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Small systems have higher surface area-to-volume ratios than macroscopic systems. One consequence of this is that
properties of small systems can be dependent on the system’s ensemble. By comparing the properties in grand canon-
ical (open) and canonical (closed) systems, we investigate how a small number of particles can induce an ensemble
dependence. The ensemble equivalence of small ideal gas systems is investigated by deriving the properties analyti-
cally, while the ensemble equivalence of small systems with particles interacting via the Lennard-Jones or the Weeks-
Chandler-Andersen potential is investigated through Monte Carlo simulations. For all investigated small systems, we
find clear differences between the properties in open and closed systems. For systems with interacting particles, the
difference between the pressure contribution to the internal energy, and the difference between the chemical potential
contribution to the internal energy, are increasing with system size and number density. The difference in chemical
potential is, with the exception of the density dependence, qualitatively described by the analytic formula derived for
an ideal gas system. The difference in pressure, however, is not captured by the ideal gas model. For the difference
between the properties in the open and closed systems, the response of increasing the particles’ excluded volume is
similar to the response of increasing the repulsive forces on the system walls. This indicates that the magnitude of the
difference between the properties in open and closed systems is related to the restricted movement of the particles in
the system.

I. INTRODUCTION

The effect a system’s finite size can have on its properties
is an important factor to consider when investigating systems
through simulations1. Initially, finite size effects in simula-
tions were unwanted, since the main goal of the simulations
was to extract macroscopic properties. Research on finite size
effects was therefore mainly focused on finding corrections
for them, so that the properties in the thermodynamic limit
could be extracted. In addition to the numerous theoretical
descriptions2–8, finite size effects have been investigated to a
large extent through simulations for both simple model fluids,
and for complex molecular fluids9–20.

With increased interest in nanosized systems in fields such
as biology21,22, atmospheric science23 and porous media
science24,25, it becomes important to understand how these
finite size effects are not only artifacts in simulations, but sig-
nificant contributions to the behavior of small systems. In nat-
urally occurring nanosized systems, the small size effect is an
inherent part of the system. To get a complete understanding
of the behavior of such systems, we need a proper description
of the finite size effects. An essential part of this development
is to have a thermodynamic description that applies on a small
size scale. This was provided by Hill26 through an exten-
sion of classical thermodynamics that can be applied to small
systems, often referred to as nanothermodynamics. Nanoth-
ermodynamics has been used in different works to describe
small systems, like in the description of transport in porous
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media27,28, stretching and breaking of polymer chains29,30,
and in the use of sub-sampling techniques for computation
of macroscopic thermodynamic properties14,19,20.

The objective of this paper is to demonstrate how investi-
gations of a simple model system can be used in combina-
tions with Hill’s26 nanothermodynamics to gain more insight
into the behavior of small systems. More specifically, we in-
vestigate whether small confinement can lead to a difference
in the properties of open and closed system. We consider
single-phase systems that are inherently identical except for
their boundaries. The open system considered here is in the
grand canonical ensemble, and can exchange particles and en-
ergy with the surroundings, while the closed system is in the
canonical ensemble and can exchange only energy with the
surroundings.

If the two ensembles predict compatible or equivalent equi-
librium states for a given system, we refer to this system as
ensemble equivalent31,32. In classical thermodynamics, it is
well known that ensemble equivalence holds for macroscopic
systems with short range interactions. However, it is also
known that systems with a small number of particles can be
ensemble in-equivalent. This can occur when properties that
are regarded extensive in the thermodynamic limit are influ-
enced by finite size effects and become non-extensive. It is
not surprising that Hill’s26 formalism, where the thermody-
namic properties have been derived for each ensemble sepa-
rately, has gained some interest in the research on ensemble
in-equivalence. Rubi, Bedeaux, and Kjelstrup33 used Hill’s26

framework in a theoretical investigation of the properties of a
single molecule under isomeric and isotensional conditions33.
Bering et al.29 later showed that the in-equivalence between
these two ensembles can be detected in simulations of poly-
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mer chains.
Systems with a large number of particles can also be en-

semble in-equivalent. A substantial amount of the research
done on ensemble in-equivalence have focused on systems
with long-range interactions31,32,34–36. The main interest of
these studies has been the non-additive, rather than the non-
extensive nature of the system’s properties. Additivity is
closely related to extensivity, but their definitions are differ-
ent. A thermodynamic property f is extensive if it is Euler
homogeneous of degree one with respect to the variable x,
meaning that f (2x) = 2 f (x). If a property f is additive, it
means that if the total system is split into i sub-parts, the total
property is the sum of all its sub-parts, ftot = f1 + f2 + ...+ fi.
If a property is non-additive, there is an additional contribu-
tion from the interaction between the sub-parts, fint. This
means that a system can be non-additive and still be extensive,
if the contribution from the interactions scales with system
size31. Hence, additive properties are always extensive, and
non-extensive properties are non-additive, but not necessarily
the other way around. This was used by Campa et al.36 who
showed how Hill’s26 nanothermodynamics can be applied to
macroscopic, non-additive systems.

Models based on statistical mechanics can provide insight
into the mechanisms behind ensemble in-equivalence. In this
work, the ideal gas model represents an important case be-
cause it has no inter-particle interactions. Studying the ideal
gas can possibly reveal ensemble in-equivalence arising from
other sources than long-range interactions. Another motiva-
tion for studying ideal gases is that previous investigations of
their finite size effects have been shown to also apply to sys-
tems with interacting particles13,37,38.

When investigating model systems with a small number of
particles, it is important to keep in mind that some ingrained
definitions and relations from statistical mechanics use ap-
proximations based on the assumptions that N → ∞, where
N is the number of particles. One example is the proof of the
virial theorem, for which Tuckerman39 briefly discusses the
necessary assumption made about the number of microstates
associated with different ensembles. The equipartition the-
orem has also been shown to break down for small particle
numbers in systems containing hard spheres40, and later for
particles interacting via intermolecular potentials41,42. Mi-
randa43 showed that avoiding assumptions about the magni-
tude of N in the derivation of the properties of small clus-
ters of harmonic oscillators, and for two level systems, results
in differences between the properties in the canonical, micro-
canonical and grand canonical ensembles.

Approximations based on the assumption that N → ∞ are
also used in the classical derivation of the bulk properties of
the ideal gas. In this paper, we derive the properties of an ideal
gas in a small system with a surface energy, without assuming
that N → ∞, and investigate how finite size contributions to
the thermodynamic properties arise when the system is small.
We find that some finite size terms arise from surface effects,
and some arise from avoiding approximations about the mag-
nitude of the number of particles. Similar models have been
used previously to investigate ideal gas mixtures with surface
energy44, and the adsorbed phase on a spherical adsorbent45.

Here we take it one step further by presenting a direct compar-
ison of the properties in an open and closed system. We also
compare the results of the ideal gas with results from Monte
Carlo (MC) simulations of system with Lennard-Jones (LJ)
particles, and Weeks-Chandler-Andersen (WCA) particles.

II. THERMODYNAMICS OF SMALL SYSTEMS

Finite size effects in small systems are usually a result of
surface area-to-volume ratios larger than those of macroscopic
systems. For small systems, the effects of the surface can be a
significant contribution to the thermodynamic properties. As
a consequence of this, properties that normally are regarded
as extensive in macroscopic systems can become higher order
functions of size and shape in small systems. While prop-
erties that normally are regarded as intensive in macroscopic
systems can become size dependent if the system is small26.

The classical macroscopic thermodynamic equations can-
not be used to describe the properties in small systems, but the
framework developed by Hill26 provides an extension of the
systematic structure of thermodynamics that applies to small
systems. Instead of considering one single, small system,
Hill26 investigated a collection of small systems that are all
equivalent, distinguishable, and independent. By introducing
a new extensive variable N , equal to the number of small sys-
tem replicas, the differential energy of the collection of small
systems can be expressed as

dUt = T dSt− pdVt +
n

∑
i=1

µidNi,t +E dN , (1)

where Ut is the energy, T is temperature, St is entropy, p is
pressure, Vt is the volume, µi the chemical potential of compo-
nent i and Ni,t the number of particles of component i, where
subscript t stands for the total collection of small system repli-
cas. The property E is called the subdivision potential, and
represents the change in Ut as we change the number of repli-
cas at constant St, Vt and Ni,t. From this starting point, Hill
retrieve the properties of a single small system by computing
the averages of the total collection of small system replicas.

A key part of this derivation is that each thermodynamic
ensemble is considered separately. As a consequence, the ex-
pression for the subdivision potential takes different forms for
the different ensembles, which in turn gives rise some unique
small system properties. In the canonical ensemble the subdi-
vision potential is

E (N,V,T ) = F(N,V,T )+ p(N,V,T )V −µ(N,V,T )N, (2)

while in the grand canonical ensemble it is represented by

E (µ,V,T ) = ϒ(µ,V,T )+ p(µ,V,T )V. (3)

The subdivision potential in grand canonical systems is also
connected to one of the unique small system properties
through E (µ,V,T ) = (p− p̂)V , where p̂ is known as the in-
tegral pressure. For more details on the derivation of these
properties we refer to the books by Hill46, or the extended
explanations presented by Bedeaux, Kjelstrup, and Schnell44.
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III. IDEAL GAS IN A SMALL SYSTEM WITH SURFACE
ENERGY

In this section, we derive the thermodynamic properties of
an ideal gas in a small confinement from the partition func-
tion of the system. Many steps of the derivation are based
on well known derivations of the properties of an ideal gas39.
Therefore, only the outlines are provided here, while the full
derivation can be found in the Supplementary Material (SM).

In derivations of properties of macroscopic systems, it is
normally assumed that N → ∞, which justifies the use of ap-
proximations such as Stirling’s approximation, N!≈ (N/e)N .
We will here avoid this assumption, such that the final equa-
tions appropriately describe systems with a small number of
particles.

A. The system

The system we consider here is a three dimensional box
with volume equal to L3. The ideal gas particles do not inter-
act with each other, but they can interact with the boundaries
of the system. This means that the energy of the particles will
depend on whether they are located close to the boundary of
the system or not. When the particles are closer than a dis-
tance δ from a wall of the system, they experience a potential
energy contribution U s from that wall. This means that if a
particle is close to an edge, it experiences a potential energy
of 2U s, and if it is close to a corner, it experiences a potential
energy of 3U s. The system, and the different potential energy
zones are illustrated in Fig. 1. The potential energy is included
in the Hamiltonian through the Heaviside function

H(x) =

{
0, if x < 0
1, if x≥ 0.

The Hamiltonian as a function of the particles’ momenta p
and positions r then becomes

H (p,r)=
N

∑
i=1

3

∑
α=1

(
p2

αi
2mi

+U s[H(δ −αi)+H(αi− (L−δ ))
])

,

(4)
where m is the particle mass, β = 1/kBT , where kB is the
Boltzmann constant, and α = (x,y,z) are the Cartesian coor-
dinates.

FIG. 1. Illustration of the cubic simulation box with surface energy
U s experienced by particles closer than a distance δ from each wall.
Particles close to the sides (light blue regions) experience a potential
energy contribution of U s, while particles close to the edges (medium
blue regions) experience a potential energy contribution of 2U s, and
particles close to the corners (dark blue regions) experience a poten-
tial energy contribution of 3U s.

1. Properties of a confined ideal gas in a closed system

The partition function of the closed system (canonical en-
semble), computed from the Hamiltonian in Eq. (4), becomes

Q(N,V,T )=
1

N!h3N

∫
D(V )

∫
dNrdNpexp(−βH (p,r))

=
1

N!h3N

∫
D(V )

dNrexp
(
−βU s

N

∑
i=1

3

∑
α=1

[
H(δ −αi)

+H(αi− (L−δ ))
])

×
∫

dNpexp

(
−β

N

∑
i=1

3

∑
α=1

p2
αi

2mi

)
, (5)

where h is Planck’s constant. Since there are no interactions
between the particles, the integrals can be split into identical
one-dimensional, one-particle integrals. The integral over mo-
menta and the integral over spatial coordinates can be solved
separately. The integral over momenta becomes 1/Λ3, where
Λ =

√
h2β/2πm is the de Broglie wavelength. The one-

dimensional, one-particle spatial integral can be split in three
parts, where two of these integrals represent the regions that
are influenced by the wall potential, and one is the region
which is not affected by U s.
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The final expression for the partition function then becomes

Q(N,V,T ) =
1

N!

(
L
Λ

(
1− 2δ

L

(
1− exp(−βU s)

)))3N

. (6)

It is convenient to express the canonical partition func-
tion in terms of the one-particle canonical partition function
Q(N,V,T ) = Q(V,T )N/N!, where Q(V,T ) is

Q(V,T ) =
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

. (7)

The properties of a closed system are calculated from the
known connection between the partition function and the en-
ergy state function. The energy state function of the closed
system is the Helmholtz energy, which becomes

F(N,V,T )=−kBT lnQ(N,V,T )
= kBT (lnN!−N lnQ(V,T )) . (8)

The expressions for entropy, pressure and chemical potential
are found by differentiating the Helmholtz energy. By com-
bining these identities we can also find the expression for the
subdivision potential shown in Eq. (2).

The properties in the closed system are split into three parts,
where one represents the well known bulk contribution, an-
other describes the contribution from the surface energy and
the last arise from exact treatment of the factorial term,

A (N,V,T )= A (N,V,T )bulk +A (N,V,T )surf

+A (N,V,T )fac. (9)

The different contributions to the thermodynamic properties
are presented in Table I, where we assume that the surface
energy U s is independent of N, V and T such that its partial
derivatives become zero. The complete derivation, as well as
the expressions for the thermodynamic properties including
the partial derivatives are presented in the SM.

The properties presented in Table I show clear character-
istics of small systems. The properties that are regarded as
intensive in the thermodynamic limit are size dependent, and
the properties that are regarded extensive in the thermody-
namic limit are not directly proportional to system size. If U s

is non-zero, all properties in the closed system become non-
extensive due to the 1/L dependence of the surface terms. If
U s = 0, only the properties that have non-zero factorial terms
A (N,V,T )fac 6= 0 are influenced by the small number of par-
ticles.

2. Properties of a confined ideal gas in an open system

The partition function of an open system (grand canonical)
is

Ξ(µ,V,T )=
∞

∑
N=0

exp(β µN)Q(N,V,T )

=
∞

∑
N=0

(exp(β µ)Q(V,T ))N

N!
. (10)

By using exp(a) = ∑
∞
N=0 aN/N! we get

Ξ(µ,V,T ) = exp(exp(β µ)Q(V,T )) , (11)

and the energy state function of the open system is

ϒ(µ,V,T )=−kBT lnΞ(µ,V,T )
=−kBT exp(β µ)Q(V,T ). (12)

The entropy, pressure and number of particles are calculated
from partial derivatives of the energy state function, and the
subdivision potential is computed from Eq. (3). From Hill’s26

thermodynamics for small systems we also have the integral
pressure p̂ =−ϒ(µ,V,T )/V .

The properties of the open system are represented by three
contributions, but in contrast to the closed system, none of
these arise from factorial terms. The total properties are given
as a sum of a bulk contribution and a surface contribution,
which is multiplied with an additional surface contribution

B(µ,V,T ) =
[
B(µ,V,T )bulk +B(µ,V,T )surf,1

]
×B(µ,V,T )surf,2, (13)

where

B(µ,V,T )surf,2 =

(
1− 2δ

L

(
1− exp(−βU s)

))3

. (14)

The other two contributions to Eq. (13) are presented in Ta-
ble II, where we again have assumed that the partial deriva-
tives of U s are zero.

In contrast to the closed systems, the small size contribu-
tions in the open systems are only present if U s is non-zero.
U s = 0 means that all size effects vanish, and only the bulk
contribution remains.

B. Comparing properties of a confined ideal gas in open and
closed systems

When dU s = 0, the properties in the open and closed sys-
tems can easily be compared at the same density, meaning that

N
V
=

N(µ,V,T )
V

= exp(β µ)
1

Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

. (15)

By inserting this expression into the identities shown in Ta-
bles I-II we can directly compare the energy state functions,
entropy, pressure, chemical potential and subdivision poten-
tial of the open and closed systems.

It becomes clear that when the wall potential is independent
of the ensemble variables (dU s = 0), the difference between
the properties of an ideal gas in the open and closed systems
arises from the factorial terms given in the last column in Ta-
ble I. This means that this difference is simply an effect of
a small number of particles, and not an effect of the surface.
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TABLE I. Thermodynamic properties of an ideal gas confined in a closed cubic box with surface energy U s experienced by all particles within
a distance δ from each wall.

A (N,V,T ) A (N,V,T )bulk A (N,V,T )surf A (N,V,T )fac

F(N,V,T ) NkBT
(
ln
(N

V Λ3)−1
)

−3NkBT ln
(

1− 2δ

L (1− exp(−βU s))
)

kBT
(
lnN!−N ln

(N
e
))

S(N,V,T ) NkB

(
ln
(V

N
1

Λ3

)
+ 5

2

)
NkB

(
3ln
(

1− 2δ

L (1− exp(−βU s))
)
+ 2δ

L
3βU s exp(−βU s)

1− 2δ

L (1−exp(−βU s))

)
−kB

(
lnN!−N ln

(N
e
))

p(N,V,T ) NkBT
V

NkBT
V

(
2δ

L
1−exp(−βU s)

1− 2δ

L (1−exp(−βU s))

)
−

µ(N,V,T ) kBT ln
(N

V Λ3) −3kBT ln
(

1− 2δ

L (1− exp(−βU s))
)

kBT
(

1
N!

∂N!
∂N − lnN

)
E (N,V,T ) − NkBT

(
2δ

L
1−exp(−βU s)

1− 2δ

L

(
1−exp(−βU s)

)) NkBT
(

lnN!
N +1− 1

N!
∂N!
∂N

)

TABLE II. Thermodynamic properties of an ideal gas confined in an open cubic box with surface energy U s experienced by all particles within
a distance δ from each wall.

B(µ,V,T ) B(µ,V,T )bulk B(µ,V,T )surf,1

ϒ(µ,V,T ) −kBT exp(β µ) V
Λ3 −

S(µ,V,T ) kB exp(β µ) V
Λ3

(
5
2 −β µ

)
kB exp(β µ) V

Λ3

(
2δ

L
3βU s exp(−βU s)

1− 2δ

L (1−exp(−βU s))

)

p(µ,V,T ) kBT exp(β µ) 1
Λ3 kBT exp(β µ) 1

Λ3

(
2δ

L
1−exp(−βU s)

1− 2δ

L

(
1−exp(−βU s)

))
N(µ,V,T ) exp(β µ) V

Λ3 −

E (µ,V,T ) − kBT exp(β µ) V
Λ3

(
2δ

L
1−exp(−βU s)

1− 2δ

L

(
1−exp(−βU s)

))
p̂(µ,V,T ) kBT exp(β µ) 1

Λ3 −

The surface effect does change the thermodynamic properties
in both systems, meaning that they have different values than
they would have in a bulk system, but this surface effect is the
same in the open and the closed systems.

The surface energy, U s, can in theory depend on tempera-
ture, system size, number of particles and chemical potential.
Strøm, Bedeaux, and Schnell45 showed how it is possible to
define U s such that it depends on the surface area of an ad-
sorbed phase. Since systems with this type of behavior is
beyond the scope of this paper, we will not investigate this
further here.

All factorial terms in the last column of Table I can be
solved in an exact manner using the gamma function and the
polygamma function, but approximations can be helpful to

get insight on the form and magnitude of these terms. If we
evaluate these terms with the regular Stirling’s approximation,
N! ≈ (N/e)N , which normally is used to derive properties in
the thermodynamic limit, all factorial terms become zero. We
therefore use a more exact version of Stirling’s approximation

N!≈
√

2πN
(

N
e

)N

, (16)

which we refer to as "Stirling enhanced". Figure 2 shows that
when the number of particles becomes small, it is crucial to
compute factorials with a more exact expression than the reg-
ular Stirling’s approximation. The gamma function is exact
also for discrete numbers, but Stirling enhanced is a good rep-
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Γ(N+1)

Stirling enhanced

Stirling

FIG. 2. The factorial computed from exact expressions and approxi-
mations. Γ(N+1) represents the gamma function, which gives exact
values of the factorial for discrete numbers.

resentation, as long as the average number of particles is larger
than one.

Using Eq. (16) results in the following approximations for
the factorial terms for the entropy

S(N,V,T )fac=−kB

(
lnN!−N ln

(
N
e

))
≈−kB

(
1
2

ln(2πN)

)
, (17)

and the chemical potential

µ(N,V,T )fac= kBT
(

1
N!

∂N!
∂N
− lnN

)
≈ kBT

(
1
2

1
N

)
. (18)

The factorial contribution to the entropy is clearly increasing
with the number of particles, while the factorial contribution
to the chemical potential is decreasing with the number of par-
ticles.

IV. SIMULATION DETAILS

We use an in-house MC code, and all presented values and
results are given in reduced LJ units. We investigate systems
with particles interacting via two types of potentials:

1. LJ particles interacting via the truncated and shifted po-
tential with the cutoff radius at rc = 2.5.

2. Particles interacting through the WCA potential47,
which is the LJ potential truncated and shifted at rc =
21/6σ .

TABLE III. Simulation settings for different boundary conditions
(BCs) and interaction potentials (IPs) investigated. L is the simula-
tion box length, T represents the temperature, n represents the num-
ber density and µ is the chemical potential.

BC IP L T n µ

1 LJ 3,5,7,9 3 0.025 - 0.750 −7.0 - 7.5
1 WCA 3,5,7,9 3 0.025 - 0.750 −7.0 - 13.5

2 (a) LJ 3,5,7,9 3 0.025 - 0.750 −7.0 - 7.5
2 (b) LJ 3,5,7,9 3 0.025 - 0.750 −4.0 - 10.5

3 LJ 15 3 0.025 - 0.750 −7.0 - 7.5

The simulation boxes are cubic, and we investigate three
types of boundary conditions:

1. The particles are confined by a hard wall. This means
that the particles do not interact with the walls, but
moves attempting to displace a particle outside the walls
are rejected.

2. The wall is hard, and the particles closer than a distance
δ = 1 from each wall experience an additional potential
energy of (a) U s = 1 or (b) U s = 3.

3. Periodic boundary conditions (PBCs). In order to com-
pare to bulk properties.

The different combinations of simulation settings are pre-
sented in Table III.

We run all simulations in five parallels, for 106 cycles after
equilibration. The number of trial moves (i.e. attempts to
modify the system) carried out in each cycle has a lower limit
of 20, but is otherwise equal to the number of particles. In
the closed system, the chemical potential is computed using
Widom’s48 test particle insertion method, which is sampled
ten times the number of particles in the system, every cycle of
the simulation. The pressure in both system types is computed
using the virial equation, which is sampled every cycle of the
simulation.

V. RESULTS AND DISCUSSION

In this section, we present predictions for the ideal gas sys-
tems, and the results from the MC simulations of systems with
interacting particles.

A. Ideal gas

For the ideal gas, the results are computed in systems with
U s = 1 and δ = 1, in order to analyze the small size contribu-
tion from both the surface terms and the factorial terms. We
discuss in detail the ideal gas predictions for system sizes cor-
responding to the two smallest systems investigated by sim-
ulations. Figure 3 shows the energy state functions, entropy,
pressure and chemical potential as functions of density for a
system with size L = 3. For the presented densities, a sys-
tem size of L = 3 corresponds to particle numbers between
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FIG. 3. Energy state functions, entropy, pressure and chemical potential as a function of number density of an ideal gas in a small cubic box
with sides L = 3. The surface energy is U s = 1 and is experienced by all particles within a distance δ = 1 from each wall.

approximately 3 and 20. Entropy, pressure and chemical po-
tential show clear deviations from macroscopic values in both
the open and the closed systems. The Helmholtz energy in
the closed system also shows clear deviations from bulk val-
ues. Interestingly, we see that the relationship between ϒ and
n is the same in a small system and in a macroscopic system.
Also, the relationship between p̂ and n in a small system is
equal to the relationship between p and n in a macroscopic
system. A similar result was found for the integral and dif-
ferential surface tensions of the adsorbed phase investigated
by Strøm, Bedeaux, and Schnell45. The entropy in the open
system is larger than the entropy in the closed system. This
was also the case for the properties of the harmonic oscilla-

tors and the two-level systems presented by Miranda43, who
found a higher entropy for the grand canonical systems than
the canonical systems.

Figures 3 (b) and (d) also clearly show the predictions of
Eqs. (18) and (17), since the difference between the entropy
in the two systems is increasing with density, while the dif-
ference between their chemical potentials is decreasing with
density. This difference, for both the entropy and the chemical
potential, is decreasing as the system becomes larger. Figure 4
shows the energy state functions, entropy, pressure and chem-
ical potential for an ideal gas system with size L = 5. For
the presented densities, this corresponds to particle numbers
between approximately 12 and 100. We see that already at
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with sides L = 5. The surface energy is U s = 1 and is experienced by all particles within a distance δ = 1 from each wall.

this size, the difference between the properties in the two en-
sembles is barely visible. Further increasing the size of the
system gives properties that are visually indistinguishable for
the ranges on the y-axis considered here.

The subdivision potential is a central property of the nan-
othermodynamic description presented by Hill’s26. Equations
(1)-(3) show that when the subdivision potential is zero, the
nanothermodynamic description reduces to the macroscopic
thermodynamic equations. The concept of the subdivision po-
tential has received much attention in attempts to describe the
thermodynamics of small systems28,44,45. However, with the
exception of the work on spherical adsorbents by Strøm, Be-
deaux, and Schnell45, its numerical values are usually not pre-

sented. For the ideal gas systems with size L = 3 and L = 5
the subdivision potential is shown in Fig. 5, where we can see
that this property is also ensemble dependent.

The equations and figures presented in this section show
that an ideal gas in a cubic box is ensemble in-equivalent when
the number of particles is small enough. It is in general not
possible to give an universal limit for when N is small enough
for these differences to become significant. The model pre-
sented here is one example of an ideal gas system that can
be used to investigate finite size effects of this kind. Simi-
lar models can be derived for other geometries and dimen-
sions, which can affect the magnitude of the surface terms,
and thereby change the relative importance of the factorial
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FIG. 5. Subdivision potential as a function of number density of an ideal gas in a small cubic box with sides (a) L = 3 and (b) L = 5. The
surface energy is U s = 1 and is experienced by all particles within a distance δ = 1 from each wall.

terms. The magnitude of the surface terms depends on the
number of particles, the size and shape, U s and δ , while the
magnitude of the factorial terms depends only on the number
of particles. However, the relative influence of the factorial
terms will of course depend on the size and shape, U s and δ .

Some general remarks that can be made are that the en-
semble in-equivalence of the ideal gases does not depend on
the surface energy, as long as this surface energy does not de-
pend on N, µ , V or T . It is also not a result of long-range
interactions since the ideal gas particles have no inter-particle
interactions. In the next section, we investigate how the re-
sults for the ideal gases can be used to gain insight into the
ensemble equivalence for open and closed small systems with
interacting particles.

B. Interacting particles

In this section, we investigate the properties of open and
closed systems computed from MC simulations. Before we
compare these results with the ones predicted by the ideal gas
model, we discuss different methods for computation of aver-
age values in small systems. Error bars corresponding to two
standard deviations are included in all figures with markers,
but they are smaller than the marker size.

1. Computing averages in small systems

The macroscopic definitions used for computation of ther-
modynamic properties from simulations do not always apply
to small systems44. One of the reasons for this is that the
volume is often not uniquely defined for systems with signif-

icant surface effects. For homogeneous systems with peri-
odic boundary conditions, the volume available to the cen-
ter of masses of the molecules is equal to the full volume
of the simulation box. For small, confined systems, these
two volumes often differ, which can affect the computation
of the properties that depend on the system’s volume. How
to get a proper representation of volume dependent properties
has been widely discussed, and new methods have been pro-
posed for computation of both the pressure and the density of
small systems20,27,28,49. The definition of system volume will
clearly also affect the properties presented in this work. How-
ever, it should not affect the comparison between the proper-
ties in open and closed systems as long as their volumes are
equally defined.

Something that can affect this comparison is the method
used for computation of mean values. For the open system,
two ways of computing the mean density are compared. The
first is the arithmetic mean, which is the sum of all the sam-
pled values, divided by the number of sampled values. This is
also referred to as the average, or the sample mean. Another
alternative is the population mean, or expected value, which is
the number that is most likely to be observed during the sim-
ulations. For large systems, these two ways of computing the
mean value should be equivalent. For small systems however,
the density distributions of the open system will have a cut-off
at low densities, since we cannot have a number of particles
below zero.

In order to investigate how this influences the comparison
of the properties in open and closed systems, we compare the
two methods for the LJ systems with U s = 1. Figure 6, which
displays some selected density distributions for this system
with size L = 3, illustrates this effect. The population mean is
extracted from the dashed lines, which are computed by fitting
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a Gaussian curve to the distributions. For extracting the popu-
lation mean, two different methods of curve fitting are tested.
In the first method, all data points from the density distribu-
tions are included in the fit, while in the second approach,
we include only the data points that are available symmetri-
cally around the maximum value of each distribution. The two
methods are found to give the same results within the statis-
tical accuracies, and we therefore only present the population
mean densities extracted from the symmetrical fit.

The solid black lines in Fig. 6 represent the arithmetic
mean, which clearly do not fit the peaks of the distributions
for low densities. It is also clear that the Gaussian curves do
not fit the distributions perfectly, but instead are shifted to-
wards lower densities. The population mean density becomes
lower than the arithmetic mean density, and the comparison
of the properties in the open and closed systems are clearly
influenced by the method used to compute the mean density.

This also becomes clear from Fig. 7, which shows the pres-
sure and the chemical potential as functions of the density for
small open and closed LJ systems with size L = 3 and U s = 1.
In the low density region, the difference between the densities
computed from the arithmetic mean and the ones computed
from the population mean is visible. For high densities, the
two methods give overlapping densities.

Both methods still show that there is a difference between
the chemical potentials in open and closed systems, and that
the trend is similar to that predicted by the ideal gas model in
Fig. 3. Figure 7 (a) also shows a slight difference between the
pressures at higher densities, which is a feature not described
by the ideal gas model. Since the main focus of this section
is to investigate the differences between the arithmetic mean
and the population mean, we discuss the deviations from the

ideal gas model in more detail in the next section.
Figure 8 shows the pressure and the chemical potential as

functions of density in open and closed systems with size
L = 5. Already at this size, the mean densities are close to
indistinguishable in the figure.

For better visualization of the difference between the prop-
erties in open and closed systems, we fit a quadratic spline
function to the data points displayed in Figs. 7-8, and the other
investigated system sizes (L = 7,9), as well as the system with
PBCs. Since the spacing between the data points on the y-axis
is increasing in the high density region for the pressure, and
in the low density region for the chemical potential, we fit the
spline functions only to the densities between n = 0.1− 0.7,
in order to reduce the chance of overfitting. The differences
between the properties in the open and closed systems, based
on these spline functions, are shown in Fig. 9 for the pressure,
and in Fig. 10 for the chemical potential. The predictions of
the ideal gas model, shown in Tables I and II, are also included
in the figure.

Also here we see a clear difference between mean density
computed by the arithmetic mean and the one computed by
the population mean, as they give different trends as func-
tions of the density. For both properties, the population mean
gives less systematic results, and display larger fluctuations
than those found by using the arithmetic mean. As Fig. 6 in-
dicates, neither of the methods perfectly describe the expected
number of particles. The arithmetic mean does not fit the peak
of the distribution, and the Gaussian curve, used to extract the
population mean, does not fit the tails of the distribution. Due
to the additional curve fitting step, the population mean be-
comes the less convenient method among the two. When we
have such a low number of data points available, curve fit-
ting can quickly induce errors. In the following, we therefore
consider only the results represented by the arithmetic mean
density.

2. Properties in open and closed systems with interacting
particles

In this section we investigate how the pressure and the
chemical potential differ in open and closed systems for all
different boundary conditions and particle types investigated
by simulations. The results presented in the last section al-
ready show that the properties in open and closed systems
are different when the systems are small enough. Compar-
ing Figs. 3 (c) and (d) to Fig. 7 for size L = 3, and Figs. 4 (c)
and (d) to Fig. 8 for size L = 5, shows that in the low den-
sity region, the pressure and chemical potential of the inter-
acting systems are similar to the values predicted by the ideal
gas model. For the more dense systems, where the effects of
crowding and cooperativity becomes important, we see larger
differences. Figures showing computed values for all systems
sizes, types of boundary conditions, and particle interactions
are found in the SM.

Figures 9-10 show that the differences between the proper-
ties in the open and closed systems cannot be fully explained
by the ideal gas model. For the chemical potential difference,
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MC simulations. The surface energy is U s = 1 and is experienced by all particles within a distance δ = 1 from each wall.

the trend of the interacting particles is very similar to the one
predicted by the ideal gas model, which could indicate that
this difference is partly described by the factorial terms. The
contributions from the interactions between the particles can
be investigated separately by subtracting the ideal gas predic-
tion from the total property computed from simulations. To
directly compare the magnitude of this contribution for the
pressure and the chemical potential, the properties need to be
evaluated for the same units. We therefore consider the con-

jugate pairs in the expression for the internal energy of the
system, divided by the volume

u = sT − p+µn, (19)

where u =U/V and s = S/V .
The differences investigated are

∆(−p)= ∆(−p)IG +∆(−p)int

= [(−p(N,V,T ))− (−p(µ,V,T ))]IG
+[(−p(N,V,T ))− (−p(µ,V,T ))]int , (20)
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and

∆(µn)= ∆(µn)IG +∆(µn)int

= [µ(N,V,T )n−µn(µ,V,T )]IG
+[µ(N,V,T )n−µn(µ,V,T )]int , (21)

where the subscript "IG" refers to the ideal gas contribution,
and "int" refers to the contribution from particle interactions.
This is often also referred to as the residual contribution.

Figure 11 shows ∆(−p) and ∆(µn) for the four different
sizes investigated for the system with LJ particles and U s = 1.
The values of ∆(−p) show clear linear trends for all system
sizes, while the values of ∆(µn) are almost constant for low
densities, with an increasing slope at higher densities. The
ideal gas contribution to these properties show very little de-
pendence on density: ∆(−p)IG = 0, while Eq. (18) shows
that ∆(µn)IG is approximately constant for different densities
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FIG. 11. How the difference in pressure (a) and the chemical potential (b), in open and closed systems, minus the prediction of the ideal gas
model from Tables I-II, vary with density. The simulation box sizes are L = 3,5,7,9. The particles are interacting through the truncated and
shifted LJ potential, the surface energy is U s = 1 which is experienced by all particles within a distance δ = 1 from each wall.

when the volume is constant. The density dependence shown
in Fig. 11 must therefore be related to contribution from the
particle interactions, ∆(−p)int and ∆(µn)int.

This contribution becomes more important at higher den-
sities, which could indicate that it is related to the particles’
excluded volume. The excluded volume of a particle is the
volume that is inaccessible to other particles in the system
due to the presence of the first particle. At higher densities, a
larger portion of the system will be occupied by the particles’
excluded volume. At low densities, where the particles are
more free to move around, this effect is less prominent. This
is similar to the results found from simulations of stretching of
polymer chains performed by Bering et al.29. In the compar-
ison between isomeric and isotensional stretching, they find
that for small forces, the molecules are in what they call an
entropic regime. In this regime, the molecule has numerous
degrees of freedom for movements, and the system is ensem-
ble equivalent. As the molecule becomes more stretched out,
the properties computed in the isomeric and the isotensional
ensembles start to differ. This could indicate that restricted
movement of particles is related to ensemble in-equivalence.
We further explore this by investigating the effect of changing
the interactions between the particles and the wall, and the
effect of changing the interparticle interactions.

First, we investigate how the value of the surface energy,
U s, influences the difference between the properties in the
open and closed systems. Higher values of U s means that the
particles are less likely to be positioned close to the system
walls. For better readability, the following figures only show
the results of the two smallest systems. Figure 12 shows how
∆(−p) and ∆(µn) depend on the density for U s = 0, U s = 1
and U s = 3. As the surface energy is increasing, the values

of ∆(µn) become larger. For the pressure, however, the dif-
ference still show a linear trend, but it is not increasing with
U s. As U s becomes larger, these lines instead show a slight
decrease in the slope, and an increase in the intersection with
the y-axis.

By changing the interparticle interactions, the excluded vol-
ume also changes. The WCA potential consists of only the
repulsive part of the LJ potential, and will therefore have a
larger excluded volume. Figure 13 compares the values of
∆(−p) and ∆(µn) for the LJ systems and the WCA systems
with U s = 0. This figure shows that the effect of a larger ex-
cluded volume is similar to increased repulsive forces close to
the walls. The values of ∆(µn) are larger for the WCA sys-
tems than they are for the LJ systems, and the change in the
slope of ∆(−p) is more visible in this plot.

This indicates that, for the systems investigated here, the
contribution from particle interactions to the difference be-
tween the properties in open and closed systems are related
to restrictions in movement of particles. As the movements
of the particles become more restricted, the difference in the
chemical potential shows a stronger dependence on density.
The pressure, on the other hand becomes less dependent on
density, and is instead approaching a constant value. At this
stage, it is unclear why ∆(−p) and ∆(µn) respond differently
to these changes. It is possible that the pressure difference is
affected by crowding and cooperativity in a way that is not de-
scribed by the restriction in movement of the particles alone.
Or, it could be related to the fact that N is a canonical vari-
able and µ is a grand canonical variable, while p is neither a
canonical nor a grand canonical variable. This can be further
studied by investigating the effect of restrictions in particle
movement for pairs of ensemble variables of other dual sta-
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

n=N/V, Arithmetic mean

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Δ
(−
p
)

L=3, LJ

L=3, WCA

L=5, LJ

L=5, WCA

0.1 0.2 0.3 0.4 0.5 0.6 0.7

n=N/V, Arithmetic mean

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Δ
(μ
n
)

L=3, LJ

L=3, WCA

L=5, LJ

L=5, WCA

(a) (b)

FIG. 13. How the difference between pressure (a) and the chemical potential (b) in open and closed systems vary with density. The particles
are interacting through the truncated and shifted LJ potential (dashed), or the WCA potential (dotted). The simulation box sizes are L = 3,5.
There is no surface energy (U s = 0).

tistical ensembles, such as the U and T in the microcanonical
and canonical ensemble, or V and p in the canonical and the
isobaric-isothermal ensemble. However, this falls beyond the
scope of the present work.

VI. CONCLUSION

The thermodynamics of small systems is known to devi-
ate from the classical behavior. One consequence of this is
that the properties can become ensemble dependent. We in-
vestigate the ensemble equivalence of open (grand canonical)
and closed (canonical) ensembles for small systems contain-
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ing ideal gas particles, and for systems containing particles
interacting via either the LJ or the WCA potentials.

Ideal gas systems are investigated analytically by deriving
the properties from the respective partition functions. A sur-
face contribution is introduced to the ideal gas particles’ po-
tential energy through a surface energy U s experienced by par-
ticles closer than a distance δ from each wall. The purpose of
this is to investigate whether the behavior of a simple model
system can provide insight into the ensemble in-equivalence
of more complex systems with interacting particles. For the
ideal gas, we find that the properties in open and closed en-
sembles are not equivalent. The ensemble in-equivalence is
not a consequence of the surface energy since the surface con-
tribution to the ideal gas properties is equivalent in the open
and closed systems. The difference between the properties of
the ideal gas in the open and closed systems is instead a result
of factorial terms that appear in the properties of the closed
system. These terms depend only on the number of particles,
and are direct consequences of avoiding assumptions about
N→ ∞, such as Stirling’s approximation.

The systems with interacting particles are investigated
through MC simulations. For small number of particles, the
systems investigated through simulations have different pres-
sures and chemical potentials in the open and closed systems.
We find that the magnitude of the difference between the prop-
erties in the open and closed systems of a given volume de-
pends on the surface energy U s, the interatomic interactions,
and the density. This deviates from the prediction of the differ-
ence between the properties in the open and closed systems of
the ideal gas, which for a given volume is independent of U s

and approximately independent of density. For the interacting
particles, we also find that increasing the particles’ excluded
volume, and increasing the repulsive forces close to the walls,
results in similar responses in the differences between proper-
ties in open and closed systems. This indicates that the contri-
bution to ensemble in-equivalence, which is not explained by
the ideal gas model, is connected to the restricted movement
of particles in the systems, and that system features which in-
crease this restriction can lead to larger differences between
the properties in the open and closed systems.

SUPPLEMENTARY MATERIAL

See supplementary material for full derivation of the prop-
erties of the ideal gases, and the computed thermodynamic
properties for all systems investigated through simulations.
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