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Abstract: This paper presents bootstrapped nonlinear impulse response 
function analyses for general step ahead mean and volatility densities. From 
strictly (ergodic and) stationary series and BIC optimal nonlinear model 
coefficients, the paper establishes step-ahead densities for both the conditional 
mean and volatility. For sampling variances using one thousand samples and 
conditioning all paths on the daily impulses –5, –3, …, 5% all mean and 
volatility responses show mean reversion. For the volatility, all increases seem 
to arise from negative index movements suggesting strong asymmetry. 
Furthermore, the model coefficients for the volatility exhibit data dependence 
suggesting ability to predict volatility. The indices report some striking 
step-ahead differences for both the mean and the volatility. For the mean, only 
the NDX100 seems to show overreactions. For the volatility, for both positive 
and negative impulses the NDX100 reports higher volatility responses then 
FTSE100. However, asymmetry manifested for both indices suggesting that 
trading volatility as an asset may insure against market crashes and be an 
excellent diversification instrument. Finally, using a stochastic volatility model 
to obtain calibrated functions that give step-ahead predicted values for static 
predictions, enriches participants’ derivative trading strategies (i.e., volatility 
swaps). 
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1 Introduction 

This paper presents nonlinear impulse-response analyses for two central international 
equity indices. For statistical inference, the paper uses simulations (bootstrapping) to 
consider the sampling variation. Impulse-response analysis is often used in contemporary 
macroeconomic modelling describing for example how the economy reacts over time to 
exogenous impulses (shocks). This paper treats impulses as exogenous shocks to stock 
markets; that is positive and negative daily impulses generating changes in the index 
level. Impulses or shocks can originate from interest rates (central banks/federal reserve), 
tax rates, and other policy parameters as well as changes in raw material prices or other 
technological parameters. Response functions for stock markets describe the reaction 
(responses) from endogenous market variables at the time of shocks and subsequent 
points in time. The impulse response analysis is therefore a tool for inspecting the  
inter-relation of the model variables. Moreover, this paper emphasises measures of 
sampling uncertainty. 

The paper focuses on two indices both containing approximately 100 assets 
[FTSE100 (UK) and NDX100 (US)].1 The analysis is univariate indicating that  
non-synchronous trading effects do not exist. However, for the daily settlement, note that 
European markets close several hours before the US markets. The analysis has three 
objectives. First, to find general step ahead densities, second, identify data dependence 
for predictability and third, report systematic market features. The paper starts with a 
description of the bootstrapped impulse-response function analysis. The empirical index 
analysis follows three steps. First, the univariate index movements for all index models 
are expanded sequentially using the BIC criterion (Schwarz, 1978). Second, the BIC 
optimal univariate models are bootstrapped and conditioned. Third, the impulse-response 
analysis report step ahead profiles with confidence intervals with associated distributions 
for the European and US indices for the period 2012–2021. 

The methodology is the semi-non-parametric time series analysis (SNP densities) 
introduced by Gallant and Tauchen (1988, 1992, 2014). The method uses an expansion in 
hermite functions to approximate the conditional density of the time series processes. The 
leading term of the model expansion process is therefore an established parametric model 
already known to give a reasonable approximation to the process; higher order terms 
(hermite functions) capture departures from the model (Robinson, 1983). The SNP model 
is fitted using conventional maximum likelihood (ML) together with a model selection 
strategy [BIC (Schwarz, 1978)] that determines the appropriate order of expansion. The 
model is well designed for the computation of nonlinear functionals of the densities 
bringing econometrics closer to empirical reality. Extending the SNP model to 
bootstrapped impulse-response distribution analysis is challenging but made possible 
using bash scripting tools in Linux and access to clusters of CPUs/GPUs and 
optimisation2 using the OpenMPI3 software. Firstly, 1.000 simulations of the BIC optimal 
SNP models ˆ( )θ  are generated (changing the seed) and all extended with impulses from 
–5% to 5% (iterations). For each simulation and impulses, mean and volatility responses 
are calculated and reported for several days ahead applying densities and confidence 
intervals. Hence, the simulations, iterations and density reports are Linux bash script 
unique while the SNP models calculate the mean and volatility responses using C/ C++. 
Together the Linux scripts and the SNP models originate the work. 
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 The remainder of this paper is organised as follows. Section 2 introduces the  
impulse-response functions and describes the bootstrapping techniques to obtain numbers 
for statistical inference. Section 3 gives a literature review over Monte Carlo  
impulse-response literature together with an introduction to the SNP-software and 
methodology. Section 4 for the FTSE100 and NDX100 indices, reports the  
SNP specification consistent mean and volatility equation specifications. The hermite 
function expansions extend model approximation for the conditional density4, which 
summarises the probability distribution and characterises the index movement processes. 
Residual characteristics are used to assess model fit. Section 5 performs the  
impulse-response5 analysis put forth in Sims (1980) and refined by Doan et al. (1984) and 
others. The impulse response dynamics from the SNP models are elicited in Section 5.2 
by perturbing the vector of conditioning arguments in the conditional density function 
(Gallant et al., 1993; Gallant and Tauchen, 2010, 2014). Section 6 summarises and 
concludes. 

2 The impulse-response functionals 

The paper applies the methodologies outlined by Gallant et al. (1993), Gallant  
and Tauchen (2014) defining step-ahead forecasts for the mean conditioned on the  
history as ( )1, ...,t tg y y− ∞ +    ( )( )1 - 0|t t k kE y y ∞

+ ==  in general and ( )1, ...,t L tg y y− +  

( )( )-1
1 - 0| L

t t k kE y y+ ==  for a Markovian process where L is the number of lags. We put 

( )( )ˆ ( ) , ..., |j t L j t j ty x E g y y x x− + += =  ( )( )| , ..., |t j t L j t j tE E y y y x x+ − + += =  and 

therefore ˆ i
jy  for impulse ranges i = –5%, …, 5%, and for five steps-ahead (days) j = 0, 

…, 3 where x = (y–L+1, …, y0) and L represents the number of lags in the Markovian 
process. The conditional mean profiles { } 1

ˆ i
j j

y ∞

=
 for i = –5%, …, 5% are the conditional 

expectations of the trajectories of the one-step conditional mean.6 Note that 5%
1ˆ{ }j jy− ∞

=  
therefore represents the mean response to a negative 5% impulse (error shock). The 
responses depend upon the initial x, which reflects the nonlinearity. Moreover, the law of 
iterated expectations implies that ˆ ( ) ( | ).j t j ty x E y x x+= =  The sequences 0

1ˆ ˆ{ }i
j j jy y ∞

=−  
for i = –5%, …, 5%, represents the effects of the shocks on the trajectories of the process 
itself. A conditional moment profile can now be defined as 

( ) 1
- 0, ..., | { } , ( 0, .., 3),L

t j J t j t k kE g y y y j=
+ − + =  =     where the word moment refers to the 

time-invariant function g(y–J, …, y0). 
Similarly, the one-step-ahead variance, also called the volatility, is the one-step ahead 

forecast of the variance conditioned on history becoming 

( )( )
{ }( ) { }( ) { }

1 0

1 1 1 10 0 0|

t t k k

t t t k t t t k t kk k k

Var y y
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+ − =

∞ ∞ ∞
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or 1
1 0( | ( ) )L

t t k kVar y y −
+ − =  for a Markovian process (L << ∞). By appropriately defining the 

function g(.), we can measure the effect of impulses on volatility. Now writing 
 ( )( ) ( )( )1( ) , ..., | | |j t L j t j t t j t j tx E g y y x x E Var y x x x− + + + + −Ψ = = = =    for j = 0, …, 3 

where x = (y–L+1, …, y0). ˆ ( )j xΨ  is the conditional expectation of the trajectories of the 
step-ahead conditional variance matrix j, conditional on xt = x. Therefore, as for the 

conditional mean, the 
5%

1{ }j j
−

∞
=Ψ  represents the volatility response from a negative 5% 

impulse (shock). The net effects of perturbations on volatility are assessed by plotting the 
profiles compared with the baseline ∂yi for i = –5%, …, +5%. Note that the above defined 
conditional volatility profile, is different from the path described by the j-step ahead 
square error process. Analytical evaluation of the integrals in the definition of the 
conditional moment profiles are intractable. However, evaluation is well suited to  
Monte Carlo integration. 

Let 1{ } ,r
j jy ∞

=  r = 1, …, R be R simulated realisations of the process starting from  

x0 = x. That is, 1
ry   is a random drawing from f(y | x) with ( )1 1 0, ..., , ;Lx y y y− + −

′′ ′ ′=    2
ry  is 

a random drawing from f(y | x) with ( )2 0 1, ..., , ,Lx y y y− +
′′ ′ ′=    and so forth. Now applying 

the invariant function of a stretch of {yj} and length j, we get 

( ) ( )

( )

-1

1 1 1
0

1

ˆ ( ) ... , ..., | , ..., ...

(1 / ) , ...,
j J

j

j j J j i y L i j
i

R
r r

j
r

g x g y y f y y y dy dy

R g y y
−

− + − +
=

=

 
=  
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with the approximation error tending to zero almost surely as R → ∞, under mild 
regulatory conditions on f and g. For statistical inference, sup-norm bands are constructed 
by bootstrapping7, using simulations to consider the sampling variation in the estimation 
of ˆ ( | ).f y x  That is, changing the seed that generates densities and the basis for  
impulse-response analyses. The paper applies 1,000 samples and a 95% confidence 
interval. A 95% sup-norm confidence band is an ε-band around the mean profile ˆ ( | )f y x  
that is just wide enough to contain 95% of the simulated profiles. Moreover, distributions 
for multiple-step ahead mean and volatility can be plotted for the mean and volatility for 
days j = 0, …, 3. Day 0 is the impulse day and day 1 to 3 are the distributional response 
forecasts. The one-step ahead response distribution is reported for mean and volatility for 
all impulses i = –5%, …, 5%. 

3 Literature review 

3.1 Impulse-response functions literature 

Early work (e.g., Campbell and Mankiw, 1987) used univariate linear models and 
concluded that, at least at business cycle frequencies (e.g., eight to 12 quarters), shocks 
were persistent. The more recent work by Beaudry and Koop (1993) (BK hereafter), 
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Potter (1995) and Pesaran and Potter (1994) (PP hereafter) has focused on nonlinear 
models. They argue that linear models are too restrictive. Linear models cannot 
adequately capture asymmetries that may exist in business cycle fluctuations. Other 
authors (e.g., Pesaran et al., 1993; Lee and Pesaran, 1993; Blanchard and Quah, 1989) 
have extended the basic linear univariate literature to a consideration of linear 
multivariate models. A richer understanding of the persistence of shocks can be achieved 
by considering information from more than one macroeconomic time series (Blanchard 
and Quah, 1989) or from more than one sector of the economy (Lee and Pesaran, 1993). 
Gallant et al. (1993) put greater emphasis on providing measures of sampling uncertainty 
for impulse response functions produced from non-parametric estimates. That is, a 
nonlinear impulse response function is estimated by Monte Carlo integration based on 
estimates of the structural model. The approach tends to be computationally demanding. 
However, using the SNP software package (Linux), the approach easily implemented 
with access to all interesting extensions (and programmable C/C++). Hence, when local 
projections and vector auto regression fails from exogenous serial correlated or 
endogenous impulses, the nonlinear semi-parametric SNP model applying bootstrapping, 
is applicable without significant speed drawbacks. A considerable number of structural 
models has been proposed in the literature. A class of models includes stochastic models, 
regime switching models, cointegration analysis, mean-reverting models, and other 
empirical models. These models fail to capture the full volatility dynamics of indices as 
well as, the price and volatility interrelationships. Another class of models introduces 
univariate generalised autoregressive conditional heteroscedasticity (GARCH) 
conditional volatility models, as well as other variations of GARCH modelling, such as 
EGARCH and TGARCH. These models capture the price and volatility dynamics of 
financial market prices, as well as price shock transmissions. For this paper, we follow 
the impulse response methodology of Gallant and Tauchen (1998, 2010, 2014). 

3.2 The SNP model 

Nonlinear stochastic models will in our study imply conditional models. Autoregressive 
and moving average (ARMA) is a term applied to the structure of the conditional mean, 
while GARCH is a term applied to the structure of the conditional volatility. ARMA 
models can be studied in detail in, for example, Mills (1990), while ARCH specifications 
were first studied by Engle (1982) and moved furthered by Bollerslev (1986) who 
specified the generalised ARCH or GARCH. The development to GARCH from ARCH 
was initially done to the number of lags in the ARCH specification.8 ARCH/GARCH 
specifies the volatility as a function of historic price movements and volatility. In the 
international finance literature, quite several studies have shown how the results from this 
work has been used. See for example, Bollerslev (1987), Bollerslev et al. (1992), Engle 
and Bollerslev (1986), Engle and Ng (1993), Nelson (1991) and de Lima (1995a, 1995b). 
For a comprehensive introduction to ARCH models and applications in finance see 
Gouriéroux (1997). Ding et al. (1993) extends the symmetric GARCH model into 
asymmetric GARCH and the truncated GARCH (GJR) is described by Glosten et al 
(1993). 

SNP9 by Gallant and Nychka (1987), Gallant et al. (1992), Gallant and Tauchen 
(2010, 2014) stands for SNP, suggesting that it lies halfway between parametric and non-
parametric procedures. The leading term of the series expansion is an established 
parametric model known to give a reasonable approximation to the process; higher order 
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terms capture departures from that model. With this structure, the SNP approach does not 
suffer from the curse of dimensionality to the same extent as kernels and splines. In 
regions where data are sparse, the leading term helps to fill in smoothly between data 
points. Where data are plentiful, the higher order terms accommodate deviations from the 
leading term and fits are comparable to the kernel estimates proposed by Robinson 
(1983). The theoretical foundation of the method is the hermite series expansion, which 
for time series data is particularly attractive based on both modelling and computational 
considerations. In terms of modelling, the Gaussian component of the hermite expansion 
makes it easy to subsume into the leading term familiar time series models, including 
VAR, ARCH, and GARCH models (Engle, 1982; Bollerslev, 1986). These models are 
generally considered to give excellent first approximations in a wide variety of 
applications. In terms of computation, a hermite density is easy to evaluate and 
differentiate. Also, its moments are easy to evaluate because they correspond to higher 
moments of the normal, which can be computed using standard recursions. Finally, it is 
practicable to sample from a hermite density, which facilitates simulation. 

4 The indices, impulse-response functions and empirical findings 

4.1 Index data and stationarity 

We impose weak stationarity, and the means, variance and covariances are independent 
of times (rather than the entire distribution). That is, a process {yt} is weakly stationary if 
for all t, it holds that E{yt} = μ ≤ ∞, V{yt} = E{(yt – μ)2} = γ0 < ∞ and cov{yt, yt–k} =  
E{(yt – μ)(yt–k – μ)} = γk, k = 1, 2, 3, …. A shock to a stationary autoregressive process of 
order 1 (AR(1)) affects all future observations with a decreasing effect. Table 1 reports 
the characteristics of the index movement series. The mean is positive. Lowest mean is 
found for the FTSE100 index (0.006) and is followed by the lowest standard deviation 
(1.01) as expected. The NDX100 has an expectation of 0.075 with an associated standard 
deviation of 1.24. A maximum (minimum) mean of 8.7 and 9.6 (–11.5 and –13.0) is 
found for the FTSE100 and NDX100 indices, respectively. The FTSE100 index 
(NDX100) reports highest (lowest) kurtosis of 14.3 (12.9) and a negative skew of –0.91 
(–0.75). Cramer-von-Mises test statistic reports significant non-normality for both 
FTSE100 (5.6) and NDX100 (8.1). The Q(12) and the Q2(12) correlogram statistics 
(serial correlation) show dependencies for both the mean and volatility for both the 
FTSE100 and NDX100 indices. 

Similarly, the 12th lag ARCH test statistic (Engle, 1982) suggests highly significant 
conditional heteroscedasticity. The RESET test (Ramsey, 1969) report instability. 
Finally, for both series, the adjusted series the ADF (Dickey and Fuller, 1979) and the 
KPSS (Kwiatkowski et al., 1992) statistics confirm stationarity. The BDS test statistic 
(Brock et al., 1996) reports general nonlinear data dependence. Figure 1 reports the level 
(top) the movement series (bottom) for FTSE100 and NDX100 indices. The general 
movement appearances of the two series are typical for equity market data. We also 
experimented with breaking trends in the movement equations, but our results suggested 
little evidence for trend breaks. The value at risk (VaR) is a well-known concept for 
measures of risk and Table 1 includes the 2.5% and 1% VaR numbers for market 
participants. 
 



   

 

   

   
 

   

   

 

   

    Bootstrapped nonlinear impulse-response analysis 203    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 (a) FTSE100 and NDX100 index series level and (b) movements for the period for 
2012–2021 (see online version for colours) 
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Table 1 Characteristics for FTSE100 and NDX100 Indices for 2012–2021 
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4.2 The SNP density projection 

Since the conditional density completely characterises the price movement process, the 
density is naturally viewed as the fundamental statistical object of interest. The  
SNP model is fitted using conventional ML together with a model selection strategy that 
determines the appropriate order of expansion (BIC). The Schwarz (1978) Bayes 

information criterion is computed as 1ˆ( ) log( )
2

p
n

p
BIC s θ n

n
  = +     

 with small values of 

the criterion preferred. Table 2 reports the ML estimates10 of the parameters for the  
BIC-optimal SNP density models.11 Firstly, for the mean, the intercept is insignificant 
and the serial correlations (η6) are insignificant for FTSE100 but significant for NDX100 
implying negative dependence. This negative dependence for NDX100 index (η6) may 
suggest mean reversion. Secondly, the conditional variance coefficients (η7 – η9) are all 
strongly significant except the ARCH coefficient (η8) that is close to zero for both series. 
The significance of η7 and η9 suggest conditional heteroscedasticity. Furthermore, 
asymmetry (η10) is present but level effects (η11) are not (zero coefficient). The largest 
eigenvalue of the conditional variance function P&Q companion matrix is 0.855 and 
0.881 for the FTSE100 and NDX100, respectively. These results confirm mean reversion 
of the conditional variance. Finally, the hermite functions coefficients (η1 – η4), which 
capture parametric model departures, are BIC preferred up to the fourth polynomial lag 
expansions. Hence, the hermite result clearly suggests departures from the classical 
normally distributed and parametric conditional model. 
Table 2 SNP-model projection specification European and US indices 

Statistical Model SNP (111140000) opt. BIC-fit; semi-parametric-GARCH model 

Var SNP Coeff. 
Mode and {standard error}  

FTSE100  Nasdaq100  
Hermite Polynoms     
η1 a0[1] 0.01555 {0.0298} 0.02946 {0.0291} 
η2 a0[2] –0.03926 {0.0256} –0.04833 {0.0228} 
η3 a0[3] –0.05551 {0.0123} –0.10151 {0.0123} 
η4 a0[4] 0.08170 {0.0115} 0.09363 {0.0125} 
Mean equation (correlation)    
η5 b0[1] –0.02760 {0.0407} –0.04317 {0.0365} 
η6 B(1,1) 0.00789 {0.0230} –0.06278 {0.0217} 
Variance equation (correlation)    
η7 R0[1] 0.18002 {0.0171} 0.15536 {0.0118} 
η8 P[1,1] 0 {0.0} 0 {0.0} 
η9 Q[1,1] 0.92467 {0.0105} 0.93883 {0.0054} 
η10 V[1,1] –0.49898 {0.0401} –0.44281 {0.0295} 
η11 W[1,1] 0 {0.0} 0 {0.0} 
Model sn 1.18616  1.14026461  
selection aic 1.19086  1.14026461  
criteria: bic 1.20418  1.14026461  
Largest eigenvalue for mean: 0.00789  0.062779 
Largest eigenvalue variance: 0.85501  0.881409 



   

 

   

   
 

   

   

 

   

   206 P.B. Solibakke    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 3 SNP-model projections residuals for FTSE100 (UK) and Nasdaq100 (US) 
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Figure 2 Conditional mean and volatility together with one-step ahead conditional densities  
(see online version for colours) 
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The conditional variance function and the quadrature density distributions show that the 
reaction from negative price movements is clearly higher than from positive index 
movements (not reported). 

The SNP projection densities ( )1
ˆ| ,K t tf y x θ−  give access to the conditional mean and 

volatility densities. Moreover, conditional on the values for ( )1 1 2, , .., ,t t t t Lx y y y− − − −=     
the one-step-ahead mean densities can be generated. Simulation paths (bootstrapping) are 
obtainable at any length. For the two series, Figure 2 reports these above-mentioned 
densities. The mean distribution for FTSE100 is narrower and closer to zero than the 
NDX100 index. The conditional volatility distribution for NDX100 seem to report a 
larger right tail than the FTSE100 index. Furthermore, note the skew to the right for the 
NDX100 index and the one-step ahead mean distribution. These plots suggest that the 
NDX100 show a higher mean drift than for the FTSE100 index. These results are in full 
compliance with the statistics from Table 1. Finally, Table 3 reports residual statistics  
for the two indices. All residual test statistics are insignificant except for the  
Cramer-von-Mises test for normality. However, the non-normality from the raw data is 
nearly eliminated for the model residuals. 

5 The impulse-response functionals for period 2012–2021 

5.1 The impulse-response analysis 

Section 2 has defined the impulse-response functions and described the bootstrapping 
techniques to enable distributional reports. Table 4 (top) reports percentiles mean and 
responses for the FTSE100 and NDX100 indices and impulses i = –5%, –3%, –1%, 1%, 
3% and 5%. For all impulses i = –5%, …, 5%, Figures 3 and 5 report mean confidence 
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intervals and one-step ahead mean distributions for the FTSE100 and NDX100 indices. 
For all plots, the left column contains the conditional mean profiles { }30

0
ˆ ˆi

j j j
y y

=
−  for the 

impulses i = –5, …, 5% using steps-ahead j = 0, …, 312, where day 0 is the impulse day. 
The impulse response functions for the conditional mean show the well-known 
characteristics of mean reversion. The baseline mean profile is and negative (positive) 
response lines are continuous (dotted). For both the FTSE100 and NDX100 indices, the 
mean for all impulses revert immediately to zero. Moreover, the mean effects seem to be 
symmetric and totally dissipated within one-step-ahead of the impulse, suggesting very 
little evidence of nonlinearity in the conditional mean of the movement processes. From 
the –5% and 5% high price impulses, the step-ahead responses are very close to zero. In 
fact, all the impulse-response profiles consistently show dissipated responses. However, 
the mean response differences between positive and negative impulses show higher 
absolute mean values suggesting that asymmetries may not be neglectable. Implementing 
bootstrapping, we can report 95% sup-norm bands and step ahead forecast distributions. 
The bands and distributions use 1,000 re-fittings of the SNP model. The band is 
computed for all cases i = –5%,…, 5%. The ε-band is located around zero and narrow, 
suggesting no obvious advantageous positions for market participants. For the FTSE100 
(NDX100) index the –5% shock the 95% ε-band is between -0.007 and 0.061 (0.481 and 
0.563) with an expectation of 0.029 (0.527). Similarly, for a 5% shock the ε-band is 
between –0.021 and 0.050 (–0.329 and –0.2389) with an expectation of 0.019 (–0.279). 
In fact, all mean ε-bands for the FTSE100 index for the index movements ranges between 
–5% and 5%, include zeroes. This is not so for the NDX100 index. For all negative 
impulses from –5% to –1%, the 95% response confidence intervals are positive. 
Moreover, for impulse 5% the 95% response confidence interval is negative. However, 
all mean impulses show close to zero responses, suggesting immediate market mean 
reversions.13 Anyway, the NDX100 index seems to show marginal overreactions 
(responses) from both negative and positive impulses. 

Table 4 (bottom) and Figures 4 and 6 report the impulse-response variance  

functions (conditional variance profiles)   0 3
0{ }

i
j j j=Ψ − Ψ  for impulses i = –5%, …, 5%, 

multi-steps-ahead j = 1, …, 3, where the baseline variance profile is 
0
.jΨ  The most 

conspicuous result is the volatility asymmetry. For both the FTSE100 and NDX100 
indices, the asymmetry is visible already from an absolute index movement of 1%.  
One-step ahead volatility from positive index movement impulses of 1%, 3%, and 5% for 
the FTSE100 (NDX100) show responses of 0.198, 0.199 and 0.200 (0.269, 0.270 and 
0.272) are almost negligible both in size and increase. In contrast, negative index 
movement impulses of –1%, –3%, and –5% for the FTSE100 (NDX100) index report 
strongly increasing variance responses of 1.693, 13.468, and 28.351 (2.122, 16.0092, and 
34.816), respectively. Hence, volatility seems to follow from negative index movements. 
The fast-growing and negative asymmetry is manifested. From the bootstrapping 
implementation (statistical significance), the 95% confidence intervals (sup-norm  
ε-bands) show ε-bands do not interact (all the differences do not include zeroes from all 
impulses). For example, for the FTSE100 (NDX100) index, the ε-band responses for the  
 
 
 



   

 

   

   
 

   

   

 

   

    Bootstrapped nonlinear impulse-response analysis 209    
 

    
 
 

   

   
 

   

   

 

   

       
 

negative –5% relative to positive 5% impulses, one-step ahead is 28.35 (34.82) versus 
0.200 (0.272) with a confidence interval of 25.51 – 31.60 (31.54 – 39.14) versus  
0.147–0.292 (0.195 – 0.408), respectively. Note also from the volatility figures that the  
ε-bands for day 0 are naturally wider for negative day 0 impulses. Hence, trading 
strategies involving volatility changes must depend on negative index movements. 
Furthermore, Figures 4 and 6 suggest a higher volatility for day t for –5% movements at 
day t + 1. Therefore, the daily level of volatility may turn out to be a sign for large 
negative index movements. Hence, volatility may contain information important for the 
trading position (as an asset class in its own right) of market participants. For example, 
we have above shown that equity volatility is strongly negatively correlated with the 
equity price movements. Therefore, adding volatility to an equity portfolio provides both 
excellent diversification and insurance against market crashes.14 
Table 4 Mean and volatility characteristics for one-step ahead densities 

Mean characteristics one-step ahead from 1,000 impulse-response simulations 
Percentiles: –5% –3% –1% 1% 3% 5% 
FTSE100 (UK)       
50% –0.00713 –0.02517 –0.05482 –0.05391 –0.03604 –0.02060 
5% 0.06050 0.04722 0.01973 0.01680 0.03560 0.05008 
95% 0.03893 0.02341 –0.00549 –0.00512 0.01155 0.02819 
Percentiles: –0.05000 –0.03000 –0.01000 0.01000 0.03000 0.05000 
NDX100 (US)       
50% 0.48090 0.28357 0.07176 –0.08014 –0.20474 –0.32938 
5% 0.56257 0.37732 0.16956 0.01126 –0.11336 –0.23803 
95% 0.54053 0.34991 0.13821 –0.01777 –0.14237 –0.26701 
0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

Volatility characteristics one–step ahead from 1,000 impulse-response simulations 
FTSE100 (UK)       
50% 28.35117 13.46767 1.69308 0.19881 0.19853 0.20012 
5% 25.51423 12.57237 1.60692 0.14259 0.14581 0.14738 
95% 31.59872 13.98139 1.78697 0.29121 0.29037 0.29194 
Model 29.07899 13.71144 1.73261 0.21400 0.21479 0.21637 
NDX100 (US)       
50% 34.81586 16.09169 2.12190 0.26944 0.27015 0.27160 
5% 31.53851 15.46924 2.01144 0.19331 0.19402 0.19546 
95% 39.14066 16.53260 2.22514 0.40574 0.40646 0.40792 
Model 36.14817 16.44242 2.17904 0.29932 0.30003 0.30147 
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Figure 3 FTSE100 (UK) impulse-response mean profiles, confidence intervals and one-step 
ahead distributions (see online version for colours) 
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Figure 4 FTSE100 (UK) impulse-response volatility profiles, confidence intervals and one-step 
ahead distributions (see online version for colours) 
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Figure 5 NDX100 (US) impulse-response mean profiles, confidence intervals and one-step ahead 
distributions (see online version for colours) 

NDX100 (US) impulse-response mean profiles/confidence 
intervals 

-5

-4

-3

-2

-1

0

1

0 1 2 3  

 

 

-1

0

1

2

3

4

5

0 1 2 3  

NDX100 (US) one-step ahead distributions 

0

5

10

15

20

.40 .44 .48 .52 .56 .60 .64

De
ns

ity

0

4

8

12

16

20

.20 .24 .28 .32 .36 .40 .44

De
ns

ity

0

4

8

12

16

20

.00 .04 .08 .12 .16 .20 .24

Histogram Kernel Normal Student's t

De
ns

ity

 

 

 

0

4

8

12

16

20

-.4
0

-.3
6

-.3
2

-.2
8

-.2
4

-.2
0

De
ns

ity

0

5

10

15

20

-.2
8

-.2
6

-.2
4

-.2
2

-.2
0

-.1
8

-.1
6

-.1
4

-.1
2

-.1
0

-.0
8

-.0
6

-.0
4

De
ns

ity

0

4

8

12

16

20

-.1
4

-.1
2

-.1
0

-.0
8

-.0
6

-.0
4

-.0
2 .00 .02 .04 .06 .08

Histogram Kernel Normal Student's t

De
ns

ity

 

 

Figure 6 NDX100 (US) impulse-response volatility profiles, confidence intervals and one-step 
ahead distributions (see online version for colours) 

NDX100 (US) Impulse-response volatility P./confidence interval 
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Finally, Figure 7 reports persistence based on the SNP specification ˆ( ( | )).f y x  Each 
profile uses data up to date t – 1. At date t, the profile shows mean reversion typically for 
GARCH(1,1) processes. The measure of the persistence in a volatility model is the  
‘half-life’ of volatility. This is defined as the time taken for the volatility to move halfway 
back towards its unconditional mean following a deviation from it. The half-life 
definition (Engle and Patton, 2001) is given as 
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2 2
| 1|

1: .
2t k t t tτ k h σ h σ+ += − = −  

The volatility from approximately the 2000 latest observations (2012–2021) for the 
FTSE100 (NDX100) index is defined in the plot to be 8.60 (6.78) days with an associated 
standard deviation of 2.15 (2.56) days. 

5.2 The UK and US Index impulse-response differentials 

From Figure 1, the European and US index level plots are clearly more different than the 
index movements plots. Table 1 confirms these plot differences. The BIC optimal models 
show coefficient differences for the mean, the volatility and the hermite functions. For 
the shock analysis, the mean responses for the NDX100 index show overreactions. For 
example, giving the NDX100 and impulse of –5% (5%), a response one-step ahead of 
+0.527% (–0.278%) is reported. That is, the index shows overreaction with a 95% 
confidence interval of 0.481 and 0.563 (–0.238 and 0.393). In contrast, an impulse of  
–5% (5%) for the FTSE100 index reports one-step ahead of 0.03% (0.02%). The 95% 
intervals include zero, indicating mean reversion and no overreaction. The mean 
therefore suggests systematic differences from impulses between the European and US 
markets. Note that the NDX100 index seems to report an asymmetric mean by showing a 
0.527% response to a –5% impulse and only –0.278% response to a 5% impulse. 
Moreover, the 95% confidence intervals do not overlap signalling statistical significance. 

The NDX100 seems also to report asymmetric volatility responses following 
impulses. For example, giving the NDX100 index a –5% movement impulse show an 
increased volatility of 34.82% (from 4.54%) with a 95% confidence interval between 
31.54% and 39.14%. In contrast, a 5% movement impulse report a calmer response 
volatility of 0.272% (from 0.599%) with a 95% confidence interval between 0.1957% 
and 0.408%. Giving the FTSE100 index a similar impulses of –5% (5%) impulse show an 
increased (calmer) volatility of 28.35% (from 4.44) (0.20% (from 0.377%) ) with a 
confidence interval between 25.51% and 31.6% (0.147% and 0.292%). Note also that 
both confidence intervals marginally overlap. That is, a distinction between volatility 
levels are not possible. However, the result suggests that the NDX100 index volatility 
responses are marginally higher than for the FTSE index (for both negative and positive 
impulses). Furthermore, for both markets, the asymmetry between positive and negative 
impulses is clearly manifested through no overlap in the 95% confidence intervals. 

5.3 Forecasting FTSE100 and NDX100 Volatility 

The SNP methodology obtains a convenient representation of one-step ahead conditional 
variance 2

1 1ˆ ˆˆ of given { } .t
t t τ τσ y y+ =  From these SNP scores and a stochastic volatility 

model applying efficient method of moments (Solibakke, 2020), we use the by-product of 
a long simulated realisation of the state vector , 1

ˆ{ } , 1, 2N
i t tV i= =  together with the 

corresponding { } 1
ˆ N

t ty =  for the optimally estimated parameter vector ˆ.θ θ=  Running 
regressions for Vit on 2 ˆ ˆˆ , and | |t t τσ y y  and a generous number of lags of theses series 
(data dependence), we obtain calibrated functions that give step ahead predicted values of 

{ } 1| , 1, 2t
it τ τV y t= =  at the original data points. 
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Figure 7 Volatility persistence plots from the 11114000 BIC optimal specifications (see online 
version for colours) 
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Figure 8 (a) FTSE100 and (b) NDX100 volatility predictions for 2020–2021 (see online version 
for colours) 
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Figure 8 (a) FTSE100 and (b) NDX100 volatility predictions for 2020–2021 (continued)  
(see online version for colours) 
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Table 5 Estimated stochastic volatility forecast fit measures 

 

Fa
ct

or
 1

 
 

Fa
ct

or
 2

 
 

C
on

tr
ac

ts
 

Er
ro

r m
ea

su
re

s 
V 1

t: 
 

V 2
t: 

 
Re

pr
oj

ec
te

d 
vo

la
til

ity
 

Ro
ot

 m
ea

n 
sq

ua
re

 E
rro

r (
RM

SE
) 

0.
16

38
1 

 
0.

12
62

1 
 

2.
57

93
3 

 
M

ea
n 

ab
so

lu
te

 e
rro

r (
M

A
E)

 
0.

10
79

9 
 

0.
09

79
0 

 
1.

08
91

4 
 

M
ea

n 
ab

so
lu

te
 p

er
ce

nt
 e

rro
r (

M
A

PE
) 

60
.5

11
5 

 
16

9.
23

5 
 

5.
89

11
3 

 
Th

ei
l i

ne
qu

al
ity

 c
oe

ffi
ci

en
t (

U
1) 

0.
14

01
2 

 
0.

77
68

3 
 

0.
07

88
8 

 
 

Bi
as

 p
ro

po
rti

on
 

 
0.

00
27

45
 

 
0.

01
09

2 
 

0.
04

70
3 

 
V

ar
ia

nc
e 

pr
op

or
tio

n 
 

0.
04

14
6 

 
0.

66
58

1 
 

0.
04

70
3 

 
Co

va
ria

nc
e 

pr
op

or
tio

n 
 

0.
95

58
0 

 
0.

32
32

8 
 

0.
95

00
2 

Th
ei

l U
2 c

oe
ffi

ci
en

t 
0.

99
79

6 
 

0.
90

37
7 

 
0.

98
62

9 
 

Ft
se

10
0 

sp
ot

 
in

de
x 

(U
K

) 

Sy
m

m
et

ric
 M

A
PE

 
38

.6
26

7 
 

16
2.

39
5 

 
5.

95
86

1 
 

Ro
ot

 m
ea

n 
sq

ua
re

 e
rr

or
 (R

M
SE

) 
0.

18
56

3 
 

0.
02

87
9 

 
1.

46
59

6 
 

M
ea

n 
ab

so
lu

te
 e

rro
r (

M
A

E)
 

0.
13

25
2 

 
0.

02
05

2 
 

0.
82

30
5 

 
M

ea
n 

ab
so

lu
te

 p
er

ce
nt

 e
rro

r (
M

A
PE

) 
42

.1
82

5 
 

22
1.

62
6 

 
6.

01
67

2 
 

Th
ei

l i
ne

qu
al

ity
 c

oe
ffi

ci
en

t (
U

1) 
0.

12
07

7 
 

0.
64

41
7 

 
0.

05
71

7 
 

 
Bi

as
 p

ro
po

rti
on

 
 

0.
02

80
95

 
 

0.
02

67
8 

 
0.

00
72

6 
 

V
ar

ia
nc

e 
pr

op
or

tio
n 

 
0.

02
81

0 
 

0.
53

79
8 

 
0.

02
77

9 
 

Co
va

ria
nc

e 
pr

op
or

tio
n 

 
0.

95
93

6 
 

0.
43

52
4 

 
0.

96
49

5 
Th

ei
l U

2 c
oe

ffi
ci

en
t 

0.
79

88
1 

 
1.

52
72

2 
 

0.
96

65
8 

 

N
D

X
10

0 
sp

ot
 

in
de

x 
(U

S)
 

Sy
m

m
et

ric
 M

A
PE

 
30

.1
85

4 
 

14
7.

59
0 

 
5.

98
25

2 
 

So
ur

ce
: 

Fo
r a

ll 
m

ea
su

re
s s

ee
 P

in
dy

ck
 a

nd
 R

ub
in

fe
ld

 (1
99

8)
 



   

 

   

   
 

   

   

 

   

    Bootstrapped nonlinear impulse-response analysis 217    
 

    
 
 

   

   
 

   

   

 

   

       
 

It is difficult to forecast because the realisation of a stochastic process will be influenced 
of random events that happen in the future. In case of a large market movement at any 
time before the risk horizon the forecast needs to take this into account. However, a static 
forecast for the FTSE100 index (top) and the NDX100 index (bottom) is in Figure 8 and 
fit measures are reported in Table 5. The estimation period is from 2012 to January 1st, 
2020 and the static forecasting period from January 1st, 2020 to February 5th, 2021. 
Static forecasting performs a series of one-step ahead forecasts of the dependent variable 
(Pindyck and Rubinfeld, 1998). For each observation the forecast computes 
ˆ ˆ(1) ( ) ,S k S k jy c c j y+ + −= +  where j is the lag number of the forecasting variable y (always 

using the actual value of the lagged endogenous variable), requiring that data for any 
lagged endogenous variables be observed for every observation in the forecast sample. 
The static daily forecasts do not contain any exogenous variables. 

For a ‘good’ measure of fit, using the Theil inequality coefficient (bias, variance, and 
covariance portions) the bias and variance should be small so that most of the bias is 
concentrated on the covariance proportion. The Theil’s covariance proportion for  
re-projected volatility for the FTSE100 index (NDX100 index) is 0.950 (0.965). The two 
other columns of Table 5 show the fit measures for factor V1 and V2. From Figure 8 and 
the reprojected volatility plots (top), only March 2020 (COVID-19 outbreak) and 
possibly April 2020 report actual volatility outside of the predicted 95% confidence 
intervals. These results are also valid for factor V1 while factor V2 (tails) show several 
more breaks of the 95% confidence intervals. However, for the yearly volatility, the 
influence of V2 relative to V1, is considerably lower (see the axes). Running static 
forecasts for sub-samples for the period 2018, 2019 and compare the Theil covariance 
measures does not significantly change the Theil’s covariance portion. 

6 Summary and conclusions 

We have modelled and estimated a non-parametric for the conditional mean and variance 
for the FTSE100 (UK) and NDX100 (US) for the period 2012 to 2021. The time series 
are estimated using ML and coefficients are optimally selected based on the BIC 
criterion. Our model captures the serial correlation structure in the return series, the effect 
of ‘thick distribution tails’ (leptokurtosis) and residual risk in the conditional mean. The 
conditional variance equation captures shock, persistence, and asymmetry and the  
two-equation specification control for conditional heteroscedasticity. The battery of 
statistical model specification tests cannot reject the BIC-optimal SNP specification (not 
reported). We summarise our results below. 

The drift is close to zero for the FTSE100 index (UK), but positive for the NDX100 
index. We find serial correlation structures for the mean as well as mean reversion in the 
two series. The volatility equation rejects conditional homoscedasticity suggesting some 
form of data dependence (serial correlation). The empirical impulse-response analysis 
confirms immediate dissipation (one day) suggesting linearity in the conditional mean 
equation. The impulse-response analysis reveals asymmetry and long memory. The mean 
report immediate mean reversion. Moreover, volatility seem to come solely from 
negative index movements suggesting that to add volatility as an asset class to an equity 
portfolio provides investors with excellent diversification. Furthermore, by the same 
token, holding volatility in an equity portfolio provides insurance against market crashes. 
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The persistence of shock for 2012–2021 is below ten trading days with an associated 
standard deviation of about 2.5 days. The paper finds significant differentials between 
European and US indices for the mean (no confidence interval overlap) but not for the 
volatility (confidence interval overlap). Moreover, the NDX100 negative overreaction 
response is close to double the size of the positive response. Finally, the index volatilities 
seem predictable with covariance portions higher than 95% (Theil’s covariance portion). 
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Notes 
1 Ftse100 (UK) is share index of the 100 companies listed on the London Stock Exchange with 

the highest market capitalisation; NDX100 is a stock market index made up of 102 equity 
securities issued by 100 of the largest non-financial companies listed on the Nasdaq stock 
market (New York, USA). The indices are chosen based on the number of assets and both are 
central indices for the European and US stock markets. 

2 The computer cluster at NTNU, Faculty of Economics and Management, Trondheim is used 
for estimation/implementation. A special thanks to Professor Asgeir Thomasgaard at NTNU, 
for access to the computer cluster. 

3 See web-address: https://www.open-mpi.org 
4 The conditional density is a complicated nonlinear function of many arguments. 
5 The impulse-response methodology is also recognised under the name error shock 

methodology. 
6 The ± 5% movement interval is chosen for this paper based on an assumption of 99.5% 

normal index movements. 
7 For bootstrapping examples see for example Barroga and Tan-Cruz (2018) and Fan and Mills 

(2009). 
8 Gallant and Tauchen (1998) find 18 (!) ARCH-lags for time series retrieved from the US 

financial market. 
9 The code and user guide are available at http://www.aronaldg.org. The program is free 

software; you can redistribute it and/or modify it under the terms of the GNU General Public 
License as published by the Free Software Foundation; either version 2 of the License, or (at 
your option) any later version. 

10 Based on likelihood ratio test statistics (LRT) the student-t log-likelihood function is strongly 
preferred to a normal likelihood function. 

11 The BIC optimal SNP model is the Lu = 14, Lg = 1, Lr = 1, Lv = 1, Lω, Lp = 1, Kz = 12, Kx = 0 
specification. 

12 The paper uses j = 1,..,3 and does not report day 4 to 10. The days 4 to 10 do not change much 
from day 3 for all impulses. 

13 Mean tables are not reported due to manuscript size restrictions. All tables are available from 
author upon request. 

14 Trading forward volatility via calendar spreads provides a vega hedge for forward start and 
cliquet options. Arbitrage traders and hedge funds may take positions on different volatilities 
of the same maturities and speculative market participants may simply make a bet on future 
volatility. These strategies have grown strongly in volume after the financial crisis in 2008. 
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Supplementary materials 

For this paper, datasets for the FTSE100 and the NDX100 spot indices from the 
international equity markets for the period 2012–2021 are found in the following data 
files: 

• 001_Equity_FTSE100_Spot_index_prices_returns_2012-2021.txt 

• 002_Equity_NDX100_Spot_index_prices_returns_2012-2021.txt. 


