1) Check for updates

TRR

JOURNAL OF THE TRANSPORTATION RESEARCH BOARD

Research Article

Transportation Research Record
2021, Vol. 2675(10) 211227
© National Academy of Sciences:

Transportation Research Board 2021
—

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03611981211011170
journals.sagepub.com/home/trr

®SAGE

DistTune: Distributed Fine-Grained
Adaptive Traffic Speed Prediction for
Growing Transportation Networks

Ming-Chang Lee', Jia-Chun Lin', and Ernst Gunnar Gran'~

Abstract

Over the past decade, many approaches have been introduced for traffic speed prediction. However, providing fine-grained,
accurate, time-efficient, and adaptive traffic speed prediction for a growing transportation network where the size of the net-
work keeps increasing and new traffic detectors are constantly deployed has not been well studied. To address this issue, this
paper presents DistTune based on long short-term memory (LSTM) and the Nelder-Mead method. When encountering an
unprocessed detector, DistTune decides if it should customize an LSTM model for this detector by comparing the detector
with other processed detectors in the normalized traffic speed patterns they have observed. If a similarity is found, DistTune
directly shares an existing LSTM model with this detector to achieve time-efficient processing. Otherwise, DistTune custo-
mizes an LSTM model for the detector to achieve fine-grained prediction. To make DistTune even more time-efficient,
DisTune performs on a cluster of computing nodes in parallel. To achieve adaptive traffic speed prediction, DistTune also pro-
vides LSTM re-customization for detectors that suffer from unsatisfactory prediction accuracy due to, for instance, changes
in traffic speed patterns. Extensive experiments based on traffic data collected from freeway 15-N in California are conducted
to evaluate the performance of DistTune. The results demonstrate that DistTune provides fine-grained, accurate, time-effi-

cient, and adaptive traffic speed prediction for a growing transportation network.

Traffic speed is a key indicator for measuring the effi-
ciency of a transportation network. Accurate traffic
speed prediction is therefore crucial to achieve proactive
traffic management and control for transportation net-
works. During the past decade, many approaches and
methods have been introduced for traffic speed predic-
tion. Each of them can be summarized as learning a
mapping function between input variables and output
variables. These methods can be classified into two main
types: parametric and nonparametric. Parametric
approaches simplify the mapping function to a known
form, i.e., they require a predefined model. A typical
example is the autoregressive integrated moving average
approach (ARIMA) (/). By contrast, nonparametric
approaches do not require a predefined model structure.
Typical examples include the k-nearest neighbors (k-
NN) method (2, 3), artificial neural network (ANN) (4),
and recurrent neural network (RNN) (9).

However, providing fine-grained, accurate, time-effi-
cient, and adaptive traffic speed prediction for a growing
transportation network where the size of the network
keeps increasing and new traffic detectors are constantly
deployed on the network has not been well studied. To

address this issue, this paper proposes a solution based
on long short-term memory (LSTM) (6), which is a spe-
cial type of RNN. Prior studies such as Ma et al. (7), Yu
et al. (8), and Zhao et al. (9) have shown that LSTM is
superior in time series prediction and provides better pre-
diction accuracy than many existing approaches and
neural networks, including Elman NN (7), Time-delayed
NN (7), Nonlinear Autoregressive NN (7), support vec-
tor machine (7), ARIMA (/), and the Kalman Filter
approach (/0). Therefore, LSTM is chosen as our build-
ing block.

However, several challenges exist and several issues
must be addressed to achieve the above-mentioned goal
(i.e., fine-grained, accurate, time-efficient, and adaptive
traffic speed prediction for a growing transportation net-
work). For instance, detectors such as loop sensors and

'Department of Information Security and Communication Technology,
Norwegian University of Science and Technology, Gjavik, Norway
ZSimula Research Laboratory, Fornebu, Norway

Corresponding Author:
Jia-Chun Lin, jia-chun.lin@ntnu.no

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981211011170
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981211011170&domain=pdf&date_stamp=2021-05-10

212

Transportation Research Record 2675(10)

90

80 -|
70 &
60
50
40

Traffic speed (mph)

30 4 <—Detector 718371

—=-Detector 763700

20 - Detector 1117762
10 4 ~Detector 1117782 2

Detector 1118496

4:00 430 5:00 530 6:00 6:30 7:00 7:30 8:00 8:30 9:00

Time

9:30 9:55

Figure I. The traffic speed collected by five detectors on freeway 15-N in California between 4 a.m. and 10 a.m. in a typical weekday (/2).

traffic cameras in a transportation network are deployed
in different places to collect and monitor traffic data.
Depending on the density of nearby population and
other factors, the traffic speed observed/collected by
detectors at different locations may not be the same. For
example, Figure 1 illustrates the traffic speed observed
by five detectors deployed on freeway 15-N in California
(11) in a typical weekday. We can see that the observed
traffic speeds were similar to each other between 4 a.m.
and 6 a.m. However, the pattern of the traffic speed
became different and diverse from 6 a.m. Therefore, we
recommend that each detector should have its own
LSTM model to predict the traffic speed of its coverage
so as to provide fine-grained traffic speed prediction and
achieve better transportation management and services.
However, such an approach is expensive and impractical
because training an LSTM model for each individual
detector in the growing transportation network is
required and that each training process is in general
time-consuming.

Another issue is how to achieve satisfactory prediction
accuracy and continuously maintain satisfactory accu-
racy over time for every single detector in the growing
transportation network. It is well-known that the success
of LSTM in achieving satisfactory prediction accuracy
relies on an appropriately configured set of hyperpara-
meters, which are parameters whose values are set before
the training process of LSTM starts. These hyperpara-
meters include the learning rate and the number of hid-
den layers. Determining appropriate values for LSTM
hyperparameters is usually done manually by trial and
error, which might be time-consuming, and may not be
able to guarantee good prediction accuracy. In addition,
an LSTM model might not be able to keep offering satis-
factory prediction accuracy because the traffic speed

pattern observed by the corresponding detector may
change over time.

To summarize, this paper attempts to address the fol-
lowing challenges:

1. How can we automatically customize an LSTM
for each single detector (i.e., appropriately config-
uring LSTM hyperparameters) in a growing
transportation network such that the correspond-
ing LSTM model provides satisfactory prediction
accuracy?

2. How can we time-efficiently perform automatic
LSTM customization for the increasing number
of detectors in growing transportation networks?

3. How can we keep maintaining satisfactory predic-
tion accuracy for every single detector in a time-
efficient way?

To address the above challenges, in this paper, we pro-
pose DistTune, which is a distributed scheme to automat-
ically customize LSTM models and constantly provide
satisfactory prediction accuracy for every single detector
in a growing transportation network. DistTune custo-
mizes an LSTM model for a detector by automatically
tuning LSTM hyperparameter values and training the
corresponding LSTM models based on the Nelder-Mead
method (NMM) (/3), a commonly applied method used
to find the minimum or maximum of an objective func-
tion in a multidimensional space. The reason why NMM
is employed will be explained later in this paper.

However, simply using NMM to gradually customize
an LSTM model for every single detector is not a scal-
able solution since the number of detectors in a growing
transportation network might be very large and increas-
ing. To enhance scalability and efficiency, DistTune

Lee et al

213

allows detectors to share the same LSTM model if these
detectors have observed similar traffic patterns. In addi-
tion, DistTune is designed in an incremental, distributed,
and parallel manner, and runs on a cluster of computing
nodes to accelerate all required LSTM customization
processes.

Whenever DistTune encounters an unprocessed detec-
tor D,, it checks if the traffic speed pattern observed by
D, is similar to that observed by any other detector whose
LSTM model has been customized by DistTune. If the
answer is positive and the traffic speed pattern observed
by D; is similar to that observed by detector D;, DistTune
directly shares D;’s LSTM model with D; without custo-
mizing an LSTM model for D;. However, if the answer is
negative, DistTune requests an available computing node
from the cluster to customize an LSTM model for D;. To
guarantee and maintain satisfactory prediction accuracy,
DistTune keeps track of the prediction accuracy of all
detectors. If any LSTM model is unable to achieve the
desired prediction accuracy because of a change in the
traffic pattern or another reason, DistTune requests an
available computing node to re-customize an LSTM
model for the corresponding detector.

To demonstrate the performance of DistTune, we
conducted three extensive experiments on an Apache
Hadoop YARN cluster using the traffic data collected
by detectors on freeway I5-N in California. In the first
experiment, we designed several scenarios to evaluate the
auto-tuning effectiveness of DistTune. The results show
that auto-tuning LSTM hyperparameters leads to higher
prediction accuracy than manually configuring LSTM
hyperparameters. In the second experiment, we evalu-
ated the auto-sharing LSTM performance of DistTune.
The results indicate that DistTune significantly reduces
the time for LSTM customization. In the last experi-
ment, we evaluated the LSTM re-customization perfor-
mance of DistTune under two types of re-customization.
One is to start from scratch. The other one is based on
Transfer Learning (/4). Surprisingly, the results show
that following the concept of Transfer Learning does not
bring significant benefits if time consumption and predic-
tion accuracy are both considered. The contributions of
this paper are as follows:

1. Two well-known hyperparameter optimization
approaches are evaluated and compared through
empirical experiments: NMM and the Bayesian
optimization approach (BOA) (/5). The results
suggest that the former method suits DistTune
better because of its efficiency in finding appro-
priate LSTM hyperparameter values for achiev-
ing the desired prediction accuracy.

2. The proposed DistTune enables detectors to share
the same LSTM model, and it provides an LSTM

re-customization service for all detectors when
any of them fails to provide satisfactory predic-
tion accuracy. The design of DistTune addresses
the time-consuming and computation-intensive
issues of LSTM customization for the tremendous
number of detectors in a growing transportation
network.

3. The performance of DistTune is carefully evalu-
ated through extensive experiments based on traf-
fic data collected by detectors on freeway I5-N in
California. The results suggest that DistTune pro-
vides fine-grained, accurate, time-efficient, and
adaptive traffic speed prediction for a growing
transportation network.

The rest of the paper is organized as follows: the next
section provides background and related work. We then
evaluate NMM and BOA, and explain why NMM is
chosen by DistTune to autotune LSTM hyperpara-
meters. We then introduce the details of DistTune and
evaluate the performance of DistTune, respectively. This
is followed by a discussion of the training data set we
chose for conducting our experiments. The paper con-
cludes with an outline of future work.

Background and Related Work

In this section, we briefly introduce LSTM and discuss
related work.

LSTM and its Hyperparameters

LSTM is a special type of RNN. Its architecture is simi-
lar to that of RNN except that the nonlinear units in the
hidden layers are memory blocks. Each memory block
consists of memory cells, an input gate, a forget gate, and
an output gate. The input gate decides if the input should
be stored in the memory cells. The forget gate determines
if current memory contents should be deleted. The output
gate decides if current memory contents should be out-
put. This design enables LSTM to preserve information
over long time lags, thereby addressing the vanishing gra-
dient problem (/6).

According to Lee et al. (/2), the prediction perfor-
mance of LSTM greatly depends on configuring appro-
priate values for the following hyperparameters:

Learning rate

The number of hidden layers
The number of hidden units
Epochs

The learning rate controls the amount the weights of
LSTM are updated during training. The lower the value,

214

Transportation Research Record 2675(10)

the less is the possibility of missing any local minima, but
it might prolong the training process. A hidden layer is
where hidden units take in a set of weighted inputs and
produce an output through an activation function. More
hidden layers are usually required to learn a large and
complex training data set. A hidden unit is a neuron in a
hidden layer. An inappropriate number of hidden units
might cause either overfitting or underfitting. An epoch
is defined as one forward pass and one backward pass of
all the training data. Too few epochs may underfit the
training data, whereas too many epochs might overfit the
training data.

It is clear that all the above-mentioned hyperpara-
meters are important to the learning performance and
computation efficiency of LSTM. Therefore, DistTune
takes all these hyperparameters into consideration when
conducting LSTM customization.

Related Work

Over the past two decades, many traffic prediction
approaches have been proposed. As briefly mentioned in
the introduction, they can be classified into two cate-
gories: parametric and nonparametric approaches. In
parametric approaches, a model structure (i.e., the map-
ping function between input variables and output vari-
ables) needs to be determined beforehand based on some
theoretical assumptions. Usually the model parameters
can be derived from empirical data. The ARIMA model
is a typical and widely used parametric approach (17).
Many ARIMA-based approaches were also introduced
to improve prediction accuracy, including Lee and
Fambro (/8), Williams (/9), and Williams and Hoel (20).

Unlike parametric approaches, nonparametric
approaches do not require a predefined model structure
(i.e., there is no need to make assumptions about the
mapping function). Typical examples include k-NN,
ANN, RNN, hybrid approaches, and so forth. The k-
NN method was used in Davis and Nihan (2) to forecast
freeway traffic. Several variants of the k-NN and RNN
methods were then introduced for traffic prediction, such
as Bustillos and Chiu (3) and Cui et al. (27). Le et al.
(22) addressed traffic speed prediction using big traffic
data obtained from static sensors and proposed local
Gaussian processes to learn and make predictions for
correlated subsets of data. Jiang and Fei (23) introduced
a data-driven vehicle speed prediction method based on
Hidden Markov models. Ma et al. (7) employed LSTM
to forecast traffic speed using remote microwave sensor
data. However, all the above approaches focus on pre-
dicting traffic on a fix-length road section or a fix-sized
region. Unlike these approaches, DistTune is a flexible
scheme for a growing transportation network since it is
able to incrementally customize LSTM models for any

detectors that are newly deployed on a transportation
network. This property makes DistTune a flexible and
scalable solution for a growing transportation network.
Ma et al. (24) used deep learning theory to predict
traffic congestion evolution in large-scale transportation
networks. Furthermore, Ma et al. (25) predicted traffic
speed in large-scale transportation networks by repre-
senting network traffic as images and employing convo-
lutional neural networks to make predictions. However,
both of these methods require the scale of the target
transportation network to be fixed and specified in
advance, which is not required when DistTune is
employed. DistTune can handle an increasing number of
detectors on the fly without requiring the scale of the tar-
get transportation networks to be specified beforehand.
More recently, Lee and Lin (26) formulated the prob-
lem of customizing an LSTM model into a finite Markov
decision process and then introduced a distributed
approach called DALC to automatically customize
LSTM models for detectors in large-scale transportation
networks. However, DALC only focuses on two LSTM
hyperparameters (the number of hidden layers and
epochs) using a fixed state transition graph. Unlike
DALC, our DistTune considers two more LSTM hyper-
parameters without using a finite Markov decision pro-
cess. DistTune is, therefore, more flexible than DALC.
In 2020, Lee et al. (/2) introduced DistPre to provide
find-grained traffic speed prediction for large-scale trans-
portation networks based on LSTM customization and
distributed computing. However, the LSTM models gen-
erated by DistPre cannot be updated to adapt to traffic
pattern changes. Therefore, DistPre might not be able to
maintain satisfactory prediction accuracy for every single
detector in a growing transportation network over time.

Evaluation of BOA and NMM

Hyperparameter optimization is the process of finding
appropriate values for the hyperparameters of a training
algorithm such that the algorithm can achieve desirable
results. Existing approaches include NMM, the Bayesian
optimization approach (BOA), grid search, random
walk, random search, genetic algorithm, greedy search,
simulated annealing, particle swarm optimization, etc.
The evaluation of these approaches can be found in, for
example, Matuszyk et al. (27) and Thornton et al. (28).
Among these approaches, BOA has gained great
popularity in recent years in a wide range of areas as a
result of its power and efficiency. BOA was designed to
find the optimal value of a black-box objective function.
In our context, the black-box objective function refers to
an LSTM model, and the optimal value refers to a hyper-
parameter setting (i.e., assigning a value to each LSTM
hyperparameter we consider). With this optimal

Lee et al 215
Table I. Four Hyperparameters and their Domains

Hyperparameter Riearn Niayer Nunit ep
Domain [0.01,0.2] [1, 10] [2, 40] [100, 1000]
Discrete with step 0.01 I 2 20

Note: ep = number of epochs.

hyperparameter setting, the LSTM model is able to pro-
vide satisfactory prediction accuracy.

In BOA, the uncertainty of the objective function
across not-yet evaluated values is modeled as a prior
probability distribution (called prior), which captures our
beliefs about the behavior of the function. After gather-
ing the function evaluations (i.e., the prediction accuracy
of an LSTM model under a particular hyperparameter
setting), the prior is updated to form the posterior distri-
bution over the objective function. The posterior distri-
bution is then used to construct an acquisition function
that will select the most promising value (i.e., the most
promising hyperparameter setting) for next evaluation.
The above process iterates toward an optimum. Examples
of acquisition functions include, for instances, probability
of improvement, expected improvement, and Bayesian
expected losses (29). All of them try to use and balance
exploration and exploitation to minimize the number of
function queries. This is why BOA is suitable for func-
tions that are expensive to evaluate. An in-depth review
of BOA can be found in Brochu et al. (30).

NMM is another popular optimization method for
nonlinear functions. This method does not require any
derivative information, making it suitable for problems
with non-smooth functions. NMM minimizes an objec-
tive function by generating an initial simplex based on a
predefined vertex and then performing a function evalua-
tion at each vertex of the simplex. Note that a simplex
has n + 1 vertices in R" where 7 is the number of dimen-
sions of the parameter space. For instance, the simplex is
a triangle when 7 is 2. In our context, a vertex is a set of
values assigned to LSTM hyperparameters, the prede-
fined vertex is a default LSTM hyperparameter setting,
and the function evaluation is to derive the prediction
error of an LSTM model trained with a certain data set
under a hyperparameter setting.

A sequence of transformations is then performed
iteratively on the simplex, aiming to decrease the function
values at its vertices. Possible transformations include
reflection, expansion, contraction, and shrinking. The
above process terminates when the sample standard
deviation of the function values of the current simplex
fall below some tolerance. We refer readers to Singer and
Nelder (37) for more details about these transformations.

In this paper, we focus on evaluating BOA and NMM
to see which of them suits DistTune better, i.e., which of

them can more time-efficiently find LSTM hyperpara-
meters for detectors such that the resulting LSTM mod-
els are able to achieve the desired prediction accuracy. In
this experiment, BOA and NMM focus on auto-tuning
the four above-mentioned LSTM hyperparameters:
learning rate (denoted by R;...), the number of hidden
layers (denoted by N;,.,), the number of hidden units
(denoted by Ny,;,), and the number of epochs (denoted
by ep). Table 1 presents the domains of these
hyperparameters.

To fairly evaluate and compare BOA and NMM, we
selected the five detectors shown in Figure 1 to be their
targets. It is clear from Figure 1 that the traffic speed
patterns observed by detectors 1117762 and 1117782 are
similar to each other, and the traffic speed patterns
observed by the other three detectors are diverse. These
phenomena reflect the traffic speed patterns observed by
detectors in a real transportation network. This is why
we chose these five detectors to evaluate BOA and
NMM. If one of these two approaches is able to more
time-efficiently autotune LSTM hyperparameters for
these five detectors than the other such that the corre-
sponding models achieve the desired prediction accuracy,
it is likely that this approach can offer better time effi-
ciency than the other when it is adopted by DistTune in
a growing transportation network.

In this evaluation, each of these five detectors has the
same size of training data (i.e., traffic speed values from
five working days with the collection interval of every
5min). Two metrics were used for the comparison: aver-
age absolute relative error (AARE) and LSTM customi-
zation time (LCT). AARE is a well-known measure for
the prediction accuracy of a forecast method (32), which
is defined as follows:

1 K sy — 5l
AARE = — —_ 1
WWE 1 Sw .
where
W is the total number of data points considered for
comparison,

w is the index of data point,

s, 1 the actual traffic speed value at w, and

s, is the forecast traffic speed value at w.

The lower AARE is, the higher prediction accuracy the
forecast method has. The second metric (i.e., LCT) is the

216

Transportation Research Record 2675(10)

0.1
0.07 —&— NMM (AARE)
. ——
., 0.06 BOA (AARE) £
0.05 A E
g 0.04 k e E
0.03 -
0.02 V
0.01
0 e . O 322+ | . PR | .
718371 763700 1117762 1117782 1118496
Detector ID

Figure 2. The performance of NMM and BOA on customizing LSTM models for five detectors that observe different traffic speed

patterns.

Note: NMM = Nelder-Mead method; BOA = Bayesian optimization approach; AARE = average absolute relative error; LCT = LSTM customization time.

time taken by BOA and NMM to individually find an
LSTM hyperparameter setting for a detector such that
the prediction accuracy of the corresponding LSTM
model satisfies a predefined AARE threshold, which is
0.05 in this paper. Note that this value is considered
satisfactory according to Lee et al. (/2), Lee and Lin
(26), and Xia et al. (33).

In this experiment, both approaches start with the fol-
lowing default hyperparameter setting, taken from Lee
etal. (12):

<RLearn = O~01aNLayer = 1>NUnit = 2a ep = 100>.

As soon as they find a hyperparameter setting with
which the corresponding LSTM model has an AARE
less than or equal to the AARE threshold, they automat-
ically terminate. However, if they have iterated 20 times
without being able to find such a hyperparameter setting,
they will be forcibly terminated. This experiment was
performed on a laptop running MacOS 10.13.1 with
2.5GHz Quad-Core Intel Core i7 and 16 GB 1,600 MHz
DDR3.

Figure 2 illustrates the performance of BOA and
NMM in terms of AARE (presented as marked lines)
and LCT (presented as clustered columns). We can see
that all the LSTMs customized by NMM satisfy the
AARE threshold because their AARE values are all
lower than 0.05. However, not all the LSTMs customized
by BOA achieve the same good result, especially for
detector 1118496. After BOA iterates 20 times, the best
AARE value for this detector is still higher than 0.05,
and the LCT taken by BOA has reached 1,006 min.

Based on the above results, we conclude that NMM is
more suitable than BOA for DistTune because NMM

has better efficiency and effectiveness in finding appro-
priate values for LSTM hyperparameters such that the
desired prediction accuracy for detectors can be satisfied.
Even though BOA is able to find optimal hyperpara-
meter settings that might be able to reach higher predic-
tion accuracy than NMM, its high time consumption is
unaffordable for DistTune. This is why NMM is adopted
by DistTune to autotune LSTM hyperparameters.

Methodology of DistTune

In this section, we firstly introduce all algorithms of
DistTune and then suggest a customization protocol for
practitioners to implement DistTune on their growing
transportation networks.

Algorithms. DistTune is designed and implemented as an
incremental LSTM auto-tuning, sharing, and re-
customization system on a cluster consisting of a master
server and a set of worker nodes. The master server
determines whether to customize, share, or re-customize
LSTM models for individual detectors. Each worker
node waits for an instruction from the master server to
conduct LSTM customization/re-customization for a
given detector.

Figure 3 illustrates the LSTM auto-tuning and shar-
ing algorithm running on the master server, and Figure 4
shows the high-level flowchart of the algorithm. Let
G=D,;D,, ..., D, be a list of detectors that have their
own LSTM models customized by DistTune. Note that
G is empty before DistTune is employed and launched.
Whenever encountering an unprocessed detector
(denoted by Uj), the algorithm first normalizes a list of

Lee et al

217

Input: An unprocessed detector U;

Output: A decision to share an existing LSTM model with U; or to
customize an LSTM model for U;

Procedure:

1 Let f'be a boolean variable and let /' be false;

2 Let G = {D4,D,, ..., D,} be a list of detectors having their
3 own customized LSTM models;

4 LetL; = {v;1,V;5, ..., V;r} be a list of traffic-speed values
5 previously collected by U;;
6
7
8

Normalize L; into Nor; by dividing each value in L; by V;
for j = 1tox{ // x is the total number of detectors in G;
Calculate AARD; ; based on Equation 2;

9 if AARD; ; < thdapp {

10 Share D;’s LSTM model with U;;

11 Let f'be true;

12 break;}}

13 if f==false {

14 Ask a worker node to customize an LSTM model for U;;
15 Append U; to the end of G}

Figure 3. The LSTM auto-tuning and sharing algorithm
performed by the master server.
Note: LSTM = long short-term memory.

traffic speed values observed and collected by U,. Let L;

be the list, and L;={v; ;,v;2, ..., v; 7} Where v;, is the traf-
fic speed value collected by U; at time ¢, t=1,2,. . .,T.
The normalization process divides v;, by V, which is a
predefined fixed value (e.g. 70 to represent the speed
limit in mph). Let Nor; be the normalization result, i.e.,
Nor;={n;, n;>, ..., n; 7} where n; p = %I

The master server decides if it should customize an
LSTM model for U; by sequentially comparing U; with
every detector (denoted by D;, j=1,2,.. .,x) in G in terms
of their normalized traffic speed pattern based on the fol-
lowing Equation (/2):

1 T |7l t — Nj l‘|
AARD;; = — et T 2
J TZ 2)
where AARD;; is the average absolute relative difference

between the trafﬁc speed patterns collected by U; and D
and n;, is the normalized traffic speed value collected by
D; at time 1, where n; , = %,

In fact, Equation 2 is similar to the AARE equation
shown in Equation 1. Recall that a smaller AARE value
indicates that what the prediction method predicts is
more similar to the actual one. We follow the same con-
cept to propose Equation 2 and use it to measure if two
detectors have observed similar normalized traffic speed
patterns. If AARD;; is less than a predefined threshold
thd 4 4rp (implying that U; and D; observe a similar nor-
malized traffic speed pattern), the master server directly
shares D’s LSTM model with U;, without customizing
an LSTM model for U; (see Figure 3: line 9 to line 12).

Encounter
unprocessed
detector U;

Normalize traffic-
speed data of U;

Is the normalized data of
U; similar to detector D;
in G where j=1 to x?

Share D;’s LSTM
model with U;

Ask an available
worker node to
customize an LSTM
model for U;

v

Append U; to G

Figure 4. The flowchart of the LSTM auto-tuning and sharing
algorithm.

Note: LSTM = long short-term memory.

However, if the master server is unable to find any
detector that has observed a similar normalized traffic
speed pattern with U, (i.e., line 13 holds), the master ser-
ver asks an available worker node to customize an
LSTM model for U;, and then appends U, to the end of
G to indicate that U; has its own customized LSTM
model. Based on how each detector is appended to G, it
is clear that every detector in G must have observed a
distinct traffic speed pattern.

Several factors might stop an LSTM model from pro-
viding satisfactory prediction accuracy. For example, the
traffic pattern collected by a detector has changed and no
longer follows the previous pattern that is used to train
the detector’s LSTM model. In order to guarantee fine-
grained and satisfactory prediction accuracy for every
detector in a growing transportation network, the master
server keeps track of every single detector by using the
tracking algorithm shown in Figure 5.

Let 4 be a list of detectors that have been processed
by DistTune, and A=D,,D,, ..., D, where y = x. In
other words, each detector in 4 has an LSTM model
either inherited from another detector or customized by

218

Transportation Research Record 2675(10)

Input: All detectors in A
Output: Re-customization decisions for all the detectors
Procedure:
1 LetA = {Dy,D,, ..., Dy} be alist of processed detectors;
LetQ =0;
Let 7 be current time;
Let I be a fixed time interval for periodical tracking;
while (t — Q = I){
for k = 1to y{ // y is the total number of detectors in A;
if the AARE of the LSTM used by detector D> thdszg {
Ask a worker node to re-customize a LSTM model for Dy;
if Dy isnotin G {
0 Append Dy, to the end of G;}}}
1 LetQ =1}

— =0 00 1N R W

Figure 5. The tracking algorithm performed by the master
server.
Note: LSTM = long short-term memory.

Input: An LSTM (re-)customization request from the master server
Output: An LSTM model that satisfies thdggg

Procedure:

1 Let D,, be the target detector;

2 Let C be a boolean variable and let C be false;

3 Employ NMM to create the initial simplex using the default
4 LSTM hyperparameter setting;

5 Train the LSTM model with the traffic-speed data previously
6

7

8

collected by D,;

if the AARE of the LSTM model is smaller or equal to thdszg {
Assign the LSTM model to Dy}

9 else{

10 while (C == false){

11 Use NMM to transform the simplex by replacing the worst
12 vertex with a better one;

13 Train the corresponding LSTM model;

14 if the corresponding AARE is not bigger than thdzg {
15 Assign the LSTM model to Dy

16 Let C be true;} }}

Figure 6. The LSTM (re-)customization algorithm performed by
every worker node.

Note: LSTM = long short-term memory; AARE = average absolute relative
error.

DistTune. Periodically, the master server checks if the
prediction accuracy of every detector in A is still satisfac-
tory. If a detector (denoted by Dy, k=1,2,. . .,y) has an
AARE value higher than a predefined threshold thd 4 4 g,
the master server requests a worker node to re-customize
an LSTM model for D,. After that, the master server
appends D, to the end of G if this is the first time that Dy
gets its own LSTM model.

Whenever a worker node receives a customization or
re-customization request for detector D, (where D, € A)
from the master server, the worker node conducts
Figure 6. First, the worker node employs NMM to cre-
ate the initial simplex based on the default LSTM hyper-
parameter setting (i.e., Ryeqn=0.01, Npgyer =1, Nypir =2,

ep=100) since this setting introduces less computational
cost (12). With this setting, the worker node trains a
LSTM model with the traffic speed data previously col-
lected by D,. If the AARE of this LSTM model is less
than or equal to thd4rE, the worker node stops NMM
and outputs this LSTM because the desired prediction
accuracy has already been reached.

However, if the AARE is higher than thd, rr, the
worker node keeps using NMM to transform the simplex
by replacing the worst vertex with a better one and
repeats the same procedure until the function evaluation
at a vertex of the simplex is satisfactory. In other words,
the worker node terminates when it finds an LSTM
model of which the AARE is less than or equal to
thd 4 4rr. The corresponding LSTM model is the final
output, and it will be used to predict future traffic speed
collected by D,.

Customization Protocol. To apply DistTune to a growing
transportation network, the following steps should be
conducted beforehand:

1. Choose a target transportation network.

2. Collect the traffic speed data observed by all
detectors in the target transportation network,
and then determine the sizes of training data set
and testing data set for LSTM customization.

3. Determine thd 4 gp. If the value of thd, rp is
low, it means that detectors need to have high
similarity in their normalized traffic speed pat-
terns to be able to share a single LSTM model.

4. Determine thd s gz. The lower the value of
thd 4 4rE 18 set, the higher prediction accuracy will
be achieved.

Once one has finished the above steps, DistTune can
be launched to initiate its traffic speed prediction service.

Performance Evaluation

To evaluate DistTune, we conducted three extensive
experiments using traffic data from the Caltrans perfor-
mance measurement system (34), which is a database of
traffic data collected by detectors placed on state high-
ways throughout California. Freeway I5-N was chosen.
This is a major route from the Mexico—United States
border to Oregon with a total length of 796.432 miles. In
these experiments, DistTune incrementally provides its
service until 110 detectors on I5-N are covered to show
that DistTune is able to be employed in a growing trans-
portation network and to incrementally customize
LSTM models for any detectors that are newly deployed
to the network. Note that the distance between two con-
secutive detectors of the 110 detectors is around 5miles,

Lee et al

219

and each detector collected traffic data every 5 min. For
each detector, we crawled its traffic data for six continu-
ous working days, and then split it into a training data
set (the first Sdays) and a testing data set (the last day).
In other words, the training data set and testing data set
for each detector consist of 1,440 and 288 data points,
respectively. Since all the traffic data was aggregated at
5-min intervals, DistTune follows the same interval for
prediction. The reason why the training data set is five
continuous working days will be discussed in the next
section.

In all the experiments, thd 4 4zz=0.05 and thd 4 4zp=
0.1 (12). In this paper, if a detector is able to provide
95% prediction accuracy, we consider it satisfactory.
This is why we set thd 4 4rr to be 0.05. The same reason
for thd 4 4rp: if two detectors have 90% similarity in their
normalized traffic speed patterns, we consider these pat-
terns similar. This is why we set thd 4 zp to be 0.1. In
fact, these two thresholds are configurable if one wants
to change the degree of similarity or achieve a different
level of prediction accuracy.

Three widely used performance metrics (32), which are
average absolute error (AAE), AARE, and root mean
square error (RMSE), were employed in all our experi-
ments to evaluate LSTM prediction accuracy. Please see
Equation 1 for AARE. The equations to calculate AAE
and RMSE are as follows:

X

lsq — Sl (3)
g=1

AAE = 1
X

where

X is the total number of data points for comparison,

¢ 1s the index of a data point,

54 1s the actual traffic speed value at ¢, and

S 1s the forecast traffic speed value at ¢.

Low values for AAE, AARE, and RMSE indicate that
the corresponding LSTM model has high prediction
accuracy.

Experiment |

In this experiment, we designed five scenarios (see Table
2) to evaluate the auto-tuning effectiveness of DistTune
by temporarily disabling the LSTM sharing function. In
other words, every detector in this experiment will always
get its own LSTM model customized by DistTune. In
Scenario 1, DistTune only autotunes two hyperpara-
meters. The other two hyperparameters are assigned with
small values. In Scenario 2, DistTune autotunes one
more hyperparameter. In Scenario 3, all of the four

Table 2. The Hyperparameter Settings in Five Scenarios

Scenario | 2 3 4 5
Riearn Tune Tune Tune Tune Tune
Neiayer | Tune Tune 2 Tune
Nunie 10 6 Tune 10 10
ep Tune Tune Tune Tune Tune

Note: ep = number of epochs.

hyperparameters are automatically tuned by DistTune.
Scenarios 4 and 5 are similar to Scenarios 1 and 2, respec-
tively, but with an equal or a higher value for each non-
autotuned hyperparameter. The goal is to see the impact
of these increased values on DistTune.

Four performance metrics were used in this experiment:

e Cumulative LSTM customization time: the sum-
mation of the time taken by DistTune to custo-
mize an LSTM model for each detector such that
the corresponding LSTM satisfies thd 4 4rE.

e Average AAE: the average AAE of all the LSTMs
customized by DistTune. See Equation 5.

e Average AARE: the average AARE of all the
LSTMs customized by DistTune. See Equation 6.

e Average RMSE: The average RMSE of all the
LSTMs customized by DistTune. See Equation 7.

z
_, AAE,
Average AAE = Z’% (5)
z
_; AARE,
Average AARE = 2 -1 AARE, (6)
V4
z
_, RMSE,
Average RMSE = Z*#S (7)

In the above three equations, Z is the total number of
LSTMs (in this experiment, Z equals 110), and r is the
index number of an LSTM, r = 1,2,....7.

Figure 7 illustrates the cumulative LSTM customiza-
tion time taken by DistTune in the five scenarios. From
the results of the first three scenarios, it seems that the
cumulative LSTM customization time increases when
more hyperparameters are automatically tuned by
DistTune. However, this is not true when the last two
scenarios are further considered. We can see that
Scenarios 4 and 5 cost more time than Scenario 3, even
though they have fewer autotuned hyperparameters than
Scenario 3. In other words, increasing the number of
autotuned LSTM hyperparameters does not mean that
the corresponding LSTM customization time will always
increase. The reason why Scenario 4 resulted in the
longest LSTM customization time is that the network

220

Transportation Research Record 2675(10)

= 5000
E;% 4000 Z
EE 3000 % ? /
§:§ 2000 A % % g
é ,g 1000 - % 4 %
0 T T T T
1 2 3 4 5
Scenario

Figure 7. The cumulative LSTM customization time consumed
by DistTune in five scenarios when the LSTM sharing function is
disabled.

Note: LSTM = long short-term memory.

2
3‘ 1.5 T
@ T T T
%D 1
> 0.5 —%7 7
) _

O T T T T

1 2 3 4 5
Scenario

Figure 8. The average AAE results in five scenarios when the
LSTM sharing function of DistTune is disabled.
Note: LSTM = long short-term memory; AAE = average absolute error.

Average AARE

Figure 9. The average AARE results in five scenarios when the
LSTM sharing function of DistTune is disabled.

Note: LSTM = Long short-term memory; AARE = Average absolute
relative error.

2.5
g}-l 2
5 15 —1—F -

T

8 1
g 7 V?
2 05 77
z 7

0"_' T T T T

1 2 3 4 5
Scenario

Figure 10. The average RMSE results in five scenarios when the
LSTM sharing function of DistTune is disabled.
Note: LSTM = long short-term memory; RMSE = root mean square error.

structure of each LSTM model in Scenario 4 is more
complicated than that in all the other scenarios.
Therefore, using DistTune to autotune Ny .., and Ny,
would be more appropriate.

Figures 8 to 10 show the prediction performance of
DistTune in the five scenarios when the LSTM sharing
function is disabled. It is clear that Scenario 3 has the
highest prediction accuracy since its average AAE value,
average AARE value, average RMSE value, and the cor-
responding standard deviation values are the smallest
among the five scenarios. The results confirm that auto-
tuning all the considered hyperparameters leads to the
best prediction accuracy. However, if the cumulative
LSTM customization time shown in Figure 7 is further
considered, it appears that Scenario 3 is more computa-
tionally expensive than Scenarios 1 and 2 due to its sig-
nificant increase in computation time, compared with its
slight improvement in prediction accuracy. This is
because DistTune in this experiment disables the LSTM
sharing function. DisTune needs to individually custo-
mize an LSTM model for every single detector, so the
cumulative LSTM customization time of DistTune can-
not have a significant improvement. In the next experi-
ment, we will show how DistTune mitigates this issue by
enabling the LSTM sharing function.

Experiment 2

In this experiment, we studied the impact of the LSTM
sharing function and the number of worker nodes on the
performance of DistTune. To do this, we designed four
cases as listed in Table 3. In Cases 1 and 2, the cluster
running DistTune has a single worker node. However,
the LSTM sharing function of DistTune was disabled in
Case 1, whereas it was enabled in Case 2. In Cases 3 and

Lee et al 221
Table 3. The Details of Four Cases

Case no. | 2 3 4
Number of worker nodes | | 30 30
The LSTM sharing function Disabled Enabled Disabled Enabled

Note: LSTM = long short-term memory.

g 3500 0.05

g 3000 - 0.04

E _ 2500 I)
ZE 2000 0.024 [003 g
B = 0‘012/' 002 o
%= 1000 + - 0.01 8
5 W 274 i

= 0 —_— 20.01

1 2 3 4
Case
Figure I 1. The performance of DistTune in four cases.

Note: LSTM = long short-term memory; AARE = average absolute relative error.

4, the cluster has 30 worker nodes, and the sharing func-
tion was disabled and enabled, respectively. Two perfor-
mance metrics were employed in this experiment: total
LSTM customization time and average AARE. Note
that the former is the total elapsed time from when
DistTune is launched until all 110 detectors have
obtained LSTM models.

Figure 11 shows the performance results of DistTune
in the four cases. Case 1 is the most time-consuming of
the four cases. This is because only one worker node was
employed to individually and sequentially customize
LSTM models for each of the 110 detectors. This situa-
tion turns better in Case 2 since the sharing function was
enabled. The total LSTM customization duration reduces
by 81.46% = 341228 from Case 1 to Case 2, implying
that allowing LSTM models to be shared between detec-
tors significantly reduces the number of LSTM models
that DistTune needs to customize, even though there is
only one worker node in the cluster supporting DistTune.

When the 30 worker nodes were used and the sharing
function was disabled, i.e. Case 3, the total LSTM customi-
zation time reduces to 224 min, meaning that increasing the
scale of the cluster and using parallel computing also help
improve the performance of DistTune. By further enabling
detectors to share their LSTM models without individual
customization, i.e. Case 4, the total time drops to only
56min. The reduction is around 75% = % compared
with Case 3. This significant performance improvement is
mainly a result of two factors. First, by enabling the LSTM

sharing function, DistTune only needed to customize 31
LSTM models for the 110 detectors. Second, the task of
LSTM customization was shared by the 30 worker nodes
and performed by them in parallel.

On the other hand, from the perspective of average
AARE, both Cases 1 and 3 lead to the same result
(around 0.012 as shown in Figure 11). This is because the
algorithm used by DistTune to customize LSTM models
(i.e., NMM) is deterministic. In other words, the result
generated by NMM for a given detector is always identi-
cal no matter which worker node performs the task.

For the same reason, the average AARE results in
Cases 2 and 4 are identical, but they are a little higher
than those in Cases 1 and 3. The reason is that not all
the detectors in Cases 2 and 4 have their own customized
LSTM models.

In Cases 1 and 3, all the 110 detectors require no re-
customization since each of them has a customized
LSTM model. However, in Cases 2 and 4, seven out of
the 110 detectors require re-customization because the
LSTM models that they inherited from other detectors
are unable to satisfy thd,, rg. Nevertheless, the re-
customization ratio is low (6.36% = ﬁ), suggesting that
setting thd 4 4rp as 0.1 seems appropriate.

Based on all the above results, we conclude that
DistTune in Case 4 provides the best trade-off between
time efficiency and prediction accuracy, implying that
enabling LSTM sharing and running DistTune on a
large cluster are both important for DistTune.

222

Transportation Research Record 2675(10)

Table 4. The Hyperparameter Setting in Type | and Type 2

Re-customization type Riearn Niayer Nunit ep
Type | 0.0l | 2 100
Type 2 0.05 | 10 180

Note: ep = number of epochs.

35
=
2 30
S |
-g) 25
£E 20
52 15
‘2‘ = 10 - BType 1: Re-customization based on the default setting
S 5 SType 2: Re-customization based on Transfer Learning
-

0
775462 1108611 1115289 1115304 1204211 1204384 1204472
Detector ID

Figure 12. The required LSTM re-customization time for the seven detectors.

Note: LSTM = long short-term memory.

Experiment 3

In this experiment, we evaluated the LSTM re-
customization performance of DistTune by re-customizing
LSTM models for the seven detectors that require re-
customization in Cases 2 and 4 in Experiment 2. Two types
of LSTM re-customization were considered:

e Type I: based on the default hyperparameter
setting.
e Type 2: based on Transfer Learning.

In Type 1, DistTune re-customizes an LSTM model
for each of the seven detectors by using the default hyper-
parameter setting (i.e., Rycan=0.01, Npgper=1, Nypir =2,
ep=100) to generate the initial simplex for NMM. In
Type 2, DistTune re-customizes an LSTM model for
detector i by using the LSTM hyperparameter setting of
detector j to generate the initial simplex if the LSTM
model currently used by detector i is shared by detector ;.

Table 4 lists the hyperparameter settings separately
used in Types 1 and 2 for the seven detectors. In fact, all
the detectors inherited their LSTM models from the same
detector (i.e., detector 1118333) since the traffic speed
patterns they observed are similar to the one observed by
detector 1118333. This is why these detectors have the
same hyperparameter setting in Type 2.

Figure 12 shows the LSTM re-customization time for
the seven detectors. Surprisingly, Type 2 consumes more
time than Type 1 for every detector. The key reason is

that the hyperparameter setting in Type 2 contains higher
values for Ny,;; and ep, therefore prolonging the LSTM
training time and increasing the required LSTM re-
customization time for each detector.

Figures 13 to 15 illustrate the prediction performance
of the seven detectors before and after the two types of
re-customization were individually performed. Both
Types 1 and 2 are able to customize an appropriate
LSTM model for each of these detectors and consider-
ably reduce all the AAE, AARE, and RMSE values. It is
clear that Type 2 leads to slightly better prediction accu-
racy than Type 1, but Type 2 consumes more processing
time than Type 1. Therefore, choosing Type 1 seems to
be more economic. For this reason, the re-customization
approach of DistTune is based on Type 1, i.e., the
default hyperparameter setting.

Discussion

In this section, we discuss and explain why we chose to
use the traffic speed data of five continuous working days
to be the training data set for every detector in all our
experiments, rather than using a longer period of data.
According to our observation, not all detectors observe
similar traffic speed patterns all the time. To demonstrate
this point, we used one detector, i.e. detector 718086,
from freeway I5-N as an example. Figures 16 to 19 illus-
trate the traffic speed data collected by this detector on
freeway I5-N between 4 a.m. and 10 a.m. for I-week

Lee et al

223

1108611 1115289

Borginal
8 BType 1: Re-customization based on the default setting
6 T 7 ’
/ : 7
iH e L

1115304
Detector ID

1204211 1204384 1204472

Figure 13. The AAE results before and after two types of LSTM re-customization are individually performed.

Note: LSTM = long short-term memory; AAE = average absolute error.

0.15
0.125 1
0.1 7

@Borginal

SType 1: Re-customization based on the default setting

SType 2: Re-customization based on Transfer Leaming

g 0.075
0.05 1

0.025

N e

775462 1108611 1115289

Detector ID

=

1115304 1204211 1204384

1204472

Figure 14. The AARE results before and after two types of LSTM re-customization are individually performed.
Note: LSTM = long short-term memory; AARE = average absolute relative error.

10 orginal
3 BType 1: Re-customization based on the default setting
R e :

6
m
17!
5 4

2 / /

775462 1108611 1115289 1115304 1204211 1204384 1204472
Detector ID

Figure 15. The RMSE results before and after two types of LSTM re-customization are individually performed.

Note: LSTM = long short-term memory; RMSE = root mean square error.

working days, 4-week working days, 8-week working
days, and 12-week working days, respectively. When the
observation period is one week, we can see from Figure
16 that the traffic speed patterns of these five working
days have some deviation. This situation gets worse when
we increased the observation time. Please see Figures 17
to 19. It is clear that the traffic speed pattern collected by

this detector has more variation as the observation period
prolongs. Note that this phenomenon not only appears
for this detector, we found that it also happens for many
other detectors.

To show the effect of different lengths of training
data, we evaluate the corresponding LSTM training time
and prediction accuracy in terms of AAE, AARE, and

224 Transportation Research Record 2675(10)

100
) -
g 80 m —é
g : 3
L I N\ AR N | &
£ M/ Al | &
= \\S—_——— &

0+

4 5 6 7 8 9 10
a.m.

Figure 16. The traffic speed pattern of detector 718086
between 4 a.m. and 10 a.m. for |-week consecutive working days
(from Oct 16, 2017 to Oct. 20, 2017).

: 2y ﬂ“&-.ﬂﬂ"l/ﬂhr

Traffic Speed (mph)

4 5 6 7 8 9 10
am.

Figure 19. The traffic speed pattern of detector 718086
between 4 a.m. and 10 a.m. for 12-week consecutive working days
(from July 31, 2017 to Oct. 20, 2017, that is, the five working days
of 12 consecutive weeks).

Figure 17. The traffic speed pattern of detector 718086
between 4 a.m. and 10 a.m. for 4-week consecutive working days
(from Sept. 25, 2017 to Oct. 20, 2017, that is, the five working
days of four consecutive weeks).

_ 1000 393
£ 600
gn 400
=
E 200 81.8 % /

0

1 week 4 week 8 week 12 week
The number of working days for training

Traffic Speed (mph)

Figure 18. The traffic speed pattern of detector 718086
between 4 a.m. and 10 a.m. for 8-week consecutive working days
(from Aug. 28, 2017 to Oct. 20, 2017, that is, the five working
days of eight consecutive weeks).

Figure 20. The required training time given different lengths of
training data.

RMSE based on the default hyperparameter setting (i.e.,
Ryearn="0.01, Nygper=1, Nyniy=2, ep=100). As shown in
Figure 20, the 1-week scenario requires the shortest
LSTM training time (around 81.8s) because the size of
the training data is only 5 days, which is the shortest
among all the four scenarios. The time is only
28.4%(= 55%), 11.5%(= &), and 9.2%(= 348) com-
pared with the training time required in the 4-week, 8-
week, and 12-week scenarios, respectively.

On the other hand, from Figure 21, we can also see
that the 1-week scenario outperforms the other three sce-
narios when it comes to prediction accuracy. Apparently,
the 1-week scenario leads to the smallest value in AAE,
AARE, and RMSE, implying that it leads to the best pre-
diction accuracy among the four scenarios.

Lee et al

225

4.00 —' @1 week B4week S8week 12 week

value
[
[=3
(=

Figure 21. The prediction accuracy under different lengths of
training data.

Note: AAE = average absolute error; RMSE = root mean square error;
AARE = average absolute relative error.

Based on the above results, we confirm that choosing
I-week traffic speed data as the training data size of
LSTM not only saves time, but also achieves higher pre-
diction accuracy because of less deviation in the traffic
speed patterns. These two properties are essential since
DistTune is designed to provide time-efficient and accu-
rate traffic speed prediction.

Conclusion and Future Work

In this paper, we have introduced DistTune, a distributed
scheme to achieve fine-grained, accurate, time-efficient,
and adaptive traffic speed prediction for the increasing
number of detectors deployed in a growing transporta-
tion network. DistTune automatically customizes LSTM
models for detectors based on NMM, which was chosen
over BOA based on our empirical comparison and eva-
luation. By allowing LSTM models to be shared between
different detectors and employing parallel processing,
DistTune successfully addresses the scalability issue, and
enables fine-grained and efficient traffic speed prediction.
Furthermore, DistTune keeps monitoring detectors and
re-customizes their LSTM models when necessary to
make sure that their prediction accuracy can always be
achieved and guaranteed. Our extensive experiments
based on traffic data collected by the Caltrans perfor-
mance measurement system demonstrate the perfor-
mance of DistTune and confirm that DistTune provides
fine-grained, accurate, time-efficient, and adaptive traffic
speed prediction for a growing transportation network.
In this paper, DistTune is implemented on a cluster
consisting of only one master server and a set of worker
nodes. Such a cluster might have the following risks or
limitations. The master server is a single point of failure
(SPOF), and it might crash or fail for diverse reasons. In
addition, its computation resources might not be able to
support the operation of DistTune if DistTune is

employed in a large-scale transportation network. On
the other hand, the number of worker nodes decides the
execution performance of DistTune. In this paper, the
number of worker nodes is fixed for simplicity. However,
it should be dynamically adjusted over time according to
the workload of DistTune.

Therefore, in our future work, we would like to fur-
ther address the SPOF issue and suggest a highly scalable
and elastic solution based on a cloud or a multi-cloud
environment for DistTune. Furthermore, we plan to
improve the performance of DistTune by considering
proper scheduling approaches, such as Lee et al. (35) and
Lin and Lee (36). In addition, we plan to investigate
Early Stopping (37) and study its impact on the perfor-
mance of DistTune. Furthermore, we would like to inte-
grate DistTune with other novel techniques such as
vehicle trajectory extraction (38) to provide better traffic
managements and services for growing transportation
networks.

Acknowledgments

The authors want to thank the anonymous reviewers for their
reviews and valuable suggestions to this paper.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: Ming-Chang Lee and Jia-Chun Lin;
data collection: Ming-Chang Lee; analysis and interpretation
of results: Ming-Chang Lee and Jia-Chun Lin; draft manu-
script preparation: Ming-Chang Lee, Jia-Chun Lin, and Ernst
Gunnar Gran. All authors reviewed the results and approved
the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the eX® project—
Experimental Infrastructure for Exploration of Exascale
Computing, funded by the Research Council of Norway under
contract 270053, and the scholarship under project number
80430060 supported by Norwegian University of Science and
Technology.

References

1. Ahmed, M. S., and A. R. Cook. Analysis of Freeway Traf-
fic Time-Series Data by Using Box-Jenkins Techniques.
Transportation Research Record: Journal of the Transporta-
tion Research Board, 1979. 722: 1-9.

226

Transportation Research Record 2675(10)

10.

11.

12.

13.

. Davis, G. A., and N. L. Nihan. Nonparametric Regression

and Short-Term Freeway Traffic Forecasting. Journal of
Transportation Engineering, Vol. 117, No. 2, 1991,
pp. 178-188.

. Bustillos, B., and Y. C. Chiu. Real-Time Freeway-Experi-

enced Travel Time Prediction Using N-Curve and k Near-
est Neighbor Methods. Transportation Research Record:
Journal of the Transportation Research Board, 2011. 2243:
127-137.

. Chan, K. Y., T. S. Dillon, J. Singh, and E. Chang. Neural-

Network-Based Models for Short-Term Traffic Flow Fore-
casting using a Hybrid Exponential Smoothing and Leven-
berg—Marquardt Algorithm. [EEE Transactions on
Intelligent Transportation Systems, Vol. 13, No. 2, 2012,
pp. 644-654.

. van Lint, J. W. C., S. P. Hoogendoorn, and van Zuylen,

H. J. Freeway Travel Time Prediction with State-Space
Neural Networks: Modeling State-Space Dynamics with
Recurrent Neural Networks. Transportation Research
Record: Journal of the Transportation Research Board,
2002. 1811: 30-39.

. Hochreiter, S., and J. Schmidhuber. Long Short-Term

Memory. Neural Computation, Vol. 9, No. 8, 1997,

pp. 1735-1780.

. Ma, X., Z. Tao, Y. Wang, H. Yu, and Y. Wang. Long

Short-Term Memory Neural Network for Traffic Speed
Prediction Using Remote Microwave Sensor Data. Trans-
portation Research Part C: Emerging Technologies, Vol. 54,
2015, pp. 187-197.

. Yu, R., Y. Li, C. Shahabi, U. Demiryurek, and Y. Liu.

Deep Learning: A Generic Approach for Extreme Condi-
tion Traffic Forecasting. Proc., 2017 SIAM International
Conference on Data Mining, Society for Industrial and
Applied Mathematics, Texas, 2017, pp. 777-785.

. Zhao, Z., W. Chen, X. Wu, P. C. Chen, and J. Liu. LSTM

Network: A Deep Learning Approach for Short-Term
Traffic Forecast. IET Intelligent Transport Systems, Vol.
11, No. 2, 2017, pp. 68-75.

Okutani, I., and Y. J. Stephanedes. Dynamic Prediction of
Traffic Volume through Kalman Filtering Theory. Trans-
portation Research Part B: Methodological, Vol. 18, No. 1,
1984, pp. 1-11.

Wikipedia contributors. Interstate 5 in California—Wikipe-
dia, The Free Encyclopedia. https://en.wikipedia.org/wiki/
Interstate_5_in_California. Accessed March 20, 2021.

Lee, M.-C., J.-C. Lin, and E. G. Gran. Distributed Fine-
Grained Traffic Speed Prediction for Large-Scale Trans-
portation Networks Based on Automatic LSTM Customi-
zation and Sharing. Proc., 26th International European
Conference on Parallel and Distributed Computing, 2020,
pp. 234-247. https://arxiv.org/abs/2005.04788.

Nelder, J. A., and R. Mead. A Simplex Method for Func-
tion Minimization. The Computer Journal, Vol. 7, No. 4,
1965, pp. 308-313.

. Torrey, L., and J. Shavlik. Transfer Learning. In Handbook

of Research on Machine Learning Applications and Trends:
Algorithms, Methods, and Techniques (E. S. Olivas, J. D.
Guerrero, M. Martinez-Sober, J. R. Magdalena-Benedito,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

and L. Serrano, eds.), IGI Global, Hershey, PA, 2010,
pp. 242-264.

Mockus, J. Bayesian Approach to Global Optimization: The-
ory and Applications, Vol. 37, Springer Science & Business
Media, Cham, 2012.

Hochreiter, S. The Vanishing Gradient Problem During
Learning Recurrent Neural Nets and Problem Solutions.
International Journal of Uncertainty, Fuzziness and Knowl-
edge-Based Systems, Vol. 6, No. 2, 1998, pp. 107-116.

Box, G. E., G. M. Jenkins, G. C. Reinsel, and G. M. Ljung.
Time Series Analysis: Forecasting and Control, 5th ed. John
Wiley & Son, Hoboken, NJ, 2015.

Lee, S., and D. B. Fambro. Application of Subset Autore-
gressive Integrated Moving Average Model for Short-Term
Freeway Traffic Volume Forecasting. Transportation
Research Record: Journal of the Transportation Research
Board, 1999. 1678: 179-188.

Williams, B. Multivariate Vehicular Traffic Flow Predic-
tion: Evaluation of ARIMAX Modeling. Transportation
Research Record: Journal of the Transportation Research
Board, 2001. 1776: 194-200.

Williams, B. M., and L. A. Hoel. Modeling and Forecast-
ing Vehicular Traffic Flow as a Seasonal ARIMA Process:
Theoretical Basis and Empirical Results. Journal of Trans-
portation Engineering, Vol. 129, No. 6, 2003, pp. 664—672.
Cui, Z., K. Henrickson, R. Ke, and Y. Wang. Traffic
Graph Convolutional Recurrent Neural Network: A Deep
Learning Framework for Network-Scale Traffic Learning
and Forecasting. IEEE Transactions on Intelligent Trans-
portation Systems, Vol. 21, No. 11, 2019, pp. 4883-4894.
Le, T. V., R. Oentaryo, S. Liu, and H. C. Lau. Local Gaus-
sian Processes for Efficient Fine-Grained Traffic Speed
Prediction. IEEE Transactions on Big Data, Vol. 3, No. 2,
2017, pp- 194-207.

Jiang, B., and Y. Fei. Vehicle Speed Prediction by Two-
Level Data Driven Models in Vehicular Networks. IEEE
Transactions on Intelligent Transportation Systems, Vol. 18,
No. 7, 2017, pp. 1793-1801.

Ma, X., H. Yu, Y. Wang, and Y. Wang. Large-Scale
Transportation Network Congestion Evolution Prediction
Using Deep Learning Theory. PLoS One, Vol. 10, No. 3,
2015, p. €0119044.

Ma, X., Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang.
Learning Traffic as Images: A Deep Convolutional Neural
Network for Large-Scale Transportation Network Speed
Prediction. Sensors, Vol. 17, No. 4, 2017, p. 818.

Lee, M.-C., and J.-C. Lin. DALC: Distributed Automatic
LSTM Customization for Fine-Grained Traffic Speed Pre-
diction. Proc., 34th International Conference on Advanced
Information Networking and Applications, 2020, pp. 164—
175. https://arxiv.org/abs/2001.09821.

Matuszyk, P., R. T. Castillo, D. Kottke, and M. Spiliopou-
lou. A Comparative Study on Hyperparameter Optimiza-
tion for Recommender Systems. In Workshop on
Recommender Systems and Big Data Analytics, Graz,
Austria, 2016, pp. 13-21.

Thornton, C., F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Auto-WEKA: Combined Selection and Hyperparameter

https://en.wikipedia.org/wiki/Interstate_5_in_California
https://en.wikipedia.org/wiki/Interstate_5_in_California
https://arxiv.org/abs/2005.04788
https://arxiv.org/abs/2001.09821

Lee et al

227

29.

30.

31.

32.

33.

Optimization of Classification Algorithms. Proc., 19th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, Association for Computing Machinery, New
York, NY, 2013, pp. 847-855.

Hoffman, M. D., E. Brochu, and N. de Freitas. Portfolio
Allocation for Bayesian Optimization. In UAI, Citeseer,
2011, pp. 327-336.

Brochu, E., V. M. Cora, and N. De Freitas. A Tutorial on
Bayesian Optimization of Expensive Cost Functions, with
Application to Active User Modeling and Hierarchical Rein-
forcement Learning. arXiv Preprint arXiv.1012.2599, 2010.
Singer, S., and J. Nelder. Nelder-Mead Algorithm. Scholar-
pedia, Vol. 4, No. 7, 2009, p. 2928.

Zou, N., J. Wang, G. L. Chang, and J. Paracha. Applica-
tion of Advanced Traffic Information Systems: Field Test
of a Travel-Time Prediction System with Widely Spaced
Detectors. Transportation Research Record: Journal of the
Transportation Research Board, 2009. 2129: 62-72.

Xia, D., B. Wang, H. Li, Y. Li, and Z. Zhang. A Distribu-
ted Spatial-Temporal Weighted Model on MapReduce for

34.

35.

36.

37.

38.

Short-Term Traffic Flow Forecasting. Neurocomputing,
Vol. 179, 2016, pp. 246-263.

California Department of Transportation. PeMS. http://
pems.dot.ca.gov/. Accessed March 20, 2021.

Lee, M.-C., J.-C. Lin, and R. Yahyapour. Hybrid Job-Dri-
ven Scheduling for Virtual MapReduce Clusters. IEEE
Transactions on Parallel and Distributed Systems, Vol. 27,
No. 6, 2016, pp. 1687-1699.

Lin, J.-C., and M.-C. Lee. Performance Evaluation of Job
Schedulers under Hadoop YARN. Concurrency and Com-
putation.: Practice and Experience, Vol. 28, No. 9, 2016,
pp. 2711-2728.

Deeplearning4j. What is Early Stopping? https://deeplear-
ning4j.konduit.ai/tuning-and-training/early-stopping.
Accessed March 20, 2021.

Chen, X., Z. Li, Y. Yang, L. Qi, and R. Ke. High-Resolu-
tion Vehicle Trajectory Extraction and Denoising from
Aerial Videos. IEEE Transactions on Intelligent Transpor-
tation Systems, 2020, pp. 1-13. https://doi.org/10.1109/
tits.2020.3003782.

http://pems.dot.ca.gov/
http://pems.dot.ca.gov/
https://deeplearning4j.konduit.ai/tuning-and-training/early-stopping
https://deeplearning4j.konduit.ai/tuning-and-training/early-stopping
https://doi.org/10.1109/tits.2020.3003782
https://doi.org/10.1109/tits.2020.3003782

