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Abstract
With global seafood production increasing to feed the rising population, there
is a need to produce fish and fishery products of high quality and freshness.
Water holding properties, including drip loss (DL) and water holding capacity
(WHC), are important parameters in determining fish quality as they affect func-
tional properties of muscles such as juiciness and texture. This review focuses
on the water holding properties of Atlantic salmon and evaluates the methods
used to measure them. The pre- and postmortem factors and how processing
and preservation methods influence water holding properties and their corre-
lations to other quality parameters are reviewed. In addition, the possibility of
using modelling is explained. Several methods are available to measure WHC.
Themost prevalent method is the centrifugationmethod, but other non-invasive
and cost-effective approaches are increasingly preferred. The advantages and dis-
advantages of these methods and future trends are evaluated. Due to the diver-
sity ofmethods, results from previous research are relative and cannot be directly
compared unless the same method is used with the same conditions.

1 INTRODUCTION

The quality of seafood is increasingly important and
influences the production cost and consumer preference.
Salmon is a dominating species in aquaculture with a
worldwide total production of 2.5million tonnes and is also
an important seafood commodity with a high value (Ernst
& Young, 2019). Norway is currently the world’s largest
producer of Atlantic salmon, with a total production of 1.4
million tonnes in 2019 (SSB, 2020). As an export commod-
ity, Atlantic salmon represents around 93% of the Norwe-
gian aquaculture production, and these fish are exported
for further processing. They have a high calorie and protein
retention of 25% and 28%, respectively (Fry et al., 2018). As
salmon production becomes more lucrative, more coun-
tries are using innovative technologies to explore the pos-
sibilities of producing salmon on sea-based and land-based

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Comprehensive Reviews in Food Science and Food Safety published by Wiley Periodicals LLC on behalf of Institute of Food Technologists

farms. Therefore, as one of the leading countries with a
proven aquaculture industry, Norway is in a good posi-
tion to strengthen its standing in the globally competitive
aquaculture market and produce fish of high quality. This
applies throughout the entire value chain, from produc-
tion, harvesting, primary and secondary processing and
finally storage and consumption.
Water is the predominant component in fish. It sup-

ports a series of biochemical, microbiological and physical
reactions that affect the sensory, nutritional and functional
properties during fish processing and storage (Jepsen et al.,
1999). Water holding properties include drip loss (DL)
and water holding capacity (WHC), two representative
indicators for freshness considering the affinity between
fish muscle and water. WHC, the ability of muscle pro-
tein to prevent water from being released from their
three-dimensional structure against external forces, is a
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property that contributes significantly to both meat and
fish quality (Duun, 2008; Huff-Lonergan & Lonergan,
2005; Kaale et al., 2014;Warner, 2014).WHC is also defined
as the ability to retain inherent water within the muscle
(Bowker, 2017; Cheng & Sun, 2008; Zhang et al., 1995).
Water released without any additional force is referred to
DL, sometimes called purge or weep. This is the extrusion
of tissue juices from the muscle protein networks and is
closely related toWHC (Huff-Lonergan & Lonergan, 2005;
Szmańko et al., 2021).
A high DL is undesirable due to oxidative and hydrolytic

processes from microorganisms and is intensified by the
purge, resulting in lower quality. Improved WHC as a
reflection of limited DL became more desired by the pro-
ducers for higher net weight and better acceptable appear-
ance to the consumers. It affects weight changes during
storage and transport, DL during thawing, weight loss dur-
ing cooking as muscle texture changes, and thereby con-
sumer preferences and costs (Duun, 2008; Kaale et al.,
2014). For producers, a high WHC results in lower DL and
greater protein functionality, influencing profitability. It
also reflects a better appearance and improved juiciness
and texture. Some reports refer to liquid holding capacity
(LHC) as an interchangeable term for WHC (Ofstad et al.,
1996). Others differentiate the LHC into water and lipid
lost during processing, especially for fatty fish (Løje, 2007;
Rørå & Regost, 2003). Ofstad et al. (1995) reported that the
primary liquid loss in fatty fish such as salmon and rain-
bow trout is mostly water, and fat loss can be considered
negligible. A better understanding of WHC in salmonid
species could help prevent fluid loss, potentially nutrient
loss and increase product yield through the whole value
chain, leading to better quality.
The composition and muscle structure can differ

between mammalian and avian meat and fish. In contrast
to meat, fish has less connective tissues with shorter mus-
cle fibers. In salmon, thesemuscle fibers are separated into
distinct red and white muscles (Kiessling et al., 2006; Lis-
trat et al., 2016). Two of the quality defects faced by the
meat industry are pale, soft, exudative (PSE) and dark, firm
and dry (DFD) meat. PSE meat results in a loss of WHC
while DFD meat has a high WHC, but both give visual
defects rejected by consumers (Listrat et al., 2016; Strasburg
et al., 2007). Consumer research indicated a preference for
tenderness for meat when making purchasing decisions,
while the preferred quality for fish is a firm texture with a
good WHC (Listrat et al., 2016; Maltin et al., 2003).
Several reviews have described WHC in food. So far,

the focus has been mainly on meat products such as
beef, pork and lamb (Cheng & Sun, 2008; Fennema, 1990;
Forrest et al., 2000; Huff-Lonergan & Lonergan, 2005;
Oswell et al., 2021) and rarely on aquaculture species. This
article follows the majority of research referring to WHC
as the ability of the muscle to hold water and DL as weight

loss mainly from water and includes other minor con-
stituents such as the loss of water-soluble vitamins, miner-
als and proteins (Kamruzzaman et al., 2012; Ofstad et al.,
1995; Strasburg et al., 2007). By understanding the mecha-
nisms and processes that influence water holding proper-
ties, products can aim to have a good WHC or lessen DL.
Therefore, this review presents an overview of water hold-
ing properties and how this affects the Atlantic salmon in
the value chain.

2 MEASURINGWATER HOLDING
PROPERTIES

Water is an essential constitution that, togetherwith lipids,
make up 80% of fish muscle (Murray & Burt, 2001). Water
is closely correlated with physical and chemical changes
within the fish, including pH, textural properties, protein
denaturation, enzyme activity, fatty acid hydrolysis and
rheological property (Dawson et al., 2018; Wang et al.,
2018). The three primary states of water are bound, immo-
bilized and free water. These are located in different com-
partments within the muscle. Immobilized and free water
are mainly responsible for DL, accounting for up to 90%
of the total water (Aursand et al., 2009). Furthermore, the
immobilized water, which accounts for most of the water
(up to 80%), is correlated with texture (Bowker, 2017). This
is explained by the microstructural observations of the
protein–water interactions, which shows that the decrease
in immobilized water content is related to quality deterio-
ration over time (Sun et al., 2018).
The lack of a standardized method to measure WHC

makes it challenging to compare the same parameters with
previous literatures (Oswell et al., 2021; Szmańko et al.,
2021). Moreover, WHC could differ after a product is pro-
cessed or cooked. Therefore, the choice of the measure-
ment method and its calculation is distinguished based on
the experimental purpose (Hamm, 1986). It is also impossi-
ble to measure the same sampling point at different times,
resulting in a certain degree of uncertainty. Therefore, it
is essential to acknowledge the differences between the
methods and choose one that suits the objective best. A
summary of the methods is shown in Figure 1.

2.1 Conventional approaches

Established methods based on the amount of force applied
to remove loosely bound or unbound water have been
reported in determining the WHC of muscle. These are
“no force,” “applied externalmechanical force” or “applied
thermal force” (Fennema, 1990; Honikel & Hamm, 1995).
Applying no force is equivalent to measuring DL, where
the only force involved is the gravitational force (Cheng &
Sun, 2008; Fennema, 1990; Honikel & Hamm, 1995). This
is a simple but often more time-consuming technique as
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F IGURE 1 A summary of various
methods used in measuring water holding
capacity (WHC) in Atlantic salmon.
“Conventional” represents methods involving
force where WHC is calculated from the
water loss. “Noninvasive” represent methods
that are rapid and noninvasive. LF-NMR,
MRI, and NIR represent low field-nuclear
magnetic resonance, magnetic resonance
imaging, and near-infrared spectroscopy,
respectively

the samples are hung and left sitting for days while drip is
collected. The amount of time is also another variable. The
DL is then calculated as the percentage of the collected drip
against the original weight.
Applying an external mechanical force includes cen-

trifugation and compression, where pressure is applied to
remove the liquid. The filter paper wetness (FPW) involves
pressing the sample between filter papers and is one of
the simplest and quickest methods that highly correlates
with DL (Mallikarjunan, 2016). The centrifugationmethod
involves applying centrifugal force either low-speed (200–
800 × g) using 2–15 g of samples, or high-speed centrifu-
gation (5000–40,000 × g) using 1–20 g of samples to mea-
sure the ability of the sample to retain water by measuring
the liquid lost after centrifugation (Varmbo et al., 2000).
Applying a thermal force involves cooking and measuring
the cook loss of the sample. This primarily represents the
loss of intra- and extracellular water from the muscle due
to protein denaturation and cell membrane disintegration.
Finally, other methods also include measuring thaw loss
after freezing (Bowker, 2017).
The centrifugation method, especially the low-speed

centrifugation method that largely retains the microstruc-
ture of the muscle, is the most preferred way to measure
WHC in fish species (Varmbo et al., 2000). A summary of
selected literatures that used the centrifugationmethod on
Atlantic salmon is shown in Table 1. WHC is calculated
from liquid loss and can be expressed in %. Most studies
present it in % and calculateWHC bymeasuring the differ-
ences in weight from the sample as the liquid is collected
through a filter after centrifugation, as shown inEquation 1
(Aursand et al., 2009; Erikson et al., 2011; Gomez-Guillen
et al., 2000; Kaale et al., 2014; Løje, 2007; Ofstad et al., 1996,
1995; Rørå & Regost, 2003; Sun et al., 2018; Thorarinsdottir
et al., 2004):

WHC(%) =
𝑊𝑇 − LL

𝑊𝑇
× 100% (1)

where wT refers to the total sample weight, and LL refers
to the liquid loss.
These results, however, only give the relative WHC val-

ues, and such results can only be compared with those that
use the exact same method (Skipnes et al., 2007; Varmbo
et al., 2000). Since most frozen foods are usually cooked
and consumed after thawing, to incorporate cooking loss,
Skipnes et al. (2007) developed a method that includes
water content and cook loss to determine WHC of whole
and comminuted samples in both raw and cooked fish
(Equations 2–4). This method calculates the dry matter,
where liquid is lost by drying the sample gravimetrically
at 105◦C, representing the moisture that includes the loss
of bound water and has been used by several studies with
Atlantic salmon and Atlantic cod (Blikra et al., 2019; Chan,
Roth, Jessen, et al., 2020; Chan, Roth, Skare, et al., 2020;
Chan, Skare, et al., 2021; Fidalgo et al., 2020; Lerfall &
Rotabakk, 2016; Rotabakk et al., 2017). In addition, the total
WHC changes from raw to cooked product can also be
determined.
Raw samples:

WHC (%) =
𝑊0 −△𝑊

𝑊0
× 100% (2)

where:

𝑊0 =
𝑉0
𝑚0

× 100% (2a)

△𝑊 =
△𝑉0
𝑚0

× 100% (2b)

whereV0 represents the initial water content,m0 is the ini-
tial sample weight and ∆V0 is the liquid separated after
centrifugation of the raw material.
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TABLE 1 Selected literatures on centrifugation parameters and calculation methods for measuring water holding capacity (WHC) of raw
Atlantic salmon

Salmon
storage Fillets storage conditions

Centrifugation
parameters

Calculation
method1 Reference

Raw Iced storage, 3 days 210 g, 5 min Equation 1 Aursand et al. (2010)
Superchilling in seawater slurry (−1.9◦C) or iced,
11 days

230 g, 5 min Equation 1 Erikson et al. (2011)

Iced storage, 11 days 210 g, 5 min Equation 1 Hultmann and Rustad (2002)
Superchilled storage (−1.4 or −3.6◦C), 34 days 210 g, 5 min Equation 1 Duun and Rustad (2008)
Superchilled storage (−1.7◦C), 28 days 270 g, 5 min Equation 1 Kaale et al. (2014)
1 day 1500 g, 5 min, 10◦C Equation 1 Løje et al. (2017)
Iced storage, 4 days 500 g, 10 min, 10◦C Equation 1 Rørå et al. (2003)
Iced storage, 22 days 530 g, 15 min, 4◦C Equation 2 Chan, Roth, Jessen, et al. (2020)
Superchilled in N2 (−1◦C) or iced storage, 23 days 530 g, 15 min, 4◦C Equation 2 Chan, Roth, Skare, et al. (2020)
Vacuum skin vs. modified atmospheric packaging
(60% CO2:40% N2), 4◦C, 20 days

530 g, 15 min, 4◦C Equation 2 Chan, Skare, et al. (2021)

Vacuum skin vs. traditional vacuum packaging,
4◦C, 20 days

530 g, 15 min, 4◦C Equation 2 Chan, Rotabakk, et al. (2021)

Vacuum storage, 60 MPa/10◦C, 30 days 530 g, 15 min, 4◦C Equation 2 Fidalgo et al. (2020)
Iced storage, 19 days 530 g, 15 min, 4◦C Equation 2 Lerfall et al. (2015)
Iced storage, 14 days 530 g, 15 min, 4◦C Equation 2 Lerfall and Rotabakk (2016)
Iced storage, 18 days 530 g, 15 min, 4◦C Equation 2 Rotabakk et al. (2017)

1Equations 1 and 2 are different calculations of WHC based on the centrifugation method. Equation 1 calculates WHC from the liquid lost after centrifugation
relative to the initial sample weight, while Equation 2 includes the water content of the initial sample (Skipnes et al., 2007).

Cooked samples:

WHC1 (%) =
𝑉1 −△𝑉1

𝑉1
× 100% (3)

where V1 represents the water content and ∆V1 the liquid
separated after centrifugation of the cooked material.
The equation describing the total changes inWHC from

raw to cooked samples is:

WHCTOT (%) =
𝑉0 −

(
△𝑉1 − 𝐶1

)
𝑉0

× 100% (4)

where C1 represents the cook loss.
To compare samples with different water contents

before centrifugation, WHC can also be expressed relative
to the fat-free dry matter content as the amount of water
retained based on themass fraction of final to initial weight
(Løje, 2007):

WHC(%) =
100 − 𝑡 − Δ𝑟

100 − 𝑡
× 100% (5)

where:

Δ𝑟 =
𝑚0 − 𝑚1

𝑚0
× 100% (5a)

where m0 and m1 refer to the initial sample weight and
sample weight after centrifugation, respectively. t refers to
the % of initial dry matter.
The methods mentioned above are considered conven-

tional approaches involving a certain extent of sample
destruction. The centrifugal force and duration both affect
water extrusion. The rotor geometry and centrifuge also
need to be considered as this can affect the centrifugal
force. Zhang et al. (1995) evaluated the impact of centrifu-
gal force (959, 8630 and 34,500 × g), duration (7.5, 15 and
22.5 min), sample temperature (2, 10 and 20◦C) and salt
concentration (0, 0.3, 0.6mol/l) on lean beefmuscle.WHC
decreased when the centrifugal duration increased from
7.5 to 15 min, but the decrease was minimal afterwards.
Likewise, the WHC decreased with a higher centrifugal
force and temperature since more water was expelled. It
is, therefore, crucial to measure WHC with the same test
conditions to prevent misinterpretation of results.
The increasing demand for quality assurance in fish

also led to the introduction of rapid, nondestructive and
cost-efficient techniques for measuring WHC in fish.
These include low field nuclear magnetic resonance (LF-
NMR), magnetic resonance imaging (MRI) and near-
infrared (NIR) spectroscopy, which can be used tomeasure
water properties in both processed and unprocessed fish
(Aursand et al., 2010, 2009; Gallart-Jornet et al., 2007a;
Gudjonsdottir et al., 2010; Jepsen et al., 1999; Løje, 2007).
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2.2 Noninvasive approaches

LF-NMR uses a proton resonance frequency as low as
60 MHz using pulse sequences such as the Carr–Purcell–
Meiboom–Gill (CPMG) sequence and has been success-
fully implemented to study different water populations or
“pools” in fish (Aursand et al., 2010; Gallart-Jornet et al.,
2007b; Jepsen et al., 1999). This rapid, noninvasive method
is based on T1 (longitudinal) and T2 (transverse) constant
relaxation times and provides valuable information regard-
ing the state of water, compartmentalization and changes
in water location, and by extension the WHC in the fish
muscle. Aursand et al. (2010) found that T2 relaxation
analysis can distinguish differences in water distribution
in salmon muscle according to antemortem handling, fil-
let location and brine salting. From the exponential fit-
ting of transversal relaxation (T2) measurements, the three
water components can be separated based on their loca-
tion within the myofibrillar protein structures. T2b repre-
sents strongly bound water with the shortest relaxation
time at 1–10 ms relaxation, T21 and T22 have relaxation
times at 10–100 and 100–400 ms, representing immobi-
lized and free water between the muscle fibers, respec-
tively (Aursand et al., 2008;Wang et al., 2018). LF-NMRcan
also be combined with other analytical methods such as
23Na NMR and MRI to optimize processing methods such
as fish salting by analyzing water and salt distributions
(Gudjónsdóttir et al., 2015; Veliyulin & Aursand, 2007).
T21 relaxation times correlate with WHC during salting.
A longer relaxation time indicates increased water mobil-
ity due to salt-induced muscle swelling, thereby increas-
ing WHC (Aursand et al., 2008; Gudjónsdóttir et al., 2015).
As storage time increases, the greater protein denatu-
ration causes water to flow more freely. Some bound
water then becomes immobilized, while some immobi-
lized water becomes free water, increasing DL (Sun et al.,
2018). LF-NMR can therefore describe the water pools and
predict WHC in fish muscle (Andersen & Jørgensen, 2004;
Jepsen et al., 1999).
MRI can be considered an extension of NMR and gives

the spatial and morphological observations of the molec-
ular water, salt and fat distribution within the muscle.
This system can be applied to different processing meth-
ods such as salting, freezing and thawing, and allows for
time-related analysis of water mobility (Aursand et al.,
2009; Wang et al., 2018). Only a few studies have been con-
ducted using MRI as a tool to analyze water properties in
fish (Aursand et al., 2010; Nott et al., 1999; Veliyulin et al.,
2006; Wang et al., 2018). Due to high equipment costs, this
method is more suited for laboratory research. It is also
advantageous to measure salt content in muscle directly
instead of chemicalmethods to prevent sample destruction
(Aursand et al., 2010).

Chemical compositions are heterogeneous in the
salmon fillet. For example, fat content decreases from
head to tail and belly to back (Katikou et al., 2001; Zhu
et al., 2014). Conventional approaches to measuring WHC
can be challenging to account for the overall spatial
distribution and variation of WHC in the fillet (Wu & Sun,
2013). NIR spectroscopy can be used alone or combined
with imaging. Hyperspectral imaging is a promising on-
line quality detection tool increasingly used industrially
(Cheng & Sun, 2014; He et al., 2013). This online, noninva-
sive, rapid method integrates spectroscopy and computer
imaging into one technique. It collects images at varying
wavelengths in the same spatial area, providing detailed
information simultaneously of the spectral and spatial
assessment for quality analysis and food control. This
includes physicochemical attributes, microbial quality
and contamination in fish and seafood products (Cheng
& Sun, 2014, 2015). The major constituents of fish such as
fat, water and protein have absorption peaks in the NIR
region of 760–1100 nm (Heia et al., 2016). Hyperspectral
imaging has been used for several quality measurements
related to water holding properties in Atlantic salmon.
These include ice fraction after superchilling (Stevik et al.,
2010), water content (He et al., 2014), WHC (Wu & Sun,
2013), DL and pH (He et al., 2014). Therefore, hyperspec-
tral imaging can determine DL and WHC and provide a
spatial distribution of WHC within salmon fillets at the
pixel level (He et al., 2014; Wu & Sun, 2013). With the wide
range of traits that this imaging technique can measure,
individual and multiple rapid quality assessments can be
obtained.

3 FACTORS INFLUENCINGWATER
HOLDING PROPERTIES

3.1 pH

Postmortem pH and protein denaturation are critical
determinants of DL and WHC in fish and meat (Duun,
2008; Huff-Lonergan & Lonergan, 2007; Kaale et al., 2014;
Rotabakk et al., 2017). Other pre- and postmortem factors
that influence DL and WHC in Atlantic salmon have also
been reported (Figure 2), such as premortem stress (Lerfall
et al., 2015; Roth et al., 2006), starvation (Mørkøre et al.,
2008) and the state of rigor mortis (Ofstad et al., 1996;
Rotabakk et al., 2017).
There are three main proteins in fish muscle classified

according to solubility, that is, sarcoplasmic, stromal and
myofibrillar proteins. The latter accounts for>50% ofmus-
cle proteins (Kijowski, 2001). Myosin and actin comprise
the major share of the total myofibrillar protein content
at ∼65% of myofibrillar protein (Strasburg et al., 2007).
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F IGURE 2 An overview of pre- and postmortem factors
reported affecting drip loss (DL) and water holding capacity (WHC)
of Atlantic salmon

Postmortem glycolysis leads to the accumulation of lactic
acid and the decline of muscle pH. At the overall isoelec-
tric point (pI) of myofibrillar proteins (∼5.5), the strong
protein–protein attraction destabilizes the protein matrix
and limits the space between the peptide chains for water
to penetrate (Ofstad et al., 1995; Strasburg et al., 2007). The
protein–water interaction is at its minimal, resulting in the
shrinkage of myofibrils and loss of WHC. At pH below
or above the global pI, the overall charge becomes posi-
tive or negative, causing the peptide chains to repel and
create more space to bind with water molecules. Ofstad
et al. (1995) studied the effects of pH, salt and tempera-
ture on WHC in comminuted salmon. A combination of
low pH (6.0), lowNaCl concentration (0.17mol/l) and high
temperature (70◦C) gave the most significant interaction
effect on liquid loss (i.e., lowest WHC), as compared to
high pH (7.0), high NaCl concentration (0.34 mol/l) and
low temperature (30◦C). More mincing of salmon muscle
with NaCl (0.34 mol/l) led to microstructural changes and
gave a higher WHC. The higher DL seen at low salt con-
centrations (0.17 mol/l) may indicate inadequate swelling
of the protein matrix. As more salt is added to the salmon
mince, the myofibrillar proteins solubilize with salt and
become a homogeneous paste in the matrix, thus holding
water (Ofstad et al., 1995).

3.2 Rigor status

The prerigor period of salmon varies and can range from
2 h to over a day postmortem. The immobilized water is
the water most affected by the structural changes within
the sarcomere. During the conversion of muscle to meat,

the muscle goes into rigor as the myosin and actin fila-
ments become bound. The shortening of the sarcomere
without changing the filament length causes water to be
lost within the myofibrils and relocated to the extracel-
lular space, eventually released as drip (Huff-Lonergan &
Lonergan, 2005; Hughes et al., 2014; Wong, 2018).
Rotabakk et al. (2017) reported that the season (spring

and autumn) or locality (northern, southern Norway) on
the Norwegian coast did not affect the WHC of Atlantic
salmon after slaughter. Moreover, salmon slaughtered in
spring (May) had a higher DL by 0.3% than in autumn
(November). The difference in sea temperature and pho-
toperiod along the coastline explained this observation,
where the temperature is lower, but daylight is longer in
the north. In addition, the filleting method and state of
rigor had a significant effect. Fish thatwere filleted, instead
of kept as head-on gutted (HOG), had a lowerWHC, while
prerigor salmon after slaughter had better water holding
properties than postrigor salmon kept in ice for 4 days.
Therefore, the study described the potentiality of filleting
fish prerigor. As DL is a time- and temperature-dependent
phenomenon, chilled products should be stored at low
temperatures (e.g., −1 to 4◦C) with short storage duration.
It is also important to minimize the quick onset of rigor
through controllable methods such as gentle handling
and proper chilling processes immediately after slaughter
(Chan, Roth, Skare, et al., 2020).

3.3 Temperature and species

WHC of fresh and cold-smoked salmon fillets does not
seem to be affected by the muscle temperature at the point
of filleting (Lerfall & Rotabakk, 2016). The pH and chem-
ical composition in fish muscle differ among individuals,
and there are also chemical variations depending onwhere
the analysis is done on the fillet (Ofstad et al., 1993).
It wasmentioned that DL increases in the cranial-caudal

direction for fresh and frozen rainbow trout, but after ice
storage, these variations became minimal among the fillet
portions (Mørkøre et al., 2002). The species of interest and
killing process also influence WHC. Farmed salmon was
shown to have a higher WHC than lean species such as
wild and farmed cod, which was related to species-specific
features and the higher stability of their actin and myosin
(Duun, 2008; Ofstad et al., 1996). This was also consis-
tent with the results of Duun (2008), who concluded that
Atlantic salmon has better WHC than cod with a simi-
lar muscle pH. Interestingly, the comparison of WHC in
farmed salmon and rainbow trout by Løje et al. (2017)
found that the species with the higher fat content (salmon)
was less able to hold water in themuscle, thereby lowering
the WHC.
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3.4 Diseases and ploidy

Diseases and ploidy can influence DL and WHC. Salmon
containing the salmonid alphavirus (SAV) and those froma
fish farm with repeated pancreatic disease (PD) outbreaks
showed a higher DL than salmon with no records of PD
and from farms diagnosed with PD 5–7 and 11–12 months
before slaughter (Lerfall, 2011). In fish farms, triploid
salmons were introduced to prevent breeding between
wild and farmed fish that might escape from a cage.
Lerfall et al. (2017) conducted a study to distinguish the
quality differences between diploid and triploid salmon
farmed at 5, 10 and 15◦C. DL was significantly affected by
the rearing temperature and ploidy, whereas ploidy did not
influenceWHC. Increasing the rearing temperature from 5
to 15◦C also led to a larger increase in DL for both ploidies.
DL was generally higher in triploid salmon, with the most
significant differences observed at 10◦C. Thiswas related to
the larger cellular volume to accommodate the extra chro-
mosome (Benfey, 1999; Bjørnevik et al., 2004).

3.5 Stress and slaughter conditions

Roth et al. (2008) showed that fillets exposed to electri-
cal stunning after a percussive blow to the head during
slaughter led to a higher DL than fillets without electri-
cal stimulation. In a follow-up study, Roth et al. (2010) fur-
ther observed that fillets exposed to 12 or 180 s of electrical
stunning had a higher DL and lowered WHC than those
exposed for 6 s after 16 days of storage at 3.8◦C. The pres-
laughter crowding method, where fish are crowded in net
pens before slaughter, induces significant stress responses,
accelerates rigor mortis in fish and negatively affects the
quality (Bahuaud et al., 2010). Few studies, however, have
analyzed the crowding effect on water holding properties
in salmonid species. Gatica et al. (2010) concluded that
crowding and reduced oxygen levels increased the DL of
salmon fillets. Disparities may be observed among various
species attributed to the different crowding densities and
the duration to which they were confined.

4 EFFECTS OF PROCESSING AND
PRESERVATIONMETHODS

4.1 Salting and smoking

Various processing and preservationmethods are available
to prolong fish shelf life. In Europe, a substantial amount
of the fish produced for human consumption are smoked
(Birkeland & Akse, 2010; Cardinal et al., 2004; European
Commission, 2016). The smoking process involves either

soaking in brine, injection or dry salting, then smoking and
drying. During lightly processed procedures such as gen-
tle salting and cold-smoking, protein denaturation in the
muscle shifts the water distribution within the salmon. As
measured using NMR, the population of water with the
relaxation time T21 (immobilized water) decreases while
the T22 population (free water) increases (Aursand et al.,
2008; Gudjónsdóttir et al., 2015; Løje, 2007). This indicates
an increase in water mobility (Aursand et al., 2008). As
a result, the water that remained in the muscle would be
more tightly bound (Gudjónsdóttir et al., 2015; Wang et al.,
2018), resulting in a higher WHC as observed in previ-
ous studies with cold-smoked salmon (Chan, Roth, Skare,
et al., 2020; Gomez-Guillen et al., 2000; Lakshmanan et al.,
2007; Løje, 2007). An overview of previous research done
on DL and WHC for the standard salting techniques com-
bined with cold-smoking is shown in Table 2.
Rørå et al. (2003) studied the effect of diets contain-

ing fish oil (control) or soybean oil on WHC in salmon
after dry salting and cold-smoking. Neither diet influenced
the WHC. However, the rigor status before secondary pro-
cessing and temperature during cold-smoking affected the
WHC. After vacuum storage, prerigor brine injected (25%
brine (w/w)) fillets had a slightly higher exudate of 0.3%
than those processed postrigor (Birkeland & Akse, 2010).
This was explained by the osmotic pressure that forces
moisture out of the muscle during the vacuum packaging
of prerigor fillets. Rørå and Regost (2003) studied the effect
of WHC on smoking salmon packed in plastic bags from
5 to 40◦C in a water bath or heating chamber. WHC was
better for those cold-smoked below 30◦C, but there was no
difference between heating methods.
The degree of muscle swelling and WHC are dependent

on factors such as salting procedure, salt concentration
and smoking conditions. Salt and smoking temperatures
denature actin and myosin, as confirmed using differen-
tial scanning calorimetry (DSC) (Schubring, 2006).Myosin
is typically sensitive and undergoes structural denatura-
tion quickly during basic procedures such as processing
involving salt. When fish is immersed in lower brine con-
centrations, a lower degree of protein denaturation occurs
(Gallart-Jornet et al. 2007b). The Cl– ions from salt weakly
attach to the protein. These repulsive electrostatic forces
cause the protein to entrap water and induce swelling of
muscle fibers, thereby increasing WHC (Offer & Trinick,
1983; Thorarinsdottir et al., 2004). This is also known as the
“salting in” effect and was observed by Chan, Roth, Jessen,
et al. (2020) on the immersion of whole salmon in refriger-
ated seawater (salinity 3.5%).
Better processing yields were obtained for brine and

injection salting than dry salting of salmon fillets (Birke-
land et al., 2004, 2003; Bjørnevik et al., 2018; Cardinal
et al., 2001). Compared to injection salting, dry salting
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induces a lower WHC (Birkeland et al., 2004; Bjørnevik
et al., 2018). Maximum swelling and maximum WHC
are usually obtained at 1 M (5.8% NaCl) (Fennema, 1990;
Gallart-Jornet et al., 2007b; Thorarinsdottir et al., 2004).
Gallart-Jornet et al. (2007b) found that the weight of
salmon fillets increased as brine concentration decreased,
and brine concentrationswith<18%NaCl (w/w) decreased
protein denaturation and increased WHC. The maximum
weight increase was at 4% NaCl (w/w). When salt concen-
tration increases (e.g., 25% NaCl (w/w) and dry salting),
proteins denature and the myofibrils dehydrate, leading
to muscle shrinkage, lower WHC and higher yield loss
(Gallart-Jornet et al., 2007b; Thorarinsdottir et al., 2004).
A higher fat content gives greater resistance to salt

uptake. The relevance of fat content and fillet shape
on WHC of raw and cold-smoked fillets was studied by
Mørkøre et al. (2001). A decrease inweight loss (i.e., greater
yield) with increasing fat content was observed during
the salting and smoking process, as less water is avail-
able for osmotic dehydration. The WHC in cold-smoked
salmon was reduced as fat content increased, measured by
centrifugation and expressed as water loss. A significant
amount of the fat in the white muscle is found in the con-
nective tissue surrounding the muscle fibers (Stien et al.,
2007). Ofstad et al. (1993) explained thatmyofibers severely
shrinks at 45◦C, likely due to myosin denaturation. There-
fore, this facilitates the fluid release and may explain the
correlation between WHC and fat content.

4.1.1 Salt and smoke replacers

High consumption of NaCl is associatedwith hypertension
and cardiovascular diseases. In Norway, a salt content of 3
g NaCl/100 g product for cold-smoked salmon is voluntar-
ily encouraged by permitting the display of “The Keyhole”
label on food packages, representing healthier products
(Ministry of Health and Care Services, 2015). Alternatives
have been introduced to replace NaCl, but the salt replac-
ers should have similar functional properties and not
compromise the overall sensory profile, safety and quality
of the food. KCl is considered a good substitute for NaCl
based on its similar physical and chemical properties. The
comparison of using 50%KCl/50%NaClwith 100%NaCl on
vacuum packaged smoked salmon after 42 days of storage,
using water vapor permeable bags during the salting-
smoking process, showed no differences in weight loss nor
the formation of exudates (Rizo et al., 2018). Lerfall (2011)
studied the influence on quality using nitrite salt (99.4%
NaCl, 0.6% NaNO2) on cold-smoked salmon and found no
difference in weight loss compared to 100% NaCl. Never-
theless, the food industry remains skeptical about using
KCl as a replacement due to the undesirable after-taste and

possibility of health risks such as hyperkalemia (Cepanec
et al., 2017). More research needs to be done to identify the
quality changes using salt replacers on smoked salmon.
The use of liquid smoke can be a healthier alterna-

tive than the traditional smoking method of using wood
chips. It contains lesser amounts of polycyclic aromatic
hydrocarbons (PAH), which are undesirable for human
health. Birkeland and Skåra (2008) indicated no differ-
ence in DL between the application of smoke condensate
or wood chips after vacuum packaged storage. Valø et al.
(2020) used purified condensed smoke (PCS) and found
that smoke from the atomization of PCS successfully inhib-
ited microbial growth in salmon. Throughout storage, DL
was significantly higher for PCS processed salmon.

4.2 Chilling

Temperature is a critical factor in food preservation, and
this should be lowered as early as possible. The internal
temperature of fish is usually aimed to be 0–2◦C (Bantle
et al., 2015). Themost commonmethod of fish chilling is by
using ice, but other methods, such as superchilling and ice
slurry, are also used. These various chilling methods could
influence the amount of DL and WHC. However, indus-
trial and laboratory chilling may vary due to the more sig-
nificant variations and process differences with large scale
industrial chilling.

4.2.1 Superchilling

Superchilling is a preservationmethodwhere the core tem-
perature of the fish is lowered between conventional chill-
ing and freezing (Banerjee & Maheswarappa, 2019). As
Magnussen et al. (2008) described, superchilling is also
defined as where a thin layer of ice forms on the fillet
surface. This ice eventually absorbs heat from the inter-
nal reservoir to achieve equilibrium. The use of fish as
a cooling medium eliminates the need for external ice,
which usually takes up to 30% of space during transporta-
tion (Bahuaud et al., 2008; Magnussen et al., 2008). Exten-
sive research has shown that superchilled Atlantic salmon
introduces several benefits, including reducing enzymatic
reactions and microbiological growth, improving quality
and extended shelf life compared to traditional chilling
(Claussen et al., 2017; Duun, 2008; Kaale et al., 2011; Mag-
nussen et al., 2008).
Determining the freezing time and temperature mea-

surement during superchilling remains challenging
(Banerjee & Maheswarappa, 2019; Magnussen et al.,
2008). The freezing time, and thereby the amounts and
distribution of the ice fraction, significantly affect the
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water holding properties and processing yield (Magnussen
et al., 2008; Stevik et al., 2010). Kaale et al. (2013) studied
the effect of cooling rates (153 and 227 W m–2 K–1) and
superchilling temperature (−20 and −30◦C) on salmon
fillets. A faster freezing rate (227 W m–2 K–1) with a low
temperature (−30◦C) produced small crystals evenly
distributed in and out of muscle cells and can reduce DL
during thawing more than larger crystals formed at slow
freezing rates. However, this advantage can be dimin-
ished during superchilled storage as the small crystals
can collectively form large crystals. Consequently, cell
membranes rupture and cell components are disrupted,
leading to negative consequences for texture, DL and
WHC (Bahuaud et al., 2008; Kaale et al., 2013). An earlier
study by Duun and Rustad (2008) showed that salmon
fillets stored superchilled at −1.4◦C had a significantly
higher DL (1.6%) than those at−3.6◦C (0.3%). Nonetheless,
a DL of <2% is considered low. The WHC, as measured by
liquid loss, was similar for both groups and increased until
16 days of storage. Kaale et al. (2014) also stated that WHC
increased with 21 days of superchilled storage at −1.7◦C
for salmon fillets, while a decrease in WHC was observed
for chilled fillets at 4◦C during the first 7 days, followed by
an increase.
The optimal degree of superchilling was suggested to be

freezing 5%–30% of the free water (Kaale & Eikevik, 2014).
This range of ice fractions was investigated on salmon
by Stevik et al. (2010), where superchilled salmon with
30% ice level gave a consistently lower WHC than 10 and
15% ice levels and chilled samples stored at 0 and 2◦C.
Claussen et al. (2017) further found that superchilled stor-
age of organic salmon at −1.5◦C (with about 15% ice frac-
tion) led to a slightly greater DL during the first 7 days than
those chilled at 3◦C, which may be due to damage from
partial freezing. These differences disappeared afterwards.
Therefore, attentionmust be given to the temperature fluc-
tuations and development of ice crystals within themuscle
during the superchilling process.
A practical superchilling approach beneficial for stor-

ing large volumes of fish is using refrigerated seawater
(RSW) tanks, which are often usedwith pelagic fish. Chan,
Roth, Skare, et al. (2020) studied the effect of superchilling
of salmon in RSW at subzero temperatures with a new
slaughteringmethod in a fishing vessel against the conven-
tional ice storage method. This concept slaughters fish by
the sea cage immediately onboard the vessel, where fish
are pumped, electrically stunned, bled and gutted. Then,
the gutted whole fish is superchilled in RSW tanks during
transportation (Chan Roth, Skare, et al., 2020). Fish stored
in RSW and then on ice after filleting had the lowest DL,
but those stored in RSW and then superchilled in liquid
N2 after filleting gave the lowestWHC. However, these dif-
ferences disappeared after smoking. Another similar study

showed that whole gutted salmon in RSW had a signifi-
cantly better WHC than those on ice (Chan, Roth, Jessen,
et al., 2020). This difference also disappeared after filleting
and cold-smoking. Immersing whole fish in RSW is a brin-
ing method that leads to weight gain from the concentra-
tion gradient differences. Chan, Roth, Jessen, et al. (2020)
and Chan, Feyissa, et al. (2021) found an overall weight
gain of 0.7% and 0.9%, respectively, for salmon stored in
−1◦C RSW for 4 days followed by 3 days on ice. Erikson
et al. (2011) also showed that salmon stored at −2◦C sea-
water (SW) slurry led to a weight gain of 6% at 11 days.
On the other hand, storing fish for a day in slurry then 3
days on ice brought about a loss in weight, like traditional
ice storage, yet the WHC was better than only storing on
ice during the 4-day storage. This was likely because the
fish were stored for only a day in slurry, so the observable
differences were minor. Therefore, storage in RSW could
be advantageous in water retention andmay improve cook
loss. The RSW tanks also provide a high heat transfer coef-
ficient that allows the fish’s internal temperature to cool to
the desired temperature in a relatively shorter time.

4.3 Freezing and thawing

Freezing and frozen fish storage is a food preservation
method that significantly prolongs the product’s shelf life.
However, biochemical reactions such as myofibrillar pro-
tein denaturationmay still occur, negatively affecting func-
tional properties, including WHC, juiciness and texture.
This leads to a dry texture, reduced quality, and impacts
DL. In terms of water mobility, freezing can change the
immobilized water in intracellular locations of muscle
tissues into free water that can be easily lost as drip
(Dawson et al., 2018). Like superchilling, the freezing rate
also affects the sizes and uniformity of crystals formed at
the intra- and extracellular muscle structures. Faster freez-
ing rates are better at maintaining the physical and chem-
ical attributes of products, as ice nucleation within the
intracellular tissues forms smaller and more uniform ice
crystals within the structure. Einen et al. (2002) studied
the effect of freezing on both pre- and postrigor fillets of
Atlantic salmon. They observed that the frozen-thawed fil-
lets had considerably higher DL than the unfrozen coun-
terparts, and those postrigor had the highest DL after 10
days of cold storage. Muscle fiber shrinkage and cell dam-
age occur during freezing, especially at slow freezing rates.
This led to an increase in DL, lowering fish quality.
Decreasing the frozen storage temperature from −22 to

−40◦C was found to greatly improve the quality and shelf
life of salmon (Haugland, 2002). All free water is frozen at
−40◦C, so only bound water remains in themuscle, reduc-
ing water mobility and inhibiting biochemical reactions
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(Bøgh-Sørensen, 2006). Indergård et al. (2014) tested var-
ious quality parameters during long-term frozen storage of
salmon at −25, −45 and −60◦C for up to 375 days. Storage
at−60◦Chad the lowest DL of 2%, calculated by theweight
difference between the raw material before frozen storage
and after thawing. At ultra-low temperatures ( <–45◦C),
the freezing rate increases due to the high heat transfer and
low temperature (Wu et al., 2017). Therefore, smaller ice
crystals may be formed within the tissue, preventing tis-
sue damage and reducing DL during thawing. The study
of Zhu et al. (2004) further showed that plate freezing of
salmon at−38◦C resulted in a lower DL than conventional
air freezing. On the other hand, an ultra-rapid freezing pro-
cess in liquid nitrogen (−195◦C) had the highest DL, prob-
ably due to mechanical cracking.
The thawing method after frozen storage also greatly

influences water holding properties. For example, thawing
in heated air at 25◦C led to a significantly higherDL than in
a 5◦Cwater bath regardless of storage duration and temper-
ature (Haugland, 2002). Thawing should be done quickly
to prevent water in the muscle from shifting its position,
which leads to increased DL (Cai et al., 2019). A low tem-
perature is also recommended to prevent the acceleration
of microbial and enzymatic reactions. Various food thaw-
ing technologies can assist the thawing process, such as
high pressure, ultrasound, high voltage electrostatic field
and radiofrequency (Wuet al., 2017). Studies of ohmic heat-
ing of beef (Llave et al., 2018) and high pressure thawing
of chicken breast (Li et al., 2014) showed a reduced thaw-
ing loss. So far, few studies have focused on the effect of
innovative technologies on freezing and thawing salmon
(Li et al., 2020). This introduces a knowledge gap for fur-
ther research and process optimization.

4.4 Thermal processes

Various cooking methods commonly used in food produc-
tion, including boiling, baking, frying, steaming, sous-vide
and broiling, result in a change in quality attributes. Ther-
mal processing applies time and temperature to inactivate
microorganisms and enzymes, ensuring safe consumption
of the product. Fresh fish can rapidly undergo chemical,
biochemical and microbial processes. Hence, thermal pro-
cessing should take place before these processes deterio-
rate the quality (Skipnes, 2014). Since the chemical and
morphological composition differs within the fish mus-
cle, this can affect the cook loss. For example, Kong, Tang,
Rasco, Crapo, et al. (2007) described that the cook loss with
pink salmon was significantly lower from the middle sec-
tion close to the dorsal fin than those closer to the head and
tail. So, it can be assumed that location can affect Atlantic
salmon as well. When comparing oven baking and pan-

frying to an internal temperature of 45–63◦C, Brookmire
et al. (2013) reported that pressed juice for the oven-baked
and pan-fried salmon was reduced to 27% at 55◦C and 25%
at 60◦C, respectively.
During thermal processing, the shrinkage of myofibril-

lar proteins caused by protein denaturation and aggrega-
tion decreases the WHC and leads to a firmer and harder
texture (Ofstad et al., 1993; Skipnes, 2014; Sun et al., 2018).
Also, the lightness of the muscle increases while its dis-
tinct red color is lost. For Atlantic salmon, proteins dena-
ture around 45, 65 and 78◦C for myosin, sarcoplasmic pro-
tein and actin, respectively (Ofstad et al., 1996). Cook loss
increases with temperature and storage time. Themajority
of cook loss occurswithin the first fewminutes and reaches
a maximum at 50◦C in salmon due to the denaturation of
myosin. Above 50◦C, DL is probably reduced because of
sarcoplasmic protein aggregation (Ofstad et al., 1993). The
rate of quality deterioration can be expressed using an inte-
gration of the kinetic equation 𝑑𝐶

𝑑𝑡
= −𝑘(𝐶)𝑛, where k is the

rate constant, C is the quantitative indicator of a quality
parameter at time t andn is the reaction order (Kong,Kong,
Tang, Rasco, & Crapo, 2007). Ovissipour et al. (2017) exam-
ined the cook loss and kinetics of protein denaturation dur-
ing heat pasteurization of salmon from 55 to 95◦C. They
found that cook loss follows a first-order reaction, where
most cook losses occurred during the first few minutes in
heating and eventually slowed down. Area shrinkage also
occurs from the decrease in the sarcomere length which
shrunk along with the muscle fibers.
Sous-vide is a cookingmethod popular with ready-to-eat

foods. The product is sealed in vacuum pouches, treated
at a controlled time and temperature, and then rapidly
cooled. A mild temperature of 60–80◦C for 20–40 min is
recommended for fish (González-Fandos et al., 2005), but
in reality, 40–60◦C is often used for optimal texture and fla-
vor (Głuchowski et al., 2019). Lerfall et al. (2018) combined
different CO2 treatments and microwave or conventional
pasteurization (62◦C/12 min). They found that DL was not
affected by the pasteurization method. Salmon packaged
with CO2 emitters, that allowed CO2 to be released after
pasteurization, had the lowest DL compared to the control
group (unexposed to CO2) or those that underwent solu-
ble gas stabilization (SGS). SGS is a technology that can
improve shelf-life where CO2 is driven into the flesh before
pasteurization (Abel et al., 2019; Lerfall et al., 2018). Abel
et al. (2019) found no correlation between DL and WHC
with packaging technology when modified atmosphere
(MA) and SGS packaged salmon fillets were compared
after mild heat treatment. Głuchowski et al. (2019) com-
pared the effect of sous-vide (57◦C/20 min, 63◦C/80 min)
with roasting (180◦C/23min) and steaming (100◦C/16min)
on salmon fillet portions. The highest (94%) and lowest
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yield obtained (84%) were salmon treated at 57◦C/20 min
and roasted, respectively. The salmon treated at 63◦C/80
min had the best overall sensory scores, which were the
recommended conditions for sous-vide treatment without
significantly affecting yield (91%).

4.5 Nonthermal treatments

Conventional food processing technologies often use ther-
mal methods, but this could impact nutritional values, tex-
ture and freshness. High-pressure processing (HPP) is an
innovative preservation technique that extends the micro-
biological shelf life of seafood without incorporating heat
nor loss of the organoleptic and nutritional characteris-
tics (Campus, 2010; Christensen et al., 2017; Yagiz et al.,
2009). With HPP, the packaged product is placed inside a
pressure vessel, water pressure (100–900 MPa) is applied,
and the adiabatic heating is ∼3◦C/100 MPa (Aymerich
et al., 2008). An advantage of this technology is that it is
a mild process done at room temperature, eliminating the
need for heat and subsequent cooling processes. Thus, this
could be an alternative to conventional heating processes
in preparing ready-to-eat foodwithminimal change in sen-
sory attributes while inactivating microorganisms.
The effect of HPP on the quality parameters of raw, cold-

smoked or sous-vide treated salmon (Christensen et al.,
2017; Lakshmanan et al., 2005, 2007; Ojagh et al., 2011;
Yagiz et al., 2009) has been studied. The hydrostatic pres-
sure is important to control and reduce the DL. Hedges
and Goodband (2003) found that HPP in frozen cod fil-
lets could selectively denature the structure of myosin
molecules and was correlated with WHC. An application
of a pressure of up to 100 MPa before freezing seemed to
reduce cook loss significantly. Simultaneously, structural
denaturation of actin occurs at 200 MPa, which impairs
the myofibrillar structure and decreases the WHC. Laksh-
manan et al. (2007) reported that HPP decreases the WHC
of raw salmon regardless of processing time and pressure,
while there was a 2% increase in WHC for cold-smoked
salmon exposed to 150MPa for 10min. Increasing the pres-
sure to higher levels also seemed to give a lighter product
(Lakshmanan et al., 2005).
Similarly, Christensen et al. (2017) observed that the

WHC of salmon fillets decreased when exposed to 200
MPa, followed by storage for 18 days. The storage method,
pressure and processing time are essential factors to opti-
mize for the HPP method. It is also important to avoid
severe treatment as high pressure may cause gaping (Gud-
mundsson & Hafsteinsson, 2001). Nevertheless, there is a
potential value to exploring this technique further.
Another alternative for nonthermal treatment in food

is the use of pulsed electric field (PEF). This is a method

where short electric pulses with a high electrical field
strength are applied to food between two electrodes to
induce cell electroporation (i.e., holes in the cell mem-
brane), making it accessible for the next processing step.
The application of PEF could enhance heat andmass trans-
fer processes (Toepfl et al., 2014). As muscle cells are par-
tially disrupted, absorption rates could be improved, and
the concentration of common preservatives used in food
such as salt, nitrate and spices could be reduced (Gómez
et al., 2019). Although PEF is being used in the food indus-
try for various plant and meat-based products, there are
currently only a few studies regarding the effect of PEF
on the quality attributes of fish products. A recent study
of PEF treatment on the freeze-thaw quality of Atlantic
salmon showed that applying PEF decreased the thawing
time with better preservation of muscle fiber, leading to
a lower DL and better WHC (Li et al., 2020). Klonowski
et al. (2006) also showed that fish muscle becomes more
porous. There is a potential to use PEF technology to
increase water uptake and water holding properties, but
more research needs to be done. On the other hand, Gud-
mundsson and Hafsteinsson (2001) found that mild PEF
treatment is unsuitable for preservation as it impacted the
microstructure and texture and induced gaping. Therefore,
it is important to consider factors that might affect quality,
such as electric potential and pulse duration.

4.6 Packaging

Various modern packaging technologies such as gas pack-
aging, traditional vacuum and vacuum skin packaging are
available to prolong the shelf life of fish. A comparison
of water holding properties by Chan, Skare, et al. (2021)
showed that salmon fillet portions kept in refrigerated stor-
age in modified atmospheric packaging (MAP) with 60%
CO2:40% N2 had similar DL, WHC and microbial shelf-
life duration as with vacuum skin packaging. Interestingly,
vacuum skin packaged salmon produced a significantly
greater DL yet similarWHC than traditional vacuumpack-
aged fillets (Chan, Rotabakk, et al., 2021).
The effect of combining superchilling and MAP extends

the shelf life of salmon (Fernández et al., 2009; Hansen
et al., 2009; Sivertsvik et al., 2003). Sivertsvik et al. (2003)
found that DL was about the same in fillets stored in MAP
(60% CO2:40% N2), either superchilled at −2◦C or chilled
at 4◦C. On the other hand, Hansen et al. (2009) found DL
for fillets superchilled in a freezing tunnel, then packaged
in MAP (60% CO2:40% N2) and stored at 0.1◦C, was sig-
nificantly higher than the chilled samples. The differences
observed fromboth studies could be attributed to the differ-
ent storage temperatures. Therefore, the synergistic effect
of superchilling combined with MAP can increase shelf
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life, but this method needs to be optimized to minimize
DL. Rotabakk and Skuland (2017) established that portion
size, freezing regime and packaging method influenced
DL of cold-smoked salmon after freezing and thawing.
Sliced salmon in vacuum packaging produced more drip
than whole fillets since muscle integrity is disintegrated
and more surface area is exposed. Freezing in bulk also
increased DL as the freezing time is lengthened. Smoked
fillets in MAP also had a significantly lower amount of DL
after thawing than those vacuum packaged, as explained
by the cushioning effect of the headspace gas. However,
during thawed storage, DL inMAP fillets was significantly
higher.
An additional step that can be introduced before pack-

aging in MAP is SGS. As mentioned, SGS is a process that
adds CO2 into the product. This allows CO2 to dissolve into
the product before packaging and prevents package col-
lapse (Abel et al., 2019). Hurdle technology explains how
several combinations of fish preservation and packaging
methods can ensure good quality and extended shelf life
(Leistner, 2000). Since SGS has only been implemented on
a laboratory scale, following this with a scale-up would
be interesting. In addition, future research may consider
combining this technology with other packaging and pro-
cessing methods such as vacuum packaging and HPP to
observe how the quality would be affected.
Hyperbaric storage of food products has been attract-

ing interest in the food preservation field. This method
stores the product above atmospheric pressure at moder-
ate pressures (<100 MPa) and gives a better shelf life and
comparable quality to conventional refrigeration (Fidalgo
et al., 2020). Fidalgo et al. (2019) conducted a study
that optimized the conditions using different pressures
and storage temperatures for the shelf-life extension of
Atlantic salmon. The optimal condition was found to be
60 MPa/10◦C. Following up, Fidalgo et al. (2020) found
that DL was relatively stable with 3–4% for hyperbaric
storage/low temperature (HS/LT 60MPa/10◦C) of vacuum
packaged salmon throughout 30 days of storage. On the
other hand, those stored under normal atmospheric pres-
sure (0.1 MPa) at 5 and 10◦C gave a DL of 7% at 30 days
and 15 days of storage, respectively. WHC decreased after
the first 5 days before increasing after 30 days for all sam-
ples. This latter increase in WHC was probably due to the
remaining water being tightly retained within the muscle.
The latest study with 75 MPa/25◦C at room temperature
showed that DL gradually increased for 30 days until 13%
and was consistently higher than those at 0.1 MPa/5◦C,
reaching 7% (Fidalgo et al., 2021). Note that 0.1MPa/25◦C
had the highest DL after 5 days at 10%. This suggests that
temperature could be a critical factor in quantifying DL
although several advantages have been suggested using
hyperbaric storage, such as better energy efficiency.

The usage of water vapor permeable (WP) bags was
introduced to reduce the processing steps during salting
and smoking (Rizo et al., 2015). Salmon portions were
sprayed with liquid smoke with a specified salt dosage,
then packed in WP bags for 24 h in a cold room with
fixed relative humidity. These bags allowed drying simul-
taneously with salting and smoking and gave similar sen-
sory quality to the commercial smoked salmon.Weight loss
was higher for salmon in WP than high barrier vacuum
bags due to the higher dehydration rate (Rizo et al., 2015).
The use of these bags presents interesting opportunities to
reduce processing steps and brine wastes produced during
salting. More studies could be conducted to optimize the
conditions and possibilities to reduce weight loss.

5 MODELLINGWATER HOLDING
PROPERTIES

Quality measurements can often be costly and labor inten-
sive. Mathematical modelling has been gaining popularity
and can serve as an alternative for many purposes in the
food industry, reducing experimental needs. Adequate val-
idations must be done to check the accuracy of the model.
Numerical models have been proposed based on the first
principles of heat andmass transfer that studies the salting
kinetics of salmon to predict state variables as a function
of time and space (Martínez-López et al., 2019; Wang et al.,
1998, 2000). Empirical models, such as Peleg’s or Zugar-
ramurdi and Lupin’s models, can also be applied to pre-
dict salt and water concentrations based on mathematical
equations obtained from experimental data. Besides, reac-
tion rates for quality degradation of physical properties,
such as color and texture, during thermal processing can
be expressed using kinetic order equations (Kong, Tang,
Rasco, & Crapo et al., 2007; Ovissipour et al., 2017).
Modelling WHC in Atlantic salmon during raw fillet

storage has not been extensively studied. This is possi-
bly due to the high variations and different methods that
are available to measure WHC. Predicting WHC can be
possible during thermal processing through the corre-
lation of other related quality parameters. Multivariate
analysis has shown that WHC is highly correlated with
heating temperature, pH, heating time and salt, in decreas-
ing order (Varmbo et al., 2000). Heat treatment causes
more destructive changes to the muscle structure, thereby
affecting WHC, as shown by Ofstad et al. (1995). When
the salmon muscle is heat-treated, a rapid water loss (i.e.,
WHC decreases) is observed at temperatures >30◦C. With
the reduction in myofibrillar space, a transverse shrink-
age occurred between 45 and 50◦C. This eventually leads
to protein denaturation and more water loss. Between 60
and 70◦C,WHC slightly increased, probably due to protein
aggregation that holds water (Varmbo et al., 2000).
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The numerical modelling of WHC as a function of tem-
perature has been formulated by van der Sman (2007) as
follows:

𝐶eq (𝑇) = 𝐶eq,0 −
𝑎1

1 + 𝑎2𝑒(−𝑎3(𝑇−𝑇𝜎))
(6)

where Ceq,0 is the initial WHC of the sample, T is the tem-
perature in ◦C, Tσ is the center of the sigmoid curve, and
a1, a2 and a3 are fitting parameters. This model has yet to
be used on salmon. The model was used by Blikra et al.
(2019) with farmed cod after cooking from 0 to 100◦C. It
was found that WHC follows a negative sigmoidal curve
when the sample is heated, inducing a pressure gradient
inside the muscle that led to an expulsion of water. The
decrease inWHC from 25 to 40◦C to a minimum value sig-
nifies the loss of free water during heating. Heating further
from 40 to 90◦C gave no differences in WHC.
DL and WHC can have a high degree of uncertainly as

affected by several postmortem and processing conditions.
For this reason, it can be challenging to create a one-size-
fits-all model with minor errors. Vibrational spectroscopy
methods such as NIR have been used for early predic-
tion of WHC in fresh pork (Forrest et al., 2000). A study
to predict WHC using Raman spectroscopy in pork was
a promising technique compared to NIR or fluorescence
spectroscopy (Andersen et al., 2020, 2018). The broad range
of this application makes it a suitable method to charac-
terize the macro-components of food, including carbohy-
drates, protein, fat and water (Li-Chan, 1996). Using mul-
tivariate analysis, Pedersen et al. (2003) reported a good
correlation between DL and WHC and the Raman spec-
tra. The spectral regions between 951–876 and 3128–3071
cm–1 can provide information aboutWHC,where 940 cm–1

is assigned to the peptide α-helix conformation. The latter
region is attributed to theN-H stretching band of the amide
group in the protein structure, which provides details on
proteolysis and protein denaturation. However, as spec-
troscopymethodsmeasure the potential DL formation, the
real DL obtained may differ from the predictions (Ander-
sen et al., 2018). The possibility of using this noninvasive
technique in predicting water holding properties calls for
more studies to be done and its applicability in industrial
settings.

6 CONCLUSION

Water holding properties (WHC and DL) are essential
attributes that can influence the entire value chain, from
whole fish to filleting to further processing and storage.
A common challenge for the fish industry in maintaining
food quality is to obtain a low DL and goodWHC, in other

words, a high amount of immobilized water in the muscle.
Various methods are available to measure WHC, and the
demand for a rapid and low-cost approach introduces non-
invasive techniques. Nevertheless, it must be noted that
results obtained from various measurements are relative
and should be compared with studies including many of
the same technical details and calculation methods. Sev-
eral methods, including pre- and postslaughter conditions,
and processing and preservation technology combinations,
can extend the product’s shelf life and improve water hold-
ing properties. In addition, innovative technologies might
be introduced and determining their potential needs more
research to optimize the parameters in maximizing water
holding properties without compromising quality.
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