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Since COVID-19 spread globally in early 2020 andwas declared a
pandemic by the World Health Organization (WHO) in March,
many countries are managing the local epidemics effectively
through intervention measures that limit transmission. The
challenges of immigration of new infections into regions and
asymptomatic infections remain. Standard deterministic
compartmental models are inappropriate for sub- or peri-critical
epidemics (reproductive number close to or less than one), so
individual-based models are often used by simulating
transmission from an infected person to others. However, to be
realistic, these models require a large number of parameters,
each with its own set of uncertainties and lack of analytic
tractability. Here, we apply stochastic age-structured Leslie
theory with a long history in ecological research to provide
some new insights to epidemic dynamics fuelled by external
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successful application of intervention measures, and the transmission dynamics expected when
infections migrate into a region. The model framework allows more rapid prediction of the shape
and size of an epidemic to improve scaling of the response. During an epidemic when the
numbers of infected individuals are rapidly changing, this will help clarify the situation of the
pandemic and guide faster and more effective intervention.
lishing.org/journal/rsos
R.Soc.Open

Sci.8:202234
1. Introduction
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, was first reported in Wuhan in
China at the end of 2019, and has now spread throughout the world [1,2]. Genomic and phylogenetic
analyses have shown that the virus has a zoonotic origin with a structure similar to several bat-
derived coronaviruses [3–5]. China and the rest of the world have been implementing various non-
pharmaceutical interventions in the months since first emergence [6,7]. When strictly applied, the
implementation of these control measures successfully pushed the epidemic from a super-critical
(R0 > 1) to a subcritical (R0 < 1) regime in several countries. In Wuhan, after the epidemic peaked in
the first three months of 2020, most new cases were imports from abroad and further transmission
was greatly suppressed using a mixture of testing, contact tracing and quarantine procedures. The
effect of the interventions in China has shown that timely diagnosis and non-pharmaceutical
protective countermeasures can significantly diminish and contain the spread of this virus.

In addition to monitoring the impact of intervention measures and studying the impact of
asymptomatic carriage, we need to improve our understanding of plausible scenarios for what
COVID-19 dynamics will look like in a post-pandemic era [8]. As local infection rates have declined in
some areas due to the success of social-distancing efforts, and as vaccines reach an increasing
proportion of populations, discussion over the removal or reduction in severity of interventions has
grown [9], and it becomes important to evaluate the transmission dynamics that we may see after a
reduction in R0 values below those seen early in the pandemic.

In this paper, we present analyses aiming at improving our understanding of the dynamics of the
epidemics when R0 is below one, applicable to (i) a setting of migration into a region that has attained
successful control (country of region within a country) from outside the region. In addition, our
analysis will be relevant to (ii) the values of R0 that countries are aiming for through successful
application of interventions and (iii) the transmission from animal reservoirs to the human population
which also represent migration from an outside source. While our approach is theoretical, it can
clarify what the epidemic might look like when we look at data on immigration of new COVID-19
infections into countries to show what the sub- or peri-critical epidemic dynamics may look like for a
range of R0 values.

In this contribution, we apply a rich probabilistic framework to analyse effects of parameter and
process uncertainty in a transparent way using an approach largely adopted in ecological studies. We
use an age-structured model, where age now is interpreted as time since infection, which benefits
from a long tradition of analysis of such stochastic models in ecology and mathematical demography.
The theory goes back to the classical deterministic models of Fisher [10] and Leslie [11]. An age-
structured population model is well understood theoretically, can accommodate the different
uncertainties and can be rapidly evaluated, which is especially important when local health systems
and resources are being stressed, such as during the ongoing COVID-19 pandemic.

To make ecological models realistic, it is usually necessary to introduce environmental noise,
meaning that the Leslie matrices themselves are stochastic. Important theoretical progress was done
by Tuljapurkar [12] introducing the concept of environmental variance in such models, and its effect
on the long-term growth rate. Using diffusion approximations, the time to extinction in such models
appears to follow approximately an inverse Gaussian distribution [13,14]. Later demographic
stochasticity has also been analysed in such models using the concept of demographic variance in
age-structured dynamics [15,16]. One important lesson to learn from these studies is that, even if there
are a large number of parameters required to describe the means, variances and covariances in the
Leslie matrix, the dynamics can be described very accurately by only three key parameters, the
growth rate λ and the environmental and demographic variances. In the present discussion we focus
on demographic stochasticity [14], leaving us with only two parameters determining the distribution
of time to extinction in a model without importation, and three parameters for the endemic stationary
distribution in the presence of external seeding.
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2. Model
We analyse the stochastic dynamics of the number of transmitters of the virus using an age-structured
population model. For our analysis, we assume that dynamics happen in discrete time-steps, which is,
for example, assumed in the chain-binomial epidemic model [17]. Leslie matrix theory, deterministic
as well as stochastic, is a well-established field in ecological studies of age-structured populations.
Here we apply this theory to study the dynamics of numbers of transmitters of an infectious disease
like the COVID-19 epidemics. We do this by replacing the age of a person by the time since infection
measured in days, birth rates at different ages by the rates of infection (the average number a
transmitter infects during a day), and assume that the survivals, up to the ‘age’ at which the
individual no longer transmits the disease transmissions, are 1. This last assumption is not crucial
because the death rates during the infectious period are small, and infection rates are average
numbers so that also dead people in general may contribute (with zero) to this while we consider
them theoretically as being alive. In appendix A, we give the basic definitions and results for
deterministic and stochastic Leslie matrix theory required for our analysis.

We write L for the relevant (k × k) Leslie matrix for changes during a day, with daily transmission rates
in the first row, survivals 1 at the sub-diagonal and other elements being zero, and let n be the vector with
elements equal to the number of infectious individuals in the different ‘age’ groups. The numbers are
propagated forward in time through the matrix multiplication Ln. Then the number of infectious
individuals grows approximately exponentially with multiplicative rate λ, which is the dominant real
eigenvalue of L. After a transient initial period the number of infectious individuals will reach a stable
‘age’-distribution u with

P
ui ¼ 1, expressing the fractions of individuals in the different ‘age’ classes,

which is the right eigenvector associated with λ. Based on the results of Du et al. [18] we shall assume
that the transmission rates in the first row are proportional to a gamma distribution with mean 6.6 and
shape parameter 1.87. To obtain a model with a specific value of R0 the rates must be scaled by a
common factor so that they sum up to R0. If R0 = 1, then λ = 1 and the number of infectious individuals is
constant in the absence of stochasticity. This number is increasing (λ> 1) if R0 > 1 and decreasing (λ< 1)
if R0 < 1. Figure 1a shows the parameter r = λ− 1 as function of R0 for this model.

The left eigenvector v, scaled so that
P

uivi ¼ 1, has components called the reproductive values of the
‘age’-classes, introduced by Fisher [10]. The total reproductive value of the number of infectious
individuals, V ¼ P

vini, is approximately equal to the actual total number, but it has the advantage of
being much simpler to analyse mathematically. In particular, when the transmissions are stochastic,
for example, if one infected person during a day transmits the disease to a Poisson distributed
number of person, the process V can be approximated by a diffusion process with infinitesimal mean
and variance rV and s2

dV, respectively. Here r = λ− 1 and s2
d is called the demographic variance for

the process. This approximation can be used also if there is over-dispersion D (ratio between variance
and mean) in transmissions relative to the Poisson model. The demographic variance is then s2

1D,
where s2

1 is the demographic variance under the Poisson assumption. The Poisson assumption may be
seen as a large-population approximation to the chain-binomial epidemic model [17] and is also the
assumption employed in τ-leap simulation of event-based epidemics [19]. Figure 1b shows s2

1 as
function for R0 under the gamma model we are using. For more details on the model and parameter
definitions see Appendix A.

For a process with initially N0≈V0 number of infected at time zero, the probability that extinction at
time T occurs before time t is [13]

P(T , t) ¼ e�2N0r ert=[s2
d(e

rt�1)], (2:1)

for r≠ 0 and e�2N0=(s2
dt) for r = 0. Stochastic simulations have demonstrated that this approximation is

sufficiently accurate for realistic values of s2
d [15]. This formula for the distribution of time to

extinction can be used to perform a sensitivity analysis for any range of values of the parameters R0,
N0 and D. Some illustrating examples are shown in figure 2 using reference values R0 = 0.9, N0 = 2500
and D = 1, varying a single parameter in each graph.
3. Immigration
The above model is a so-called ‘closed epidemic’ model because it assumes no susceptible recruitment
and no migration. If a country opens up for immigration it is interesting to see the effects of an
average immigration rate (also referred to as the importation rate in epidemiology) μ of infected per
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Figure 1. Panel (a) shows the growth rate r as function of R0 using the gamma model for infection rates, with rates proportional to
a gamma distribution with mean 6.6 and shape parameter 1.87. Panels (b, c) show s2

1 ¼ s2
d=D and mean reproductive value for

immigrated cases assumed to be infected less than 4 days, vm = (v1 + v2 + v3)/3 for the same model.
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day. With immigration the epidemic process will no longer go extinct even if R0 < 1 but reach an
equilibrium with stochastic fluctuation balancing the increase due to immigrations and the decrease
due to R0 < 1. To find the stationary distribution of V describing these fluctuations we need to know
the mean reproductive value vm of immigrants. In our illustrations, we choose this to be the mean
reproductive value the first three days after infection. The infinitesimal mean of the total reproductive
value process is then rV + μvm. Notice that this represents the mean reproductive value of immigrants
calculated from the Leslie matrix determining the transmission from infectious individuals. There will
also be stochasticity in the immigration process. Accounting for over-dispersion Dm relative to a
Poisson distributed number of infected immigrants, the infinitesimal variance is s2

dV þ v2mDmm. Using
the general formula for the stationary distribution in diffusion theory [13], this is

f(v) ¼ C e2rv=s
2
d 1þ s2

dv
v2mDmm

� �2vmm=s2
d�2rv2mDmm=s

4
d�1

, (3:1)

where C is a constant chosen so that f (v) integrates to one. The expected total reproductive value can be
found directly from the infinitesimal mean that on average must be zero, giving EV =−μvm/r. The
variance in this distribution can be derived by writing a balance equation requiring that V and V + dV
have the same variance [19]. This yields the stationary variance

var(V) ¼ (�s2
d=rþ vmDm)EV

2
¼ (�s2

1D=rþ vmDm)EV
2

: (3:2)

Hence, var(V)=EV is independent of the immigration rate μ. In appendix B, we also derive all higher
order cumulants for the stationary distribution confirming the result for the variance found by the
method described above.

In addition to the properties of the stationary distribution, the process is also characterized by
the speed of the fluctuations around the equilibrium. In deterministic theory this is often expressed
by the characteristic return time to equilibrium defined as the time it takes for a perturbation away
from the equilibrium to be reduced to a fraction 1/e≈ 0.37 of its original value. In stochastic theory
the speed of fluctuations can be described by the temporal autocorrelation function ρ(h) between the
states at times t and t + h when stationarity is reached. The corresponding characteristic return time Tc

to equilibrium is accordingly defined by ρ(Tc) = 1/e. We show in appendix C that ρ(h) = erh (for r < 0
corresponding to R0 < 1) in the present model so that Tc =−1/r.

The immigration of individuals with some reproductive value determined by their ‘age’will have a small
effect on the fluctuations of N−V, but it is the reproductive value rather than N itself that is the most
interesting quantity because V and not N determines the future of the epidemic process. If, for example,
immigration is stopped, then the process reverts back to our former ‘closed epidemic’ model but with the
initial value of the process for determining the distribution of the time to extinction being V0 and not N0.

To illustrate the effect of immigration of infection, we have chosen vm to be the mean value of individuals
reproductive values for age classes 1–3 and used an immigration rate μ = 1 corresponding to on average one
infected immigrant per day. Figure 1c shows the mean reproductive value of imported cases under this
model. We show in figure 3 the expected total reproductive value, which is approximately the number of
transmitters, as a function of the reproduction number R0 for the gamma model for infection rates, as
well as some illustrations of stationary distributions given by equation (3.1). For other values of μ, the
mean and standard deviations shown in the graphs should be multiplied by μ. When restrictions are
partly removed to allow some immigration, it is likely that other restrictions also are removed so that the
reproductive number R0 comes closer to one. However, the process is stationary only if R0 < 1.
4. Computations based on estimates of R0
The purpose of regulations within countries or regions is to make the parameter R0 as small as possible
by reducing the mean frequency of close contacts between people. In a closed region we have seen, when
R0 is smaller than one, that the number of infectious persons is represented by a decreasing stochastic
process eventually reaching extinction with probabilities given by equation (2.1). Accordingly, much
effort is used in trying to estimate R0 with as high precision as possible.

However, practically all countries have opened up for some migration, implying that there will be some
rate μ of imported infections. In general, the goal of interventions is, in addition to reducing R0, also to
reduce μ. With a constant average rate of imported cases we have seen that there is a stationary
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Figure 3. The solid line in panel (a) shows the expectation of the stationary distribution of total reproductive value, which is
approximately the number infectious persons, as function of the reproduction number R0 for the standard set of parameters
used in figure 1 and on average one immigrant per day (μ = 1). For other numbers of immigrants, this expectation must be
multiplied by μ. Immigrants are on average assumed to be have been infected in 3 days so that their average reproductive
value is (v1 + v2 + v3)/3. The dashed line in panel (a) shows the standard deviation s.d.(V ) for μ = 1, and over-dispersal
factors D = Dm = 1. For other parameters μ and D = Dm, the standard deviations appear by multiplying with

ffiffiffiffiffiffi
Dm

p
. If D≠ Dm

equation (3.2) must be used to find the standard deviation. Panel (b) shows the actual stationary distribution given by
equation (3.1) for different values of R0, when the other parameters are as in the upper panel.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:202234
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

06
 D

ec
em

be
r 

20
21

 

distribution of number of transmitters as given by equation (3.1). This distribution has mean −μvm/rwhere
vm is the average reproductive value of infected immigrants. The variance of the distribution given by
equation (3.1) is also proportional to the immigration rate μ. Even if the value of μ is unknown or very
uncertain, it is important to analyse how it affects the number of infections as a guide for management,
in particular because the need for hospital capacity is practically proportional to that number.

In figure 1, we have shown three relevant variables that are functions of R0, using the gamma model
for infection rates, so that R0 determines the complete Leslie matrix. These are the approximate growth
rate r and the value of vm when immigrants are assumed to be infected less than 4 days so that they are
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unlikely to show symptoms. The third variable is the demographic variance s2
1 when transmissions are

completely independent and random so that D = 1. For other values of D the demographic variance is
s2
d ¼ Ds2

1. Figure 3a shows the expected total reproductive value EV and standard deviation s.d.(V)
for μ =D =Dm = 1. For other values of μ and D =Dm the standard deviation should be multiplied byffiffiffiffiffiffiffi
Dm

p
, while for D≠Dm equation (3.2) must be applied.

In order to choose the value of D, let us assume that one person has contacts close enough to transmit
the virus with probability p to X persons during a day. Writing var(X) ¼ DxEX for the expectation, the
variance in the number of transmissions is p(1− p)E X + p2 DxE X giving D = 1 + (Dx− 1)p. We see from
this that if the number of contacts per day is Poisson distributed so that Dx = 1, then also D = 1, which is
the reference value we have used. One basic goal of interventions is to make EX small, which again
makes R0 small since R0 is the sum of the EX during the whole period of transmissions. By contrast,
minimizing D is not important when it comes to extinction since, as apparent from our sensitivity
analysis, extinctions on average occur sooner as D increases when the epidemic is in a sub-critical
regime and there is no immigration.

Over-dispersion in the immigration process relative to the Poisson (Dm > 1) will occur if for example
immigrants that are infected arrive in groups. If groups arrive at random (Poisson) with a mean and
variance of group size m and s2

m, respectively, one can show that the over-dispersion parameter in the
immigration term is Dm ¼ s2

m=mþm. Hence, if, for example, group sizes are constant and equal to m
then Dm =m, so even pairs of infected arriving together will contribute to Dm and the stationary
variance given by equation (3.2).

As a further illustration, consider, for example, a country with R0 = 0.96. If, for example, there are 10
infected immigrants on average per day, then the mean and variance for D =Dm = 1 are 3515.7 and
71113.0 (standard deviation 267), respectively. If D =Dm = 4 the variance must be multiplied by 4 and
standard deviation becomes 533.
5. Discussion
Our analysis is based on the use of stochastic Leslie theory to infectious disease dynamics. This theory has a
long tradition with wide application in ecological research. The main reason for this is that a very complex
situation, which needs a large number of parameters to be described in detail, can be studied quantitatively
using a model with only three parameters. In the present case when environmental fluctuations are ignored
and there is no immigration, there are only two parameters, the multiplicative growth rate λ, the
demographic variance s2

d (these parameters, in turn, obviously depend on a large number of underlying
properties of the biology of the host, the pathogen and their mutual interaction). In the literature on
epidemics and recently on the SARS-CoV-2 virus the reproduction number is defined as the average
number infected by one person. In a completely susceptible population, this is called the basic
reproduction number, R0. In a partially immune population this is called the effective reproduction
number RE. Our analysis is also valid for RE <R0 by replacing R0 by RE in the calculations. The value of
this parameter determines the rise or decline of an epidemic when R0 > 1 or R0 < 1 and is related to the
growth rate λ, but there is not a unique relationship between them unless the ‘generation time’ (viz. the
serial interval) is kept fixed. The λ used as a measure of fitness in evolutionary ecology describes how
fast the number of infected increases (or decreases). Although R0 by itself does not contain information
on the time aspect of the process, it is nevertheless the most important parameter in disease dynamics
in, for example, governing the threshold for herd immunity.

Our results are in particular focusing on uncertainty, of which there are mainly two types, parameter
and process uncertainty. The uncertainty in parameter values is illustrated in figure 2, and an extended
sensitivity analysis can easily be performed for any parameter combinations. Figure 2 also illustrates the
process uncertainty through the distribution of time to extinction, while in figure 3b and the variance
given by equation (3.2) illustrate the process uncertainty in the case of immigration. These results also
show how the process uncertainty depends on the over-dispersion parameters D in transmission and
Dm in immigration.

A great advantage in using the diffusion approximation is that it can be applied with few
assumptions, only requiring knowledge about the mean and variances of changes. This we have used
to go beyond the Poisson assumption allowing for over- or under-dispersion relative to that
distribution describing a purely random effect and independence among individuals. The dispersion
parameter D (variance to mean ratio) in transmissions simply enters as a factor in s2

d while the Dm for
the immigrations is a factor in the variance term due to immigrations.
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Theuseof fewervariables, themultiplicativegrowth rateλand thedemographicvariances2
d, derived from

the properties of the transmission process, can allow more rapid prediction of the shape and size of an
epidemic and improved scaling of the response, as the numbers of infected individuals are rapidly
changing. Currently, in China, people need to have their ‘healthy code’ (PCR screening results) for travel
between cities or provinces. All international travellers to China receive PCR screening upon their arrival at
the airport or at the land border. By this strict screening with PCR tests, China is currently rapidly able to
find asymptomatic infections or carriers, which helps to reduce the effective virus migration rate. The
results of this effort are visible in the infection data. China has tracked data for numbers of infected persons
immigrating from Mars 10, which on average is μ = 35.32 per day. Hence, the values in figure 3b should be
multiplied with this factor to give an equilibrium value for different values of R0. Assuming as before that
imported cases have been infected during the last 3 days, the mean values of the stationary distributions
for R0 = 0.5, 0.8, 0.98 are 5652, 6777 and 49 904, respectively. For D =Dm = 1, the corresponding standard
deviations, are 299, 339 and 2419. Notice that the mean values as well as the standard deviations of these
stationary distributions are independent of the number of infectious individuals because there is no
immunity reducing the growth at these relatively small numbers of infections. It appears that weakening
the interventions, which leads to larger values of R0, may lead to substantial numbers of cases.

Estimates of R0 are important when it comes to interventions, which in terms of our model has two
goals, to reduce R0 and μ. From figure 3, it appears that the mean value of the stationary distribution
increases very rapidly with increasing R0 when this parameter approaches 1. If R0 is larger than 1 there
is no stationary distribution and the epidemic will grow unchecked or until population immunity has
been reached. It is interesting in this situation to compare the effects of the two types of regulations,
either restrictions within a country to reduce R0, or travel restrictions aiming at reducing the immigration
rate μ. To illustrate this, consider a country introducing regulations that reduce R0 from 0.99 to 0.95.
Then, the mean value of infectious persons is reduced by a factor 0.21 so that the effect is the same as
reducing the mean number of immigrant cases from 100 to 21, while the characteristic return time to
equilibrium changes from 662 to 131 days. If the same reduction in R0 is obtained for a country with
R0 = 0.89, reaching 0.85, then the reduction is given by a factor 0.75, so that the effect is the same as
reducing the number of immigrants from 100 to 75, while the return time goes from 59 to 42 days. As a
consequence, in countries with R0 close to 1, a reduction of R0 is an extremely important step towards
reducing the number of infectious persons, and hence the need for hospital capacity, and seems to be
more important than reduction in μ. On the other hand, if a complete stop of immigration (μ = 0) is a
possible alternative, then the mean value is zero. In that case, if R0 < 1, the process will go extinct with
probabilities of extinction as a function of time given by equation (2.1) and illustrated by figure 2.

We have not been able to give values of the variance in the stationary distribution, but only report it
as a function of the two over-dispersion parameters D and Dm relative to the Poisson distribution. We
should expect that both of these parameters are considerably larger than 1. When an infected person
transmits the disease, it usually occurs within groups, such as families, public transport units, private
parties, or bars. Many countries now apply considerable effort in trying to trace infections by finding
all persons who have been in contact with an infected individual. This information can be used to
obtain reliable values of D by studying individual variation in transmission during a day. The same
applies to the over-dispersion Dm in immigration. When people come into a country, get symptoms
and turn out to be infected, one can often trace groups of travellers, test them, and thus find the
number of immigrated cases in the group that eventually can be used to estimate Dm.

While we have phrased our discussion in terms of the ongoing COVID-19 pandemic, the quantitative
approach should be highly relevant to a number of other stage 3 zoonotic diseases [20] with sub-critical
human-to-human transmission but immigration from animal reservoirs such as monkey pox, Lhassa
fever, hendra and a number of hanta viruses.
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Appendix A. Basic deterministic and stochastic Leslie matrix theory
A.1. Deterministic theory
In Lesliematrixmodels used in populationdynamics [11,21], the population columnvector nwith components
n1, n2,…, nk represents the number of individuals in each age bracket, with age here interpreted as time since
infection. These numbers are propagated forwards in time though the matrix multiplication Ln, where L is a
Lesliematrixwith elements lij inwhich the top row represents fecundities l1j and ageing (and survival) is given
by the sub-diagonal l(i+1)i. In contrast to various previous applications of discrete time age-/stage-structured
matrix models in the epidemic context [22], we here think of ‘age’ as the number of days since a person was
infected and the first matrix row as the, possibly, infection-‘age’-varying rates of transmission of the virus
(as envisioned in the original formulation of the SIR model [23]). Hence, l1j is the average of the rates at
which infected persons transmit the virus when they have been infected for j days. For simplicity, we
assume that all infectious individuals survive (stay in the population) until they recover and no longer
transmit the virus. This can be done for two reasons: first, the death rates during the period considered are
rather small, and second, the rates in the first row are mean values so that dead individuals can be
considered as being included, but contributing with zeros to the mean.

Leslie matrices have a real dominant eigenvalue λ with associated right and left eigenvectors u and v
defined by vTL = λvT and Lu = λu. Here superscript T denotes matrix transposition. After an initial
transient period the number of infectious individuals will grow exponentially with multiplicative
factor λ and approach a stable age distribution. If we scale the eigenvectors by

P
ui ¼ 1 andP

uivi ¼ 1, then u is the stable age distribution and v is the vector of reproductive values for the age
classes, a concept introduced by Fisher [10] using a continuous time model. The total reproductive
value V ¼ P

vini ¼ vTn ¼ nTv has exactly exponential growth with multiplicative rate λ [10,14] while
the total actual number of infectious individuals N ¼ P

ni will have minor transient fluctuations
around V and is equal to V if n =Nu. This can easily be seen by evaluating the change in V during a
time step. With subscript t indicating time, we find that Vt+1 = vTnt + 1 = vTLnt = λvTnt = λVt. If the
number of infectious individuals has the stable ‘age’ distribution then the total reproductive value
equals the actual number of infectious individuals since, if n =Nu, then V = vTn =NvTu =N.

Epidemics are commonly studied through the parameter R0, which is the expected total number of
infections by a single infected person. Accordingly, the relation to the Leslie matrix theory is that
R0 ¼

P
j l1j. If R0 (in ecology called lifetime reproductive success) equals one, the λ = 1, while values

greater or smaller than one corresponds to λ being greater or smaller than one. If some fraction of the
population is immune, then the elements l1j will be smaller and their sum then corresponds to the
effective reproduction number RE.
A.2. Stochastic theory
In stochastic Leslie theory, the elements of the matrix are stochastic variables. From the above results in
deterministic theory, one can show that under stochastic temporal variation in the Leslie matrix with no
temporal autocorrelations, the total reproductive value V will approximately be a process with white
noise, while N is a more complicated process with N−V fluctuating around zero. Hence, there are
advantages working with V rather than N since also, it is the value of V that contains the relevant
information on the future of the process.

Generally, there may be both environmental noise generated by environmental conditions varying
between time steps and demographic noise, which is independent among individuals [14]. Temporal
environmental fluctuations are not expected to have much effect on an epidemic, so we only consider
demographic stochasticity. Stochastic simulations have confirmed that the process V is well
approximated by a diffusion [24] with infinitesimal mean and variance rV and s2

dV, respectively,
where r = λ− 1, s2

d is the demographic variance of the process [15,16], and the environmental noise is
ignored. This variance is expressed through the individual reproductive values, which are each
individual’s contribution to the total reproductive value in the next time step [16]. If an individual of
age j produces B offspring in a time step, corresponding to infecting B persons, and I = 1 if it survives
and otherwise zero, then its individual reproductive value is Wj = vj+1I + v1B. With this notation the
demographic variance for the process V is defined as s2

d ¼
P

ujvar(Wj). In the present model, the
demographic stochasticity is assumed only to occur in the transmission process, the ‘fecundities’, since
I = 1 and thus has no stochasticity. A reasonable null-model is that transmissions are purely random
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so that the numbers infected by individuals during a time step are Poisson distributed with means l1j,
and hence have variance equal to the mean. Modelling transmissions in continuous time using
exponential distributed waiting times resulting in Poisson-distributed number of transmissions during
a time interval is common in epidemiology. The Poisson assumption may be seen as a large-
population approximation to the chain-binomial epidemic model [17] and is also the assumption
employed in τ-leap simulation of event-based epidemics (e.g. [19]).

Accounting for over- or under-dispersion relative to the Poisson, which may for example arise when
considering an epidemic as a stochastic birth-and-death process [25], we write Dl1j for the variances.
Since there is no stochasticity in the sub-diagonal elements, the variance of the individual
reproductive values are var(Wj) ¼ Dl1jv21 because transmissions produce new members of the group of
infectious individuals with reproductive value v1. Hence, using the fact that

P
ujl1j ¼ lu1 we see that

s2
d ¼ Ds2

1 ¼ Dlv21u1, where s2
1 ¼ lv21u1 is the demographic variance under the assumption that new

cases during a day is Poisson distributed.
R.Soc.Open
Sci.8:202234
Appendix B. The cumulant generating function for the stationary
distribution
We consider diffusionsVwith infinitesimal mean E [dV|V = v]/dt =−αv + β and E [(dV )2|V = v]/dt = γv +
δ, where α, β, γ and δ are positive constants. Let V and V + dV be the state of the process at time t and t + dt,
respectively. The moment generating function of V is Mt(u) = E[euV] while Kt(u) = lnMt(u) is the
corresponding cumulant generating function [26]. A balance equation then expresses that the distribution
ofV andV + dV are the samewhen the stationarity is reached, that isMt(u) =Mt+dt(u). By definition, we have

Mtþdt(u) ¼ E[eu(VþdV)] ¼ E[E eVþdVjV]:
Using that E[eudVjV ¼ v] ¼ e(�avþb)udtþ(gvþd)u2 dt=2 this gives

Mtþdt(u) ¼ E euVþ(�aVþb)udtþ(gVþd)u2 dt=2 ¼ Mt[uþ (�auþ gu2=2) dt] ebuþdu2 dt=2:

Taking the logarithm of each side, this yields

Ktþdt(u) ¼ Kt uþ �auþ gu2

2

� �
dt

� �
þ buþ du2

2

� �
dt,

which gives the balance equation at stationarity as

Kt(u) ¼ Ktþdt(u) ¼ Kt(u)þ K0
t(u) �auþ gu2

2

� �
dtþ buþ du2

2

� �
dt

and the differential equation, omitting the time subscript at stationarity,

K0(u) ¼ � bþ du=2
�aþ gu=2

¼ � d

g
þ 2
g

bþ ad

g

� �
� 2a

g
þ u

� ��1

:

From this, we find all cumulants κn for n = 2, 3, … as the n’th derivative of K(u) at u = 0,

kn ¼ 2
g

bþ ad

g

� �
(� 1)n(n� 1)!

g

2a

� �n
,

while κ1 = β/α. This yields the mean and variance of the stationary distribution as

EV ¼ K0(0) ¼ k1 ¼ b

a
, var(V) ¼ K00(0) ¼ k2 ¼ d

b
þ g

a

� �
EV
2

:

The skewness and kurtosis of the distribution are k3=k
3=2
2 and k4=k

2
2, respectively.

For the model in the main text, we have α =−r, β = vmμ, g ¼ s2
d ¼ s2

1D and d ¼ v2mDmm, confirming the
results given in the main text

EV ¼ � vmm
r

, var(V) ¼ �s2
1D
r

þ vmDm

� �
EV=2:
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Appendix C. Temporal autocorrelation
Consider again the process with state Vt at time t described by the infinitesimal mean and variance −αv +
β and ν(v), respectively, where α > 0. When stationarity is reached the temporal autocovariance function is
c(h) ¼ cov(Vt, Vtþh). Then, dVtþh ¼ (�aVtþh þ b)dtþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n(Vtþh)
p

dB(tþ h), where dB(t + h) is the increment
of a standard Brownian motion during the time interval from t + h to t + h + dh. with EdB(t + h) = 0 and
var[dB(tþ h)] ¼ dh. This gives

c(hþ dh) ¼ cov(Vt, Vtþh þ dVtþh):

We can then argue conditionally on Vt+h and using the well-known result that cov(Vt,
ffiffiffiffiffiffiffiffiffiffi
Vtþh

p
dB(tþ h)) is

the expectation of this covariance conditioned on Vt+h plus the covariance between the expected values of
Vt and the increment

ffiffiffiffiffiffiffiffiffiffi
Vtþh

p
dB(tþ h) when these are both conditioned on Vt+h. Since dB(t + h) by

definition is independent of the past, both of these terms are zero so that the unconditional covariance
is also zero. Accordingly

c(hþ dh) ¼ cov[Vt, Vtþh(1� adh] ¼ c(h)(1� adh),

giving c0(h) =−αc(h). Hence, c(h) = c(0) e−αh, and the corresponding temporal autocorrelation is simply
ρ(h) = e−αh.

For the model in the main text, we have α =−r so that the temporal autocorrelation function is ρ(h) = erh.
:202234
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