller are all negative rewards in the normalized range of -1 to 0:
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Rφ = clip

(
|φ− φd|

ζ1
, 0, γ1

)

Rθ = clip

(
|(θ − θd)|

ζ2
, 0, γ2

)

RVa = clip

(
|Va − V d

a |
ζ3

, 0, γ3

)

Rδc = clip

(∑
j∈[a,e,t]

∑4
i=0 |δcjt−i

− δcjt−1−i
|

ζ4
, 0, γ4

)

Rt = −(Rφ +Rθ +RVa +Rδc) (9.23)

ζ1 = 3.3, ζ2 = 2.25, ζ3 = 25, ζ4 = 60

γ1 = 0.3, γ2 = 0.3, γ3 = 0.3, γ4 = 0.1

In this reward function, L1 was chosen as the distance metric between the current
state and the desired state (denoted with superscript d).1 Furthermore, a cost is
attached to changing the actuator setpoints to address oscillatory control behaviour.
Commanded control setpoint of actuator j at time step t is denoted δcjt , where
j ∈ [a, e, t]. The importance of each component of the reward function is weighted
through the γ factors. To balance the disparate scales of the different components,
the values are divided by the variables approximate dynamic range, represented by
the ζ factors.

The components of the observation vector are expressed in different units and also
have differing dynamic ranges. NNs are known to converge faster when the in-
put features share a common scale, such that the network does not need to learn
this scaling itself. The observation vector should therefore be normalized. This
is accomplished with the VecNormalize class of [89], which estimates a running
mean and variance of each observation component and normalizes based on these
estimates.

9.4.3 Evaluation

Representing the state-of-the-art in model free control, fixed-gain PID controllers
for roll, pitch and airspeed were implemented to provide a baseline comparison for

1The L1 distance has the advantage of punishing small errors harsher than the L2 distance, and
therefore encourages eliminating small steady-state errors.
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the RL controller:

δct = −kpV (Va − V d
a )− kiV

∫ t

0
(Va − V d

a )dτ (9.24)

δca = −kpφ(φ− φd)− kiφ

∫ t

0
(φ− φd)dτ − kdφp (9.25)

δce = −kpθ(θ − θd)− kiθ

∫ t

0
(θ − θd)dτ − kdθq (9.26)

The throttle is used to control airspeed, while virtual aileron and elevator com-
mands are calculated to control roll and pitch, respectively. The PID controllers
were manually tuned using a trial-and-error approach until achieving acceptable
transient responses and low steady-state errors for a range of initial conditions and
setpoints. Wind was turned off in the simulator during tuning. The integral terms in
(9.24)-(9.26) are implemented numerically using forward Euler. Controller gains
are given in Table 9.2.

Table 9.2: PID controller parameters.

Parameter Value Parameter Value

kpV 0.5 kdφ 0.5
kiV 0.1 kpθ -4
kpφ 1 kiθ -0.75
kiφ 0 kdθ -0.1

The same aerodynamic model that is used for training is also used for evaluation
purposes, with the addition of disturbances in the form of wind to test general-
ization capabilities. The controllers are compared in four distinct wind and tur-
bulence regions: light, moderate, severe and no turbulence. Each setting consists
of a steady wind component, with randomized orientation and a magnitude of 7
m/s, 15 m/s, 23 m/s and 0 m/s respectively, and additive turbulence given by the
Dryden turbulence model [180]. Note that a wind speed of 23 m/s is a substantial
disturbance, especially when considering the Skywalker X8’s nominal airspeed of
18 m/s. For each wind setting, 100 sets of initial conditions and target setpoints are
generated, spanning the ranges shown in Table 9.1. The reference setpoints are set
to 20-30 degrees and 3-4 m/s deviation from the initial state for the angle variables
and airspeed, respectively. Each evaluation scenario is run for a maximum of 1500
time steps, corresponding to 15 seconds of flight time, which should be sufficient
time to allow the controller to regulate to the setpoint.
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The reward function is not merely measuring the proficiency of the RL controller
but is also designed to facilitate learning. To compare, rank and evaluate differ-
ent controllers, one needs to define additional evaluation criteria. To this end, the
controllers are evaluated on the following criteria: Success/failure, whether the
controller is successful in controlling the state to within some bound of the set-
point. The state must remain within the bounds for at least 100 consecutive time
steps to be counted as a success. The bound was chosen to be ±5◦ for the roll and
pitch angles, and±2m/s for the airspeed. Rise time, the time it takes the controller
to reduce the initial error from 90 % to 10 %. As these control scenarios are not
just simple step responses and may cross these thresholds several times during the
episode, the rise time is calculated from the first time it crosses the lower threshold
until the first time it reaches the upper threshold. Settling time, the time it takes the
controller to settle within the success setpoint bounds, and never leave this bound
again. Overshoot, the peak value reached on the opposing side of the setpoint
wrt. the initial error expressed as a percentage of the initial error. Control vari-

ation, the average change in actuator commands per second, where the average is
taken over time steps and actuators. Rise time, settling time, overshoot and control
variation are only measured when the episode is counted as a success. When com-
paring controllers, the success criterion is the most important, as it is indicative of
stability as well as achieving the control objective. Secondly, low control variation
is important to avoid unnecessary wear and tear on the actuators. While success or
failure is a binary variable, rise time, settling time and overshoot give additional
quantitative information on the average performance of the successful scenarios.

9.5 Results and Discussion

The controller was trained on a desktop computer with an i7-9700k CPU and an
RTX 2070 GPU. The model converges after around two million time steps of train-
ing, which on this hardware takes about an hour. This is relatively little compared
to other applications of DRL and suggests that the RL controller has additional
capacity to master more difficult tasks. Inference with the trained model takes 800
microseconds on this hardware, meaning that the RL controller could reasonably
be expected to be able to operate at the assumed autopilot sampling frequency of
100 Hertz in flight.



9.5. Results and Discussion 115

9.5.1 Key Factors Impacting Training

The choice of observation vector supplied to the RL controller proved to be sig-
nificant for its rate of improvement during training and its final performance. It
was found that reducing the observation vector to only the essential components,
i.e. the current airspeed and roll and pitch angles, the current angular velocities of
the UAV, and the state errors, helped the RL controller improve significantly faster
than other, larger observation vectors.2 It can be seen from Figure 9.2 that increas-
ing the size of the observation vector both lowers the mean of episode rewards
and increases the standard deviation significantly, while the rate of progression is
seemingly unaffected. This finding runs counter to the mantra that more data is
better with ML methods, but might be explained by fewer factors making it easier
for the RL algorithm to determine the effects of its actions on the progress towards
the target. Including values for several previous time steps (five was found to be
a good choice) further accelerated training, as this makes learning the dynamics
easier for the memoryless feed-forward policy.

The reward function is one of the major ways the designer can influence and direct
the behaviour of the agent. One of the more popular alternatives to L1 norm and
clipping to achieve saturated rewards are the class of exponential reward functions,
and notably the Gaussian reward function as in [40]. Analyzing different choices of
the reward function was not given much focus as the original choice gave satisfying
results.

It was also discovered that replacing the target setpoint values in the observation
vector with the current error of each state helped training speed. Figure 9.2 also
shows that normalization helps the rate of progression, and that converged per-
formance is similar after the network has learned to scale the non-normalized num-
bers.

For complicated tasks, there might be much to gain from starting with simple tasks
for the agent and progressively increasing the difficulty as the agent improves, i.e.
imposing some form of curriculum learning [60, 131]. This could be for instance
having the controller start at the setpoint values for all but one variable, and sub-
sequently add control of more variables as the controller masters the single vari-
able case. This approach was not necessary for the task presented in this chapter,
but in attempts at global attitude control over the whole state space with the PPO
algorithm, the approach was successful in increasing the proficiency of the con-

2Essential here referring to the factors’ impact on performance for this specific control task. One
would for instance expect α and β to be essential factors when operating in the more extreme and
nonlinear regions of the state space.
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Figure 9.2: The evolution of the training process as influenced by some key factors. Each
line and the shaded surrounding area represents the mean episode reward and standard
deviation in a rolling window of 100 episodes, respectively. Sudden increases in standard
deviations are caused by early terminated episodes with low total reward.

troller. In such scenarios, further constraining states to within reasonable flight
envelopes may also help the rate of progression, e.g. constraining the angular rates
such that the agent avoids exploring strategies with excessive rotations.
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9.5.2 Evaluation of Controller

It is important to note the dependence between pitch and airspeed, and that achiev-
ing any arbitrary combination of the two might not be possible due to the fact that
lowering the noise of the aircraft typically tend to increase airspeed as potential
energy gets converted to kinetic energy. A sizable portion of the failures reported
in Table 9.3 stems from conflicting priorities between achieving the target pitch
angle or the target airspeed. Moreover, none of the scenarios shows instability. In
all cases, the initial errors are reduced in all states, but they might not settle into
the specified bound in the allotted time. The results presented should therefore not
be interpreted as an indication of the degree of instability of the controller, as no
such failure modes could be provoked in the test environment as specified. The
rise and settling times reported in Table 9.3 are reasonable and around what one
would expect from a good controller. The overshoot values shows that the control-
ler provides underdamped control, but not to a degree where instability and steady
oscillations occur.
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Figure 9.3: Comparison of the PID and RL controllers tasked with tracking the dashed
green line.

The RL controller generalizes well to situations and tasks not encountered during
training. Even though the controller is trained with a single setpoint for each epis-
ode, Figure 9.4 shows that the controller is perfectly capable of adapting to new
setpoints during flight. This result was also found by Koch et al. [101] for quad-
copters. The generalization capability also holds true for unmodeled wind and
turbulence forces. The controller is trained with no wind estimates present in the
observation vector, and no wind forces enabled in the simulator, but as Table 9.3
shows it is still able to achieve tracking to the setpoint when steady wind and tur-
bulence is enabled in the test environment. Table 9.3 should be read as a quantitat-
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ive analysis of performance in conditions similar to normal operating conditions,
while Figure 9.4 and 9.3 qualitatively shows the capabilities of the controllers on
significantly more challenging tasks.

Table 9.3 shows that both controllers are generally capable of achieving conver-
gence to the target for the evaluation tasks, with neither controller clearly outper-
forming the other. The RL controller has an advantage over the PID controller on
the success criterion and seems to be more robust to the turbulence disturbance. It
is able to achieve convergence in the attitude states in all situations, unlike the PID
controller, and is also notably more successful in moderate and severe turbulence
conditions. The PID controller has considerably lower control variation for the
simple settings with little or no wind, but its control variation grows fast with in-
creasing disturbance. At severe turbulence, the RL controller has the least control
variation.

The two controllers perform similarly wrt. settling time and rise time, each having
the edge in different states under various conditions, while the PID controller per-
forms favourably when measured on overshoot. All in all, this is an encouraging
result for the RL controller, as it is able to perform similarly as the established PID
controller in its preferred domain, while the RL controller is expected to make its
greatest contribution in the more nonlinear regions of the state space.

A comparison of the two controllers is shown in Figure 9.3 on a scenario involving
fairly aggressive maneuvers, which both are able to execute. Figures 9.4 and 9.3
illustrate an interesting result, the RL controller is able to eliminate steady-state
errors. While the PID controller has integral action to mitigate steady-state errors,
the control law of the RL controller is only a function of the last few states and ref-
erences. This might suggest that the RL controller has learned some feed-forward
action, including nominal inputs in each equilibrium state, thus removing steady-
state errors in most cases. Another possibility is that steady-state errors are greatly
reduced through the use of high-gain feedback, but the low control variation shown
for severe turbulence in Table 9.3 indicates that the gain is not excessive. Future
work should include integral error states in the observations and evaluate the im-
plications on training and flight performance.

9.6 Conclusion

The ease with which the proof of concept RL controller learns to control the UAV
for the tasks presented in this chapter, and its ability to generalize to turbulent
wind conditions, suggests that DRL is a good candidate for nonlinear flight control
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Figure 9.4: The RL controller trained episodically with a single setpoint and no wind
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turbulence disturbances with a magnitude of 20 m/s.
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design. A central unanswered question here is the severity of the reality gap, or in
other words how transferable the strategies learned in simulations are to real-world
flight. Future work should evaluate the controller’s robustness to parametric and
structural aerodynamic uncertainties; this is essential to do before undertaking any
real-life flight experiments. For more advanced maneuvers, e.g. aerobatic flight or
recovering from extreme situations, the controller should be given more freedom
in adjusting the airspeed, possibly through having it as an uncontrolled state.

There is still much potential left to harness for this class of controllers. The policy
network used to represent the control law is small and simple; more complex archi-
tectures such as long short term memory (LSTM) could be used to make a dynamic
RL controller. Training, experiments and reward structures can be designed to fa-
cilitate learning of more advanced behaviour, tighter control or better robustness.
Should the reality gap prove to be a major obstacle for the success of the RL con-
troller in the real world, one should look to the class of off-policy algorithms such
as SAC. These algorithms are able to learn offline from gathered data, and thus
might be more suited for UAV applications.
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10

Data Efficient Deep

Reinforcement Learning Control

of Fixed-Wing UAVs in the Field

This chapter extends the work presented in the preceding chapter, targeting control
of the real Skywalker X8 in the field. A controller for the real UAV is developed
by training on a simulated version, and therefore a new more data efficient method
is developed in order to limit the adverse affects of training in a separate envir-
onment from the target environment. Further, several sim-to-real measures are
undertaken in order to ensure a smooth transfer. The development process of the
work presented in this chapter was highly iterative: Despite all the modeling ef-
forts undertaken, the model is shown to be of poor fit in certain aspects of the real
Skywalker X8 system. The behavior of the RL controller in the field was there-
fore observed, and for each field experiment undertaken, areas of improvement
was identified and the simulation was adjusted in order to rectify the discrepancies
observed in real flight. The RL controller is compared to the state-of-the-art Ar-
duPlane autopilot, and shows comparable performance. The main contribution of
this chapter lies in experimentally verifying dynamic control of fixed-wing UAV
using RL. This chapter is based on the following article:

• [27] Eivind Bøhn, Erlend M. Coates, Dirk Reinhardt, and Tor Arne Jo-
hansen. Data-efficient deep reinforcement learning for attitude control of
fixed-wing uavs validated through field experiments. IEEE Transactions on
Neural Networks and Learning Systems, 2021. Submitted

Note that the standard notation for the pitch state in the Euler angle representa-
tion of the attitude, i.e. θ, clashes with the notation for the parameters of the RL
algorithm used throughout this thesis. In this chapter, we will therefore use ϑ to
refer to the parameters of the RL algorithm.
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10.1 Introduction

Many challenging control problems arise during advanced operation of fixed-wing
UAVs, such as aerobatic maneuvering [33], perching [46], deep-stall landing [128],
recovery from loss of control [47], flying in strong wind fields [119], or perform-
ing VTOL transitions between hover and forward flight [9]. Fixed-wing UAVs, as
illustrated in Fig. 8.1, have superior range and endurance when compared to mul-
tirotor UAVs. However, the control of such vehicles is challenging due to highly
coupled, underactuated nonlinear dynamics, as well as uncertain aerodynamics af-
fected by wind disturbances that make up a large fraction of the vehicle’s airspeed.

A class of methods that has shown promising results for challenging control prob-
lems, is DRL. RL is an area of machine learning concerned with learning optimal
sequential decision making. DRL is the combination of RL algorithms with NNs as
function approximators, which is the state-of-the-art approach for many problems
requiring complex decision making over long time horizons such as game-playing
[137, 166], dexterous in-hand robotic manipulation [8], and object manipulation
[165]. It can handle continuous state and action spaces, highly complex and non-
linear system dynamics, and in general does not require a model of the system to
be controlled. Furthermore, the online execution of an RL controller is often very
computationally efficient. This should make DRL an enticing alternative for prob-
lems where accurate identification of the system is difficult and traditional control
approaches are unable to yield sufficient control performance. Despite this poten-
tial, DRL has yet to be widely adopted for control and notably lacks demonstra-
tions of control applications outside of simulations. One of the main contributing
factors to this is the lack of safety guarantees and the ability to formulate operat-
ing constraints, both in the exploration and exploitation phase, which is is further
complicated by the data-intensive nature of DRL. We will in the rest of this chapter
use RL to refer to DRL.

An approach to mitigate the challenges of RL for control is foregoing online ex-
ploration entirely and learning the controller exclusively from historical data with
no further interaction with the system to be optimized, i.e. offline RL [113]. The
latter is a radical alteration of the RL problem introducing new challenges and
necessitating its own set of learning algorithms. It could nevertheless be an im-
portant tool in the future for problems such as control of UAVs — where data
collection carries a high risk and accurate modelling is difficult. A more common
approach is performing part of or the whole exploration phase in a simulation of
the target system. A downside of this approach is that while RL in principle is a
model-free optimization framework, the success of the transfer from the simulated
environment to the real target environment is highly affected by the accuracy of
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the simulation model, the lack of which is referred to as the reality gap in RL. One
should therefore take great effort in minimizing the reality gap through sim-to-
real measures, which aim at robustifying the learned controller and emulate effects
such as latency and measurement noise present in the real control system. For a
recent survey on sim-to-real methods in the context of control and robotics, see
[204].

For the sim-to-real learning approach to be useful for practical flight control applic-
ations, controllers trained in simulation need to transfer well to control of the real
UAV. Before attempting advanced problems like e.g. deep-stall landing, it makes
sense to first attempt simpler problems and identify what factors are important for
controllers to transfer well to reality. In this chapter, we consider the attitude con-
trol problem of fixed-wing UAVs. Attitude refers to the orientation of the aircraft,
and control of the attitude constitutes the lowest level of flight control deciding how
the actuators of the UAV are used to achieve the desired attitude as decided by the
guidance components of the control system. This work is a follow-up on our pre-
vious work [26] in which we demonstrate the efficacy of DRL for attitude control
of fixed-wing UAVs in a simulator environment. We now target control of the real
UAV in the field and develop a framework to learn attitude controllers with a focus
on data-efficiency, yielding flightworthy controllers with only minutes of learning
time. Starting with a UAV model obtained primarily through wind-tunnel experi-
ments, we adopt the method of exploring and learning in a simulator environment
and iteratively adjust the model and simulation environment with insights from
flight experiments. We extensively apply domain-randomization and other sim-
to-real measures in order to reduce the reality-gap. Moreover, the data-efficiency
of our method limits overfitting to the simulation model, such that the controller
transfers better to the field, and when combined with safe exploration measures
the high data-efficiency could enable learning controllers entirely on the real UAV
in the field.

The literature on RL-based attitude control of UAVs is dominated by quadcopters,
and most works operate exclusively in simulated environments [103, 118, 188, 55,
24]. When it comes to works presenting real-world flight experiments we have
identified the following: [107, 194, 102, 44, 59, 186, 140]. Of these, only [44],
their follow-up work [59], and [186] use a fixed-wing UAV design. [44] and [59]
study the specific problem of controlling a perched landing, [186] fixes the aircraft
in a wind-tunnel and limit themselves to controlling the pitch of the UAV, while
we study the full attitude control problem. Moreover, the data requirement of their
methods are on the order of millions of samples. The other aforementioned works
also require millions of samples of data, with the notable exception of [107]. Their
method uses model-based RL and involves learning a forward dynamics model
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that is used in an MPC scheme which controls the quadrotor. While this method
is very sample efficient, the MPC is too computationally complex to run on-board
the UAV and therefore necessitates continuous communication with an external
computer, while our controller can run on a fraction of the computational power
embedded in the UAV. For a more general overview of the application of RL to
UAVs see [12].

The contributions and novelty of this chapter can be summarized as follows:

• To the best of our knowledge, this is the first work to demonstrate through
field experiments the efficacy of RL for attitude controller of fixed-wing
UAVs, a class of UAV design generally considered to be significantly more
complex to control than the multirotor which is common in the literature.

• The proposed method improves upon the data-efficiency of the existing lit-
erature by at least an order of magnitude. We show that our method can
develop flightworthy controllers with only 3 minutes of data from interac-
tion with the simulation environment, providing an important step towards
enabling the learning of RL controllers entirely on the real UAV.

• We present an analysis of the RL controller in order to better understand how
it operates, including a comparison to an industry-standard PID controller.

10.2 Learning an Off-Policy Attitude Controller for the

Real UAV using SAC

The control objective of the RL controller is to control the attitude of the aircraft
to the desired reference attitude. We use standard aircraft nomenclature and co-
ordinate systems [17], as well as a roll-pitch-yaw Euler angle parameterization
of attitude. The heading/yaw angle is typically not controlled directly, but rather
through banked-turn maneuvers [17]. Therefore, the natural choice of controlled
states are the roll angle φ, and the pitch angle θ. We assume that the UAV is
equipped with control surfaces such that the roll and pitch angles are controllable
(an assumption that is satisfied by most UAV designs). The Skywalker X8 seen
in Fig. 8.1 is used in our field experiments. It has two elevon control surfaces,
one on each wing, which can be driven together to produce a pitching moment, or
driven differentially to produce a rolling moment. In addition, it has a propeller
that can produce a thrust force along the longitudinal axis of the UAV. In the sim-
ulation environment, the PI-controller described in Section 9.4.3 is used to control
the throttle of the propeller.
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As a general approach, we tested new ideas in the simulation environment and
made extensive use of sim-to-sim experiments where we studied how the controller
transferred from simulation with one set of parameters to a simulation with another
set of parameters. We then tested the most promising controllers in flight experi-
ments in the field and adjusted our approach based on the insight we gathered from
the flight experiments. The simulation environment software is made open-source
and is available at [35, 34].

10.2.1 Controller Architecture and State Design

We identified in our previous work that limiting the state vector to only the most
useful information and reduce redundancy is important for the rate of convergence,
and to prevent the controller from learning spurious relationships. This has also
been observed in other research [24]. At every time step we measure the following
information:

mt =
[
pt, qt, rt, αt, βt, Va,t, δr,t−1, δl,t−1,

Iφ,t, Iθ,t, φt, θt, eφ,t, eθ,t
]� (10.1)

I∗,t = γII∗,t−1 + e∗,t, γI = 0.99, I0 = 0, ∗ ∈ {φ, θ} (10.2)

where t is the time index, ωt = [pt, qt, rt]
� is the angular velocity in the body-fixed

frame, αt is the angle-of-attack, βt is the sideslip-angle, Va,t is the airspeed, δ{r,l}
represent the previous output of the RL controller, in this case the commanded de-
flection angles of the right and left elevons, e∗,t = ∗t−∗r,t is the state tracking error
where subscript r denotes the state reference, I∗ is the integrator of the state error
and γI is the integrator decay rate. The integration decay scheme follows [194],
and facilitates boundedness of the integrator state. The choice of what to include
between the coupled state, reference, and error was made on the basis of making
the most important information readily available, and we therefore chose the state,
which is significant for the aerodynamics, and the error, which is significant for
the objective. Lastly, because neural networks are known to converge faster given
normalized inputs, the measurements are normalized using running estimates of
mean and variance for each component before being fed to the controller.

Due to unmeasured effects such as turbulence and the sim-to-real measures de-
scribed in Section 10.2.4, the attitude control problem is partially observable. Fur-
thermore, to enable the controller to adapt to the dynamics of the field experiments,
we wish to enhance the controller with the capability of inferring the dynamics
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Figure 10.1: Architecture of the RL controller, superscript ∼ signifies normalized states.

around the current state. A common approach to achieve this effect is to use a
recurrent neural network (RNN) [186, 147]. However, we found that using a one-
dimensional convolution over the time dimension as the input layer yielded similar
control performance, and therefore prefer it since it is significantly less complex.
We therefore include the h last measurements (10.1) in the state vector, where m̂t

indicates a noisy measurement to be defined in Section 10.2.4:

st = [m̂t, m̂t−1, . . . , m̂t−h]
� (10.3)

[δr,t, δl,t]
� = πϑ(st) + [δr,trim, δl,trim]

� (10.4)

such that the total size of the state vector is |st| = |mt| · h. The convolutional
input layer scales favorably in number of learned parameters compared to a fully-
connected (FC) layer: it scales linearly in |mt| as opposed to multiplicative for the
FC layer, and it is constant for h. The convolutional layers’ output size is F · |mt|
where F is the number of learned convolutional filters, and each filter has size h.
The memory capacity of the state vector can therefore be increased as required
to give sufficient history to infer the dynamics, with only a slight increase in the
number of parameters. We found F = 8 and h = 10 to work well. The complete
RL controller architecture is shown in Fig. 10.1.

The output of the RL controller is the commanded states of the controlled sys-
tem’s actuators relative to the trim-point (10.4). The nominal elevon deflection
angles δr,trim = δl,trim = 0.045 are calculated using a standard trim routine for
horizontal, wings-level flight based on the model in Section 10.2.3 [17]. The tar-
get UAV for the field experiments, the Skywalker X8, has elevon actuators and we
therefore chose to have the controller output the desired deflection angles of these
directly, in order to provide RL with as direct control as possible. This choice is
fairly arbitrary, however, and experiments showed that outputting virtual elevator
and aileron angles (defined by (A.6)-(A.7)) instead yield similar performance.
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10.2.2 Reward and Objective Design

We found sparse rewards to yield better results than shaped rewards, both in terms
of rate of learning and in terms of asymptotic performance. A sparse reward is
one that is nonzero only for some subset of the state space. It has the benefit that
it is easier to formulate than hand-crafted shaped rewards, and would therefore be
more transferable to other UAVs with fewer adjustments necessary. The reward is
formulated as follows:

R(st, at) = λφB(eφ,t) + λθB(eθ,t) + λφ̇B(φ̇t) + λθ̇B(θ̇t) (10.5)

B(·) =
{
1 if |·| ≤ ·b

0 otherwise
(10.6)

ebφt
= 3◦, ebθt = 3◦, φ̇b

t = 4.3◦/s, θ̇bt = 4.3◦/s (10.7)

λφ = 0.5, λθ = 0.5, λφ̇ = 0.167, λθ̇ = 0.167 (10.8)

where superscript b refers to the goal-bound on the variable and the λs are weight-
ing factors. This reward ensures that the controller tracks the setpoints with accur-
acy as specified by the bound, while the rewards on the derivatives of the controlled
states discourage high rates. Our method is not very sensitive to the size of the
bound, but generally larger bounds accelerate learning at the expense of tracking
accuracy.

When transferring from a simulator environment to the field, it is important to con-
sider how the actuation system impacts the effects of actions. That is, while high-
gain bang-bang control may be an optimal strategy in the simulator, frequently
changing the setpoints of the actuators introduces considerable wear due to the
high currents generated as a result of the switching. In our previous work [26] (and
indeed in other works [103]) this problem is addressed through a term in the re-
ward that discourages changing the setpoints. We now take a different approach to
this problem, using the conditioning for action policy smoothness (CAPS) method
[139]:

JTS(πϑ) = ||πϑ(st)− πϑ(st+1)||2 (10.9)

JSS(πϑ) = ||πϑ(st)− πϑ(ŝt)||2, ŝt ∼ N (st, 0.01) (10.10)

This method adds two regularization terms to the loss, a temporal smoothness
term (10.9) and a spatial smoothness term (10.10). As the authors demonstrate,
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this method is more successful in generating controllers that yield smooth control
signals compared to the action reward-term approach. Additionally, removing the
action term from the reward simplifies the problem of learning the action-value
function since the reward now contains fewer disparate parts, thereby accelerating
learning. Instead, the gradient ascent scheme calculating the parameter updates is
conditioned towards policies that are smooth in the output. Finally, we add a reg-
ularization term on the pre-activation πPA

ϑ (that is, before applying the hyperbolic
tangent in (2.56)) of the output:

JPA(πϑ) = ||πPA
ϑ (st)||2 (10.11)

This helps in reducing the gain of the controller, especially for small errors, as it
essentially tells the controller that it needs to have a strong benefit to move the
actuators away from the trim-point. Additionally, we find it accelerates learning as
the controller is biased towards non-aggressive control, which in conjunction with
HER means the controller quickly discovers how to achieve the sparse stabilizing
objective. Thus, the objective we optimize is defined as:

J(πϑ) = JSAC,π(πϑ) + λTSJTS(πϑ) + λSSJSS(πϑ) +

λPAJPA(πϑ)
(10.12)

λTS = 5 · 10−2, λSS = 10−1, λPA = 10−4 (10.13)

10.2.3 UAV Model

For the simulated environment, we use a model of the Skywalker X8 UAV based
on previous modelling efforts [78, 45, 189, 81]. The model structure is standard in
the literature [17, 174] and is based on a single rigid body Newton-Euler formu-
lation affected by forces and moments due to gravity, aerodynamics and propul-
sion effects. An estimate of the inertia matrix is provided in [81] based on bi-
filar pendulum experiments. Results from wind-tunnel experiments are provided
in [78] for aerodynamic coefficients, and in [45] for the propulsion system model.
This data is complemented by computational fluid dynamics (CFD) simulations
from [78, 189]. For a more detailed description of the simulation model, see Sec-
tion 9.3.

We collected a short data series to assess the quality of the dynamic model. To ex-
cite the system dynamics, we used the actuator signals from the baseline attitude
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controller (see Appendix A) and perturbed them with chirp signals before mapping
them to the elevon deflections. The start and end frequencies of the chirp signals
were 8Hz and 12 Hz, respectively. A dynamic mode analysis of the model indic-
ates that this is the dominant frequency spectrum of the X8. The signal duration
was 15 seconds and we used a peak-to-peak amplitude of 20 degrees.

The aerodynamic coefficients that are calculated based on recorded sensor data
and the inertia matrix of the vehicle are shown in Fig. 10.2. Following [17], the
coefficient subscript L,D, Y, l,m, n denotes lift, drag, side force, roll moment,
pitch moment and yaw moment, respectively. These results show that despite the
modelling efforts, there are still significant discrepancies between the predicted
and measured data, particularly in the pitching moment coefficient, Cm.

Figure 10.2: The aerodynamic coefficients of the UAV in a longitudinal (top three) and
a lateral (bottom three) chirp signal test sequence for elevator and aileron, respectively,
based on IMU data (blue) and model prediction (orange).

10.2.4 Sim-to-Real

The main sim-to-real measure employed in the method is domain randomization.
As shown in Section 10.2.3, there is a significant reality gap, and as such we want
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to avoid the RL controller overfitting to the simulation environment. The intuition
behind the domain randomization technique is that learning over a distribution of
possible UAV models should robustify the controller. To this end, we assess the
uncertainty in the estimate of every parameter of the UAV model and use this un-
certainty to construct a probability distribution over its range of probable values.
The distribution for each parameter is shown in Table 10.1, which shows that we
are more uncertain about the coefficients of the rate-dependent terms of the UAV
model since these are not estimated based on wind tunnel data but rather on un-
certain CFD simulations [78]. The sampled values are also clipped as indicated to
avoid extreme unrealistic values. At the start of every episode, we sample a value
for each parameter from its distribution, together constituting one realization of
the UAV model.

The UAV sensor suite is subject to noise in its measurements. To model these,
we first estimated the noise characteristics of the real hardware, and then we emu-
late this in the simulator environment. We model the measurement noise as an
Ornstein-Uhlenbeck (OU) process (10.14), which in addition to white noise gives
rise to effects like measurement drift:

m̂t = mt + wt, wt ∼ OU(μm, σm, θm), μm = 0, θm = 1

σm = 0.005 [1.5, 1.5, 1.5, 1, 1, 15, 0, 0, 0, 0, 1, 1, 0, 0]� (10.14)

where {μm, σm, θm} are the mean, variance and rate of mean-reversion parameters
of the measurement noise. Note that we do not add noise to the error and integrator
states, as these are already affected by the noise in the measurement of the state
that is used to calculate the error, while the previous output of the controller is by
nature free of noise. The sensor suite has an update rate of 50Hz, and we therefore
chose this as the control frequency as well. In the simulation environment we add
exponentially distributed noise on top of the fixed control frequency in order to
simulate sensor timing-variability:

Δt = Δ0 + zt, zt ∼ Exp(κ), κ ∼ U(250, 1000) (10.15)

where Δt is the simulation step size at step t, Δ0 = 0.02 s is the base control
frequency and κ is the parameter of the exponentially distributed noise which is
drawn uniformly at the start of every episode.

Another major effect present in the field is atmospheric disturbances such as wind
and turbulence. We model turbulence with the Dryden turbulence model [17], and
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Table 10.1: UAV model parameters are sampled at the start of each episode according to
these distributions, where ρ refers to the estimated value. Notation is adapted from [17,
78], which is fairly standard in the literature.

Parameter Distribution Clipping

CD0 , CDα1
, CDα2

, CDβ1
, CDβ2

, CDδe

CL0 , CLα , CLδe
, CYβ ,CYδe

, Clβ , Clδa

Cm0 , Cmα , Cmδe
, Cmfp

, Cnβ
Cnδa

Cprop, J{x,y,z,xz},M, a0, kΩ, kTp , kmotor

N (ρ, ρ · 0.1) ±ρ · 0.2

CDp , CLq , CYp , CYr , Clp , Clr , Cnp , Cnr N (ρ, ρ · 0.2) ±ρ · 0.5

Cmq N (ρ, ρ · 0.5) ±ρ · 0.95

a steady wind component whose direction and magnitude between 0ms−1 and
15ms−1 is sampled at the start of each episode. The last effect we found was
highly impactful for successful transfer was the actuation delay, i.e. the time it
takes before the output of the controller is applied to the system, a result which
was also found in [186]. The simulator contains a constant actuation delay of
100ms, while we believe this is a significant overestimation of the delay of the
real system, we motivate this choice in Section 10.4.3.

10.2.5 Simulator Episode Design

The standard design of episodes for UAV control in the literature seems to be short
episodes with a single constant desired attitude [103, 24]. We found that hav-
ing constant setpoints accelerates learning, however the operation of the UAV in
the field typically sees the navigation system continuously update the desired atti-
tude. To align these considerations, we employ fairly long episodes of length 900
steps where setpoints are kept constant, but resampled every 150 steps. To ensure
sufficient diversity of the state trajectories and transitions used to update the para-
meters of the RL controller, we sample initial conditions as shown in Table 10.2.
Considering that the main objective of the simulation environment is to ready the
controller for the field, we sample initial conditions mostly from the linear region
of the model, as this is where the UAV model is assumed to have the most validity.
Note that while the range of initial conditions is somewhat limited, there is noth-
ing stopping the controller from exploring the full state space. Furthermore, since
the initial state of the actuators are also randomized the sampled initial conditions
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Table 10.2: Initial conditions for the episodes are uniformly sampled from the indicated
ranges.

Variable Range Unit Variable Range Unit

φ -40, 40 degrees φr -60, 60 degrees
θ -15, 15 degrees θr -25, 20 degrees
Va 13, 26 m/s α -8, 8 degrees
ω -60, 60 degrees β -10, 10 degrees
δr,l -30, 30 degrees

could cause instability, such that the controller must learn to recover.

10.2.6 RL Algorithm

To develop the RL controller we use the SAC algorithm and augment the collected
data using HER [6], based on the implementation [89], with the hyperparamet-
ers listed in Table 10.3. We chose the SAC algorithm because it is off-policy,
and therefore has comparatively high data-efficiency among RL methods, and fur-
thermore the policy is explicitly trained to handle perturbations from the inherent
randomness, which tends to yield more robust policies that transfer better than
non-entropy-regularized algorithms. Note that we employ the technique of initial-
izing the replay buffer of the algorithm with 5k data samples (corresponding to
100 seconds of flight at 50Hz), which is a common technique in RL to help the
policy with the initial exploration phase. This data is entirely independent of the
learning controller being trained and is obtained by uniformly sampling random
actions from the set of possible actions in the simulator environment. This data
could also stem from other sources such as historical data gathered by a human
pilot or another controller, which might be more suitable when performing ex-
ploration exclusively in the field. Since this data is independent of the learning
controller, we do not count it towards the data requirement of our method and do
not include it in the learning curve graphs.
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Table 10.3: Hyperparameters of the RL algorithm

Hyperparameter Value Description

γ 0.99 Discount factor of MDP
η 3 · 10−4 Learning rate
Buffer size 5 · 105 Size of experience replay buffer
Batch size 128 Number of samples in minibatch
� 0.005 Polyak averaging factor for target networks
χ auto Entropy coefficient, learned automatically
Target entropy -2 Target entropy for the automatic χ learning
Train freq 100 Parameters are updated every train freq steps
Gradient steps 100 Number of gradient steps per parameter update
N goals 4 Number of imagined goals for HER per sample
HER strategy Future Goal selection strategy for HER

10.2.7 Experimental Platform

Our custom avionics stack is based on the system architecture developed at the
NTNU UAV-Lab, where an early version is described in [206]. It consists of a
Cube Orange flight controller running the (industry standard) ArduPlane open-
source autopilot [1], and a Raspberry Pi 4 running the DUNE Uniform Navigation
Environment [151].

The RL controller is implemented as a DUNE task in C++ with the neural net-
work implemented in TensorFlow. Sensor data and state estimates from ArduPlane
are sent through a serial connection to the Raspberry Pi, providing all necessary
data for the RL controller. The neural network controller output is converted to
PWM duty cycle and sent to the elevon servos using a PCA9685 servo driver, inter-
faced through I2C from the Raspberry Pi. A PWM multiplexer supports switching
between the RL controller output and ArduPlane. This enables the pilot to always
take control during testing, either through manual controls, or through ArduPlane’s
standard autopilot. This switching mechanism enables us to safely engage the RL
controller in flight, while takeoff and landing are performed by the pilot operating
our tried and tested avionics stack [206].
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10.3 Experimental Results

This section presents the main experimental results, collected during two days
of flight experiments at Agdenes Airfield, Breivika, Norway in September 2021.
During the first day, we enjoyed calm weather and perfect flight conditions, with a
mean wind speed (as estimated by ArduPlane’s Kalman Filter) of less than 4m s−1.
The second day of flight tests, however, presented challenging weather conditions,
with a lot of gusts and a mean wind speed of approximately 12.5m s−1 (70 percent
of the Skywalker X8’s cruise speed of 18m s−1).

We present three types of data, differing mainly by how roll and pitch angle refer-
ences are provided:

1. References are given by the pilot, mimicking ArduPlane’s fly-by-wire-A
(fbwa) mode (Section 10.3.1).

2. References are provided by ArduPlane’s guidance system, which is set to
track a rectangular waypoint pattern (Section 10.3.2).

3. References are set by a predefined, automated series of steps (Section 10.3.3).
Similar maneuvers are also performed with an implementation of the Ardu-
Plane PID attitude controller (described in Appendix A), with the response
compared to that of the RL controller.

In contrast to the training phase, where the throttle actuator used to control airspeed
is operated by a PI controller (see Section 9.4.3 for details on this controller), the
throttle is either under manual control by the pilot (fbwa) or controlled by Ardu-
Plane (auto/steps). In every figure presented, the dashed orange line corresponds
to state reference, while in the elevon plots, the blue and orange lines correspond
to the right and left elevon, respectively.

10.3.1 FBWA Mode

Fig. 10.3 shows an excerpt from the flight experiments where a human pilot de-
cides the desired attitude of the UAV. The RL controller is able to closely track the
desired attitude even for the most difficult and aggressive maneuvers, while pro-
ducing smooth outputs for the actuators. We do however note a consistent steady-
state error. Towards the end of the maneuver, we observe that the roll response is
non-symmetric, that is, rolling to the left (towards negative roll angles) is slower
than rolling in the opposite direction. We investigate and discuss this matter, as
well as the steady-state error, in Section 10.4.
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Figure 10.3: Fbwa mode using references (dashed orange line) from the pilot, showing
the attitude states and generated right (blue) and left (orange) elevon signals.

10.3.2 Auto mode

Fig. 10.4 shows the results for the RL controller operating with references provided
from the ArduPlane guidance system, set to track a square waypoint pattern. Be-
fore tracking the square, the UAV loiters in a circular pattern for a while. Despite
some steady-state offset, especially for the roll angle error, the UAV successfully
completes the specified mission. This is because the outer-loop guidance control-
ler can compensate for this error, and still achieve convergence when faced with
disturbances such as wind and offset in inner-loop control. This is similar to how a
pilot supplying manual references would offset the references to keep the intended
course.

During turns, a certain altitude drop is in Fig. 10.4. This is caused by the aggressive
turn radius accompanied by drops in the pitch angle. This effect can be reduced
by tuning the guidance system to be less aggressive (e.g. by increasing the turn
radius) or reducing the maximum allowable roll angle setpoint, which is set to
be 55 degrees. A similar drop in pitch angle is also seen when using the default
ArduPlane attitude controller.
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Figure 10.4: A position plot showing how the RL controller is able to take references
(dashed orange line) from ArduPlane’s guidance system in Auto mode, and effectively
follow prescribed paths. First, a loiter, then a square waypoint pattern. Top figure shows
the attitude response and elevons control signals produced when following the square pat-
tern, middle figure shows the position, and bottom plot shows the altitude of the UAV.



10.3. Experimental Results 139

10.3.3 Step sequences and Comparison with ArduPlane PIDs

Figure 10.5: Comparison between the RL controller and the ArduPlane PID controller for
steps in the roll angle.

Figure 10.6: Comparison between the RL controller and the ArduPlane PID controller for
steps in the pitch angle.

Step responses for the RL controller, as well as the ArduPlane PID controller, are
displayed in Figs. 10.5 and 10.6. The RL controller shows comparable perform-
ance to that of ArduPlane, the main difference being the steady-state error of the
RL controller. Additionally, the pitch response of the PID controller is slightly
more aggressive. However, this could be changed by tuning the controller.

The control signals generated by the RL controller are relatively smooth and well-
behaved but include some high-frequency components not seen in the PID re-
sponse. Apart from that, the control input looks qualitatively similar, with sim-
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ilar magnitude. For a quantitative comparison we employ the smoothness metric
defined in [139] which jointly considers the amplitudes and frequencies of the
control signals:

Sm =
2

nfs

n∑
i=1

Mifi (10.16)

where Mi is the amplitude of the i′th frequency component fi, and fs is the
sampling frequency. On this metric the PID measures at 6.20 ·10−4, 6.30 ·10−4 for
the roll and pitch maneuvers in Fig. 10.5 and 10.6, respectively, while RL meas-
ures 2% and 44% higher at 6.30 · 10−4, 9.05 · 10−4. This metric shows that RL
has comparable smoothness in its output with the PID controller, but also indicates
the higher frequency components of the RL controller’s output in Fig. 10.6. It is
not clear why there is such a discrepancy between the two maneuvers for the RL
controller, but this data is as mentioned subjected to considerable turbulence and
wind, and the discrepancy could therefore be caused by transient gusts.

While the former results were gathered on a calm day with virtually no wind,
these maneuvers are executed in harsh wind conditions on day two. The UAV also
suffered structural damage (not while under RL control) after collecting the PID
data, before redoing the experiments with RL. The vehicle had to be repaired with
a new wing and some duct tape, causing a change in the trim point of the UAV.
Thus, the presented results demonstrate the RL controller’s robustness towards
model mismatch and varying wind conditions, including heavy gusts.

To achieve a fair comparison, the ArduPlane PID is implemented in the same
software stack and ran with the same hardware architecture as the RL controller
(described in Section 10.2.7). In particular, this means that any increased signal
latency introduced in our setup does not affect the comparison.

The step maneuvers were executed automatically on the long sides of the rect-
angular pattern when running in auto mode. During the maneuver, the guidance
controller is overridden with a constant reference for the channel not being tested.
The steady-state offset of the RL controller caused the UAV’s course to change sig-
nificantly during the maneuver. Therefore, the steady-state error was compensated
for as described in Section 10.4.2 such that the original desired attitude is achieved
(to avoid turning while performing pitch maneuvers for instance). In the presen-
ted figures, however, we display the original non-compensated references to avoid
giving the impression that the RL controller is free of steady-state error (except for
Fig. 10.8).
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10.4 Discussion

The experimental results of Section 10.3 show that the RL controller performs well
compared to a state-of-the-art open-source autopilot, and is robust to disturbances
caused by harsh wind conditions. The control performance of the RL controller
across the various flight modes speaks to its ability to generalize further than just
the the maneuvers encountered during training. In particular, no guidance control-
ler was present during training.

Despite the promising results, there is room for improvement. In this section,
we further discuss how performance can be improved, the iterative development
process, training, and we perform a linear analysis to gain further insight into the
behaviour of the RL controller.

10.4.1 Non-symmetric roll response

Figure 10.7: The slow roll response to the left of the base RL controller vs a controller
trained to address roll symmetry (pt0) vs ArduPlane PID.

As noted in Section 10.3.1, the roll response of the RL controller is non-symmetric,
meaning that rolling towards the left wing is slower than rolling to the right. This
is supported by the pilot’s qualitative assessment during flight. We found that this
effect was caused by model mismatch, in particular an overestimation of the pro-
peller torque effect in the simulation model. While the rotating propeller generates
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a reaction torque, potentially generating roll accelerations that have to be coun-
teracted during flight, this effect was found to be less prominent on the physical
UAV than expected, presumably due to the mechanical mounting of the propeller.
This causes a bias in the RL controller, which has learned to counteract the pro-
peller torque. When tested in the field, this effect is less prominent and causes a
non-symmetric roll response.

To remedy this, we trained a new RL controller where the simulation model had
no propeller torque. Fig. 10.7 shows how the roll response of this new controller
(pt0) is closer to that of the ArduPlane PID than it is to the original (base).

10.4.2 Steady-State Errors

We experimented with several techniques in order to address the steady-state error
of the RL controller observed in flight experiments: pure integrator (no decay),
higher decay factor (e.g. 0.999), having integration separate from the neural net-
work controller with learned integration gains, shaped rewards, and training with
input disturbances. Whereas some of these measures reduced the steady-state error
to some degree, none were successful in entirely eliminating it.

We note that there is no consistent steady-state error in the simulator in the same
way we observe in field experiments, i.e. consistently over or under the reference
with a consistent magnitude. The controller has learned to use integral action to
reduce steady-state error from disturbances in the simulator, but not in a way that
transfers to the field. This could be because the controller is overfitting to the sim-
ulator, thus the larger tracking errors in the field combined with the hyperbolic
tangent saturating functions of the neural network causes the integrator states’ ef-
fect on the output to saturate prematurely.

An effective way to address this problem is to estimate the steady-state error and
then add the estimated value to the references provided to the RL controller, as
was done in the flight experiment shown in Fig. 10.8. As can be seen, this simple
technique can fully compensate for the steady-state error and may also be auto-
mated using an integrator in an outer-loop to estimate the steady-state error [127].
Furthermore, there are compelling arguments for not having integral action in the
inner-loop attitude controller, as adding integral action to the controller necessarily
reduces the phase margins and the achievable bandwidth [17].
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Figure 10.8: Response of the RL controller where the steady-state error has been estim-
ated and references adjusted to compensate.

10.4.3 Oscillations: Illustration of the Iterative Development Process

Initial field experiments were characterized by excessive oscillations in the attitude
response of the UAV, especially in pitch, necessitating halving the RL controller’s
outputs in order to keep the aircraft airborne. These oscillations were not present
in the simulator, as such we suspected that this was (at least in part) caused by the
simulator overestimating the natural damping present in the aircraft. We therefore
reduced the Cmq (pitch damping) parameter by a factor of 10. While this reduced
the oscillations somewhat, there were still significant oscillations in the response,
see Fig. 10.9.

We initially estimated a typical actuation latency for the system of 10ms. In sim-
to-sim experiments, where we raised the latency of the control system during the
exploitation phase of a controller trained with 10ms latency, we observed similar
oscillatory responses as in the flight experiments and noted its relationship with
increasing latency. We then trained an RL controller where the latency was set to
100ms during the learning phase and tested it under the same conditions outlined
above. This controller trained with higher latency almost entirely eliminated the
oscillations as shown in the simulation environment in Fig. 10.10 and in the field
experiments in Fig. 10.3 to 10.11. Moreover, the controller learned with high actu-
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ation latency was robust to lower actuation latencies. Favouring robust controller
design, we therefore increased the base latency of the simulation environment to
100ms, even though we believe that this is a significant overestimation of the true
latency of the real system.

Figure 10.9: Oscillatory attitude response of initial flight experiments, for one controller
trained with original (left) and one with reduced (right) Cmq

.

Figure 10.10: Sim-to-sim experiment with an actuation latency of 100ms, for one con-
troller trained with 10ms latency (blue) and one controller trained with 100ms latency
(green).
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10.4.4 Data Requirement of the RL controller

We investigated how much data is required before the controller learns to stabilize
the aircraft and can successfully transfer its strategy to the field. To this end, we
evaluated a model that had only trained for 20k steps in the simulator, correspond-
ing to 3 minutes of flight. Fig. 10.11 shows that the controller is successfully able
to control the attitude of the real UAV, with acceptable control performance.

With more exposure to the simulation environment, one would expect the learning
controller to increasingly adapt and specialize towards the specifics of the simu-
lated dynamics. Since our method only requires a short period of interaction with
the simulator, the degree of overfitting is limited, similar to the concept of early
stopping in deep learning. With a stabilizing controller learned from the simulator
as a basis, our method enables a safer approach to exploring and learning attitude
controllers online in the field.

Figure 10.11: Flight experiment for the RL controller that has trained for only 3 minutes
of real-time flight in the simulation environment.

10.4.5 Linear Analysis

In order to better understand how the RL attitude controller operates, we analyze
its sensitivity to the input variables. In Fig. 10.12 we have plotted the open-loop
response of the controller as a function of a single perturbed input. The rest of the



146 Data Efficient Deep Reinforcement Learning Control of Fixed-Wing UAVs in the Field

state vector is kept constant at the steady-flight value, i.e. zero for all variables
except the airspeed Va which is set to the cruising speed of 18m s−1, and the
angle-of-attack α and pitch angle θ, which are kept at the trim values necessary
to generate lift for level flight. As for the input values for previous time steps,
we experimented with several profiles including constant, linear ramp, cubic etc.,
finding the qualitative behaviour to be similar for all profiles and therefore settled
on the variables being constant in the time dimension. To be able to compare
the results with ArduPlane, we translate the elevon outputs into virtual elevator
and aileron commands using the inverse of (A.6)-(A.7). The figures and tables
are presented in terms of these variables, which also have a more intuitive and
straightforward effect on the roll and pitch angles.

Figure 10.12: Open-loop level-flight response of the RL controller when perturbing one
input at a time. The x-axis is in the units of the corresponding state. The lines are elevon
outputs mapped to aileron (orange) and elevator (blue).

The saturating effect of the hyperbolic tangent nonlinearity on the RL controller
is distinctly present in the responses. This is a desired effect as we know that any
input should have a bounded effect on the output, which gives robustness towards
possible measurement errors or misalignment of the dynamics of the simulation
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Table 10.4: Linearly approximated gains at level-flight, where each input is perturbed in
isolation.

Controller
∂δa

∂eφ

∂δe

∂eθ

∂δa

∂Iφ

∂δe

∂Iθ

∂δa

∂p

∂δe

∂q

RL 1.268 -3.320 -0.005 0.006 -0.008 0.223
PID 1.630 -1.081 0.052 -0.052 -0.024 0.031

and real environments. The controller makes use of all its inputs, with the previous
outputs of the controller having the most significance for the current output (the
typical values for most states in Fig. 10.12 are close to the level-flight value in the
center and will thus use a limited range of the response curve, while the previous
output of the controller frequently employs the full range). This makes sense as the
controller is conditioned towards smooth outputs, as described in Section 10.2.2,
which means that a reasonable initial guess of any action is to be similar to the
previous action. Moreover, the fact that the previous output (left and right elev-
ons) do not have a symmetric effect on the subsequent output (the elevons have
a symmetric effect on the UAV, but there is no mechanism enforcing symmetry
in the learning controller) could be a motivating factor to instead employ (virtual)
elevator and aileron as outputs of the RL controller.

To get an estimate of the controller gain wrt. an input we take a linear approxim-
ation to its response curve by using the slope of the tangent line at the level-flight
value as the gain estimate. These gain estimates are shown in Table 10.4, and com-
pared to those of the ArduPlane PID controller. The RL controller is noticeably
more aggressive in the pitch error, while simultaneously introducing more pitch
damping through the angular velocity component q. This is evident in Fig. 10.6
where the RL controller exhibits less oscillations in the pitch response. The estim-
ated gains for the integrator states in Table 10.4 are not representative of the re-
sponse curves for these states, as the response curve exhibits cubic characteristics
with a small opposing region around the level-flight value. Thus, for these states,
a linear approximation over a larger region would be more descriptive. Overall,
the gains of the RL controller are similar to those of the PID controller, which
increases the trust in the RL controller. On the other hand, the presence of pre-
vious time step data in the input and the use of integral states giving a dynamical
aspect to the controller increases the complexity of the analysis and thus limits the
conclusions that can be drawn from it.

The ArduPlane PID controller (see Appendix A) includes a speed-scaling effect in
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its gains, motivated by the fact that the control authority of the actuators increases
with airspeed, and as such the requisite deflection angle to yield a given accelera-
tion of the UAV decreases as airspeed increases. The RL controller has not learned
a similar speed-scaling effect in the sensitivities, however, it has learned to bias the
response (essentially shifting the curves in Fig. 10.12 up) as airspeed increases in
order to compensate for the change in trim-point with airspeed.

10.4.6 Learning Phase

Figure 10.13: The learning phase of the proposed RL controller, showing normalized
mean episode reward and error-proportional gains. The solid line represents a rolling
average mean value while the shaded region represents one standard deviation over three
randomly seeded controllers. Base refers to the method as presented in Section 10.2, the
FC version replaces the convolutional layer with an FC layer, and the h1 version has no
history in the state input vector.

The evolution of the learning phase for the RL controller as a function of time steps
is shown in Fig. 10.13. For every version in Fig. 10.13, we train three controllers
each with a different initial random seed, and average the results over the control-
lers. The rewards are normalized so that 1 corresponds to attaining the maximum
reward as defined in (10.5) at every step (although this is not physically achievable)
and 0 corresponds to obtaining no rewards at all. Base refers to the RL control-
ler as presented in Section 10.2 that was used in the field experiments. To assess
the contribution of the convolutional input layer, we trained one version where the
input layer is replaced with an FC layer, and further to test the importance of the
history of states in the state vector we train one model with an FC input layer and
with h = 1 (labelled FCh1).

The base version learns fast, reaching convergent performance after around 40k
time steps, corresponding to about 12 minutes of flight time. Moreover, we find
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that the training method is stable in the sense that the performance differences
between controllers with different seeds is small, within a few percent. The FC
version without state history is never able to learn to consistently stabilize the UAV
at the desired attitude in the time frames we considered. The FC version with state
history on the other hand achieves comparable rewards to the base version, show-
ing the importance of history in the RL input state. The base version reaches peak
performance slightly faster than the FC version, and further its proportional gains
are considerably lower. This is also evidenced by the smoothness metric (10.16)
for which the base version scores 50% lower than the FC version. The gains and
the smoothness metric indicates that the convolutional input layer provides a su-
perior ability to predict the system response and thus provide smoother response in
attitude and control signals, while the FC version is more reactive and oscillatory.

Figure 10.14: The method presented in Section 10.2 can with minor adjustments be made
to support controlling the airspeed as well, and learns to solve the coupled pitch and air-
speed control problem. Here illustrated in an episode of the simulation environment, where
δt is the throttle command (-1 corresponds to no throttle, and 1 to maximum throttle).
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10.5 Conclusion

This chapter has presented a data-efficient method for learning attitude controllers
for fixed wing UAVs using RL. The learning controller is able to operate directly
on the nonlinear dynamics, and therefore could extend the flight envelope and cap-
abilities of autopilots. The high data-efficiency of the presented method facilitates
transfer to control of the real UAV by limiting overfitting to the simulated model.
We demonstrate that the learned controller has comparable performance to the
existing state-of-the-art ArduPlane PID autopilot, and is capable of tracking pre-
scribed paths from a guidance system while generating smooth actuation signals
and attitude responses.

Following this chapter’s demonstration of RL’s ability to perform low-level atti-
tude control of fixed-wing UAVs, it should be investigated if RL can handle more
complex tasks and longstanding challenges in automatic flight control, such as
recovery from loss of control, aerobatic maneuvers, deep-stall landing, and end-
to-end path following. Before attempting these tasks, the problem of the limited
integral action of the RL attitude controller should be investigated. Moreover,
learning from real data, be it historical or generated online by the learning control-
ler, is an intriguing further work that could incentivize integral action and explor-
ation of the true nonlinear regions of the attitude control problem.

One such extension is including the airspeed as a controlled state, as was done in
Chapter 9. We chose to focus on the attitude control problem in this chapter, as it
is common in flight-control to detach the control of the attitude and pitch angles
into separate levels of the control stack due to their coupling. However, simulation
experiments show that the SAC RL controller could easily handle the addition of
the airspeed as a controlled state as shown in Figure 10.14. The RL controller has
learned to use the coupling of the pitch and airspeed to achieve both objectives, as
can be seen around 9 seconds in the episode, where it pitches up to decrease its
airspeed. We wanted to test this controller also in the field, but regrettably did not
get an opportunity to do so.

As in Part I of this thesis we present in this part a dichotomy between two methods
where one is based on the on-policy RL algorithm PPO (Chapter 9) and the other
is based on the off-policy algorithm SAC (Chapter 10). Again, we observe that the
off-policy method has far superior data-efficiency, reaching convergent perform-
ance after around 200k time steps for the PPO attitude controller, vs around 40k
steps for the SAC attitude controller, albeit with the caveat that the PPO algorithm
operates at twice the control frequency such that its real-time total flight time to
reach convergence must be halved to be compared to the SAC controller. How-
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ever, this is even with the SAC controller learning from sparse rewards, which is
generally considered a more difficult learning problem than with the dense rewards
the PPO controller learns from. Another major difference between the two con-
trollers is the approach taken to ensure smooth outputs from the controller. The
PPO controller has an action smoothness term included in the reward signal, while
the SAC controller’s reward signal is purely a function of the state with the ac-
tion smoothness enforced through its objective. We found the latter method to
work significantly better for the SAC controller, that is, yielding superior control
performance, better smoothness, and faster convergence than the reward signal ap-
proach. We did not experiment with this approach for the PPO controller, as the
method was publicized after our proof of concept work was performed, but we
would expect it to yield similar benefits also in this setting.

The better data-efficiency and ability of the SAC controller to learn from previous
data (e.g. gathered by pilot or Arduplane autopilot) makes it a natural choice for
future work where learning is performed entirely online on the real UAV. How-
ever, there is a case to be made for the lower computational complexity of the PPO
algorithm, as well as the tendency of policy gradient methods to have smoother be-
havioural changes between parameter updates than value-based methods, although
this difference is less pronounced with DDPG-like algorithms such as SAC (as
they also maintain a parameterized policy, rather than simply selecting the max-
imizing action of the Q-function directly, which can lead to sharp changes from
parameter updates when actions are close in value).
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Conclusions and Future

Possibilities

This thesis has presented methods for enhancing conventional knowledge-based
control techniques with model-free RL, as well as using existing control techniques
to enhance RL controllers. It has also contributed to RL research by demonstrat-
ing a successful application of RL-based low-level control in the field, something
which is sorely lacking in RL research. Finally, it has contributed to the atti-
tude control problem of fixed-wing UAVs by proposing and demonstrating the use
of RL-based control, which promises to extend the flight envelope into the more
nonlinear regions while being more computationally efficient than other nonlinear
methods such as NMPC.

In Part I of the thesis, we presented the novel idea of optimizing the meta-parameters
of the MPC scheme using RL. We explored this idea in three chapters (Chapters 4,
5, and 6). We demonstrated that optimization of the recomputation problem, i.e.
deciding when to compute the solution to the OCP, can be successfully learned un-
der unmeasured disturbances (Chapter 4) and under model mismatch (Chapter 6).
We present two methods for learning the optimal prediction horizon of the MPC
scheme using RL, one based on the horizon variable modelled as a discretized
Gaussian variable and learned with SAC (Chapter 5), and one based on a discrete
model of the horizon variable with the GPD using PPO (Chapter 6), each with
their own strengths in terms of data-efficiency and adaptivity. Finally, Chapter 6
presented a unified framework in which both of these meta-parameters are jointly
optimized, along with any other parameter of the control algorithm that one wishes
to optimize. Part I of the thesis is concluded with Chapter 7, in which we presented
the improved Q-filter approach to guiding the RL controller’s exploration phase,
and also highlighted a relationship between the framework of Chapter 6 and the
topic of guiding. This relation is something we wanted to look more into given
more time for the PhD.

Less is truly more. We started investigating the idea of meta-parameter optimiza-
tion with the goal of reducing the computational complexity of the MPC scheme,
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thus increasing the viability of the MPC technique for control applications with
limited hardware platforms or limited energy resources. The experiments under-
taken confirm that this objective was achieved, with reductions of the processing
time of the control algorithms ranging between 30% and 60% in the various experi-
ments. Additionally, we quickly realized that this approach could also significantly
improve the control performance of the MPC scheme, by computing it less! We
conjecture that the improved control performance is due to the finite-horizon nature
of the MPC scheme and how the optimality of the computed solutions interact with
the initial conditions that the OCP is computed from, such that by intelligently se-
lecting when to compute the MPC one can receive more optimal control sequences
from the MPC. The inverted pendulum control problem is used throughout the
thesis to investigate meta-parameter optimization of the MPC scheme. A similar
conclusion of non-obvious interaction between the horizon of the NMPC and its
control performance is reached in [92] for a physical (i.e. non-simulated) inverted
pendulum system, giving credence that our results and conclusions will hold true
also in the physical world. A natural extension of this work is therefore looking
closer into how and when the optimization of the recomputation meta-parameter
leads to increased control performance.

Experimentally verifying the meta-parameter optimization framework in the phys-
ical world is something that we wanted to do but did not have time for. The re-
search group at the NTNU UAV-Lab has developed an NMPC that can run in
real-time on the Skywalker X8 UAV in flight, which provides an interesting op-
portunity to test the methods of Part I in the field. In addition to experimental
verification and guiding of learning controllers, we also considered other exten-
sions of the meta-parameter optimization framework of Part I. In mixed-integer
optimization problems, the computational complexity grows in general exponen-
tially in the horizon [190]. The mixed-integer OCP is therefore typically solved
exactly in the original integer variables only for a portion of the prediction horizon,
after which the problem is relaxed to its continuous counterpart, which scales more
favourably in the horizon [11]. However, this relaxation necessitates a projection
back to integer values and subsequent feasibility verification of the solution, fur-
ther adding to the computational complexity. The choice of at what point of the
OCP the problem is relaxed is therefore of great importance for the computational
complexity of mixed-integer MPC. Following [73] showing how mixed-integer
MPC can be combined with RL, we propose that this relaxation point can be con-
sidered a meta-parameter of the mixed-integer MPC scheme, and optimized with
the tools presented in Part I of this thesis.

Part II of the thesis presented DRL-based dynamic control of fixed-wing UAVs,
including experimental verification of the proposed approach in the field. The first
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chapter of Part II motivated the utility of the fixed-wing UAV design and high-
lighted its unique importance for Norway. Chapter 9 then presented the first work
we did on this topic, in which we pioneered the idea of using DRL for attitude
control of fixed-wing UAVs. In order to investigate this approach, an open-source
flight simulator was developed in which the learned attitude controller could ex-
plore and later be evaluated on its proficiency. This simulator was made publicly
available [34, 35] and has since gained traction in the research community. The
chapter goes into detail on the UAV model, the attitude control problem, and the
literature and previous research efforts on combining RL with flight control. It
then presented the approach we took in formulating the RL attitude controller and
the control problem, and presented a comparison to the state-of-the-art approach,
demonstrating that RL was at least equally successful in stabilizing the aircraft
and exhibited superior robustness towards wind and turbulence disturbances. Fol-
lowing these encouraging results, we targeted control of the real UAV in the field,
and developed a new method for learning attitude controllers that focused on data-
efficiency, achieving a data-efficiency more that an order of magnitude better than
previously reported works. This work was presented in Chapter 10, along with
results from the field experiments, showing that the RL controller is competitive
with the industry-standard ArduPlane autopilot.

We highlight in Chapter 10 that employing RL control in the real world was an iter-
ative process, especially when the controller is learned in a simulation of the target
control system. The model mismatch between the simulation and the real system
led to numerous challenges when deploying the RL controller on the real UAV.
We were able to address most of these issues, e.g. the oscillatory attitude response
and the non-symmetric roll response, however, we were not able to eliminate the
steady-state tracking error of the RL controller. While we argue in Chapter 10 that
steady-state error in the inner-loop controller is not necessarily a problem as we
show that it can effectively be addressed in the outer-loop, it is somewhat frus-
trating that we despite best efforts were not able to alleviate the steady-state error.
Future work on this topic should therefore investigate this issue closer, perhaps
even taking a more general look at how RL control interacts with integral action.
This issue could also conceivably originate entirely from the model mismatch,
such that learning online on the real system could be a solution to this problem
that should be examined. Further, as discussed in the conclusion of Chapter 10,
the obvious next step after demonstrating RL’s suitability for attitude control is
to attempt more complex flight control tasks, taking advantage of RL’s nonlinear
control abilities. We showed that RL can learn to solve the coupled pitch and air-
speed control problem, but other longstanding challenges in flight control such as
recovery from loss of control are alluring targets for future work.
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A

The ArduPlane Attitude

Controller

This section presents the main equations used for attitude control in ArduPlane [1],
which is a state-of-the-art open-source autopilot for fixed-wing UAVs. This con-
troller is used as a baseline comparison for the RL attitude controller in Chapter 10
and to support the discussion in Section 10.4.5. The equations are based on Ardu-
Plane, Release 4.0.9, which is the most recent stable release (as of August 2021).

The ArduPlane attitude controller consists of two cascaded single-input-single-
output (SISO) feedback loops. The elevator controls pitch angle, while the ailerons
are used for roll control. The inner loop consists of proportional controllers, where
desired roll and pitch rates pr, qr ∈ R are calculated according to

pr = kφ (φr − φ) (A.1)

qr = kθ (θr − θ) + qct, (A.2)

where kφ, kθ > 0 and qct is the pitch rate offset needed to maintain height in a
coordinated turn, given by

qct = sin(φ) cos(θ)
g

Va
tan(φ). (A.3)

The rate setpoints are inputs to the inner loop, which consists of proportional-
integral (PI) controllers with feedforward action:

δa = kp,pν
2 (pr − p) +

∫ t

0
ki,pν

2 (pr − p) dτ + kff,pνpr (A.4)

δe = −kp,qν2 (qr − q)−
∫ t

0
ki,qν

2 (qr − q) dτ − kff,qνqr, (A.5)

where kp,∗, kki,∗ and kff,∗ are proportional, integral and feedforward gains, re-
spectively. The variable ν = V ∗/Va, where V ∗ is some constant reference air-
speed, provides airspeed scaling of the controller parameters, accounting for the
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fact that larger airspeeds give greater aerodynamic control authority. The negat-
ive sign in the control law for δe is introduced to account for the convention that
positive elevator deflections yield a negative pitch moment [17].

For UAVs equipped with a rudder, additional control loops utilize the extra control
surface for turn coordination. However, as the Skywalker X8 considered in this
thesis is rudderless, this part of the control algorithm is not relevant here.

For an elevon plane like the Skywalker X8, the aileron and elevator deflection
angles are virtual control signals that are mapped to elevon control actions using
the linear map

δl = δe + δa (A.6)

δr = δe − δa. (A.7)

By assuming a constant airspeed Va = 18m s−1 and inserting parameters used for
the Skywalker X8 UAV at the NTNU UAV-lab, we get the following sensitivities
for the elevator and aileron control signals:

∂δe
∂eθ

∣∣∣∣
θ=φ=0

= −1.0813 ∂δa
∂eφ

= 1.6299 (A.8)

∂δe
∂q

∣∣∣∣
θ=φ=0

= 0.0312
∂δa
∂p

= −0.0243 (A.9)

∂δe
∂Iθ

∣∣∣∣
θ=φ=0

= −0.0521 ∂δa
∂Iφ

= 0.0521 (A.10)

∂δe
∂θ

∣∣∣∣
θ=φ=0

= 0.0104
∂δa
∂φ

= −0.0104, (A.11)

where Iφ =
∫ t
0 eφdτ and Iθ =

∫ t
0 eθdτ correspond to the (unbounded) integrator

states of the RL controller.
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