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Abstract—Bitcoin has become the leading cryptocurrency sys-
tem, but the limit on its transaction processing capacity has
resulted in increased transaction fee and delayed transaction
confirmation. As such, it is pertinent to understand and probably
predict how transactions are handled by Bitcoin such that a user
may adapt the transaction requests and a miner may adjust the
block generation strategy and/or the mining pool to join. To this
aim, the present paper introduces results from an analysis of
transaction handling in Bitcoin.

Specifically, the analysis consists of two parts. The first part
is an exploratory data analysis revealing key characteristics in
Bitcoin transaction handling. The second part is a predictability
analysis intended to provide insights on transaction handling such
as (i) transaction confirmation time, (ii) block attributes, and (iii)
who has created the block. The result shows that some models
do reasonably well for (ii), but surprisingly not for (i) or (iii).

Index Terms—Bitcoin, Transaction handling, Linear and non-
linear prediction models, Classification, Machine Learning, Ar-
tificial Intelligence

I. INTRODUCTION

Blockchain has been considered as an essential technique to
resolve privacy and security issues of Big Data, such as privacy
protection in IoT [40] and Big Data analytics [17, 20]. To
this aim, understanding transaction handling in Bitcoin, e.g.,
explanatory data analysis or predictability analysis, such as
transaction confirmation time, block attributes, is necessary.
This naturally demands a thorough study of the transaction
characteristics of the blockchain [28], which gives helpful
insight into designing and developing new blockchains for
smart data or managing big data.

Bitcoin is the first and the largest decentralized electronic
cryptocurrency system that uses blockchain technology [27]. It
adapts a cryptographic proof of work (PoW) mechanism that
allows anonymous peers to create and validate transactions
through the underlying peer-to-peer (P2P) network. The peers
that maintain and update the chain of blocks are called miners
[38, 39]. In addition to transaction generation by user nodes,
transaction handling in Bitcoin is done by the full nodes,
among which, the miners play a central role: They find the
mathematical puzzle to generate a valid block confirming the
related transactions.

Due to the design and structure of proof of work (PoW)
in Bitcoin, the difficulty of finding the mathematical puzzle
increases exponentially, every 2016 blocks. As a consequence,
independent miners struggle to find the puzzle. This has forced
miners to collaborate to form a team to find the puzzle through
a combined computational effort, a mining pool [22], and earn

a reward, depending on their overall mining power share and
the reward mechanism and policy of the mining pool [29] [30].
The mining pools’ behavior significantly affects the Bitcoin
end users since the mining pools process most of the users’
transactions: The throughput of Bitcoin depends partially on
those major miners [39]. Additionally, as the number of
users increases, the system’s internal traffic of transaction
handling escalates faster than expected, and at the same time,
the throughput requirement increases proportionally with the
number of users.

This paper investigates how transactions are handled by the
Bitcoin system. The aim is to, through analyzing transaction
handling, provide valuable insights to both users and miners:

• A user may expect when his/her transaction will be con-
firmed and hence choose an appropriate time to request
a transaction to reduce the waiting time.

• A miner may define block generation strategies that
utilize the current state of the system.

• A miner may also explore which mining pools are more
recognizable in the block generation and use this knowl-
edge to join or dis-join a mining pool.

Specifically, through an exploratory data analysis, we reveal
key transaction handling characteristics and provide answers
to several fundamental transaction handling questions, such
as, what is the current throughput, how frequently blocks
are generated, how long it takes for a transaction to be
approved, and who has created a block. Besides, through
a predictability analysis on throughput related features and
classification of mining pools, we provide additional insights
on these fundamental questions.

The investigation is based on a dataset collected at a Bitcoin
full node which contains transaction handling information
over a period of 543 days from 7th March, 2019 to 31st
August 2020. As a highlight, the dataset includes locally
available information that cannot be found on the public ledger
blockchain. The results indicate that with a proper prediction
model taking into account both internal and external factors,
the prediction performance can be appealing for block size
and number of transactions in a block, as well as for block
generation intensity. However, in terms of predicting when a
next block will be generated and a transaction be approved,
the effort does not lead to conclusive observation. In addition,
also surprisingly, in predicting / classifying the mining pool,
clear distinguishing is only found for one specific mining



pool, the F2Pool. Discussion is provided for these findings,
including the surprising ones, with the help of findings from
the exploratory analysis.

The rest of the paper is organized as follows. Section II
illustrates the workflow of transaction handling in Bitcoin, and
introduces the dataset used in the analysis. Then, Section III
introduces our analysis approach, highlighting the adopted
statistical and artificial intelligence techniques. Following that,
an exploratory analysis on the dataset is conducted and results
are reported and discussed in Section IV. Next, Section V
reports results and findings from the predictability study. The
current state of the art is covered in Section VI. Finally,
Section VII concludes the paper.

II. BITCOIN TRANSACTION HANDLING: WORKFLOW AND
DATASET

A. Workflow

Bitcoin is a distributed ledger platform that enables infor-
mation about transactions to be distributed than centralized,
where the ledger is the Bitcoin blockchain that records the
transactions. In Bitcoin, all full nodes, also called miners, take
part in creating and validating/invalidating transaction blocks
and propagating such information, independently [27]. Specif-
ically, the users generate transactions for being processed, and
the distributed ledger components, i.e. the full nodes or miners,
work together to generate and validate transaction blocks and
add them to the blockchain.

Fig.1 illustrates the workflow of transaction handling in
Bitcoin, which includes transaction arrival, block formation,
propagation and validation. Briefly, after transactions are gen-
erated by the users, they are sent to all full nodes for validation.
At a full node, upon the arrival of a transaction, the node stores
the transaction in its mining pool, called mempool in Bitcoin,
waiting for confirmation.
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Fig. 1. An illustration of the work flow of Bitcoin

In addition, a full node may choose unconfirmed transac-
tions in the backlog to pack into a new transaction block, and
perform mining to find the mathematical puzzle given by the
Bitcoin to gain the right to add the block to the ledger. If
the puzzle finding is successful, this newly generated block is

added to the blockchain, and this information is sent to all the
nodes.

At each node, the validity of the newly generated block
is checked. If the validity is confirmed with consensus, the
updated blockchain is accepted and the transactions in the new
block are validated. Such validated transactions are removed
from the mempool at each full node that then repeats the above
process. Note that, while the above description is brief, the
essence of the workflow is kept. For more details about how
Bitcoin works, the original introduction [27] is the best source.

B. Dataset

To analyze transaction handling in Bitcoin, we implemented
a server installation of a full Bitcoin node to collect related
information. The information has two parts. One part records
information from the ledger that is globally available, called
the global information part. Another part records locally
available information about the backlog status of the mempool.
This part is called the local information part.

More specifically, the global information part includes, for
each block i on the blockchain, the number of transactions
(ni) in the block, its miner (mi), the size of the block in bytes
(si), the timestamp or generation time of the block (Ti), and
the average per-transaction fee of the block (fi). The local
information part records the mempool’ status (msi) in terms
of size and fee of backlogged transactions in mempool when
each block i is received at our full node.

In total, the dataset consists of information related to
80,408 Bitcoin blocks with more than two hundred million
(203432240) transactions for a period of 543 days from 7th
March 2019 to 31st August 2020.

III. THE ANALYSIS APPROACH

The dataset is essentially a composition of time se-
ries. We hence employ time series analysis on the dataset
to provide insights and/or gain findings about transaction
handling in Bitcoin. In the rest, the following time se-
ries are specifically used: y = [y1, y2, . . . ., yM ], x =
[x1, x2, . . . ., xM ], c = [c1, c2, . . . ., cM ], and D =
{{y1, x1, c1}, {y2, x2, c2}, . . . , {yM , xM , cM}}, defined with:

yi = {si, ni}
xi = {Tdi, fi,msi}

ci = {mi}
(1)

where Tdi ≡ Ti − Ti−1 denotes the inter-block time,
si, ni, fi,msi and mi are defined in the previous section, and
M = 80408 representing the total number of blocks in the
dataset.

Our analysis consists of two parts. In the first part, i.e.,
Section IV, the focus is on revealing fundamental characteris-
tics and/or basic statistical properties of transaction handling
related time series, using exploratory data analysis techniques
such as histogram, scatter plot and curve fitting.

In the second part of the analysis, i.e. Section V, the focus is
on investigating if / how Bitcoin transaction handling may be
predicted. To this aim, both classical and modern time series



forecasting approaches are considered for prediction of various
transaction related attributes. In addition, a decision tree based
classification approach is adopted for miner inference. The fol-
lowing subsections give an introduction of these approaches.

A. Autoregressive models for forecasting

For time series forecasting, a large number of approaches
are available, including both classical ones and modern artifi-
cial intelligence (AI) based approaches [10].

For the former, we tested various autoregressive (AR)
models. Due to their generally better performance, this pa-
per focuses on ARIMA (AutoRegressive Integrated Moving
Average) and ARIMAX (Autoregressive Integrated Moving
Average with Exogenous input). Equations (2) and (3) define
these models respectively, where B is the backshift operator
and ∇ the difference operator.

y+i = φ1yt−1 + · · ·+ φpyi−p + θ1εi−1 + · · ·+
θqεi−q + εi,

Φ(B)∇dy+i = Θ(B)εi,

(2)

(y+i |Ti = t) = φ1{xi−1, yi−1}+ · · ·+ φp{xi−p, yi−p}
+θ1εi−1,ti−1

+ · · ·+ θqεi−q,ti−q
+ εi,ti ,

Φ(B)∇d(y+i |Ti = t) = βxi + Θ(B)εi,ti ,

(3)

where (y+i |Ti = t) or y+i ) is the predicted block, E(εi,ti) = 0,
Var(εi,ti) = σ2, ∇d=(1-B)d is difference factor, ∇d(y+i |Ti =
t) is the sequence of yi by d times differed, Φ(B)=
1−φ1B, . . . , φpBp is an auto regressive coefficient polyno-
mial, and Θ(B)=1−θ1B, . . . , θqBq is a moving smoothing
coefficient polynomial of the smooth invertible autoregressive
moving average model ARMA (p, q).

To assess the forecasting performance, we use mean average
error (MAE) and root mean square error (RMSE), which are
respectively defined as: with ei = yi − y+i ,

MAE =

∑N
i=1 |ei|
N

RMSE =

√∑N
i=1 e

2
i

N

(4)

where N denotes the number of predicted data points.

B. AI-based forecasting models

For AI-based models, NAR (nonlinear autoregressive neural
network) and NARX (nonlinear Autoregressive Network with
Exogenous Inputs) are chosen because they have a feedback
connection that encloses several layers of the network, which
uses memory to remember the time series’s past values to
get better performance [18] [36]. Additionally, the models
have nonlinear filtering that helps to capture the dynamic
fluctuations of the input values.

Equations (5) and (6) describe NAR and NARX network’s
function to predict a particular value of data series y+i using
p previous values of y and x.

(y+i ) = fNAR(yi−1, yi−2, . . . ., yi−p) (5)

(y+i |Ti = t) = fNARX({xi−1, yi−1}, {xi−2, yi−2},
. . . ., {xi−p, yi−p})

(6)

The functions fNARX and fNAR in (5) and (6) are unknown,
and the neural network training approximates the function by
optimizing the network weights and neuron bias. The NAR
and NARX model uses Levenberg-Marquardt, Bayesian regu-
larization, and scaled conjugate gradient training algorithms to
train the model [2]. Specifically, Bayesian regularization (BR)
is used to conduct the analysis. BR minimizes a combination
of squared errors and weights; then determines the correct
combination to produce a network that generalizes well. It uses
network training function Levenberg-Marquardt to optimize
network weights and neuron bias. The Levenberg–Marquardt
is a popular numerical solution to find the smallest nonlinear
function over parameter space.

The following explains the input and output of the neural
network model we use.

• Input: Block values in the form of vector length, which
indicate the number of previous values of the block time
series. The models without external input take a vector of
the input yi = {ni, si} while predicting the next blocks
content either ni or si. Similarly, the models with external
input additionally take {xi} as an input when the model
is used to predict the subsequent blocks.

• Hidden layer: For NAR and NARX, the number of hidden
neurons is determined by performing a pre-analysis using
the collected dataset. Based on this analysis, the models
satisfy the Mean Square Error (MSE) value when the
neurons are equal to ten.

• The input delay p and q are approximated by using an
autocorrelation (p) and partial-autocorrelation (q) plot.

• Output: The predicted blocks (y+i |Ti = t) or y+i ) con-
tain the predicted values of the blocks {ni, si} of the
weekend, working, and the combinations.

C. Decision tree based classification

Starting in 2010, there are more than 23 mining pools
worldwide, as reported in Fig. 3. It has been illustrated that
mining pools compete to find the mathematical puzzle and the
mining behavior is a game [16][35].

In this paper, we investigate if the mining pools are de-
tectable using a machine learning, decision tree based ap-
proach [1][15][41]. It has a tree structure: Each branch repre-
sents the outcome of the test, and each leaf node represents
a class label. In some cases, it is essential to combine several
decision trees to produce a better classification performance.
Such a combination produces an ensemble of different meth-
ods. In the present work, we considered two methods: booted
and RSUbooted [26].

The accuracy, area under curve (AUC), sensitivity, and miss
rate are used to test the classification performance, in addition
to false negative rate (FN), true positive rate (TP), and receiver
operating characteristic (ROC) curve of TP versus TN, as
commonly used for machine learning based classification [37].



(a) Empirical CDF of si (b) Empirical CDF of ni (c) Empirical CDF of fi

Fig. 2. CDFs of basic block attributes

IV. RESULTS: EXPLORATORY ANALYSIS

This section reports results and observations from an ex-
ploratory analysis of the collected data.

A. Basic block attributes

The size si, the number of transactions ni and the fee fi are
fundamental attributes of a block. Since the transaction activi-
ties are time-varying process [12], they may have distributions
that vary from time to time, e.g., the weekend and working
day demands have a different distribution.

Fig. 2(a) reports in most cases (80%), si in working days
has less than 1.4 MB, whereas it has a 1.2 MB size during
weekends. In both cases, the si can grow more than 1.5 MB
in 1% of the cases. Relatively, 30% of the blocks have a size
less than the default legacy size si of 1 MB on weekend days;
nevertheless, in working days, less than 20% of the blocks
have a size less than 1 MB.

Similarly, Fig. 2(b) illustrates that the ni also varies as
si: 50% of the blocks have less than 2200 transactions per
block in weekend days, while 2500 transactions per block in
working days. In working days, only 20% of the blocks have
ni less than 2100 transactions wherein the weekend, 40% of
the generated blocks have ni less than 2200.

In addition, the miner’s economic incentives affect which
transactions to include in a block and this financial interest
may also show some differences over time. Fig. 2(c) reports,
50% of the blocks, during weekdays, the fi is smaller than
1.3∗10−4 while during working days, the fi is less than 1.43∗
10−4. In both cases, 80% of the fi is smaller than 0.00033
BTC, and with less than one percent, the fi can grow more
significantly than 0.0004 BTC.

B. Miners

Fig. 3 reports miners’ contribution in terms of the number of
valid blocks in the main chain. As we can observe from the
figure, unknown(?), F2Pool, BTC.com, Poolin, and AntPool
contribute a higher number of blocks. Combined, these five
major mining pools generate around 50% of the valid blocks.

Driven by the financial interest, a mining pool might use
a strategy to increase the financial gain [9]. To explore, we

Fig. 3. Miners

Fig. 4. fi vs si

analyze the blocks generated by the major mining pools. Fig.
4 and 5 report that when the size si is greater than 1.5 MB,
it is visible from the figures that some of the major mining
pools become more recognizable. However, when si is less
than 1 MB, it is challenging to see any difference between the
pools. Similarly, When the si is between 1- 1.5 MB, we can
see a high concentration of the mining pools. The figures also
report that as the si increases, the ni and fi also rise together.

To further investigate the number of block contributions
in the working and weekend days, we focus on the five
major miners. Fig. 6 illustrates that these miners contribute
similar number of blocks in the working days, except for



TABLE I
MAJOR MINING POOLS BLOCK RELATED ATTRIBUTES PROPERTIES

Mining pool µ(si, ni, fi) σ(si, ni, fi) min(si, ni, fi) max(si, ni, fi)
? (1.1252, 2.14 ∗ 103, 1.83 ∗ 10−4) (0.3657, 844.2627, 2.18 ∗ 10−4) (2 ∗ 10−4, 1, 0.00) (2.4229, 4402, 0.0065)
AntPool (1.1141, 2.18 ∗ 103, 1.8 ∗ 10−4) (0.3622, 844.2076, 1.9 ∗ 10−4) (3.34 ∗ 10−4, 1, 0.00) (2.2151, 4063, 0.0050)
BTC.com (1.0960, 2.15 ∗ 103, 1.86 ∗ 10−4) (0.3782, 868.4394, 2.487 ∗ 10−4) (2.38 ∗ 10−4, 1, 0.00) (2.3056, 4243, 0.0121)
F2Pool (1.1099, 2.14 ∗ 103, 1.76 ∗ 10−4) (0.3680, 845.6503, 2.16 ∗ 10−4) (2.66 ∗ 10−4, 1, 0.00) (2.3316, 4377, 0.0086)
Poolin (1.1091, 2.17 ∗ 103, 1.67 ∗ 10−4) (0.3635, 842.1800, 1.87 ∗ 10−4) (2.17 ∗ 10−4, 1, 0.00) (2.3165, 3988, 0.0038)

Fig. 5. ni vs si

Fig. 6. Miners contribution

the unknown(?) pool. The same observation is also found for
the weekend days. The unknown(?) pool generates a higher
number of blocks in all cases.

To gain a deeper insight into the block contents than the
number of blocks, Table I is presented, where the mean µ,
standard deviation σ, minimum and maximum values of the
basic block attributes (si, ni, fi) are shown. Note that these
major mining pools become operational starting 2016, except
for Pooling in 2018 [39]. Even though there is a gap in years
between Poolin and the rest, Table I shows that Poolin, F2Pool,
BTC.com generate blocks with similar average size, standard
deviation and max values. However, the unknown (?) and
AntPool generates block with size greater than the three. The
unknown (?) has a block size mean close to 1.214 MB, and
the maximum block size is also found in this mining pool.
Additionally, the public mining pool, Poolin, comparing the
maximum values of fi and ni, has the smallest than the other
four mining pools.
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(a) Inter-block generation (b) Autocorrelation plot

Fig. 7. Fitting of inter-block generation time to n.e.d

C. Block generation

1) Distribution of inter-block generation time: Based on
the Bitcoin design [27], it has been expected that the inter-
block generation time follows an exponential distribution, and
the validity has also been checked [12]. Along the same
line, Fig. 7(a) reports the fitting of the inter-block generation
time to an exponential distribution. Additionally, to check the
independence of block generation time, its autocorrelation plot
is illustrated in Fig. 7(b). As can be seen from Fig. 7(a) and
Fig. 7(b), the inter-block generation time fits well with an
exponential distribution with increasing mismatch at the tail,
partly due to the limited number of blocks in the dataset, and
the autocorrelation is close to zero under all the lags in the
figure, with the most significant difference only around 1%,
indicating that block generation is little correlated.

(a) 100 minutes; λ = 9.44707 (b) 1000 minutes; λ = 103.184

Fig. 8. Block generation histogram fitting to a Poisson distribution with
intensity λ under different time slot length

2) Fitting to a Poisson process: Since the block generation
process has exponentially distributed inter-generation times,
we investigate if it can also be further treated as a Poisson
process. For this, we make histograms of the number of blocks
generated in different length of time and fit them with Poisson
distributions. If the process is Poisson, these Poisson distribu-
tions must have the same intensity after being scaled. For this
investigation, Fig. 8(a) and Fig. 8(b) are presented, where the
best fitting intensity of Poisson distribution is shown under
two time lengths, 100 and 1000 minutes. Clearly, the obtained
two intensities differ noticeably, after taking into consideration



Fig. 9. Major mining pools’ inter-block generation time

that there is 10x scaling difference. This observation, which
is surprising, implies that block generations can at most be
approximated but cannot be treated as a Poisson process.

3) Relation with miners: To have a closer look on block
generation, we made further investigation over the five major
mining pools. Fig. 9 reports the inter-block generation time
of the major mining pools. As the figure shows, while the
average inter-block generation time is almost the same
among the major mining pools, there is visible difference
for the median: While for Unknown(?) and F2Pool, the
median time is close to 52 minutes, for BTC.com and Poolin,
it is near 45 minutes and for AntPool, it is close to half-hour.
The minimum inter-block generation time is the same for all
major mining pools, close to zero. However, for the maximum
inter-block generation time, while AntPool and Unknown(?)
need 14 hours and 30 minutes, BTC.com demands 16 hours.
In addition, the public mining pool, Poolin, requires 12 hours,
and unlike or shorter than the others, F2Pool needs only 10
hours. As a highlight from Fig. 9, F2Pool stands clearly out
of the others with shortest tail.

4) Relation with basic block attributes: We further explored
the relationship between block generation and the three ba-
sic block attributes, shown by Fig. 10(a), 10(b), and 10(c).
Specifically, Fig. 10(a) illustrates that when the block size si
is greater than 1.5 MB, the inter-block generation time seen
by the blocks is less than two hours. However, when the block
size is concentrated between 1-1.5 MB, Unknown(?), AntPool,
and BTC.com block can have the inter-block generation time
greater than 13 hours. On the other hand, the blocks from
Poolin and F2Pool seem to be generated with shorter interval
than the rest three, which is also indicated by Fig. 9.

In addition, Fig. 10(b) demonstrates that the number of
transactions ni in a block of Poolin is on average smaller
than the other mining pools. Most of the ni from F2Pool
seem to have a shorter inter-block generation time. However,
it is hard to say for the Unknown(?) and AntPool, because
the plot shows most of the block with ni seems to have a
larger inter-block generations time. These effects may arise
from the state of the mempool, when the mempool contains
more transactions then the miners can pick as much number
of transaction to include in block.

Furthermore, it is natural the miners prioritize the finical in-

(a) Inter-block generations vs si (b) Inter-block generations vs ni

(c) Inter-block generations vs fi

Fig. 10. Inter-block generations v.s. block size, transaction number and fee
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(a) Transaction inter-arrival time (b) Autocorrelation plot

Fig. 11. Transaction inter-arrival time fitting n.e.d

centives, which encourages the miners to pick up transactions
with a higher fee. Fig. 10(c) illustrates this fact. Specifically,
when the fee fi is higher, the inter-block generation time
of the block is lower, maybe even shorter than an hour.
The figure also shows that the blocks with the smaller average
fee from Unknown(?), AntPool, and BTC.com may experience
inter-block generation time greater than 14 hours. On the other
hand, the blocks from Poolin seem to have a less average fee
and seeingly smaller inter-block generation time.

D. Transaction arrival and confirmation time

Users generate transactions for validation. New arrivals
stay at the backlog (memory pool) until the nonce finding
is successful and they are picked up by the miner.

1) Transaction inter-arrival time: Fig. 11(a) shows that the
fitting of transaction inter-arrival times to a negative exponen-
tial distribution is only reasonable well with visible deviation.
Additionally, Fig 11(b) reports the inter-arrival between the
transactions is correlated. These reflect that there exists some
level of dependence between transaction arrivals.

2) Transaction confirmation time: Fig. 12(a) reports the
transaction confirmation time fitting to a negative exponential
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(a) Transaction fee effect
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Fig. 13. Transaction fee effect on transaction confirmation time

distribution, with a sharp drop at the tail. Additionally, Fig.
12(b) illustrates that the transaction confirmation time is
uncorrelated, reflecting that the transaction confirmation time
is independent.

Since a miner tends to choose transactions with a higher fee,
to demonstrate this effect on the confirmation time, Fig .13(a)
is presented. Specifically, it demonstrates the relationship of
confirmation time and fee for Q1 (25%), Q2 (50%), Q3 (75%),
and greater than Q3, i.e., (Q4) for fb. Their intervals are
respectively (0,Q1), (Q1,Q2), (Q2,Q3), and (Q4,∞). As Fig
13(a) shows, low fee transactions exhibit a higher confirmation
time. On average, the low fee transactions (Q1) wait 22 min-
utes for validation. However, for higher fee (Q4) transactions,
the average confirmation time is less than half of that of
the low fee transactions. For Q2 and Q3, the transactions
exhibit close to a ten-minute average confirmation time. Still,
transactions from Q2, on average, wait one more minute extra
than Q3. Overall, transactions wait on average 13 minutes, and
we also observed a few transactions waiting for more than 24
hours at the backlog. At the same, these few transactions also
tend to have a fee associated relatively very small.

V. RESULTS: PREDICTABILITY ANALYSIS

Having explored the various characteristics of transaction
handling in the previous section, this section is devoted to
investigating if and what such characteristics can be predicted.
For this predictability analysis, the prediction approaches
introduced in Section III are used. The results are reported
and discussed in the rest of this section, where the dataset is
divided into three parts, i.e, training, test and validation, and
the details of this division is reported in Table II.

A. Basic block attributes

Table III compares the performance of the various models
in predicting the target block attributes: size si and number ni,
where as a benchmark, the basic autoregressive (AR) model
is also included. For these models, the symbol p is order

TABLE II
DIVISION OF THE DATASET

Dataset Training Test Validation #No of blocks
Working day 40095 8591 8591 57277
Weekend day 16190 3469 3469 23128
All db 56286 12061 12061 80408

of the autoregressive part, d is the number of nonseasonal
differences needed for stationarity, and q is order of the moving
average part. In this investigation, the values for p = 2
and q = 2 are calculated from autocorrelation and partial-
autocorrelation plot, and we set d = 0. MAE and RMSE are
used to compare models’ performance. In addition, to give
a more direct impression, we illustrate the prediction results
by the models for randomly chosen ten consecutive weekend
blocks, as an example, in Fig. 14(a) and Fig. 14(b).

Table III, Fig. 14(a) and Fig. 14(b) indicate that, the predic-
tion results by the considered forecasting approaches all follow
the actual trend well. However, the models that additionally
make use of the locally available information x, which are
ARIMAX and NARX, generally produce better results than
their counterpart models ARMA and NARX that do not have
exogenous input. In addition, the AI-based models perform
better than the classical autoregressive models under the same
condition. Overall, NARX’ performance is best, which is
an encouraging finding for applying AI-based approaches in
predicting the basic block attributes’ values.

Remark: The alert reader may have noticed that among
the three basic block attributes investigated in the exploratory
study, we have left the fee fi out in the predictability study.
This is simply because a large related literature exists, which
will be discussed in the related work section, and the results
therein show that the price can be excellently predicted.

B. Block generation and transaction confirmation time

Encouraged by the prediction results for the basic block
attributes, we used the NARX model to test if block generation
and transaction confirmation time can also be predicted. For
predicting block generation, we used Ti as the input while x=
{fi, ni, si,msi} as the external input. Fig. 15(a) reports the
model’s performance. For predicting transaction confirmation,
we used transaction confirmation times as the input, while the
size of the transactions and the fee associated are used as an
external input. Fig. 15(b) exemplifies the model’s performance
at a number of random points.

As indicated by Fig. 15(a) and Fig. 15(b), the predication
of block generation and transaction confirmation time does
not work. While this observation seems to be contradictory to
the observation in predicting si and ni, a closer look at the
characteristics of block generation time and transaction con-
firmation time enables to explain. Reported in the exploratory
analysis in Section IV, both the inter-block generation time
and the transaction confirmation time has or can be closely
approximated by an exponential distribution. Then, because
of the memoryless property of exponential distribution, the
likelihood of something happening in the future has little



TABLE III
FORECASTING PERFORMANCE OF BASIC BLOCK ATTRIBUTES

Models MAE RMSE
Weekend(si,ni) Working(si,ni) All(si,ni) Weekend(si,ni) Working(si,ni) All(si,ni)

AR(p) 0.53, 264 0.6, 117.35 0.5, 127.12 0.5, 122.14 0.5, 141.91 0.3, 264
ARIMA(p,d,q) 0.15, 15.373 0.077, 12.840 0.13, 12.969 0.04, 12.461 0.01, 10.833 0.025, 10.942
ARIMAX(p,d,q) 0.12, 13.364 0.07, 12.092 0.06, 11.735 0.02, 11.052 0.006, 10.408 0.006, 10.408
NAR(p) 0.01, 14.770 0.06, 12.969 0.06, 12.840 0.03, 12.214 0.008, 11.275 0.008, 10.942
NARX(p) 0.011, 10.942 0.06, 10.471 0.013, 10.460 0.01, 10.121 0.006, 10.035 0.0003, 10.030

(a) measured vs predicted si

(b) measured vs predicted ni

Fig. 14. Sample prediction results

relation to whether it has happened in the past. Implied by
this and as also confirmed by Fig. 15(a) and Fig. 15(b), any
effort of predicting these two transaction handling aspects
may, “surpringly”, lead to no solid conclusion.

(a) Block generation time (b) Transaction confirmation time

Fig. 15. Block generation and transaction confirmation time sample prediction

We conduct further investigations on predicting block gener-
ation intensity. In this case, for the AI-based models, we only
used NAR because we do not have additional input for NARX.

To be in line with the counterpart exploratory investigation,
we fixed the slot size of 100 and 1000 minutes and predicted
the number of blocks within the slot, respectively. Fig. 16(a)
and 16(a) report the performance of both the classical autore-
gressive models and the AI-based NAR model. In general,
the AR models follow the trend better than the NAR model.
Nevertheless, all models struggle to perform better than the
average. This, we believe, attributes largely from that while
not exactly, the number of blocks in a time period can is
approximately Poisson-distributed, as reported in Section IV.

(a) Block generation intensity with
fixed time slot of 100 minutes

(b) Block generation intensity with
fixed time slot of 1000 minutes

Fig. 16. Block generation intensity sample prediction

C. Miner classification

As we saw in the previous sections, the fi, si, Tdi, ni, and
msi have a significant effect on the evolution of the Bitcoin
ledger. Due to this, we use these feature sets to test if they can
help infer a miner’s relationship, and if some mining pools use
some specified strategies while generating a block. To study
these, we take two cases, first working and weekend days,
and in the second case, considering all the data together. The
feature set, including fi, si, ni, and Tdi, is used to perform
classifications of mining pools (ci). As a remark, we have also
tried other features in the mempool state msi but observed that
they do not bring significant increase over the accuracy.

1) Case-I (Working and Weekend day): The top-eight min-
ing pools are used to detect the block generation behavior.
Fig. 17(a) and Fig. 17(b) report that the major mining pools
have a true positive rate (TP) more significant than the rest
of the pools. As Fig. 17(a) and Fig. 17(b) report, the better
model, the RSUBoosted decision tree with the booted method,
shows a promising result classifying the F2Pool in better
approximation relative to the other pools. As we can see from
Fig. 17(a) and Fig. 17(b), the TP for BTC.com, AntPool,
and Poolin is smaller than 25%, but for the SlushPool and



(a) Weekend days (b) Working days (c) All

Fig. 17. Confusion Matrix of major miners (RSUBoosted decision tree)

BTC.TOP, it is more significant than 25%. Especially in the
case of the public mining pool, Poolin, the false-negative rate
is five times higher than the TP. This indicates the Poolin
has less detectable block generation strategy than the rest.
However, for SlushPool, it is has a block generation behaviour
more distinguishable than the top five major mining pools.

2) Case-II (All Data): The previous case showed that
F2Pool was approximated very reasonably from the major
mining pools. Fig. 17(a) and Fig. 17(b) report a confusion
matrix illustrating the F2Pool and SlushPool having a higher
positive rate than the rest of the mining pools. Additionally,
Fig.17(c) reports that the two major mining pools, SlushPool
and F2Pool, the TP are more significant than 70%, which is
40% more accurate than the first case for SlushPool. Similarly,
the false-negative rate is less than 20%, especially in F2Pool,
which is even less than 3%. To have a better understanding,
we performed further investigation on only these two mining
pools, F2Pool and SlushPool. The results are reported in Table
IV, Fig. 19(a) and 19(b), and Fig. 18. Table IV compares the
performance of the two DT methods. Due to better accuracy
of the RSUBoosted-tree, it is used in Fig. 19(a) and 19(b),
and Fig. 18. Specifically, the true-positive rate (TPR) and the
false-negative rate (FNR) are shown in Fig. 18, and Fig. 19(a)
and 19(b) further illustrate the model accuracy in terms of
AUC and ROC.

TABLE IV
PERFORMANCE OF CLASSIFICATION BETWEEN F2POOL AND SLUSHPOOL

Models Accuracy Sensitivity Miss rate
RSUBoosted-tree 0.90 0.885 0.115
Boosted-tree 0.883 0.881 0.119

3) Discussion: Fig. 17(a), Fig. 17(b), and Fig. 17(c) es-
sentially show that other than for a few mining pools,
particularly F2Pool, mining pools have a minimal positive
classification rate, implying they are hard to distinguish.
This is in line with Fig. 9 in the exploratory analysis part,

Fig. 18. F2Pool and SlushPool

(a) F2Pool AUC curve (b) ? AUC curve

Fig. 19. AUC curves for F2Pool and SlushPool

which shows that while the block generation distributions
of other miners are similar, for F2Pool it is visually dis-
tinguishable from the others. We believe this characteristic
difference has been explored by the decision tree approach
in the classification. In addition, a closer investigation as
illustrated by Fig. 17(c) and Fig. 18 implies that the two
major private mining pools P2Pool and SlushPool use different
strategies that have caused their block generations with special
properties making the classification with higher accuracy.

VI. RELATED WORK

1) Statistical analysis of transaction handling characteris-
tics: While a lot of such analysis results are available, e.g.,



various Bitcoin statistics [7], block propagation delay [6],
block arrival process [3], transaction rate and confirmation
time [13] [33], we focus on fundamental aspects underlying
transaction handling and particularly their distributions, differ-
ent from the literature. Through analyzing these distributions,
we have been able to reason some seemly surprising observa-
tions in the predictability study. In addition, very few results in
the literature take into account information that is only locally
available. In this sense, the work [12] is most related. However,
except for inter-block generation time fitting, which is similar
as we already highlighted, the other results are not found in
[12], due to different focuses of [12] and the present work.

2) Forecasting transaction handling characteristics: The
focus of the literature has been on bitcoin price. For instance,
Huisu Jang and Jaewook Lee [19] developed a neural network-
based forecast model on the volatility of a Bitcoin price and
extended analysis to identify the best feature set that gives
more information about the Bitcoin price process. Similarly,
Edwin Sin and Lipo Wang [34] implemented an artificial neu-
ral network to predict the next Bitcoin price and the amount of
profit that could be gained by making such predictions. Shah et
al. [32] considered the Bayesian regression method to predict
the price of Bitcoin. Pavel Ciaian et al. [4] estimates Bitcoin
price formation based on a linear model by introducing several
factors such as market forces, attractiveness for investors, and
global macro-financial factors. Greaves et al. [14] analyzed
the Bitcoin blockchain data to predict the price of Bitcoin
using SVM and ANN, which score 55% accuracy. Similarly,
models such as Random Forest, SVM, and Binomial Logistic
algorithms are used to predict short-term Bitcoin price and
achieve a high accuracy result of 97% in [25]. To the best of
our knowledge, no previous work combines the feature sets to
predict the transaction handling characteristics focused in this
paper.

3) Mining pool classification: There have been some re-
search works that studied block withholding and unfair distri-
bution of reward. For instance, Schrijvers et al. [31] analyzed
the incentive compatibility of the Bitcoin reward mechanism.
In their model, a miner can decide between honest mining
and delaying her found blocks’ submission. They proved that
the proportional mining reward mechanism is not incentive
compatible. Eyal [8] computed the pools’ optimal strategy in
the block withholding attack and their corresponding revenues.
It was demonstrated that the no-pool-attack strategy is not a
Nash equilibrium in these games because if none of the pools
run the attack, one pool can increase its revenue by launching
the attack. Luu et al. [24] experimentally demonstrate that
block withholding can increase the attacker’s revenue. They
do not address the question of mutual attacks. Courtois and
Bahack [5] have recently noted that a pool can increase its
overall revenue with block withholding if honest pools perform
all other mining. We consider the general case where not
all mining is performed through public pools and analyze
situations where pools can attack one another. M. Salimitari et
al. [30] used prospect theory to predict a miner’s Profit from
joining one of the major mining pools. The hash rate power,

total number of the pool members, reward distribution policy
of the pool, electricity fee in the new miner’s region, pool fee,
and the current Bitcoin value are used to predict which pools
are profitable specific miners.

Most mining pool studies do either emphasis on (i) block
withholding [16] [21] or (ii) unfair distribution of rewards
[11] [22] [23] [35], but none or little has been investigated to
detect the major mining pools with hidden block generation
strategies. Our work tries to further investigate these block
formation strategies, by introducing decision tree to distinguish
one of the major mining pools following having a detectable
block formation strategy.

VII. CONCLUSION

An exploratory analysis on fundamental transaction han-
dling characteristics of Bitcoin is conducted, together with
a novel analysis on their predictability. The results from the
former have been used to help reason the findings from the
latter. Specifically, the focused block attributes include the
size, the number of transactions and the fee. In addition, block
generation and transaction confirmation, two fundamental pro-
cesses resulted from transaction handling, are investigated.
Furthermore, the contribution of miners to these attributes and
processes is particularly taken into consideration.

The results show that while it is possible to use
measurement-based collected data in predicting the basic at-
tributes of the next block with reasonable accuracy, care is
needed in predicting block generation and transaction confir-
mation. While the latter seems contradicting the expectation
from the former, the explanation is supported and implied by
results from the exploratory analysis. Additionally, it shows
that combining internal and external factors enables better per-
formance in prediction / classification. Furthermore, although
it is difficult to distinguish among mining pools through pre-
diction in general, the investigation shows that F2Pool is well
distinguished from the others. A closer investigation in the
exploratory analysis shows that block generation of F2Pool has
a distribution with visible characteristic difference, implying
that it has used a different strategy than the other miners. These
results shed new light and may also be considered by users
and miners when deciding their transaction strategies.
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