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RIESZ PROJECTION AND BOUNDED MEAN OSCILLATION FOR DIRICHLET SERIES

SERGEI KONYAGIN, HERVÉ QUEFFÉLEC, EERO SAKSMAN, AND KRISTIAN SEIP

ABSTRACT. We prove that the norm of the Riesz projection from L∞(Tn) to Lp (Tn ) is 1 for all
n ≥ 1 only if p ≤ 2, thus solving a problem posed by Marzo and Seip in 2011. This shows that
H p (T∞) does not contain the dual space of H 1(T∞) for any p > 2. We then note that the dual of
H 1(T∞) contains, via the Bohr lift, the space of Dirichlet series in BMOA of the right half-plane.
We give several conditions showing how this BMOA space relates to other spaces of Dirichlet
series. Finally, relating the partial sum operator for Dirichlet series to Riesz projection on T, we
compute its Lp norm when 1 < p <∞, and we use this result to show that the L∞ norm of the
N th partial sum of a bounded Dirichlet series over d-smooth numbers is of order loglog N .

1. INTRODUCTION

This paper is concerned with two different ways of transferring Riesz projection to the
infinite-dimensional setting of Dirichlet series: first, by lifting it in a multiplicative way to
the infinite-dimensional torus T∞ and second, by using one-dimensional Riesz projection to
study the partial sum operator acting on Dirichlet series. In either case, we will be interested
in studying the action of the operator in question on functions in Lp or H p spaces.

By Fefferman’s duality theorem [18], Riesz projection P+
1 on the unit circle T, formally de-

fined as

P+
1

( ∑

k∈Z
ck zk

)
:=

∑

k≥0

ck zk ,

maps L∞(T) into and onto BMOA(T), i.e., the space of analytic functions of bounded mean
oscillation. We may thus think of the image of L∞(T∞) under Riesz projection on T∞ (or
equivalently, in view of the Hahn–Banach theorem, the dual space H1(T∞)∗) as a possible
infinite-dimensional counterpart to BMOA(T). This brings us to the second main topic of this
paper which is to describe some of the main properties of this space.

Our main result, given in Section 2, verifies that Riesz projection does not map L∞(T∞) into
H p (T∞) for any p > 2, whence H1(T∞)∗ is not embedded in H p (T∞) for any p > 2. This result
solves a problem posed in [38] and contrasts the familiar inclusion of BMOA(T) in H p (T) for
every p <∞. The key idea of the proof is to first show that the norm of a Fourier multiplier
MχA : Lp (Tn) → Lq (Tn) corresponding to a bounded convex domain A in Rn is dominated by
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the norm of the Riesz projection on Tn+m for m sufficiently large, depending on A. Another
crucial ingredient is Babenko’s well-known lower estimate for spherical Lebesgue constants.

We then proceed to view H1(T∞)∗ as a space of Dirichlet series, employing as usual the
Bohr lift. This leads us in Section 3 to a distinguished subspace of H1(T∞)∗ which is indeed a
“true” BMO space, namely the family of Dirichlet series that belong to BMOA of the right half-
plane. By analogy with classical results on T, we give several conditions for membership in
this space, also for randomized Dirichlet series, and we describe how this BMOA space relates
to some other function spaces of Dirichlet series.

In Section 4, we study Dirichlet polynomials of fixed length N and compare the size of their
norms in H p , BMOA, and the Bloch space. One of these results is then applied in the final
Section 5, where we turn to our second usage of Riesz projection. Here we present an explicit
device for expressing the N th partial sum of a Dirichlet series in terms of one-dimensional
Riesz projection and give some Lp estimates for the associated partial sum operator.

We refer the reader to [23] and [41] (see especially [41, Section 6]) for definitions and basics
on Hardy spaces of Dirichlet series of Hardy spaces on T∞.

Notation. We will use the notation f (x) ≪ g (x) if there is some constant C > 0 such that
| f (x)| ≤C |g (x)| for all (appropriate) x. If we have both f (x) ≪ g (x) and g (x) ≪ f (x), then we
will write f (x) ≍ g (x). If limx→∞ f (x)/g (x) = 1, then we write f (x) ∼ g (x).

Acknowledgements. We thank Ole Fredrik Brevig for allowing us to include an unpublished
argument of his in this paper. We are also grateful to the referees for a number of valuable
comments that helped improve the presentation.

2. THE NORM OF THE RIESZ PROJECTION FROM L∞(Tn) TO Lp (Tn)

The norm ‖ f ‖p of a function f in Lp (T∞) is computed with respect to Haar measure m∞
on T∞, which is the countable product of one-dimensional normalized Lebesgue measures
on T. We denote by mn the measure on Tn that is the n-fold product of the normalised one-
dimensional measures, and Lp (Tn) is defined with respect to this measure.

We write the Fourier series of a function f in L1(Tn) on the n-torus Tn as

(2.1) f (ζ) =
∑

α∈Zn

f̂ (α)ζα.

For a function f in L1(T∞) the Fourier series takes the form f (ζ) =∑
α∈Z∞

f i n
f̂ (α)ζα, where Z∞

f i n

stands for infinite multi-indices such that all but finitely many indices are zero. We also set
Z+ := {0,1, . . . } so that Zn

+ (respectively Z∞
+ ) is the positive cone in Zn (respectively Z∞). The

operator
P+

n f (ζ) :=
∑

α∈Zn
+

f̂ (α)ζα

is the Riesz projection on Tn , and, as an operator on L2(Tn), it has norm 1. If we instead view
P+

n as an operator on Lp (Tn) for 1 < p <∞, then a theorem of Hollenbeck and Verbitsky [28]
asserts that its norm equals (sin(π/p))−n . In an analogous way we denote by P+

∞ the Riesz
projection on T∞, and obviously P+

∞ is bounded on Lp (T∞) only for p = 2, when its norm
equals 1.
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Using this normalization, we let ‖P+
n ‖q,p denote the norm of the operator P+

n : Lq (Tn) →
Lp (Tn) for q ≥ p. By Hölder’s inequality, p → ‖P+

n ‖∞,p is a continuous and nondecreasing
function, and obviously ‖P+

n ‖∞,p ≤ (sin(π/p))−n . Consider the quantity

pn := sup
{

p ≥ 2 : ‖P+
n ‖∞,p ≤ 1

}
,

which we following [20] call the critical exponent of P+
n . The critical exponent is well-defined

since clearly ‖P+
n ‖∞,2 = 1. We also set

p∞ := sup
{

p ≥ 2 : ‖P+
∞‖∞,p ≤ 1

}
.

Defining Am f (z1, z2, . . .) := f (z1, . . . , zm ,0,0, . . .) and using that ‖Am f ‖p →‖ f ‖p as m →∞ for
every f in Lp (T∞) and 1 ≤ p ≤∞, we see that in fact

p∞ = lim
n→∞

pn .

This also follows from the proof of Theorem 2.1 below.
Marzo and Seip [38] proved that the critical exponent of P+

1 is 4 and moreover that

2+2/(2n −1) ≤ pn < 3.67632

for n > 1. Recently, Brevig [10] showed that limn→∞ pn ≤ 3.31138. The following theorem
settles the asymptotic behavior of the critical exponent of P+

n when n →∞.

Theorem 2.1. We have p∞ = limn→∞ pn = 2.

By considering a product of functions in disjoint variables, we obtain the following im-
mediate consequence concerning the Riesz projection P+

∞ on the infinite-dimensional torus,
formally defined as

P+
∞

( ∑

k∈Z(∞)

cαzα
)

:=
∑

α∈N(∞)

cαzα.

Corollary 2.2. The Riesz projection P+
∞ is not bounded from Lq to Lp when 2< p < q ≤∞.

In turn, since the “analytic” dual of H1 obviously equals P+
∞(L∞(T∞)), we obtain a further

interesting consequence.

Corollary 2.3. The dual space H1(T∞)∗ is not contained in H p (T∞) for any p > 2.

The latter result has an immediate translation in terms of Hardy spaces of Dirichlet series,
as will be recorded in Corollary 3.1 below.

The proof of Theorem 2.1 deals with the (pre)dual operator P+
∞ : Lq (Tn) → L1(Tn), where

q < 2. The idea is to prove first that for the characteristic function χA of a bounded convex
domain A in Rn , the norm of the Fourier multiplier MχA on Tn is actually bounded by that of
P+

n+m for large enough m, depending on A. This key observation will be applied when A is a
large ball B(0,R) in Rn , and the desired result is deduced by invoking the following result of
Ilyin [29].

Theorem 2.4. The circular Dirichlet kernel

DR,n(ζ) :=
∑

α∈Zn :‖α‖≤R

ζα
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on Tn satisfies ‖DR,n‖L1(Tn ) ≥ cR (n−1)/2, where c = c(n) > 0 and ‖ · ‖ stands for the standard

Euclidean norm.

Babenko’s famous 1971 preprint (see [3, 37]) gives another proof. Moreover, it establishes a
comparable upper bound, which can also be found in Ilyin and Alimov’s paper [1]. We refer to
Liflyand’s review [36] for further information on the related literature and for a simple proof
of Theorem 2.4.

Proof of Theorem 2.1. Fix n ≥ 2 and α = (α1, . . . ,αn) ∈ Zn together with β j ∈ Zn and b j ∈ Z for
j = 1, . . . ,m, where m ∈N is also fixed. We consider n +m linear functions φ j : Zn → Z, with
j = 1, . . . ,n +m, where

φ j (α) :=α j , j = 1, . . . ,n,

φn+ j (α) := (α,β j )+b j , j = 1, . . . ,m.

We associate with any trigonometric polynomial f as in (2.1) (that is, any f of the form (2.1)
with finitely many non-zero terms) the function

g (η) :=
∑

α∈Zn

f̂ (α)
n+m∏

j=1
η
φ j (α)
j

,

where η= (η1, . . . ,ηn+m ) ∈Tn+m .

Lemma 2.5. We have ‖g‖p = ‖ f ‖p for 0< p ≤∞.

Proof. Set

η′ := (η1, . . . ,ηn), η′′ := (ηn+1, . . . ,ηn+m ).

We have

g (η) =ψ0(η′′)
∑

α∈Zn

f̂ (α)
n∏

j=1
(ψ j (η′′)η j )α j ,

where

ψ0(η′′) :=
m∏

k=1

η
bk

n+k
, and ψ j (η′′) :=

m∏

k=1

η
βk

j

n+k
for j = 1, . . . ,n.

We clearly have ψ j (η′′) ∈T for j = 0, . . . ,n. For a fixed η′′ in Tm consider g as a function of η′:

g (η)= gη′′(η
′).

Set η̃′ = (η̃1, . . . , η̃n), where η̃ j =ψ j (η′′)η j for j = 1, . . . ,n. We see that

gη′′(η
′) =ψ0(η′′) f (η̃′).

We therefore obtain the asserted isometry:

‖gη′′‖p = ‖ f ‖p

�
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By duality, for any positive integer N and p > 2, we have ‖P+
N‖∞,p = ‖P+

N‖p ′,1 where p ′ =
p/(p −1). Hence, to prove Theorem 2.1, we have to show that for any q in (1,2) there exist a
positive integer N and g in Lq (TN ) such that

(2.2) ‖g‖q = 1, ‖P+
N g‖1 > 1.

Indeed, by duality, this will imply the existence of a function h in L∞(Tn) such that

‖h‖∞ = 1, ‖P+
N (h)‖q ′ > 1,

where q ′ = q/(q −1). Since q < 2 is arbitrary, Theorem 2.1 then follows.
For a bounded set E in Rn and a function f in L1(Tn), we consider a partial sum of the

Fourier series of f :
(
SE f

)
(ζ) :=

∑

α∈E∩Zn

f̂ (α)ζα.

Note that as an operator, SE coincides with the Fourier multiplier MχE . We say that a polytope
E in Rn is non-degenerate if it is not contained in a hyperplane.

Lemma 2.6. Let 1 < q < 2. Assume that there is a non-degenerate convex polytope E in Rn with

integral vertices such that, for some f in Lq (Tn) with a finite set of non-zero Fourier coefficients

f̂ (α), we have

‖ f ‖q = 1, ‖SE ( f )‖1 > 1.

Then there are a positive integer N ∈N and a function g in Lq (TN ) satisfying (2.2).

Proof. Let e := (1,1, . . . ,1) ∈ Z+
n . By considering instead E +Ne and (η1 . . .ηn)N f (η) with large

enough N ∈N, if necessary, we may assume that E and the Fourier coefficients of f satisfy

(2.3) E ⊂Z+
n and f̂ (α) 6= 0 ⇒ α j ≥ 0 for all j = 1, . . . ,n.

It is known that E is the intersection of closed semispaces, bounded by the hyperplanes con-
taining the faces of E of dimension n −1 (see [35, Ch. 1, Thm. 5.6]). All hyperplanes are de-
termined by their intersections with the set of the vertices of E . Since the vertices are integral,
the semispaces can be defined by inequalities

(α,β j )+b j ≥ 0, j = 1, . . . ,m,

where β j ∈Zn ,b j ∈Z for j = 1, . . . ,m. Thus

E =
n+m⋂

j=n+1
{α ∈Rm : φ j (α) ≥ 0},

where φ j (α) = (α,β j−n )+b j−n , j = n +1, . . . ,n +m.
We set N := n+m and construct the function g from f as in Lemma 2.5. Using that lemma,

we get

‖g‖q = ‖ f ‖q = 1, ‖P+
N g‖1 = ‖SE ( f )‖1 > 1,

and Lemma 2.6 follows. �
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To construct an integer n, a polytope E , and a function f satisfying Lemma 2.6, we take first
n satisfying the inequality

(2.4) n > q/(2−q).

For sufficiently large R , let E be the convex hull of the integral points contained in the eu-
clidean ball {α ∈Rn : ‖α‖ ≤ R}. Hence for any function f in L1(Tn), we have

(SE f )(ζ) =
∑

α∈Zn :‖α‖≤R

f̂ (α)ζα.

Recall the circular Dirichlet kernel from Theorem 2.4:

DR,n(ζ) =
∑

α∈Zn :‖α‖≤R

ζα.

Define the function f̃ (ζ) :=
∑

|α1|≤R

· · ·
∑

|αn |≤R

ζα so that SR f̃ = DR,n . It is easy to see that

‖ f̃ ‖q =
∥∥∥∥∥

∑

|α1|≤R

ζ
α1
1

∥∥∥∥∥

n

q

≤C Rn(1−1/q),

where C = C (q,n) > 0. In view of (2.4), which amounts to n−1
2 > n(1− 1

q
), and by recalling

Theorem 2.4, we obtain
‖SE ( f̃ )‖1 > ‖ f̃ ‖q .

for sufficiently large R . Taking f := f̃
/
‖ f̃ ‖q , we get a function f satisfying the conditions of

Lemma 2.6, and this completes the proof of Theorem 2.1. �

3. THE SPACE OF DIRICHLET SERIES IN BMOA

The result of the preceding section is purely multiplicative in the sense that it only involves
analysis on the product space Tn . Function spaces on Tn or on T∞ may however, by a device
known as the Bohr lift (see below for details), also be viewed as spaces of Dirichlet series. From
an abstract point of view (see for example [42, Ch. 8]), this means that we equip our function
spaces with an additive structure that reflects the additive order of the multiplicative group of
positive rational numbers Q+. This results in interesting interaction between function theory
in polydiscs and half-planes that sometimes involves nontrivial number theory.

As we will see in the next subsection, this point of view leads us naturally from H1(T∞)∗

to the space of ordinary Dirichlet series
∑∞

n=1 ann−s that belong to BMOA, i.e., the space of
analytic functions f (s) in the right half-plane Re s > 0 satisfying

(3.1) sup
σ>0

∫∞

−∞

| f (σ+ i t )|2

1+σ2 + t 2
d t <∞

and

‖ f ‖BMO := sup
I⊂R

1

|I |

∫

I

∣∣∣∣ f (i t )− 1

|I |

∫

I
f (iτ)dτ

∣∣∣∣ d t <∞.

Here the supremum is taken over all finite intervals I ; (3.1) means that g (s) := f (s)/(s +1) be-
longs to the Hardy space H2(C0) of the right half-plane C0, and then f (i t ) := limσ→0+ f (σ+ i t )
exists for almost all real t by Fatou’s theorem applied to g . We will use the notation BMOA∩D
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for this BMOA space, where D is the class of functions expressible as a convergent Dirichlet
series in some half-plane Re s >σ0.

The space BMOA∩D arose naturally in a recent study of multiplicative Volterra operators
[11]. We refer to that paper for a complementary discussion of bounded mean oscillation
in the context of Dirichlet series. By combining [11, Cor. 6.4] and [11, Thm. 5.3], we may
conclude that BMOA∩D can be viewed, via the Bohr lift, as a subspace of H1(T∞)∗. This
inclusion may however be proved in a direct way by an argument that we will present in the
next subsection.

3.1. The Bohr lift and the inclusion BMOA∩D ⊂ (H 1)∗. We begin by considering an ordi-
nary Dirichlet series of the form

(3.2) f (s)=
∞∑

n=1
ann−s .

By the transformation z j = p−s
j

(here p j is the j th prime number) and the fundamental theo-
rem of arithmetic, we have the Bohr correspondence,

(3.3) f (s) :=
∞∑

n=1
ann−s ←→ B f (z) :=

∞∑

n=1
an zκ(n),

where κ(n) = (κ1, . . . ,κ j ,0,0, . . .) is the multi-index such that n = p
κ1
1 · · ·p

κ j

j
. The transforma-

tion B is known as the Bohr lift. For 0 < p <∞, we define H
p as the space of Dirichlet series

f such that B f is in H p (T∞), and we set

‖ f ‖H p := ‖B f ‖H p (T∞) =
(∫

T∞
|B f (z)|p dm∞(z)

) 1
p

.

Note that for p = 2, we have

‖ f ‖H 2 =
( ∞∑

n=1
|an |2

) 1
2

.

In terms of the spaces H
p , Corollary 2.3 takes the form

Corollary 3.1. The dual space (H 1)∗ is not contained in H p for any p > 2.

We will now use the notation Cθ := {s = σ+ i t : σ > θ}. The conformally invariant Hardy
space H

p

i (Cθ) consists of functions f that are analytic on Cθ and satisfy

‖ f ‖H
p

i (Cθ) := sup
σ>θ

(
1

π

∫

R

| f (σ+ i t )|p d t

1+ t 2

) 1
p

<∞.

These spaces show up naturally in our discussion in the following two ways. First, we will
repeatedly use that a function g analytic on C0 is in BMOA if and only if the measure

dµ(s) := |g ′(σ+ i t )|2σdσ
d t

1+ t 2
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is a Carleson measure for H1
i (C0), which means that there is a constant C such

∫

C0

| f (s)|dµ(s) ≤C‖ f ‖H1
i (C0)

for all f in H1
i (C0). The smallest such constant C is called the Carleson norm of the measure.

Second, by Fubini’s theorem, we have the following connection between H
p and H

p

i (C0):

(3.4)
∥∥ f

∥∥p

H p =
∫

T∞
‖ fχ‖p

H
p

i (C0)
dm∞(χ),

whereχ is a character onQ+, i.e., a completely multiplicative function taking only unimodular
values, and

fχ(s) :=
∞∑

n=1
χ(n)ann−s .

Here we recall that an arithmetic function g : N→ C is completely multiplicative if it satisfies
g (nm) = g (n)g (m) for all integers m,n ≥ 1. A completely multiplicative function g satisfies
g (1) = 1 unless g vanishes identically, and it is completely determined by its values at the
primes.

Note that we identify via the Bohr liftα 7→ pα the groupZ(∞) with the group Q+, and by dual-
ity the groupT∞ with the group of completely multiplicative functionsχ : N→T. Accordingly,
we identify the Haar measures dm∞(z) and dm∞(χ) of both groups. We also used in (3.4) the
fact that, for almost every character χ and

∑∞
n=1 ann−s in H

p , the series
∑∞

n=1 anχ(n)n−s con-
verges m∞-almost everywhere in C0, and defines an element in H

p

i (C0). For these facts, we
refer e.g. to [23, Section 4.2] and [5, Thm 5].

From (3.4) we may deduce Littlewood–Paley type expressions for the norms of H
p . This

was first done for p = 2 in [5, Prop. 4], and later for 0 < p < ∞ in [7, Thm. 5.1], where the
formula

(3.5) ‖ f ‖p

H p ≍ | f (+∞)|p +
4

π

∫

T∞

∫

R

∫∞

0
| fχ(σ+ i t )|p−2| f ′

χ(σ+ i t )|2σdσ
d t

1+ t 2 dm∞(χ)

was obtained. When p = 2, we have equality between the two sides of (3.5).
The Littlewood–Paley formula (3.5) for p = 2 may be polarized, so that we have

〈 f , g 〉H 2 = f (+∞)g (+∞)+ 4

π

∫

T∞

∫

R

∫∞

0
f ′
χ(σ+ i t )g ′

χ(σ+ i t )σdσ
d t

1+ t 2
dm∞(χ).

Hence, by the Cauchy–Schwarz inequality and (3.5), we have for f in H
1 and g in BMOA∩D,

∣∣〈 f , g 〉H 2 − f (+∞)g (+∞)
∣∣2 ≤

4

π

∫

T∞

∫

R

∫∞

0
| fχ(σ+ i t )|−1| f ′

χ(σ+ i t )|2σdσ
d t

1+ t 2 dm∞(χ)

×
∫

T∞

∫

R

∫∞

0
| fχ(σ+ i t )||g ′

χ(σ+ i t )|2σdσ
d t

1+ t 2
dm∞(χ)

≪‖ f ‖H 1

∫

T∞
‖ fχ‖H1

i (C0) dm∞(χ) = ‖ f ‖2
H 1 ,
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where we in the second step used the Littlewood–Paley formula for p = 1 and that

|g ′
χ(σ+ i t )|2σdσ

d t

1+ t 2

is a Carleson measure for H1
i (C0), with Carleson constant uniformly bounded in χ, as follows

from [11, Lem. 2.1 (ii) and Lem. 2.2]. Hence we conclude that a Dirichlet series g in BMOA∩D

belongs to (H 1)∗.
The “reverse” problem of finding an embedding of (H 1)∗ into a “natural” space of functions

analytic in C1/2 appears challenging. (This is a reverse question only in a rather loose sense
as we are now considering functions defined in C1/2.) It was mentioned in [43, Quest. 4] that
(H 1)∗ is not contained in H

q

i (C1/2) for any q > 4. Since no argument for this assertion was
given in [43], we take this opportunity to offer a proof1. To begin with, let us consider the
interval from 1/2− i to 1/2+ i and let E denote the corresponding local embedding of H 2

into L2(−1,1), given by E f (t ) := f (1/2+ i t ), so that

‖E f ‖2
L2(−1,1) =

∫1

−1
| f (1/2+ i t )|2 d t .

Then the adjoint E∗ : L2(−1,1) →H
2 is

E∗g (s) :=
∞∑

n=1

ĝ (logn)
p

n
n−s ,

where ĝ (ξ) =
∫1
−1 e−iξt g (t )d t . Fix 0 < β < 1 and set gβ(t ) := |t |β−1. Plainly, gβ is in Lq (−1,1) if

and only if β > 1−1/q . Moreover, if ξ ≥ δ > 0, then ĝβ(ξ) ≍ ξ−β, where the implied constants
depend only on δ and β. We now invoke Helson’s inequality [25, p. 89]

∥∥∥
∞∑

n=1
ann−s

∥∥∥
1
≥

( ∞∑

n=1

|an |2

d(n)

)1/2

,

where d(n) is the divisor function. We then use the classical fact that
∑

n≤x 1/d(n) is of size
x(log x)−1/2; the precise asymptotics of this summatory function was first computed by Wilson
[47, Formula (3.10)] and may now be obtained as a simple consequence of a general formula
of Selberg [44]. Taking β = 1/4, we may therefore infer by partial summation that E∗ is un-
bounded from Lq (−1,1) to H 1 whenever q < 4/3. By duality we conclude that for any q > 4,
there are ϕ in (H 1)∗ that are not locally embedded in Lq (−1,1) and hence do not belong to
H

q

i (C1/2). Note that here (H 1)∗ is identified as a subspace of H2 (with respect to the natu-
ral pairings of L2(−1,1) and L2(T∞)) ,whence E∗∗g = E g for (H 1)∗. In view of Corollary 2.3,
it is natural to ask if the situation is even worse, namely that (H 1)∗ fails to be contained in
H

q

i (C1/2) for any q > 2.
We conclude from the preceding argument that there is no simple relation between (H 1)∗

and BMOA(C1/2). We may further illustrate this point by the following example. The Dirichlet
series

h(s) :=
∞∑

n=2

1

logn
n−s−1/2

1We thank Ole Fredrik Brevig for showing us this argument and allowing us to include it in this paper.
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belongs to BMOA(C1/2) (see (3.7)) below), but it is unknown whether it is in (H 1)∗. It would
be interesting to settle this question about membership in (H 1)∗, as h is both a primitive of
ζ(s +1/2)−1 and the analytic symbol of the multiplicative Hilbert matrix [12].

3.2. Fefferman’s condition for membership in BMOA∩D. The following theorem gives in-
teresting information about Dirichlet series in BMOA. It is an immediate consequence of
existing results, as will be explained in the subsequent discussion.

Theorem 3.2. (i) Suppose that an ≥ 0 for every n ≥ 1. Then f (s) :=∑∞
n=1 ann−s is in BMOA

if and only if

(3.6) S2 := sup
x≥e

∞∑

k=1

( ∑

xk≤n<xk+1

an

)2
<∞,

and we have S ≍ ‖ f ‖BMOA.

(ii) If
∑∞

n=1 |an |n−s is in BMOA, then
∑∞

n=1 ann−s is in BMOA.

It is immediate from (i) that

(3.7)
∞∑

n=2

1

logn
n−s−1

is in BMOA (see [11, Thm. 2.5]). By Mertens’s formula

(3.8)
∑

p≤x

1

p
= loglog x +M +O

(
(log x)−1) ,

where the sum is over the primes p, part (i) also implies that
∑

p p−1−s is in BMOA, and con-
sequently logζ(s + 1) is a function in BMOA, where ζ(s) is now the Riemann zeta function.
Then part (ii) of Theorem 3.2 implies also that

∑
p χ(p)p−1−s is in BMOA for any sequence of

unimodular numbers χ(p). In fact, we have more generally:

Corollary 3.3. A Dirichlet series
∑

p ap p−s over the primes p is in BMOA if and only if

(3.9) sup
x≥e

∞∑

k=1

( ∑

xk≤p<xk+1

|ap |
)2

<∞.

Corollary 3.3 is a consequence of part (i) of Theorem 3.2 and the fact (see [11, Lem. 2.1]) that∑
p ap p−s is in BMOA if and only if

∑
p apχ(p)p−s is in BMOA for every sequence of unimodu-

lar numbers χ(p).
The sufficiency of condition (3.6) in Theorem 3.2)(i) follows as a corollary to an H1 multi-

plier theorem of Sledd and Stegenga [46, Thm. 1] via Fefferman’s duality theorem [18, 19] and
Parseval’s theorem. The necessity also follows from [46, Thm. 1] if we first note that for any
f in H1(C0), using the standard H2 factorization of H1, we may construct g in H1(C0) with
‖g‖H1(C0) = ‖ f ‖H1(C0) and ĝ (ξ) ≥ | f̂ (ξ)| ≥ 0 for all ξ ∈ R. Here f̂ , ĝ refer to the Fourier trans-
forms of the boundary values on the imaginary axis. A corresponding result for BMO in the
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unit disc is stated in [46, Cor. 2]: The Taylor series
∑∞

m=0 cm zm with cm ≥ 0 belongs to BMO of
the unit circle T if and only if

sup
m≥1

∞∑

j=0

(
m−1∑

r=0
cm j+r

)2

<∞.

Other proofs of this result, relying more directly on Hankel operators, can be found in [9, 27].
This result is commonly known to have appeared in unpublished work of Fefferman.

To establish part (ii) of Theorem 3.2, we use the following Carleson measure characteriza-
tion of BMOA∩D which could be used to give an alternative proof of part (i) of Theorem 3.2.

Lemma 3.4. Suppose that f is in H2
i (C0)∩D. Then f is in BMOA∩D if and only if there exists

a positive constant C such

(3.10) sup
t∈R

∫h

0

∫t+h

t
| f ′(σ+ iτ)|2σdτdσ≤C h

for 0≤ h ≤ 1. Moreover, the best constant C in ( 3.10) and ‖ f ‖2
BMO are equivalent.

Proof. We first observe that (3.10) and the assumption that f is in H2
i

(C0) imply, by the max-

imum modulus principle, that f ′(σ+ i t ) is uniformly bounded by O(
p

C ) for σ ≥ 1. Then, if
h > 1 and t ∈R are given and

I :=
∫h

0

∫t+h

t
| f ′(σ+ iτ)|2σdτdσ

=
∫1

0

[∫t+h

t
| f ′(σ+ iτ)|2dτ

]
σdσ+

∫h

1

[∫t+h

t
| f ′(σ+ iτ)|2dτ

]
σdσ=: I1 + I2,

we have I1 ≪C h by (3.10), while

I2 ≪
∫∞

1

[∫t+h

t
| f ′(σ+ iτ)|2dτ

]
σdσ≪

∫t+h

t

[∫∞

1
σC 4−σdσ

]
dτ≪C h.

To obtain the final estimate above, we used that f ′(σ+i t ) =O(
p

C 2−σ), which holds uniformly
in t when σ≥ 1 because f is a Dirichlet series. �

Part (ii) of Theorem 3.2 is immediate from this lemma along with a property of almost peri-
odic functions established by Montgomery [40, p. 131] (see also [39, p. 4]) which asserts that
if |an | ≤ bn , then for sums with a finite number of non-zero terms

∫T1+T

T1−T

∣∣∑ane iλn t
∣∣2

d t ≤ 3
∫T

−T

∣∣∑bne iλn t
∣∣2

d t .

Here T > 0, T1 is a real number, an ,bn respectively complex and nonnegative coefficients, and
λn are distinct real frequencies.

We will now apply Theorem 3.2 to see how our BMOA space of Dirichlet series relates to
Hardy spaces and the Bloch space. We denote as usual H∞(C0)∩D by H

∞, and we say that a
function f (s) analytic in Re s > 0 is in the Bloch space B if

‖ f ‖B := sup
σ+i t :σ>0

σ| f ′(σ+ i t )| <∞.
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We have
H

∞ ⊂ BMOA∩D ⊂
⋂

0<q<∞
H

q ,

where the inclusion to the left is trivial and that to the right was established in [11, Lem. 2.1].
Hence, in contrast to (H 1)∗ itself, the subspace BMOA∩D is included in

⋂
0<q<∞H

q . More-
over, is a classical fact and easy to see that BMOA ⊂B.

The following consequence of Corollary 3.3 is a Dirichlet series counterpart to a result of
Campbell, Cima, and Stephenson [13] that further enunciates the relation between the spaces
in question. Our proof is close to that found in [26].

Corollary 3.5. There exist Dirichlet series that belong to B and
⋂

0<q<∞H
q but not to BMOA.

Proof. It is an easy consequence of the definition of the Bloch space that
∑∞

n=1 ann−s with
an ≥ 0 is in B if and only if

(3.11) sup
x≥2

∑

x≤n<x2

an <∞.

Indeed, if (3.11) holds, then we use it with x j = exp(2 j /σ), x j+1 = x2
j
, to show that for σ> 0,

∑

n≥2
an σ logn e−σ logn ≤

∑

j

2− j
( ∑

x j ≤n<x j+1

an

)
≪

∑

j

2− j .

Conversely, if
∑

n≥2 an σ logne−σ logn ≤ C for all σ > 0, then choosing σ = 1/log x, we see that
the sum on the left-hand side of (3.11) is bounded by C e2/2. Let P j be the primes in the

interval [e2 j
,e2 j+1]. Then |P j | ∼ (e − 1)e2 j

2− j by the prime number theorem. Setting ap :=
e−2 j

2 j if p is in P j and ap = 0 otherwise, we see from (3.11) that
∑

p ap p−s is in the Bloch
space, but from part (i) of Theorem 3.2 that it fails to be in BMOA.

We next recall Khinchin’s inequality for the Steinhaus variables Zp (that are i.i.d. random
variables with uniform distribution on T):

E
∣∣∑

p

ap Zp

∣∣q ≍
(∑

p

|ap |2
)q/2,

with the implied constants only depending on q > 0 (see [33, Thm. 1]). Since in the Bohr
correspondence p−s

k
corresponds to the independent variable zk , we see that they form a se-

quence of Steinhaus variables with respect to the Haar measure on T∞. Thus, in view of the
bound

∑

p

a2
p ≪

∞∑

j=0
e−2 j

2 j <∞,

Khinchin’s inequality implies that
∑

p ap p−s belongs to H
q . �

3.3. The relation between Dirichlet series in H∞, BMOA, and B. We turn to some further
comparisons between the three spaces H

∞, BMOA∩D, and B∩D. We begin with a discus-
sion of uniform and absolute convergence of Dirichlet series in B∩D. The following lemma
will be useful in this discussion. Here we use the notation log+ x := max(0, log x) for x > 0, and
we will also write (Tc f )(s) := f (s +c) in what follows.
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Lemma 3.6. Suppose that f (s)=∑∞
n=1 ann−s is in B∩D. Then

|an | ≤ e‖ f ‖B, n ≥ 2,(3.12)

| f (σ+ i t )−a1| ≤
(
log+

1

σ
+C 2−σ

)
‖ f ‖B, σ> 0,(3.13)

for some absolute constant C . Up to the precise value of C , these bounds are both optimal.

Proof. To prove (3.12), we use that Tε f ′ is in H ∞ for every ε> 0. By either viewing the coef-
ficients of a Dirichlet series as Fourier coefficients or using that ‖ f ‖H 2 ≤ ‖ f ‖H ∞ , we see that
they are dominated by its H

∞ norm. We therefore have

|an |(logn)n−ε ≤ ‖Tε f ′‖∞ ≤ ‖ f ‖B
ε

and hence

|an | ≤
nε‖ f ‖B
ε logn

.

We conclude by taking ε= 1/logn. In addition, we notice that the bound is optimal because
‖n−s‖B = 1/e .

To prove (3.13), we begin by noticing that (3.12) implies that

(3.14) | f (σ+ i t )−a1| ≤
∞∑

n=2
|an |n−σ ≤ e(ζ(σ)−1)‖ f ‖B

holds for σ≥ 2. For σ≤ 2, we use that

| f (σ+ i t )−a1| ≤ | f (2+ i t )−a1|+
∫2

σ
‖ f ‖B

dα

α
≤

(
log

1

σ
+C

)
‖ f ‖B,

where we in the final step used (3.14) with σ = 2. The example
∑∞

n=2 n−1−s /logn shows that
the inequality is optimal, up to the precise value of C . �

The pointwise bound (3.13) implies that what is known about uniform and absolute con-
vergence of Dirichlet series in H

∞ carries over in a painless way to B∩D. In fact, a rather
weak bound of the form

(3.15) | f (σ+ i t )| ≤C (σ), σ> 0,

suffices to draw such a conclusion, as will now be explained. To begin with we will assume
that C (σ) is an arbitrary positive function and later specify its required behavior as σ→ 0+.

First, by a classical theorem of Bohr [41, p. 145], a bound like (3.15) implies that the Dirich-
let series of f (s) converges uniformly in every half-plane Re s ≥ σ0 > 0. Following Bohr, we
then see that σu( f ) ≤ 0, where σu( f ) is the abscissa of uniform convergence, defined as the
infimum over those σ0 such that the Dirichlet series of f (s) converges uniformly in Re s ≥σ0.

Second, as observed by Bohr, it is immediate that σu( f ) ≤ 0 implies σa( f ) ≤ 1/2, where
σa( f ) is the abscissa of absolute convergence of f , i.e., the infimum over those σ0 such that
the Dirichlet series of f (s) converges absolutely in Re s ≥ σ0. Thanks to more recent work
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originating in [4], an interesting refinement of this result holds when C (σ) does not grow too
fast as σց 0. To arrive at that refinement, we set (SN f )(s) :=∑N

n=1 ann−s and recall that

(3.16)
N∑

n=1
|an | ≤

p
Ne−cN

p
log N loglog N‖SN f ‖∞

with cN → 1/
p

2 when N → ∞. This “Sidon constant” estimate was proved in [34] with a
smaller value of cN . The proof from [34], using at one point the hypercontractive Bohnenblust–
Hille inequality from [14], yields (3.16) with cN → 1/

p
2, which is stated as Theorem 3 in [14].

This is optimal by [17].
It was proved in [4] that there exists an absolute constant C such that if f (s) :=∑∞

n=1 ann−s

is in H
∞, then ‖SN f ‖∞ ≤ C log N‖ f ‖∞. See also Section 5, where an alternate proof of this

bound will be given. Using this fact, we obtain from (3.16) that

(3.17)
N∑

n=1
|an | ≤

p
Ne−cN

p
log N loglog N‖ f ‖∞,

still with cN → 1/
p

2 when N →∞. Now applying (3.17) to Tε f with ε = 1/log N and taking
into account (3.15), we get

N∑

n=1
|an | ≤ e

N∑

n=1
|an |n−ε ≤

p
Ne−cN

p
log N loglog N C (1/log N ).

We now see that if logC (σ)= o(
√

| logσ|/σ) when σց 0, then

(3.18)
N∑

n=1
|an | ≤

p
N e−cN

p
log N loglogN

with cN → 1/
p

2. When f is in B, we have C (σ) = O(| logσ|) and hence (3.18) clearly holds.
Summing by parts and using (3.18), we get

(3.19)
∞∑

n=3

|an |p
n

ec
p

logn loglogn <∞

for every c < 1/
p

2. This is a bound previously known to hold for functions f in H
∞ (see

[4, 14]). As shown in [14], the result is optimal in the sense that there exist functions f in H
∞

for which the series in (3.19) diverges when c > 1/
p

2.
In Section 4, we will establish “reverse” inequalities to ‖ f ‖B ≤ ‖ f ‖∞ and ‖ f ‖B ≪‖ f ‖BMOA

when f (s)=∑N
n=1 ann−s and N is fixed.

3.4. A condition for random membership in BMOA∩D. In the sequel, if f (s) = ∑∞
n=1 ann−s

is a Dirichlet series, we denote by fω the corresponding randomized Dirichlet series, namely
fω(s) := ∑∞

n=1 εn(ω)ann−s where (εn) is a standard Rademacher sequence. We are interested
in extending the following result of Sledd [45] (see also [16]) to the setting of ordinary Dirichlet
series:

Theorem 3.7. Suppose
∑∞

n=1 |an |2 logn <∞. Then, the power series
∑
εn an zn is almost surely

in BMOA.
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This result is optimal in a rather strong sense as shown in [2]: If one replaces logn by any
sequence growing at a slower rate, then the condition does not guarantee membership even
in the Bloch space.

We see from Theorem 3.7 that if we require slightly more than ℓ2 decay of the coefficients,
then we may expect that a “generic” analytic function in the unit disc will be in BMOA. The
results of the preceding sections show in two respects that a similarly strong result can not
hold in the context of Hardy spaces of Dirichlet series. First, we know that f (s) =∑

p ap p−s is
in BMOA∩D if and only if (3.9) of Corollary 3.3 holds, and by the Cauchy–Schwarz inequality,
this implies in particular that the abscissa of absolute convergence is 0. Hence

∑

p

±p−α−s

can not be in BMOA∩D for any choice of the signs ± when 1/2 <α< 1, although, from an ℓ2

point of view, the coefficients decay fast when α is close to 1. Second, in view of (3.19), none
of the Dirichlet series

f (s) :=
∞∑

n=2
± 1
p

n
exp

(
−c

√
logn loglogn

)
n−s , 0< c < 1/

p
2,

with random signs ± can be in BMOA∩D, again in spite of fairly good ℓ2 decay of the coeffi-
cients.

These observations indicate that we should impose an extra condition to obtain a result of
the same strength as that of Theorem 3.7. In fact, they suggest that a possible remedy could
be to consider integers generated by a very thin sequence of primes. We will therefore assume
that we are in this situation with a fixed set P0 (finite or not) of prime numbers. We will
measure the thinness of this set in terms of its distribution function

π0(x) :=
∑

p∈P0,p≤x

1.

We will say that P0 is an ultra-thin set of primes if

(3.20)
∫∞

3

π0(x) log log x

x log3 x
d x <∞,

and we declare the numbers w1 = w2 = 1,

wn :=
∫∞

n

π0(x) loglog x

x log3 x
d x, n ≥ 3,

to constitute the weight sequence of P0. We denote by N0 the set of all P0-smooth integers,
i.e., the set of positive integers with all their prime divisors belonging to P0. Our extension of
Theorem 3.7 now reads as follows.

Theorem 3.8. Let P0 be an ultra-thin set of primes with weight sequence (wn). If

(3.21)
∑

n∈N0

|an |2wn log2 n <∞,

then the Dirichlet series fω(s) =∑
n∈N0 εn ann−s is almost surely in BMOA∩D.
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Let us first note that this is in fact a true extension of Theorem 3.7, i.e., it reduces to Theo-
rem 3.7 when P0 consists of a single prime. To see this, we first observe that if π0(x) ≪ logδ x

for some δ, 0 ≤ δ< 2, then P0 is ultra-thin and wn ≪ (loglogn)/ log2−δ n. In particular, in the
special case when P0 is a finite set, we find that wn ≍ (loglogn)/ log2 n and hence the series in
(3.21) becomes

∑
n∈N0 |an |2 loglogn. If P0 consists of a single prime p, then the Dirichlet se-

ries over N0 becomes a Taylor series in the variable z := p−s and loglogn = logk + loglog p ∼
logk for n = pk , and hence (3.21) becomes the condition of Theorem 3.7. Finally, we note
that, plainly, the Dirichlet series over the numbers pk will be in BMOA(C0) if and only if the
corresponding Taylor series in the variable z is in BMOA(T). In view of this relation between
Theorem 3.7 and Theorem 3.8, we see by again appealing to [2] that we cannot replace log2 n

by any sequence growing at a slower rate.
For the proof of Theorem 3.8, we begin by observing that for fixed σ> 0, we have

E

(∫∞

−∞

| fω(σ+ i t )|2

t 2 +1
d t

)
=π

∞∑

n=1
|an |2n−2σ ≤π

∞∑

n=1
|an |2,

and hence fω is almost surely in H2
i (C0). This means that we may base our proof on Lemma 3.4.

The rest of the proof of Theorem 3.8 relies on a lemma from [4] (see also [41, Theorem 5.3.4])
which is deduced, via the Bohr lift, from a multivariate analogue of a classical inequality of
Salem and Zygmund due to Kahane [31, Thm. 3, Sect. 6].

Lemma 3.9. There exists an absolute constant C such that if P (s) =∑n
k=1 ak k−s is a P0-smooth

Dirichlet polynomial of length n ≥ 3 and Pω the corresponding randomized polynomial, then

E(‖Pω‖∞) ≤C
( n∑

k=1

|ak |2
)1/2√

π0(n)
√

loglogn.

Here the price we pay for estimating the uniform norm on the whole of R is this addi-
tional factor

p
π0(n). By considering the randomization (i.e. adding random signs) of the

Dirichlet polynomial
∑

1≤k≤N p−s
k

(or randomizing more complicated polynomials of the form∑
1≤k≤N p−s

k
g (p−s

N+k
)), with a fixed standard polynomial g , we see that this extra factor is more

or less mandatory.

Proof of Theorem 3.8. We may for convenience assume that a2 = 0. Let X be the random vari-
able defined by

(3.22) X (ω) :=
∫1

0
σ‖Tσ f ′

ω‖2
∞dσ.

We will prove that E(X ) <∞. This will imply that X (ω) <∞ a.s., hence that fω is in BMOA∩D

a.s. in view of Lemma 3.4.
We fix σ> 0 and set

S(x, t ) :=−
∑

3≤ j≤x

ε j a j (log j ) j−i t and B(x) :=
( ∑

3≤ j≤x

|a j |2 log2 j
)1/2

.

Since (Tσ f ′
ω)(i t ) =−∑∞

n=3 εn an(logn)n−i t n−σ, we find by partial summation that
∣∣(Tσ f ′

ω)(i t )
∣∣≤

∫∞

3
σx−σ−1|S(x, t )|d x.
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Now using the L1 −L2 Khintchin–Kahane inequality and Lemma 3.9, we find that

(3.23) E
(∥∥Tσ f ′

ω

∥∥2
∞

)
≪

(
E
∥∥Tσ f ′

ω

∥∥
∞

)2 ≪
(∫∞

3
σx−σ−1B(x)

√
π0(x)

√
loglog x d x

)2
,

whence

(3.24) E(X ) ≪
∫1

0
σ

(∫∞

3
σx−σ−1B(x)

√
π0(x)

√
loglog x d x

)2
dσ.

Setting for convenience h(x) := B(x)
p
π0(x)

√
loglog x and using that for x, y > 1

∫1

0
σ3(x y)−σdσ≤

∫∞

0
σ3(x y)−σdσ= 6

log4(x y)
,

we find by Fubini’s theorem that
∫1

0
σ3

(∫∞

3
x−σ−1h(x)d x

)2
dσ≤ 6

∫∞

3

∫∞

3

h(x)h(y)

x y log4(x y)
d xd y

≤ 3

4

∫∞

3

∫∞

3

h(x)h(y)

(log x log y)3/2

d xd y

x y log(x y)
≤ 3π

4

∫∞

3

h(x)2

x log3 x
d x.

Here we used in the last step that
∫∞

1

∫∞

1
ψ(x)ψ(y)

d xd y

x y(log x y)
≤π

∫∞

1
ψ2(x)

d x

x

holds for a nonnegative function ψ, which we recognize as Hilbert’s inequality [22, Thm. 316]
∫∞

0

∫∞

0
ϕ(u)ϕ(v)

dud v

u +v
≤π

∫∞

0
ϕ2(u)du

for ϕ(u) :=ψ(eu), after the change of variables u = log x, v = log y .
Hence, returning to (3.24), we see that

(3.25) E(X ) ≪
∫∞

3

B 2(x)π0(x) loglog x

x log3 x
d x.

Now using the definition of B 2(x) as a finite sum and changing the order of integration and
summation, we observe that the right-hand side of (3.25) equals the series in (3.21), and hence
we conclude that E(X ) <∞. �

4. COMPARISON OF NORMS FOR DIRICHLET POLYNOMIALS

We will now establish some relations between the various norms considered so far, when
computed for Dirichlet polynomials of fixed length. Throughout this section, our Dirichlet
polynomials will be denoted by f and not P as before. Our results complement the main
result of [15] which shows that the supremum of the ratio ‖ f ‖q /‖ f ‖q ′ for nonzero Dirichlet
polynomials f of length N is

(4.1) exp

(
(1+o(1))

log N

loglog N
log

√
q/q ′

)

when 1 ≤ q ′ < q <∞.
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We begin with comparisons involving BMOA and B. For the purpose of this discussion, it
will be convenient to agree that

‖ f ‖2
BMOA := sup

h>0

1

h
sup
t∈R

∫h

0

∫t+h

t
| f ′(σ+ iτ)|2σdτdσ,

in accordance with the Carleson measure condition of Lemma 3.4. We denote by DN the space
of Dirichlet polynomials of length N vanishing at +∞. The respective ratios ‖ f ‖∞/‖ f ‖B and
‖ f ‖BMOA/‖ f ‖B are quite modest compared to (4.1):

Theorem 4.1. When N →∞, we have

sup
f ∈DN \{0}

‖ f ‖∞
‖ f ‖B

∼ loglog N ,(4.2)

sup
f ∈DN \{0}

‖ f ‖BMOA

‖ f ‖B
≍

√
loglog N ,(4.3)

sup
f ∈DN \{0}

‖ f ‖∞
‖ f ‖BMO A

≍ loglog N .(4.4)

We require two new lemmas. The first contains two versions of Bernstein’s inequality.

Lemma 4.2 (Bernstein inequalities). We have

(4.5) ‖ f ′‖∞ ≤ log N‖ f ‖∞ and ‖ f ′‖∞ ≤ 4 log N‖ f ‖B
for every f in DN .

The first inequality in (4.5) is a special case of a general version of Bernstein’s inequality for
finite sums of purely imaginary exponentials (see [30, p. 30]). We will find that the second
inequality is a consequence of the next lemma.

Lemma 4.3. We have

‖ f ‖∞ ≤
1

(1−c)
‖Tc/log N f ‖∞

for every Dirichlet polynomial f in DN , when 0< c < 1 and N ≥ 2.

Proof. The first inequality in (4.5) and the maximum modulus principle give for any fixed
σ> 0

| f (i t )− f (σ+ i t )| ≤σ‖ f ′‖∞ ≤σ log N‖ f ‖∞.

Hence, setting σ= c/log N , we see that

| f (i t )| ≤
∣∣(Tc/log N f

)
(i t )

∣∣+c‖ f ‖∞
from which the result follows. �

Proof of the second inequality in (4.5). Using the definition of the Bloch norm, we see for any
fixed σ> 0 that

‖ f ‖B ≥ sup
t∈R

σ| f ′(σ+ i t )|.
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Setting σ= c/log N and applying Lemma 4.3 to f ′, we then get

‖ f ‖B ≥ c(1−c)

log N
‖ f ′‖∞.

Choosing c = 1/2, we obtain the asserted result. �

Proof of Theorem 4.1. Combining (3.13) and Lemma 4.3, we find that if f (+∞)= 0, then

(4.6) ‖ f ‖∞ ≤ loglog N + log(1/c)+C

(1−c)
‖ f ‖B.

Choosing c = 1/loglog N , we obtain

‖ f ‖∞
‖ f ‖B

≤ loglog N +O(logloglog N ),

assuming that f 6= 0. On the other hand, the polynomial f (s)=∑N
n=2

1
n logn

n−s satisfies ‖ f ‖∞ =
loglog N +O(1), while

| f ′(s)| ≤
∞∑

n=2
n−σ−1 ≤ ζ(σ+1)−1 ≤ 1

σ
,

so that ‖ f ‖B ≤ 1. Hence we have shown that the supremum over f of the left-hand side of
(4.6) exceeds loglog N +O(1). We conclude that (4.2) holds.

We now use Lemma 3.4 to estimate ‖ f ‖BMOA under the assumption that f is in DN and
‖ f ‖B = 1. We first observe that if h ≤ 1/log N , then by the second Bernstein inequality of
Lemma 4.2, ∫h

0

∫t+h

t
| f ′(σ+ iτ)|2σdτdσ≤ 16(log N )2h

∫h

0
σdσ≤ 8h.

On the other hand, if 1/log N < h ≤ 1, then we obtain by the same argument
∫h

0

∫t+h

t
| f ′(σ+ iτ)|2σdτdσ≤ 8h +

∫h

1/log N

∫t+h

t
| f ′(σ+ iτ)|2σdτdσ.

Using the bound | f ′(σ+ iτ)| ≤ 1/σ in the integral term, where 1/log N ≤ σ ≤ h ≤ 1, we infer
from this that

‖ f ‖2
BMOA ≤ loglog N +O(1).

The optimality of the latter bound is seen by considering the function

g (s) :=
∑

k≤log log N

[
eek

]−s
,

that satisfies ‖g‖B≍ 1 and ‖g‖2
BMOA ≍ loglog N . Here the first relation is trivial, and the second

follows from (3.6) of Theorem 3.2. Hence (4.3) has been established.
Finally, to prove (4.4), we first infer from (4.2) that

‖ f ‖∞ ≪ loglog N‖ f ‖B ≪ loglog N‖ f ‖BMO A.

The example f (s) = ∑
2≤n≤N

1
n logn

n−s used above satisfies ‖ f ‖BMO A ≍ 1 by (3.7) and trivially
‖ f ‖∞ ≍ loglog N . This establishes the reverse inequality in (4.4). �
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We close this section by establishing a lemma that will be used in two different ways in
the next section. In contrast to the preceding comparison results, as well as those of [15],
Lemma 4.4 is a purely multiplicative result, and we therefore state it for polynomials in several
complex variables.

Lemma 4.4. There exists an absolute constant C such that if F is a holomorphic polynomial of

degree d ≥ 2 in n ≥ 1 complex variables, then

(4.7) ‖F‖∞ ≤C‖F‖n logd .

Proof. We now apply a multi-dimensional version of Bernstein’s inequality, namely

|F (z)−F (w)| ≤ π

2
d‖z −w‖∞‖F‖∞,

which holds for holomorphic polynomials F in n complex variables and all points z = (z j )
and w = (w j ) on Tn (see [41, pp. 125–126]). This implies that if w is a point on Tn at which
|F (w)| = ‖F‖∞, then |F (z)| ≥ ‖F‖∞/2 whenever we have |w j − z j | ≤ c

d
for j ≤ π0(n) with c :=

1/π. It follows that

‖F‖q ≥ 1

2
(2c)n/q d−n/q‖F‖∞

and hence we get

‖F‖∞ ≤ 2e(2c)−1/logd‖F‖n log d ≤ 2π1/log2‖F‖n log d .

�

5. THE PARTIAL SUM OPERATOR FOR DIRICHLET SERIES AND RIESZ PROJECTION ON T

We will now make some remarks about the partial sum operator SN which is defined by the
formula

(SN f )(s) :=
∑

n≤N

ann−s

for f (s) = ∑∞
n=1 ann−s . We are interested in computing the norm of SN when it acts on H

q .
In what follows, we denote this norm by ‖SN‖q . Most of what is known about ‖SN‖q for
different values of q and N can be deduced from an idea that goes back to Helson [24], by
which we may effectively rewrite SN as a one-dimensional Riesz projection. We will now state
and prove a theorem in this vein that can be obtained almost immediately by combining [42,
Thm. 8.7.2] with the optimal bounds of Hollenbeck and Verbitsky [28] for Riesz projection on
T. We choose to offer a detailed proof, however, because it makes the transference to one-
dimensional Riesz projection explicit and leads to nontrivial quantitative estimates.

We will consider a somewhat more general situation to emphasize the main idea of the
transference to the unit circle. To this end, we fix a completely multiplicative function g (n)≥ 1
such that g (n) →∞ when n →∞. By considering g (pk) for k ≥ 1, we see that this means that
g (p) > 1 for all primes p and that limp→∞ g (p) =∞. We then introduce the projection

Pg ,x

( ∞∑

n=1
ann−s

)
:=

∑

g (n)≤x

ann−s .

We see that SN = Pg ,N in the special case when g (n)= n.
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Theorem 5.1. Suppose that g is a completely multiplicative function taking only positive val-

ues and that g (n) →∞ when n →∞. Then

(5.1) sup
x≥1

‖Pg ,x‖H q = 1

sin(π/q)

for 1< q <∞.

Proof. We consider first the easy direction, namely that supx≥1 ‖Pg ,x‖q ≥ 1
sin(π/q) . It is classi-

cal and straightforward to check that the norm of the Riesz projection equals supN≥1 ‖S̃N‖q ,
where S̃N is the 1-dimensional partial sum operator acting on H q (T). On the other hand,
clearly ‖Pg ,g (2N )‖q ≥ ‖S̃N‖q , so the claim follows from the fact that the bound of Hollenbeck
and Verbitsky is optimal.

In order to treat the more interesting direction, we begin by fixing a positive integer Q that
will be specified later, depending on x. Then for every prime p, we choose a positive integer
mp such that

∣∣Q log g (p)−mp

∣∣≤ 1

2
.

This is possible because g (p) > 1 by the assumption that g (n) → ∞. Now let z be a point
on the unit circle. Write n in multi-index notation as n = pα(n) = ∏

p pαp (n), set accordingly
β(n) =∑

p αp (n)mp and consider the transformation

Tg ,Q,z

( ∞∑

n=1
ann−s

)
=

∞∑

n=1
an zβ(n)n−s .

Taking the Bohr lift, we see that the effect of Tg ,Q,z acting on f is that each variable is mul-
tiplied by a unimodular number. This shows that Tg ,Q,z acts isometrically on H

q for every
q > 0.

Note that by construction

∣∣β(n)−Q log g (n)
∣∣≤

1

2

∣∣α(n)
∣∣=

1

2
Ω(n),

where Ω(n) is the number of prime factors of n counting with multiplicity. We now choose
the parameter Q so large that

(5.2) max
g (n)≤x

β(n) < inf
g (n)>x

β(n).

This is obtained if

(5.3) inf
g (n)>x

(
Q log g (n)−

1

2
Ω(n)

)
> max

g (n)≤x

(
Q log g (n)+

1

2
Ω(n)

)
.

We may achieve (5.3) because the assumptions on g imply that log g (n) ≥ cΩ(n) for some
c > 0. Namely, this inequality clearly yields that

inf
g (n)>x

(
Q log g (n)−

1

2
Ω(n)

)
≥ (Q −c−1/2) log(x +1)
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for some ε> 0, while on the other hand

max
g (n)≤x

(
Q log g (n)+

1

2
Ω(n)

)
≤ (Q +c−1/2) log x.

Having made this choice of Q, we see that (5.2) ensures that we may write

(Tg ,Q,z Pg ,x f )(s) =
∑

β(n)≤x′
an zβ(n)n−s

for a suitable x′. Hence, using the Bohr lift B , the translation invariance of m∞ under Tz with
Tz(w) = (wp zmp ), Fubini’s theorem, and Hollenbeck and Verbitsky’s theorem [28] on the Lq

norm of the Riesz projection on T, we get successively:

‖SN ( f )‖q
q =

∫

T∞

∣∣SN (B f )(w)
∣∣q

dm∞(w)

=
∫

T

(∫

T∞

∣∣SN (B f )(Tz w)
∣∣q

dm∞(w)
)
dm(z)

=
∫

T∞

(∫

T

∣∣
N∑

n=1
an wα(n)zβ(n)

∣∣q
dm(z)

)
dm∞(w)

≤
( 1

sinπ/q

)q
∫

T∞

(∫

T

∣∣
∞∑

n=1
an wα(n)zβ(n)∣∣q

dm(z)
)
dm∞(w)

=
( 1

sinπ/q

)q
‖ f ‖q

q .

�

If we specialize to the case when g (n) = n and x = N , it is of interest to see how large the
intermediate parameter Q has to be to ensure that (5.3) holds. We see that this happens if

(5.4) Q log(N + j )− log(N + j )

2 log2
>Q log N + log N

2 log2
.

when j = 1,2.... We may assume that Q > 1/(2 log2) so that

Q log(N + j )− log(N + j )

2 log2
≥Q log N − log N

2 log2
+

(
Q − 1

2 log2

) 1

2N
.

This shows that (5.4) holds if we choose

(5.5) Q ≥ cN log N

with c > 0 large enough. Since Tn,Q SN f will be a polynomial of degree at most Q log N +
(log N )(2 log2) in the dummy variable z, we may now, following again the reasoning of the
above proof, use Lemma 4.4 with n = 1 and d = Q log N +O(log N ) to deduce that ‖SN‖∞ ≪
log N . We thus recapture a result that was first established in [4] by use of Perron’s formula
and contour integration.

The bound just obtained remains the best known upper bound for ‖SN‖∞. On the other
hand, it is known that ‖SN‖∞ ≫ loglog N (obtained for Dirichlet series over powers of a sin-
gle prime). We are thus far from knowing the right order of magnitude of ‖SN‖∞. A similar
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situation persists when q = 1 in which case we have loglog N ≪‖SN‖1 ≪ log N/loglog N by a
result of [8].

We will now show that if we specialize to Dirichlet series over P0-smooth numbers, then
the estimate in the case q =∞ can be improved for certain ultra-thin sets of primes P0. To
this end, we denote by H

q (P0) the subspace of H
q consisting of Dirichlet series over the se-

quence N0 of P0-smooth numbers, and we let ‖SN‖H q (P )0 be the norm of SN when restricted
to H

q (P0).
The crucial observation is that it may now be profitable to apply Lemma 4.4 before we make

the transference to one-dimensional Riesz projection. Indeed, we observe that the Bohr lift of
a Dirichlet polynomial of length N over P0-smooth numbers will be a polynomial of degree at
most log N/log2 in π0(N ) complex variables. Hence the norm on the right-hand side of (4.7)
can be taken to be the π0(N ) loglog N-norm. Combining this observation with Theorem 5.1,
we then get the following result which yields an improvement when π0(x) = o(log x/loglog x).

Theorem 5.2. There exists an absolute constant C such that

(5.6) ‖SN‖H ∞(P0) ≤Cπ0(N ) loglog N

when π0(N ) ≥ 1 and loglog N ≥ 2.

Following the proof of [8, Thm. 5.2] word for word, we may obtain a similar result for
‖SN‖H 1(P0) with π0(N ) loglog N replaced by the logarithm of the maximal order of the di-
visor function at N when restricted to N0. In contrast to (5.6), this bound is nontrivial for
all sets of primes P0. In particular, it yields ‖SN‖1 ≪ loglog N when P0 is a finite set and
‖SN‖1 ≪ log N/loglog N when P0 is the set of all primes, since then the logarithm of the max-
imal order of the divisor function at N is O(log N/loglog N ).
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