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"For everything in the world, for
civilization, for life, for success, the
truest guide is knowledge and science.
To search for a guide other than
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the progress of knowledge and science
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Abstract

After a high level of integration of variable renewable energy resources and distributed
energy resources to distribution level networks, a transformation from supplier-centric
to consumer-centric power system and market architecture is initiated. It is important
to ease this transformation for market and system participants in a cost-efficient
setting.

In the research for this thesis, I used techniques of operations research applied in
power markets and systems to investigate the usage of flexibility under conditions of
uncertainty. I established economic dispatch models and optimal power flow models
for designing and analyzing power markets and systems. In the economic dispatch
models, I analyzed economic factors and their relations with power markets, while
in optimal power flow models, I searched for answers to power grid operations for
voltage and network congestion. All models and decisions were constructed and
solved in a stochastic decision-making environment. During the research, the first
research question addressed was how to determine the flexibility concept, products,
and services with regard to various power and energy markets. This led to the
development of a theoretical and empirical taxonomy for flexibility trading and
related market structures. The second question addressed during the research
considered how to use flexibility according to two separate systemic approaches,
different tariff designs to exploit flexibility usage for reducing peak pricing, and a
stochastic optimal scheduling methodology for end user’s flexibility assets to solve
grid problems. The third and final question addressed during the research concerned
how it is possible to have a cost-efficient and productive local flexibility market
design for grid operations under uncertainty.

Answers to the research questions are provided in the four papers that form the
basis of this thesis. Paper I explains the taxonomy and provides an overview of
flexibility and its products along four dimensions—time, spatiality, resource, and
risk profile—according to the market design. Paper II shows how to activate and use
flexibility with a dynamic tariff design for peak shaving. Paper III provides solutions
to grid problems under uncertainty (i.e., voltage and congestion) by using flexibility
from the demand side, storage side, and supply side. Lastly, Paper IV proposes
a stochastic local flexibility market design, bidding, and dispatch methodology to
contribute grid operations on a local scale.

I determined the flexibility along different dimensions, used it for grid operations,
and designed a market that increases cost-efficiency and system productivity. Thus,
the use of the flexibility concept increases the quality of power systems and markets.
The flexibility is useful both via direct procurement from end users and via a
local flexibility market design with an aggregator. In both approaches, I achieved
cost-efficient grid operations and increases in welfare.

The results presented in this thesis indicate that the four dimensions of flexibility
(i.e., time, spatiality, resource, and risk) are important for understanding modeling
and trading in markets, in addition to modeling them. The flexibility needs to be



Abstract

valued in an optimal market design. In practice, flexibility allows for cost-efficient
solutions to grid problems such as voltage drops and congestion under uncertainty.
Furthermore, a local flexibility market design can provide flexibility-based services
to the grid via optimal price signals.

Together, the four papers contribute to the literature on the usage of flexibility
in power and energy markets. In a particular research area, from the understanding
of flexibility to the design of a market for flexibility, this thesis provides and insights
into the transformation of power systems and markets and answers to problems
arising from the transformation.
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Chapter 1
Introduction

The utilization of the end-user flexibility becomes more important when there is
a high share of integration of variable renewable energy resources (VREs). Some
VREs are adaptable in small sizes for households on a local scale, such as rooftop
solar panels (i.e., as photovoltaic systems, PVs). Therefore, under uncertainty, power
generation increases especially on the local scale. Furthermore, it is possible to
use changes in the consumption or generation pattern of end users—flexibility—Dby
providing them incentives to have more elasticity in their demand.

In this PhD thesis, I examine the flexibility of power systems and markets, its
usage, and local flexibility market designs under uncertainty. The research for this
thesis was primarily conducted in Norway. The work on this thesis has been funded
by the Centre for Intelligent Electricity Distribution (CINELDI), as part of Work
Package 3: Interaction DSO/TSO. The research center and work package aim to
promote the usage of flexibility, especially end-user flexibility, for balancing grid
operations and supply-demand in order to delay investments in grid infrastructure.

According to the main scope of the project, three main research questions for
this thesis were identified:

1. What is the flexibility of end users and generators in power markets and
systems along time, spatiality, resource, and risk dimensions?

2. How can flexibility be used in grid operations and problem-solving in power
systems?

3. Do we need a (local) flexibility market to exploit the value and increase the
efficiency of flexibility usage or is direct control over flexibility technologies
sufficient?

The four co-authored research papers aim to answer these questions from
engineering and economic perspectives in a stochastic environment under conditions
of uncertainty.

o Paper I, “Characterization of flexible electricity in power and energy markets”,
explains the flexibility along time, spatial, resource, and risk dimensions.

e Paper II, “Comparing individual and coordinated demand response with
dynamic and static power grid tariffs”, investigates the usage and efficient
provision of flexibility with a capacity-based and dynamic tariff scheme.

e Paper III, “The impact of uncertainty and time structure on optimal flexibility
scheduling in active distribution networks”, explains the usage of flexibility for
grid operations under uncertainty.

o Paper IV, “Stochastic local flexibility market design, bidding, and dispatch for
distribution grid operations”, establishes a local flexibility market to increase
the efficiency of flexibility usage for grid operations with stochastic demand.

1



1. Introduction

In each paper, we describe its contribution to the literature, as well as the
contribution of each author. Furthermore, for the purpose of this thesis, the four
papers complement each other. The papers interrelations with each other and with
the research questions are illustrated in Figure 1.1.

Q1) What is the flexibility of end users and generators in power markets and systems along

time, spatiality, resource, and risk dimensions?

P1) Characterization of flexible electricity in power and energy markets

Q2) How can flexibility be used in grid operations and problem-solving in power systems?

P3) The impact of uncertainty and time structure on
optimal flexibility scheduling in active distribution
networks

P2) Comparing individual and coordinated demand
response with dynamic and static power grid tariffs

Q3) Do we need a (local) flexibility market to exploit the value and increase the efficiency

of flexibility usage or is direct control over flexibility technologies sufficient?

P4) Stochastic local flexibility market design, bidding, and dispatch for distribution grid operations

Figure 1.1: Interrelations and structure of research questions and papers in the thesis
(Q: Question, P: Paper).

The structure of the thesis as follows. Chapter 1 is the introduction,
and provides preliminary information about the research questions and papers.
Chapter 2 shows the perspective taken in this thesis and papers with regard to
the literature. It provides background information on research relating to the
flexibility concept and transformation from supplier-centric to a consumer-centric
power system. Furthermore, it explains existing power market designs and their
sufficiency /insufficiency for flexibility usage. Thereafter, I discuss the research
methodology of the thesis. Chapter 3 summarizes the four research papers and
their scientific contribution by emphasizing the specific contributions of each author.
In Chapter 4, I present my conclusions and suggest directions for further research.
Thereafter, research papers that form the bases of this thesis are presented.



Chapter 2
Background and Literature

The purpose of this chapter is to provide a solid perspective on where the research
presented in this thesis stands in the academic literature on operations research,
industrial economics, and power markets/systems. First, I provide information
about the flexibility concept and why we need research for flexibility usage. Second,
I describe the demand for the flexibility in power markets and systems. Third,
I provide information from the literature on the transformation from a supplier-
centric market and system architecture to a consumer-centric architecture. Fourth,
I give brief information about current energy-only and/or capacity-based markets
by considering their sufficiency for flexibility usage. Fifth, and finally, I introduce
the research method used for this thesis.

2.1 Flexibility in power systems and markets

The concept of flexibility has long existed in production economics. A supplier can
shift or reduce its production according to changes in market demand, and this a
fundamental type of flexibility type that can be observed in every free market. In
the context of power markets and systems, the flexibility concept is a characteristic
of energy resources that are valued on the basis of energy prices, resources, time,
and geography [1]. Flexibility is not a service itself, but has been a concept since the
first days of electricity generation. Earlier power markets and systems were solely
based on the supplier technologies and flexibility in their generation patterns due
both to low electrification (low demand) and controllable power plants. Thus, the
term ‘controllable’ refers to a group of power generation technologies that provide
a certain amount of power at a specific time to a specific place, regardless of the
fuel technology used to generate it. After the introduction of intermittent (variable)
renewable power generation technologies, a transformation started to make end
users more flexible in coping with variability in power generation. Subsequently,
power markets and systems were transformed from supplier-centric architecture
to consumer-centric architecture for more intermittent renewable power. In this
chapter, the supplier side, consumer side, and the transformation are explained.

2.1.1 Supplier-centric system and flexibility

In traditional power systems and markets before recent developments on communica-
tion and power generation technologies, the system architecture was supplier-centric.
Hence, to make an improvement in the system, one had to work with suppliers with
traditional technologies such as coal plants, nuclear plants or hydropower plants. It
was not possible to communicate with consumers directly or efficiently to ensure
supply-demand balance. Therefore, the system only had the ability to use the
flexibility from traditional resources.
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Supply-side, which is termed ‘operational flexibility’ by [2], is the oldest flexibility
resource in power markets and systems. Suppliers can shift, curtail, or ramp up/down
their power generation against changes, peaks, and drops in the demand profiles.
Supply-side flexibility is a natural result of the electricity generation process.

The power balance should be sustained by the supply-side flexibility under
normal conditions, for example by power plants. Three subcategories of providers of
flexibility are baseload, peak load, and load-following power plants. Suppliers can
be considered under two categories: controllable plants and uncontrollable plants.
Hydropower plants and some of the fossil fuel power plants are controllable plants,
whereas VREs (e.g., wind or solar plants), are uncontrollable plants in the sense of
power generation. Thus, the curtailment of power generation from VREs is another
type of supply-side flexibility. Combined-cycle gas turbines and combined heat and
power (CHP) are attractive options for supply-side flexibility from a traditional power
system perspective [3]. The existence of conventional power plants (load-following
power plants) is helpful because, with their ramp-up and down availability at the
right time, it is possible to keep supply-demand balance in the market.

In this PhD thesis, I do not focus on supplier-centric design particularly, but
supply-side flexibility and associated market designs are examined in Paper I. Rather,
I evaluate conventional and intermittent supply-side flexibility resources along time,
resource, risk, and spatiality dimensions in different market designs.

2.1.2 The demand for flexibility

One of the primary objectives of power markets is to create a competitive market
environment to prevent the abuse of market power. The transformation in power
markets can increase competitiveness [4]. Currently, the power markets, as well as
systems, are undergoing transformation. Deregulation and restructuring of power
markets increase competition and create regulatory and technological challenges for
market participants. By contrast, in monopolistic power markets, restructuring and
deregulation of markets create a clear distinction between activities of market agents.
The current transformation in power markets has led to increased research activity
concerning flexibility, renewable energy, and local power generation [5].

In the case of the transformation of power systems to include more renewables
and local production, we need to consider supply-demand balance in local grids, as
well as power quality. Solutions to keep systems in balance include VRE production,
pooling of resources, restructuring markets to remunerate flexibility, enhancing grid
infrastructure, deploying advanced battery technologies, developing demand-side
management, and enhancing the cycling capabilities of thermal generators. Many of
these solutions are low-cost or investment-free solutions [6].

According to [7], the sharp increase in renewable energy resources, especially
VRESs, has had a strong impact on the volatility of the residual load in power systems
and markets, in addition to the flexibility requirements. However, any market design
that provides incentives for total investments on the power system, such as new
power plants and grid upgrades with a cost-minimization perspective, will also
increase incentives for investments in flexibility. [7] claim that the main reason for
new flexibility resources is the achievable full load hours (time intervals with the
high demand) with relevant backup capacity for peaks in demand.

4



Flexibility in power systems and markets

To exploit the potential demand for flexibility, sufficient investment signals are
needed in competitive market areas. In some cases, without sufficient flexibility
supply, system operators may need to shed the load, even frequently. A high number
of load shedding periods implemented by a central system operator would reduce the
confidence of investors and end users in the market design and the usage of VREs,
as well as distributed energy resources (DERs) [8].

When power systems and markets decide to include more VREs, additional
flexibility is needed to keep the supply and demand in balance, reduce grid problems,
and protect market efficiency. This need for additional flexibility in markets is named
the flexibility gap by [9], and is illustrated in Figure 2.1. New flexibility options such
as intermittent supply-side flexibility, storage flexibility, and demand-side flexibility
could fill the gap in a cost-efficient way. In addition to the new flexible electricity
technologies, new market design or improvement in existing markets could fill the
flexibility gap. In existing markets, some of the improvements have included reducing
the minimum bid sizes, having short scheduling periods or bidding periods, dynamic
tariffs, and reduced time intervals between gate closure and physical delivery [9].

Demand-side flexibility

Storage-side flexibility

Flexibility
den Hmiqrxeg

New supply-side
flexibility

Existing supply-side flexibility

[

Low Amount of VREs High

Figure 2.1: Flexibility gap after the introduction of VREs, adapted from [9].

2.1.3 Transformation to consumer-centric systems and flexibility

The transformation of power systems and markets to a comparatively more consumer-
centric architecture is a result of several innovations. Smart home and automation
technologies, in addition to information and communications technology (ICT) are
being introduced to power systems [10, 11, 12]. Due to these technologies, consumers
can adapt their consumption according to prices and power generation. Consequently,
it is we can observe a system that is shifting its center of gravity from suppliers to
consumers.
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In addition, there is an increasing trend in (DERs) and VREs, such as
storage, solar panels, windmills, and vehicle-to-grid (V2G). From a location-specific
perspective, these new resources provide variable and uncertain power to the
system [13]. The growth in VREs and DERs, in combination with reforms in
power markets, is transforming consumers into prosumers. The term prosumer
refers to a power market and system participant or agent that both consumes and
produces energy. In this transformation, consumers are passive participants who
only pay for the service to active prosumers who in turn buy and sell services in a
power market and system [14]. Tt is possible that such consumers and prosumers
can replace certain actors in traditional power markets.

Market price changes when uncertainty about supply either increases or decreases.
Therefore, due to the high integration of VREs and DERs, when the share of an
uncertain or stochastic production increases in an energy system, balancing costs
for supply-demand or merit-order curves will increase. Without the support of
flexibility, especially in balancing markets and ancillary services, the operation of
power markets could show inefficiencies [15].

The cost of integrating new technologies can decrease if the power system adapts
demand-side flexibility and supply-side flexibility from new resources. Flexibility
resources from the demand side can shift the power usage from peak hours to off-peak
hours or curtail the electricity usage to reduce uncertainty with respect to the power
system or market [13]. Furthermore, the usage of the demand-side flexibility reduces
the costs of enabling technology, inconvenience costs, rescheduling costs, on-site
generation costs, metering costs, and other costs [16].

Thus, flexibility from consumers/prosumers (i.e., the demand side) can be defined
as the change of consumption patterns in response to changes in the price of the
electricity over time (i.e., price signals) [16]. Market participants from the demand
side can decrease their electricity consumption during peak load periods when
electricity prices are high. Another behavior of consumers/prosumers is load shifting,
whereby consumers shift their electricity consumption from peak periods to off-
peak periods, and prosumers use power from VREs and DERs from their locations
(self-consumption).

Demand-side flexibility appears in different dimensions in the market. The
first dimension of demand-side flexibility is technology. The demand-side flexibility
technology can be flexible or inflexible. For flexible end users, demand-side flexibility
can be procured from various end-user technologies by rescheduling or reshaping the
consumer’s electricity consumption pattern. The second dimension of demand-side
flexibility is the time dimension, which concerns the availability of the flexibility
resource for usage. Depending on the availability of time, the demand-side resource
can be used for different purposes in the grid and markets. The third dimension of the
demand-side flexibility is the spatiality dimension, which refers to the geographical
location of the resource. If the resource is located at a distance from the problem
on the grid, the provision of active and reactive power from demand-side resources
might be challenging, due to network losses. Therefore, it is important to consider
the geographical location of the demand-side flexibility resource. The fourth and
final dimension is the risk dimension. An end user or a power plant might have
different risk profiles than other market participants or the operator, and therefore
the demand-side flexibility provider can choose not to participate in the trading.
In such situations, it is possible to observe a scarcity of flexibility in the market.

6
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Consequently, the usage of flexibility from demand-side resources requires careful
consideration of these dimensions in order to ensure optimal product and service
deployment. The dimensional understanding of the demand-side flexibility could
be extended or adapted to include different flexibility types, such as supply-side,
storage-side, or grid-side flexibility, as discussed in Paper I.

Individual contributions via demand-response programs or end-user storage
facilities may not be sufficient and profitable for the power system and flexibility
providers. At some level, to activate a significant amount of flexibility for the
market, an aggregator might be needed. An aggregator provides an opportunity
for small end users to exploit their flexibility potential and use it in a cost-efficient
way [17]. Several vendors or providers of flexibility among market participants are
interchangeable depending on direct and indirect control. Knowledge of the exact
properties of industrial or household appliances requires huge amounts of data and
a high level of resource management. Therefore, authorities, scholars, and market
participants suggest using an aggregator to combine DERs and their flexibility
resources [17]. An aggregator should be a separate entity from distribution system
operators (DSOs), transmission system operators (TSOs), and retailers in the market
in order to avoiding the system operator turning into monopolies [18].

There are two methods to activate flexibility from the demand side: incentive-
based programs and price-based programs [16]. In incentive-based programs,
flexibility can be obtained by an operator through direct control or by load curtailment
without a market design. To incentivize market participants in a market environment,
bidding based on price signals, capacity market design (in addition to an energy-only
market), ancillary market design, and ad-hoc demand response programs become
prominent.

By contrast, in the case of price-based programs, tariffs are important for flexibility
activation. However, historically, households and most other end users have been
charged fixed prices based on grid investments and the rest of the electricity supply
chain [19]. When there are flat tariffs, price signals based on VREs are not sent to end
users to motivate them to shift their consumption pattern (insufficient incentive) or
to prosumers to sell locally generated power to the grid [20, 21]. Therefore, besides an
efficient market design, to exploit flexibility from the demand side, there is a need for
price-based demand response programs. Such programs or tariffs are the time-of-use
(TOU) tariffs, critical peak pricing (CPP), extreme day CPP (ED-CPP), extreme
day pricing (EDP), and real-time pricing (RTP) based on demand response programs
literature [16, 19]. In addition, capacity-based subscription tariffs (dynamic) have
become prominent in recent years [22]. The advantages and disadvantages of demand
response programs have been compared by [23].

The benefits of demand response programs for demand-side flexibility vary
according to the different actors in the market. [16] present the benefits of having
demand response programs on the market. However, it is possible to extend the
benefits of using demand-side flexibility as a way to consider overall transformation
from a supplier-centric system to a consumer-centric system. The benefits of flexibility
usage, especially end-user flexibility, seen from different perspectives, are listed in
Table 2.1.

Besides the demand side for flexibility trading, storage resources are strong
candidates for flexibility provision due to the precision they afford when used.
Different types of storage technologies exist, including electrochemical batteries,

7
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Table 2.1: Benefits of the flexibility from the transformation to consumer-centric
system.

For Actors For Market For System For Grid

Incentive payments Price Reduction Defer of investments Stabilized voltage

Bill savings Capacity increase Customer participation Congestion management
Reduction of market power  Diversified resources Islanding prevention
Reduced price volatility Reduced blackouts

Cost-efficient energy options Increased local production

capacitors, umped-hydro, and compressed air systems. The important feature of all
storage flexibility assets is their controllability. It is possible to eject or inject an
instant power into an electricity grid using storage flexibility assets. Therefore, the
controllability of storage technologies allows means they can have many applications
in electricity grids. By using storage-side flexibility, supply-demand balance can be
achieved or contribute to solutions for grid problems such as voltage variations and
network congestion. In addition, it is possible to store surplus electricity that is
generated by VREs and DERs in end user’s storage facilities. The value creation
process of storage-side flexibility has become prominent due to their fast, accurate,
active and reactive provision of power to the grid. Furthermore, storage flexibility
assets can balance surplus power from excessive generation of DERs by prosumers by
storing them. Storage technologies are beneficial for consumer-centric transformation,
both an individual technology and for complementing other flexibility technologies,
such as demand- and supply-side flexibility [24].

In Paper I, my co-authors and I explain supply-side, demand-side, and storage-
side flexibility along four dimensions. In Paper II, we apply dynamic and static
tariff schemes for peak shaving in the way described by both [16] and by [22], and
we compare static tariffs with dynamic tariffs. In Paper III, we discuss the use
of demand-side, storage-side, and supply-side flexibility for grid problems such as
voltage variations and network congestion.

2.2 Market designs and flexibility

In this subchapter, I compare power markets and the links between them. In
this thesis I discuss the following markets: day-ahead markets (DA), intraday
markets (ID), ancillary services, and balancing markets. A timeline of energy-only
and capacity-based power markets is illustrated in Figure 2.2, where the primary
intention is to give a clear picture of trading markets for power and energy.

1 hour before
physical delivery

Years and months
before

Day before physical
delivery

Within 1 hour, 30
min., 15 min., Smin.

« Capacity Markets
« Forward Markets
« Financial Markets

* Day-Ahead

« Intraday Market
Markets

« Imbalance
Settlement

« Balancing
Markets

* Ancillary

Services

Figure 2.2: Timeline of energy-only and/or capacity-based power markets.

For this thesis, I conducted research on new and existing market designs mainly
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between DA market, ID market and balancing market time frames. Besides wholesale
markets (DA, ID, and balancing), forward markets and capacity markets exist for
risk management and the provision of enough capacity to the system during the
blackouts, respectively. However, in this subchapter I do not consider either forward
markets or capacity markets for flexibility pricing, since my focus is on short-term
operational decisions.

2.2.1 Day-ahead markets

DA markets are financially binding and voluntary, with physical implications. The
trading agreement occurs one day before the actual delivery time. Market participants
submit their bids to buy or sell electricity. DA markets are identified as wholesale or
spot markets. Trading in DA markets can be done either by bilateral contract as
over the counter (OTC) trading or by power exchanges, such as done by the DA
markets Nord Pool-ELSPOT and EPEX Spot.

In short, the bidding sequence starts in the morning and finishes around noon
(24 hours before actual delivery). This process allows participants to schedule their
generation plans. If a drift or a distortion occurs during power provision, it is
possible to solve it in the ID market or with balancing markets, depending upon the
situation.

There are different examples of trading flexibility among DERs and prosumers in
DA markets. [25] propose that an aggregator should bid flexibility in a DA market
as a price taker with a stochastic two-stage model. In a separate study, [26], present
the value of flexibility in spot markets such as DA and ID markets under different
market barriers.

Participants in the DA markets are often supply-side flexibility providers. Usually,
controllable power generation technologies, such as hydropower plants or coal plants,
bid on the DA market. In cases when there are deviations from their original power
generation plans, they bid on ID markets or balancing markets.

In this PhD thesis, I examine DA market design and prices, which in Paper 11
are discussed together with dynamic tariff designs for flexibility trading. Due to the
research design used for this thesis, I focus on shorter time resolutions for the usage
of flexibility in the case of grid operations.

2.2.2 Intraday markets

The mismatch in supply-demand balance in power markets pushes participants to
trade in ID markets in order to fix market imbalances close to real-time settings. In
a DA market settlement, the likelihood of fault or disturbance occurring is significant
in power generation or in transmission plans. ID markets are suitable places for
correcting market imperfections.

Especially after the integration of a high number of VRESs, the trading volume in
ID markets is increased due to corrections and rescheduling. The transformation
from supplier-centric design to consumer-centric design incentivizes the usage of
the ID market. Due to demand-side flexibility, end users can respond faster to
the deviations and corrections of power plants in ID markets. Furthermore, in a
competitive environment, if there is an unfeasible generation plan due to non-convex
production costs (e.g., start-up and no-load costs), it will allow for readjustment and
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remodeling of unit commitment [27]. ID market designs vary between countries. ID
markets are continuous and auction-based trading markets, and they operate until
one hour before actual delivery [28].

[29] emphasize the increase in intraday market volumes and their importance for
end user’s flexibility trading. Market proposals to exploit the value of flexibility for
short-term purposes mainly depict ID market designs [30]. The difference between
DA and ID markets are the market participants, the time horizon, and the gate
closure time. These differences allow market participants to maximize profits from
wholesale markets (mainly on DA markets) and minimize bidding deviations from
original bids (mainly on ID markets) [31].

In the research for this PhD thesis, I focused on flexibility in an operational time
frame. Therefore, ID market design was important for the local flexibility market
design and valuation of the flexibility discussed in Paper IV. We used an ID market
design as the main power purchase place for end users, due to the market gate
closure time and short time horizon.

2.2.3 Balancing markets

Although ID markets stand between DA and real-time delivery, the balancing
markets, or in other words real-time (RT) markets, are critical for either ad hoc
or emergency needs in a power system. A balancing market continuously values
and determines power resources during the operating time interval and dispatches
them. The existence of a balancing market is mandatory due to changing merit-order
balance. Balancing markets generally deal with supply-demand changes at either
5-minute or 15-minute intervals [32] (in Norway, the balancing market is based on
hourly time frame). The usage of flexible products in shorter time intervals becomes
more significant when they get closer to real-time delivery. The effect of flexibility
usage for either 5-minute or 15-minute intervals in the DA market might be harmful
to market efficiency because it might decrease the market liquidity [1].

Provision of the electricity includes a condition, such as quality, that must be
sustained at all times. The electricity in a power system may originate from various
heterogeneous resources. However, the electricity in a grid should fulfill the quality
requirements, such as security of supply (SoS), frequency, and voltage. Ancillary
services, such as transmission security and real-time balancing, and their providers
are considered similar to public goods and should not be traded in regular market
mechanisms. This puts the system operator in a monopsonist position. Market
participants from all markets can participate in ancillary services provision by
reserving a certain quantity of power. They can provide reactive and active power
to the system operator while the system operator can take care of load shedding,
production tripping, and economic dispatch [27, 33].

The ancillary services and their regulations differ between countries but there is
a fundamental market design for these services [34]. Traditionally, ancillary services
are provided by the system operator (DSO, TSO, or independent system operator,
ISO) and its vendors. There is ongoing research on the allocation of ancillary
services provision among DSOs and TSOs [35], but most power markets provide
these services throughout a TSO. Decentralization of the ancillary services (i.e.,
provision of services from DERs and prosumers) is a novel idea, but there are counter
arguments. It is not possible to track the power that is injected into or ejected from
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the grid. We can only understand who the provider/providers is/are prior to the
injection if a system operator meters and compares the amount of power change on
the grid, [27].

In this PhD thesis I propose a novel market design to address grid operations
and power quality problems. The market design presented in Paper IV includes a
pooled flexibility market approach with cost minimization to replicate balancing
markets to some extent.

2.2.4 Sufficiency of existing power and energy markets for flexibility
usage

As stated by [9], to reduce the flexibility gap we need to increase the efficiency
of existing market designs or introduce a new market design for evaluating the
flexibility from supply-, demand-, and storage-side resources. Hence, there is a need
to discuss the sufficiency of the existing market designs to increase the contribution
from flexibility resources to the grid and markets.

Power markets and systems have two edges: economics and engineering. A power
system is a technological concept, but also has a strong connection with markets
and the economy [3]. An optimal market design needs to consider economics and
engineering, together with other factors. It follows that we cannot consider supply-,
storage-, and demand-side flexibility resources in the same way of thinking, due to the
bid in the same wholesale market. We should address them separately for rigorousness
and technology differences. In addition, different providers who bid in the same
market might compete for the same services from the system operator, although
market participants’ incentives are different from each other. An inefficient market
design may limit access to technical flexibility and incentives [36]. Consequently,
the process is not just about balancing the market or optimally bidding for profit.
From the perspective of different market agents, a good market design should have
security in terms of supply and provide optimal incentives for flexibility resources
according to their properties.

From an economic perspective, an efficient market design has both short-term and
long-term benefits. In their economic analysis, [37] list the benefits of design elements
for efficient market design as including interconnection and market integration,
electricity storage, the design of renewable energy support (RES) systems, distributed
generation, efficient electricity pricing, and long-term contracts. However, in the
same article, only the benefits of cross-border integration and interconnection are
presented in the short term and long term. Based on findings reported in the
existing literature, an efficient power market and system design should increase
market efficiency in the short term by fixing congestion and incentivizing (or defer,
depending on the policy) new investments [38, 39, 40]. Hence, new market designs for
trading flexibility among participants must consider grid operations and incentives
for the flexibility.

During the process of power generation and trading, VREs such as wind and
solar power have zero marginal costs of production, which is a strong incentive for
them to be dispatched in the short-term markets [3]. Production from VREs is
supported by feed-in-tariff schemes, and sometimes the schemes cause negative prices
in conventional power markets due to tariffs and uncertain power production [41, 42].
These short-term effects could increase the demand for power from VREs and DERs
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in the long term, especially for peak load capacity [43]. Due to the uncertainty in the
generation of power from VREs in the short term, the demand for balancing markets
and ID markets is increasing [29, 44]. In the long term, also investments, maintenance,
and expansion decisions for the grid and conventional power resources could increase
as a consequence of decreasing initial and investment costs of renewables such as
those provided by wind and solar plants [45].

Given the short-term and long-term effects of VREs and DERs in markets and
systems, it is important to exploit the real potential of the flexibility in existing
markets or, if necessary, a new market design. The status of trading in existing
market designs is changed by forecast errors for power generation by VREs, the
uncertainty in generation scheduling, higher resolution time intervals from 1 hour to
15 minutes for resource scheduling, and grid operations (for frequency problems, it
is even shorter) [3]. To exploit the flexibility and deal with grid problems (voltage
and congestion) under these conditions, higher market time resolution and location-
dependent pricing might be the answer [44, 46].

Insufficient demand-side flexibility in existing market designs can lead to the
capacity and energy markets for cost recovery [47]. According to [48], using demand-
side flexibility and investing in long-term flexibility resources could increase market
efficiency. There are different ways to ensure demand-side flexibility. It is possible
to design either a bilateral market or a pooled market mechanism for demand-side
flexibility trading according to the market liquidity.

In a consumer-centric market design, to use flexibility for grid operations under
spatiality and time constraints, end users, generators, and aggregators could improve
the flexibility supply process. The flexibility could be purchased by a DSO and/or a
TSO for supply-demand balancing or grid operations. Balancing in the transmission
grid, balancing in the distribution grid, and flexibility for the distribution grid
represent three forms of flexibility usage in markets [49, 50]. With regard to all
forms of flexibility usage, one of the main discussion points is whether or not a local
flexibility market is efficient for valuation.

Recent studies have reported the usage of flexibility in ID markets or even
shorter time resolutions (e.g., [30]) for various purposes in the grid. To address the
spatial, time and technology constraints of demand-side, supply-side, and storage-
side flexibility resources, a local flexibility market could be aligned with day-ahead
(DA) and real-time (RT) markets for coordination purposes to prevent imbalances
between markets and players or to solve grid problems.

2.3 Local Flexibility Markets: Stochastic and Deterministic
Approaches

It is important to consider local flexibility markets along with time, spatiality, risk
profile, and technology dimensions for distribution grid operations. There are two
main approaches to the use of flexibility in grid operations: direct and indirect
control [50]. In the direct control approach, a system operator can use and procure
flexibility from providers by scheduling them. The direct approach in many ways
underestimates the marginal utility of flexibility providers and alters the competition.
However, it provides a cost-efficient solution. In an indirect control approach,
a system operator can use and procure flexibility via price signals. If the price
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signal is strong enough, flexibility providers will participate in the solution process.
The indirect approach promotes competition in a strategic bidding environment or
minimizes the costs in a price-taker environment.

Various studies of local flexibility market design have been done but few of
them have considered a stochastic market bid. [51] provide an indirect approach to
flexible load management via local energy system by considering the uncertainty of
local demand, PVs, and RES generation. Their main aim is to manage assets and
DERs for cost minimization for market participants and to increase the efficiency of
electricity usage. [52] use a clearinghouse concept to model a local energy market for
bidding under uncertainty on wholesale and local markets simultaneously. However,
they neglect the power flow and grid constraints. By optimally scheduling flexibility
assets, they aim to replicate a short-term balancing market under uncertainty from
renewables, local demand, and market prices.

Other studies, consider a local flexibility market for DSO needs instead of local
energy markets (e.g., [53]). Olivella-Rosell, Lloret-Gallego, et al. 2018 developed
a market design for an aggregator bidding process. In their design, the aggregator
centralizes flexibility assets to bid on wholesale markets and local flexibility market
(LFM) participation without considering power flow equations. By contrast, [54],
treat end-user demands, DERs, and batteries as flexibility resources. Their pay-as-bid
market design follows the traffic light concept (e.g., [55]) in a centralized manner (the
aggregator). Additionally, their direct control method schedules flexibility assets to
participate in DSO services. In cases when the local flexibility market is decentralized
from wholesale markets, the network congestion problem could be solved by using
flexibility resources [56]. Based on local market design, a DSO can use available
flexibility bids to manage network congestion under demand uncertainty [56]. In
addition to this flexibility or the use of energy-only trading designs, it is possible to
observe a peer-to-peer local electricity market for storage-side flexibility [57].

In this PhD thesis, I consider direct and indirect approaches to bilateral
trading system design and pooled local flexibility market design, respectively. The
two approaches include network constraints for optimal power flow calculations,
whereas market participants, aggregators, or customers bid stochastically. Paper
IV investigates the efficiency of using flexibility for grid problems through a market
design. The local flexibility market design in the paper considers the stochastic
bidding of an aggregator, the DSO’s approach to solving grid problems with flexibility,
a local flexibility market design, and relations between them.

2.4 Research Method

The method used to address the research questions in this thesis was based
on operations research and mathematical modeling. Both I and my co-authors
approached the case studies presented in Papers I-IV from the perspectives of
economic dispatch and optimal power flow modeling [58]. In this thesis I consider
the operational timescale in the case studies reported in the four papers; therefore,
mainly hourly or shorter time resolutions were used in the studies. Paper I presents
an economic analysis and taxonomy. Paper II focuses on economic dispatch, whereas
Paper III reports the use of optimal power flow modeling for analysis. In Paper IV
both economic dispatch and optimal power flow modeling for market establishment,
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bidding, and clearing are discussed.

2.4.1 Stochastic and Deterministic Mathematical Modeling

In the case studies that formed part of the research process for this thesis, most
of the cases involved uncertainty on prices and power demands. Therefore, my
co-authors and I applied apply stochastic programming techniques. The problems we
addressed in the research were modeled in linear programming (LP) and non-linear
programming (NLP) forms.

In the academic literature, the main difference between stochastic and deter-
ministic modeling is reported as the uncertainty in decision-making. If there is no
decision-making under uncertainty, the model is deterministic (one stage). The
problem is still stochastic (uncertain parameters), but the model is deterministic
(one stage decision). In cases when there is a change in the information, for instance
if new information is found between two subsequent periods, one can consider a
stage-break and call the model a stochastic model. After the stage-break, different
scenarios are realized for stochastic parameters [59]. Hence, as the main assumption,
the probability distribution of the uncertain parameters is known. The application
of the stochastic programming models in energy research is presented by [60].

The contributions of this PhD thesis to the literature on modeling power markets
is the stochastic modeling of tariffs, local flexibility markets, and quality measure for
reactive power provision under uncertainty. In Paper II, we propose a novel approach
to stochastic modeling of dynamic tariffs. In Paper I1I, we propose a stochastic
quality measure for optimal power models, in addition to two-stage alternating
current optimal power flow (AC-OPF) modeling. In Paper IV, we model a stochastic
market design, bidding, and dispatch with an optimal power model and a two-stage
stochastic model.

2.4.2 Optimal Power Flow Models

Optimal power flow (OPF) models are used to answer different questions than those
answered by using economic dispatch models. In OPF models, instead of focusing
only on supply-demand balance and allocation of scarce economic resources in power
markets, the decision-maker needs to focus on the engineering conditions of the
power system.

An OPF model is an essential tool for operational and planning decisions
concerning power systems. In grid operations, the OPF model considers power
flow equations, whereas in planning it considers optimal scenarios for the future
conditions of the power network [58]. OPF models are mainly non-linear programming
(NLP) flow models, with an AC approach to consider the voltage. In cases when the
model is a DC (direct current) approximation, the model becomes an LP model but
loses the voltage limits. In recent years, convex relaxation algorithms for AC-OPF
modeling have been proposed to find solutions to NLP modeling problems [61, 62].
However, my co-authors and I did not use these convex relaxation techniques during
the research on which the four papers are based.

In this PhD thesis, the contribution to the OPF modeling literature includes the
stochastic two-stage modeling of AC-OPF for flexible scheduling presented in Paper
II. In addition, in the same paper, we propose AC power flow constraints for the
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first stage and DC power flow constraints in the second stage of the mathematical
model, to show the impact of uncertainty on reactive power provision.
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Chapter 3
Contributions

In this chapter I explain the contributions of this thesis as a whole to the literature.
The four papers that form the basis of this thesis contribute to the existing literature
by expanding discussions on the taxonomy of flexibility on power systems and
markets, dynamic tariffs for end users, the usage of flexibility for grid problems, and
the stochastic local flexibility market design.

3.1 Paper I: “Characterization of flexible electricity in power
and energy markets”

Giiray Kara, Asgeir Tomasgard, Hossein Farahmand
e Submitted to an international, peer-reviewed journal.

The paper presents the results of conceptual taxonomy research based on the
literature, real-world applications, and theoretical industrial economics knowledge.
In Paper I, we focus on the characterization of flexibility along four dimensions: time,
resource, spatiality, and risk profiles. Numerous flexibility resources can appear from
heterogeneous technologies in different time scales at various locations. Furthermore,
in the case of flexibility usage, it is possible to observe systemic, technological, or
financial risks. The paper investigates the four dimensions according to existing
market designs and anticipated future local flexibility market design. To trade
flexibility, there is a need for standardized flexibility products and services for grid
operations and market efficiency. In the paper, products and services of flexibility
are examined based on real-world examples and theoretical approaches from the
literature. In addition, we present the distribution of products and services in a
DSO-TSO coordination scheme based on the literature. To conclude the results of
our research, we discuss the relation between market designs, flexibility dimensions,
and products/services.

The main aim of Paper I is to answer the first research question: What is the
flexibility of end users and generators in power markets and systems along time,
spatiality, resource, and risk dimensions. We discuss the convenience of flexibility
usage in different market designs along the four dimensions. The allocation of
flexibility products and services in these markets is discussed and explained based
on theoretical and empirical examples.

My contributions to the paper as the main author are conceptualization,
performance of the analyses, writing, and editing. Asgeir Tomasgard and Hossein
Farahmand contributed through supervision and reviews of draft versions of the
paper.
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3.2 Paper lI: “Comparing individual and coordinated demand
response with dynamic and static power grid tariffs”

Stian Backe, Gliray Kara, Asgeir Tomasgard

o Published in: Backe, S., Kara, G., & Tomasgard, A. (2020). Comparing
individual and coordinated demand response with dynamic and static
power grid tariffs. Energy, Volume 201, 117619. ISSN 0360-5442. DOI:
/10.1016/j.energy.2020.117619.

e This paper is also presented first in Impacts of Neighbourhood Energy Systems
on Furopean Decarbonization Pathways, Stian Backe, PhD Thesis, Norwegian
University of Science and Technology, 2021.

It is possible to use flexibility for various purposes in power markets. As a concept,
flexibility is a strong for discussing and modeling peak shaving in high-demand time
intervals. For efficient usage, flexibility needs to be addressed in its spatiality and
time dimensions.

In this paper, we examine a cost-optimal approach to reducing end-user demand
in peak hours with capacity-based subscription tariffs. Our case study involves
coordinated and individual demand response programs. Based on historical data,
we establish a two-stage stochastic mathematical model to compare the impact of
tariffs on two end users’ demand responses, both coordinated and individually. The
capacity-based, dynamic tariff design is applied in weekly and yearly frequencies and
compared with a constant yearly fixed tariff scheme. Thus, we aim for a dynamic
and successful tariff design to exploit efficient usage of end-user flexibility. Our case
study is based on real-world data from eastern Norway.

The main contribution of the paper to the literature is the usage of a two-stage
programming model for comparing yearly capacity-based tariff and fixed tariff on a
yearly basis. We show that by activating a dynamic tariff scheme for end users, it is
possible to exploit their flexibility potential for reducing peak hours and efficient
electric power usage. Compared with a fixed tariff scheme, the use of a dynamic
tariff provides cost-efficiency.

My contribution to this paper as the second author is conceptualization, writing,
and both reviewing and editing of draft versions.

3.3 Paper lll: “The impact of uncertainty and time structure on
optimal flexibility scheduling in active distribution
networks”

Giiray Kara, Paolo Pisciella, Asgeir Tomasgard, Hossein Farahmand

o Published in: Kara G., Pisciella P., Tomasgard A. and Farahmand H. (2021).
The impact of uncertainty and time structure on optimal flexibility scheduling
in active distribution networks. IEEE Access, vol. 9, pp. 82966-82978. DOI:
10.1109/ACCESS.2021.3085958.

In cases of high power demand or low power generation, grid problems might
occur at the distribution network level. In the traditional approach to solving grid
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Paper 1V: “Stochastic local flexibility market design, bidding, and dispatch for
distribution grid operations”

problems such as voltage and congestion, a system operator uses ancillary services or
balancing markets with power plants. However, according to the flexibility concept,
it should be possible to solve grid problems by scheduling flexibility assets from end
users.

In this paper, we report the use of flexibility from end users by optimal scheduling
to solve voltage and congestion problems in an active distribution network. We use a
two-stage stochastic programming to schedule flexibility assets such as load shifting,
load curtailment, and batteries in addition to an AC-OPF model to capture the grid
specifications. The research was conducted under demand and price uncertainty
and therefore we calculated the impact of the uncertainty by using the well-known
value of stochastic solution measure. In addition, we introduce a new solution for
quality measure, deviated value of stochastic solution, which measures the impact of
uncertainty on the reactive power provision during grid operations. Our case study
is based on real-world data from southern Norway.

The main aim of the paper is to present the direct usage of flexibility for grid
operations under uncertainty without a market design. We present the usage of
the flexibility from demand-side, supply-side, and storage-side resources for grid
problems, such as voltage variations and network congestion in a distribution grid
with a centralized design. Under uncertainty, it is important to determine the
activation and the duration time of a flexibility resource for a cost-efficient solution.

My contributions to this paper as the main author are conceptualization, modeling
and formulating, data collection, performing formal analyses, programming, writing,
and reviewing/editing of draft versions. Paolo Pisciella contributed through modeling
and a new conceptualization of quality measure. Asgeir Tomasgard and Hossein
Farahmand contributed through supervision and review of draft versions.

3.4 Paper IV: “Stochastic local flexibility market design,
bidding, and dispatch for distribution grid operations”

Giiray Kara, Paolo Pisciella, Asgeir Tomasgard, Hossein Farahmand, Pedro Crespo
del Granado

e Submitted to an international, peer-reviewed journal.

The value and usage efficiency of flexibility in the context of grid operations
could be improved through a successful market design. To provide sufficient price
signals to end users and to procure a significant amount of flexibility, the usage of the
flexibility could be done via a market design. However, to trade and use flexibility
for grid operations, both voltage and grid congestion problems should be addressed
when and wherever they occur. Accordingly, a local flexibility market needs to be
designed as either pooled or bilateral.

In the paper, we propose a pooled local flexibility market with stochastic design,
bidding, and dispatch for a distribution grid. Instead of using load shedding, a DSO
could procure flexibility power from an aggregator with a portfolio of customers in a
pooled market. For this purpose, we first identify grid problems by using power flow
analysis and an AC-OPF model, and then we create a stochastic bidding mechanism
for an aggregator to bid its flexibility portfolio in a pooled market design, respectively.
In the pooled market design, the marginal cost of flexibility provision in a perfect
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competitive environment is the bidding price for a price-taker aggregator and the
DSO. Our case study is based on real-world data from south Norway.

The main aim and novelty of the research presented in the paper is to show the
efficiency of a stochastic local flexibility market design in solving grid problems, cost
profiles of market participants, and the stochastic nature of the bidding process in a
price-taker, risk-neutral, and perfectly competitive market for an aggregator. We
propose a novel stochastic local flexibility market design for flexible usage as a pooled
market. According to our results, the pooled market design provides an efficient
solution to use by the aggregator with a stochastic cost-minimization bidding action.
The pooled market design is up to 40% more cost-efficient than using only load
shedding from value-of-loss load price by the DSO. Moreover, the aggregator that
bids stochastically establishes a flexibility supply curve by bidding the same prices
for different flexibility supply amounts for different scenarios in the pooled local
flexibility market.

My contributions to this paper as the main author are conceptualization,
modeling and formulating, data collection, performing formal analyses, programming,
writing, and reviewing/editing draft versions. Paolo Pisciella contributed through
modeling and conceptualization. Pedro Crespo del Granado contributed through
conceptualization and review and draft versions. Asgeir Tomasgard and Hossein
Farahmand contributed through supervision and reviews of draft versions.
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Chapter 4

Concluding Remarks and Future
Research

The main purpose and contribution of this thesis are the provision of a solid
understanding of the flexibility of a power system, its usage, and related market
structures for postponing investments in the power grid and increasing the
productivity of the power system.

The four papers on which this thesis is based address several research questions.
The first paper defines a taxonomy for the flexibility concept along four dimensions
and provides a theoretical overview of flexibility products as well as related market
designs. The second paper shows how to exploit the demand-side flexibility with a
successful capacity-based tariff design from multiple end users for peak shaving. The
third paper presents a solution concept for using flexibility in grid problems such as
voltage and congestion, in addition to the impact of uncertainty on the flexibility
usage process. The fourth and final paper proposes a local flexibility market design
for solving grid problems cost efficiently in a stochastic design with bidding, and
clearing.

The first finding includes the taxonomy and determination of the flexibility in
power systems and markets along four dimensions, namely resource, time, spatiality,
and risk. Under different market designs, according to these dimensions, flexibility
could be evaluated and used differently. The second finding shows how a dynamic
tariff scheme for end users, such as a capacity subscription-based tariff, could
exploit the value and the usage of the flexibility better than a fixed tariff scheme.
The improvement in the cost-efficiency resulting from the use of dynamic tariffs
is 3-15%, depending on the annual, weekly, or combined subscription. The third
finding concerns the impact of the uncertainty on the usage of flexibility and how a
portfolio of flexibility assets could be used to solve grid problems. The impact of
uncertainty and the availability of a flexibility resource could have an impact on
the overall solution of up to 30%. The fourth and final finding is a stochastic local
flexibility market design with bidding and dispatch in a pooled market design for
grid operations. Usage of a pooled LFM design could improve the cost efficiency of
the grid operations by up to 40% compared with a system architecture without an
LFM under our assumptions.

For future research, it would be interesting to conduct the research presented
in the four papers in a risk-averse environment with a strategic trading process.
Also, DSO-TSO coordination is an important topic for locating the flexible resources
during grid operations and peak shaving. Comparisons between dynamic tariff
schemes with local flexibility markets could be a new perspective for research similar
to that reported in Paper II. With regard to the research reported in Paper III,
future research could include renewables, and more flexibility technologies might
be a natural extension. In Paper IV, we consider deterministic ID prices, but it
would be interesting to consider stochastic demand and ID prices for the design and
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clearing of a pooled local flexibility market with the spatial information of flexibility
assets. Lastly, instead of having one local flexibility market in a monopolistic design,
future research could focus on several DSOs that compete for the same flexibility
assets.
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Abstract

The increasing share of variable renewable energy sources creates a need
for flexible resources in the power system and management of these. This pa-
per presents suggestion for characterization of flexibility, including dimensions
of time, spatiality, resource type, and risk in power systems. We present inter-
relations between these flexibility dimensions, products, services, and suitable
market designs. In light of this, we discuss TSO-DSO coordination and opti-
mal resource allocation.

1 Introduction

The increasing share of variable renewable energy sources (VRES) introduces short-
term uncertainty and variability in power systems. This creates a need for flexibility
in order to maintain a continuous supply-demand balance [1]. There is not a unified
definition of flexibility in the literature, but in this study we take as a starting point:
“Flexibility is the modification in the generation and/or consumption pattern of
electricity according to an external signal in order to meet energy system needs” ([2],
p-5). The main reason for us to select this definition is to include uncertainty from
changes in consumption and generation patterns in relation with market designs
and systems.

[3] describe four dimensions mainly in relation to their technology. According
to them, resources for flexibility are distributed energy resources (DERs), such as
electric vehicles (EVs), combined heat and power (CHP) units, and electric water
heaters. The four dimensions are the amount of power, the moment of provision,
duration, and specific location of resources. Although the study by [3] is quite
informative, only DERs are considered as flexible resources. They do not discuss the
response time, flexibility resources other than DERs, and risk in flexibility provision.
By contrast, [4] propose three dimensions of flexibility characterization: absolute
power output capacity range (MW), speed of power output change (MW /min), and



the duration of energy levels (hours of MW). However, they do not discuss the
spatiality dimension.

The authors in [5] investigate the flexibility characterization and indexing with
high penetration of VRES. They propose response-time index using technical terms,
and characterize it based on resource. [3] describes four dimensions mainly in re-
lation to their technology. According to the authors, resources for flexibility are
distributed energy resources (DERs), such as electric vehicles (EVs), combined heat
and power (CHP) units, and electric water heaters. The four dimensions are the
amount of power, the moment of provision, duration, and specific location of re-
sources. Although the study by [3] is informative, only DERs are considered as flex-
ible resources. The authors do not discuss the response time, flexibility resources
other than DERs, and risk in flexibility provision. By contrast, [4] proposes three
dimensions of flexibility characterization: absolute power output capacity range
(MW), speed of power output change (MW /min), and the duration of flexibility
provision. However, they do not discuss the spatiality dimension. [6] criticizes the
main flexibility options in the literature by considering demand side, supply side,
network side, and storage side flexibility options.

The primary aim of this paper is to provide an overview of dimensions for flex-
ibility characterization in order to give insights into its usage in different market
designs and systems for decision-makers and utilities. Hence, we discuss the concept
of flexibility (e.g., [7]), by characterizing it in terms of four main dimensions: time,
spatiality, resource type, and risk profile.

Our research contributes with a suggestion for how to characterize flexibility in
power systems along four dimensions, and relate this to the existing literature. To
exploit the flexibility, power markets should provide incentives for optimal valuation
and allocation of flexibility for both short-term purposes (operations) and long-term
purposes (investments). In addition TSO-DSO coordination affects the optimal
allocation. We discuss this in relation to the flexibility dimensions mentioned above.

The main contributions of the paper are summarized as follows:

1. The characterization of flexibility in power and energy systems in terms of the
spatiality, time, resource, and risk dimensions.

2. Discussion of the efficiency and suitability of existing and possible new power
/ energy markets for the exploitation of the flexibility, and adaptation to the
proposed flexibility dimensions.

3. Introducing the risk dimension for flexibility characterization and related prod-
uct, service, and market designs.

The paper is structured as follows. Section 2 discusses the dimensions of flex-
ibility as time, spatiality, and technology. Section 3 describes the risk dimension
of flexibility and related market designs. Section 4 explains the flexibility prod-
ucts. Section 5 discusses new market designs for flexibility trading and DSO-TSO
coordination. Section 6 presents the conclusions.
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2 The dimensions of flexibility

In this paper, inspired by the Nordic market balancing concept [8], we suggest four
dimensions for flexibility characterization: resource, spatiality, time, and risk di-
mensions.

2.1 The spatiality dimension of flexibility

When looking at spatiality the location of any physical product is important for
logistics. The price and provision of a product is related to where it is produced
and consumed. Hence, in electricity transmission and distribution, especially for
flexibility usage, the location of the flexibility resource connection to the electricity
grid is important. Since the transmitting of reactive power over long distances is
inefficient due to high grid losses, the geographical location of a resource is important
for the reactive and active power type of flexibility product.

The location of the flexibility resource can affect flexibility trading and the ef-
fectiveness of the services provided by transmission system operators (TSOs) and
distribution system operators (DSOs) [9, 10]. During times of grid congestion, the
location of available flexibility will affect the decision-making process. In addition,
for a location with a need for TSO-DSO interaction, some resources may be used
both by the DSO in the distribution grid and by the TSO for the transmission grid.
The possible geographies of flexibility provision are illustrated in Figure 1.

Figure 1: Spatiality dimension.

2.2 The time dimension of flexibility

Based on technological characteristics, market design, and system architecture, the
time dimension can be divided into four subdimensions: activation time, ramping
rate, duration time, and market time resolution. The activation time concerns how
quickly the flexible resource becomes available for usage. The activated flexibility
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could be useful in a specific time interval (i.e., the duration). The ramping rate of
the flexibility resource refers to how fast flexibility resource can ramp-up or ramp-
down. Especially in the case of market designs with short time horizons, the ramping
rate of a resource should be fast due to the immediate need for power. Based on [3]
three subdimensions (activation time, ramping rate, duration time) are illustrated
with some modifications in Figure 2.

Power (MW)
’s

Energy

Ramp rate
‘bi-directional)

P; —

th ===t (m———————— >t Time (t)

Response Duration
(Activation) Time

Figure 2: Characteristics of flexibility in system-wide scale [3].

In Figure 2 the difference between P, — Py is the ramp rate—how fast power
can be increased or decreased. The symbol ¢ represents time, and tg, t1, and to
respectively symbolize the signaling, starting, and stopping time of flexibility. The
difference between t; — ¢ is the response (activation) time of the flexibility, while
to — t1 is the duration of the flexibility.

The fourth subdimension of time concerns the relevant market horizon. Differ-
ent market designs are based upon various time intervals and customer needs [11].
Hence, the flexibility provision process should be considered with similar time-
related decision-making. Different time properties of resources make it possible
to participate in different markets for multiple purposes, such as ancillary services
for restoring the quality of power in a grid. It is possible to observe different flex-
ibility resources with relevance from milliseconds to years. The structure of the
time dimension with respect to flexibility trading horizons and markets is shown in
Figure 3.

The time dimension may be the most important dimension for flexibility and
its usage. According to the results of a survey of industry players (managers and
modelers) conducted by [12], with an accurate timing strategy, timing-based flexi-
bility business models in the energy sector could increase their profits while reducing
their downside risk. The timing of the market participant could differ for supply-
side flexibility resources compared with demand-side flexibility resources. A system
operator or a market participant could either use only a single flexibility resource
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Figure 3: Flexibility trading horizons and markets.

with a single timing strategy or they could harvest multiple resources and have a

time coupled portfolio of flexibility.

2.3 The resource dimension of flexibility

The resource type of a flexibility asset might vary with different time horizons and
locations. In this context, we consider four major flexibility resources: supply side,
demand side, grid side, and storage side. The four resources are represented in

Figure 4.
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2.3.1 Supply-Side flexibility

The traditional flexibility in power systems originates from either ramp-up or ramp-
down of conventional power plants. Variability in the load (demand) profile is the
primary reason for conventional usage [1, 13]. In this respect, ramp-up and ramp-
down rates, time of availability, and start-up and shut-down response times are
all components of the power provision process from conventional resources. How-
ever, the integration of VRES and other new technologies into power systems and
generation plans increases uncertainty and the need for flexibility [1].

The impact of VRES integration into power and energy systems creates a merit
order effect due to lower marginal costs of production. Due to their low marginal
costs of generation, the VRES plant bids enter the market merit order list before
the conventional power plants bids [14]. Furthermore, due to the stochastic nature
of VRES, their high provision of power can create supply-demand imbalance in the
market. Supply-side flexibility resources, such as hydro power plants, may benefit
from the imbalance by providing flexibility to restore the balance [14].

2.3.2 Demand-Side flexibility

Information and communication technologies (ICTs) have made it easier to mon-
itor and control consumption profiles in power systems. Real-time pricing and
hourly pricing are important practices that can help to maintain the supply-demand
balance. Close coordination between producers and consumers about pricing and
supply-demand balance is necessary until storage technologies become cost-efficient.

Demand-side flexibility is characterized along the direction (ramp-up or ramp-
down), its electrical power composition (differentiation between power and energy),
its temporal characteristics defined by its starting time, duration (time of avail-
ability), and its location (spatiality) [3]. Industry, households, and aggregators are
flexibility resources for the demand side [1]. Although there is more ongoing collabo-
ration with industrial users for demand side management, such as load curtailment,
also participation by households has been motivated [2, 15]. In households, heating
and cooling are important flexibility sources. Moreover, EVs are emerging as flexibil-
ity resources. They can shift their consumption in the short-term (grid-to-vehicle),
while selling remaining electricity to the grid (vehicle-to-grid, V2G). Most often,
demand-side technologies are applicable for local problems in short time intervals
(e.g., voltage, network congestion). When congestion problem occurs, at distribu-
tion grid levels, demand-side resources are useful for congestion management. Thus,
demand-side flexibility can improve the overall efficiency of the system [15].

The primary benefit of demand-side flexibility is its response to changes in mar-
ket supply-demand balance and power quality problems with the support of end
users. In this context, two control strategies, i.e., direct and indirect control [13]
are existing. Direct control strategies manage demand-side flexibility resources by
load curtailing or shifting according to system needs, and applied by TSO, DSO, or
aggregator. The indirect control is applied by the economic incentives to encourage
the consumers to change their consumption patterns according to optimal market
price signals. It is possible to use demand-side flexibility resources with optimal
price signals via an efficient market design. Thus, real-time pricing, real-time me-
tering, and economic incentives are crucial for motivating demand-side flexibility.
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In addition to market efficient and supply-demand balance benefits, the demand-
side flexibility is beneficial for risk management and reliability, lower cost electric
services, customer services, and environmental considerations [16].

2.3.3 Storage-side flexibility

Storage-side flexibility resources are important technologies for storing electricity
and using it later [14]. Battery energy storage systems (BESS) can be categorized
into centralized and decentralized storage units for flexibility provision [17]. Stor-
age units provide power in time by collecting surplus power from VRES or other
resources before the provision time [1]. Examples of different storage-side flexi-
bility technologies are pumped hydroelectric storage technologies, compressed air
energy storage, flywheels, power-to-gas plants, and batteries [18]. According to Di-
vya and Ostergaard (2009), BESS are the main storage flexibility resources. Some
researchers regard EVs as battery storage technology due to their capacity for V2G,
but in this paper, we consider EVs are demand-side flexibility resources. From a
power system perspective, storage flexibility from BESS can provide solutions on
short-, and medium-time horizons [18].

2.3.4 Grid-side flexibility

Grid infrastructure and reinforcements constitute grid-side flexibility. The definition
of grid-side flexibility is the ability of a power grid to engage with demand variations,
uncertainty in grid conditions, and changes in the power flow by using grid topology
and system operators [19]. Transmission or distribution grid planning and operating
may need grid-side flexibility to be efficient [20].

The grid-side flexibility is useful due to its physical capabilities to cope with
changes in the power system. [19] classified grid-side flexibility resources in two
items: discrete grid-flexibility and continuous grid-flexibility. Discrete flexibility
resources include network topology, transmission expansion planning (TEP), and
line switching (LS). Dynamic flexibility resources include reactive power compen-
sation using power electronics, phase angle, optimal power flow, FACTS (flexible
alternating current transmission systems), and HVDC (high-voltage direct current).

The limitations of grid-side flexibility are often technical and are challenged by
VRES and DERs [17]. However, the technical capabilities of grid-side flexibility
may lead to reductions in the following respects:

e Thermal ratings: A higher number of DER and VRES connections, and grow-
ing demand can lead to violation of installed capacity (thermal ratings) in the
network.

e Voltage deviation: On-load tap changers (OLTCs) are controlled by automatic
voltage control (AVC) schemes in the presence of high, low, and medium
voltage situations for voltage preserve.

e Fault level: The short circuit capacity of networks is subject to the thermal
and mechanical constraints of the network. Interconnection of DERs and
VRES can push the network to exceed short circuit capacity.
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e Reverse power flows: Having a reverse power flow makes balancing the low
voltage side of the transformer harder and might cause congestion in both
transmission and distribution systems.

e Rapid voltage change: Instant increase in power output (ramping-up) might
create rapid voltage changes and impact the grid.

e Islanding: If a generator continues to the provision of power to an isolated
grid part, consequently, the islanding occurs. Anti-islanding requirements
are defined to sustain the distribution of electricity in the grid and prevent
islanding.

e Protection: There are three protection challenges for the grid. First, faults
on the distribution might cause voltage deviations in the grid. Second, the
aggregate generation could exceed the load on the distribution bus and the flow
of power might turn in the reverse direction to the transmission system. Third,
a ground source from a generator could change the fault balance between the
distribution feeder and the utility system.

e Power quality: Integration of DERs and VRES might decrease power quality
and cause voltage fluctuations, flicker, harmonics, and signaling.

With regard to local problems in power grids, grid-side flexibility is related to
TSO-DSO interaction. Local network constraint management, voltage optimization,
network restoration, and power flow stabilization are major applications of grid
operations with flexible resources [21].

3 The Risk Dimension

The risk dimension of flexibility provision is often neglected in characterization of
flexible assets. Different risk profiles originate from the heterogeneity of technologies
and end users. Also, due to the privacy concerns of participants (e.g., their data
have commercial value), there is a lack of information in the market [22]. The
theoretical relation between risk and uncertainty is outside the scope of this paper,
but we use the term risk to address the effects of uncertainty and how it affects the
ability of flexibility assets to provide flexibility. At one end of the scale, we have
firm flexibility provision with low probability of disruption of the service or failure to
provide as promised (e.g., a portfolio of hydropower plants with reservoirs), while at
the other end of the scale, we find flexibility services provided by a single windmill
with a high probability of disruption or failure to deliver as promised.

To identify the risk, we first have to identify all uncertainty origins in the flexibil-
ity provision and their effect on the energy systems and markets. As long as we are
able to measure or quantify the uncertainty of flexible resource, we can characterize
its risk dimension. Since the beginning of flexibility research, most of the literature
has highlighted the uncertainty in VRES generation plans. By contrast, risk man-
agement studies have emphasized either market price or trading risks. There are
many sources of uncertainty and related risk profiles in energy systems and power
markets. The following are examples of uncertainty types [23, 24, 25, 26, 27, 28]:
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e VRES generation uncertainty

e Demand uncertainty

e Network availability capacity uncertainty and investments costs uncertainty
e Fuel availability and cost uncertainty

e Wholesale markets price uncertainty

e Policies and regulations uncertainty

e Participation uncertainty (in cases of a market-based approach)

e Duration of the resource uncertainty.

These uncertainties affect the flexibility assets and services from different angles.
Furthermore, the risks profiles of flexibility assets in markets have impacts on the
market design and process of the flexibility usage. During the flexibility procurement
and activation process, flexibility is employed to cope with these uncertainties and
at the same time can potentially be affected by the same uncertainties.

The time dimension is strongly connected to the risk dimension. According to
the results of a survey conducted by [12], a power market participant’s short-term
planning contains a higher risk of inefficiency than their long-term planning. For
example, many market participants conduct their trading agreements months ahead
and sometimes one year ahead, and they trade the same resources to multiple mar-
kets. If they wait until the day-ahead market or intraday market, their risk could
increase due to short-term uncertainties. Similarly, the shortage risk of flexibility
products could originate from the contracts and obligations that the flexibility as-
set owner has on different time horizons. In our case, we are concerned with the
uncertainty quantification of flexibility resources and the risk of shortage during
provision and activation process. In a California ISO (CAISO) report, the short-
age of ramping flexibility is described as procuring less than the requirement [29].
Flexible ramping product applies to both 15-minutes and real-time market designs,
for upward and downward regulation. These products are designed for situations
in which there is uncertainty due to demand or renewable forecast errors. The
shortage of flexibility ramping products is discussed by [30, 31, 32]. Insufficient
flexibility ramping capacity can increase power provision prices and create market
imperfections such as supply-demand imbalance.

The risk of failing to deliver flexibility can be foreseen if a robust flexibility metric
exists. [33] used a flexibility metric to calculate the time intervals of the flexibility
shortage. They introduced a metric that they named insufficient ramping resource
expectation (IRRE), based upon another generation adequacy metric, the loss of
load expectation (LOLE). IRRE is the expected number of observations when there
is a problem with the power system in the presence of forecasted or not forecasted
changes in the load profile. The calculation of IRRE can represent the probability
of the system coping with a shortage of flexibility. Moreover, IRRE measures in-
dividuals and the system flexibility probability. [34] state that there have not been
any studies of the risks of the resource duration time (Figure 3). Consequently, the
risk dimension needs to be addressed on an individual and resource basis according
to time and spatiality dimensions.



Another type of risk associated with demand-side uncertainty is the rebound ef-
fect [35] which is also known as the payback effect [36]. We can observe the rebound
effect in the demand profile of a power system when the demand-side participation
exits. For example, during peak hours, a demand-side participant could decrease its
consumption in the grid and remove the possibility of network congestion. During
off-peak hours, the same participant might increase its consumption due to lower
prices to charge an EV or a battery. This behavior shows an increase in the demand
profile and is subject to the possibility of congestion in the distribution grid. In this
regard, the main problem is not the amount of demanded power, but the time of the
demand. The uncertainty of rebound effect occurrence creates a risk to the security
of supply in later periods (short-term).

System operators (DSOs, TSOs/ISOs (independent system operators)) are sub-
ject to the risk. As shown in Table 1 and Table 2, the services that they provide
are subject to grid congestion, shortage of flexibility, and market price risk, jointly.

An aggregator stands connected with DSOs to aggregate households’ assets in
order to reduce its risk in the system or market. In a similar way to the system
operator’s risk profile, the risk profile of an aggregator is a combination of all four
dimensions under discussion (i.e., time, spatiality, resource, and risk). An aggregator
has many flexibility providers with different resources, spatiality, timing, and risk
profiles. Therefore, an optimal portfolio of assets is important for an aggregator
because the risk profiles of individuals have an impact on overall risk. To ensure its
flexibility supply process, an aggregator needs to find an optimal number of assets
in its portfolio based upon risk, resource, and spatiality and time dimensions.

4 Flexibility products

Flexibility services and products are identified by [37] as the flexibility offered by a
participant (e.g., an aggregator) to a market. The products offered to the TSO for
system flexibility (ancillary services) usually are provided by a balance responsible
party (BRP), such as CHP, hydropower plants (dispatchable), or zonal interconnec-
tions (energy products), which are defined as supply-side flexibility. The products
offered to DSOs are mainly for local supply-demand balancing, voltage correction,
or grid congestion management by the demand-side, storage-side, or grid-side flexi-
bility resources (these products could also be offered by the supply-side flexibility).
Furthermore, in existing market designs, power-based products such as demand-
side, storage-side, and supply-side resources have shorter duration than capacity
products such as grid-side flexibility.

4.1 Product examples

Real-life examples of ISO flexibility products are the ramping products in CAISO. In
CAISO, flexibility products, which are named ”flexiramp” products by [38], should
be gathered from supply-side resources in the short-term (i.e., less than minutes).
In the CAISO market such products are primarily used for correcting the differ-
ence between forecasted demand and realized demand without using major energy
providers [39]. There is no bidding for flexiramp products, due to the zero variable
cost assumption of the generators that provide the products. Other markets in the
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USA have similar products based on ramping rate (e.g., [30, 40]), although their
market settlement rules are different. Flexiramp products aim to achieve two goals:
first improvement in the expected cost (market efficiency) of energy schedules; and
second, the provision of incentives for generators to consider the value of ramping
in both operating and investment decisions. Generators do not provide price bids
for a ramping product, so prices are based just on the marginal opportunity cost of
diverting capacity from energy or ancillary services to meet the ramp requirements.

Another example of a flexibility product is the DS3 plan from Ireland and its 14
products (flexible DS3) designed to meet system scarcities [41]. Ireland’s TSO uses
very short-term (2-10 seconds) products for frequency fixing, reactive power cor-
rection, ramping products, primary, secondary and tertiary reserves, and dynamic
reactive response. Moreover, [41] point out that TSO-DSO interaction is impor-
tant for planning and operating of the network. Furthermore, in France, the TSO
proposes capacity contracts as a quantity-based market-wide mechanism to cope
with increasing peak demand and to incentivize demand-side flexibility usage for all
consumers with regard to their consumption [42].

In the case of DSOs, products show more variety since they include DERs.
The reason for using these products is not just for market supply-demand balance
but also for congestion management, voltage correction, and loss coverage [37].
Principally, the flexibility is presented in the distribution grid, but it is often used
in the transmission grid. [43, 44, 45] propose approaches whereby an aggregator
participates with multiple flexibility resources in the distribution grid in addition
to bidding in the wholesale market.

Allocation of local and system-wide resources for flexibility is important for the
distribution grid and cooperation between the TSO and the DSO [46]. Accord-
ing to [37], flexibility products are provided to local flexibility markets with DERs
and other flexibility products to address grid operation issues. Many attempts to
establish local flexibility markets in the industry have been reported in the liter-
ature [47]. For example, NODES marketplace! is a universal platform for local
flexibility trading [48]. In distribution grids, with a pay-as-bid auction design, the
NODES marketplace solves congestion problems by using continuous trading. [49]
propose an aggregator-based local flexibility market with a flexibility clearing house
(FLECH) market to promote DER for active participation in trading flexibility ser-
vices. In a FLECH market, the DSO or sometimes the TSO acts as a flexibility
buyer. In a FLECH design, there are three trading products: bilateral contracts,
auctions, and the supermarket. In the market design, activation time, duration,
and location are important for the product type. A FLECH design is aligned be-
tween the DSO and the aggregator interconnection. [50] investigated the usage of
prosumers’ flexibility in a decentralized perspective and found that the local market
structure trades flexibility and solves problems by cost-minimizing objectives. The
aim of their research is to solve distribution grid problems before using the wholesale
markets.

Flexibility products can be designed as a combination of different flexibility tech-
nologies for a common purpose such as to fix voltage deviations or for congestion
management. [51] combine flexibility from different providers for the purpose of con-
gestion management in wholesale markets. Their product, flexibility value stacking

'https://nodesmarket.com/about/.
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is based on multiple flexibility providers, who are combined either in a pool market
design or a portfolio by an aggregator for trading in wholesale and balancing mar-
kets for congestion management. Flexibility value stacking products are designed
as time-based, pooling/portfolio based, and double serving based.

4.2 Flexibility product design

The structure and purpose of flexibility products originates from the need for an
efficient system and market design. In existing market designs, the time dimension
determines the economic benefit of a flexibility product in relation to the resource
dimension and technology dimension. Many existing flexibility product initiatives
are system-wide products and therefore the spatiality dimension of the products is
not considered [29, 39].

Flexibility service providers are heterogeneous along our four dimensions. Prod-
ucts may have different cost profiles for different time dimensions (activation time
and duration). This leads to a need to consider the optimal alignment of markets
where products can be traded. In the time dimension of flexibility (discussed in
subsection 2.2), the properties of the time dimension such as ramping rate and du-
ration are relevant. When designing a flexibility product, essential qualities are how
quickly fast a flexibility asset will respond to the system operator and for how long
it can provide power.

In an imaginary setting, two flexibility ramping products can be considered: the
first has a 5-seconds activation time and the second a 20-seconds activation time as
their sweet spot in terms of cost, but both can work in a 5-second or a 20-second
activation time prior to physically delivery.

The resource with a 5-second activation time will always have lower marginal
costs for the 5-second services than the 20-second resources. Similarly, the 20-
second resource is better than 5-second resource for a 20-second flexibility service.
If the operator dispatches 20-second technologies in 5-second markets, the operator
will lose the efficiency of using flexibility. This economic viewpoint is illustrated in
Figure 5 and Figure 6, where P5 and P20 represent 5-second and 20-second flexibility
resources, respectively. Still, it is not practical or economically efficient to prepare a
market design for each asset type or resource. Therefore, the optimal market design
needs to address differences in product designs for market and trading efficiency.

Similarly, one could choose optimal spatial resolution when establishing mar-
ketplaces to procure power, energy, or capacity. TSO-DSO coordination would be
needed, as there would be local and non-local optimal resource allocation.

In the CAISO market, the demand curves are calculated every hour indepen-
dently according to the market design (5-minute or 15-minute market) and direction
(ramping-up or ramping-down). Besides the system-demand curve, there are dif-
ferent demand curves for each region with market imperfection [39]. In the case
of Ireland, there are markets for an inertial response (0 to 5 seconds), reserve (5
seconds to 20 minutes), and ramping (20 minutes to 12 hours).

An aggregator or a flexibility operator chooses the flexibility resource with regard
to its abilities to be dispatched in the market. For example, in CAISO, flexibility re-
sources and technologies are dispatched or disqualified from the provision of flexible
ramping products according to regulations and their technology characteristics [39].
Consequently, resources for shorter time intervals and longer time intervals can be
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separated from each other according to their technologies, either by the system
operator or by the aggregator.

In addition to the time and resource dimensions, the spatiality dimension needs
to be considered in flexibility product design. For example, Irish and CAISO prod-
ucts have system-wide initiatives in their ISOs and TSOs [29, 39, 52]. With regard
to CAISO products, the flexibility ramping products are designed as system-wide
products (e.g., [29]). However, the ISO might apply some regional constraints ac-
cording to the problem (e.g., congestion) in the power system. In the case of Ireland,
flexibility providers are spatially clustered and they generate a cost-effective strategy
for grid operations (e.g., [52]).

5 Markets for trading flexibility

To provide incentives for exploiting the value of flexibility from end users and gen-
erators, an efficient market design is essential. It is possible to provide price signals
for flexibility assets in existing market designs, but they might not be sufficient.
The efficiency of the existing power market designs, especially intraday (ID) and
day-ahead (DA) markets for flexibility pricing could be analyzed along our four di-
mensions. Moreover, the spatiality dimension of flexibility refers to how to use local
flexibility markets in distribution grid operations.

5.1 Pricing flexibility in power and energy markets

The ID market design is one of the major market designs to trade flexibility and
incentivize flexibility resources [53]. In longer trading horizons (e.g., 1 week), ID
market prices often are close to DA market prices. This convergence has led some
researchers to disregard the importance of having separate flexibility markets [54].
However, in their studies of flexibility pricing they have not conducted analyzes
along the dimensions as those we introduce at this paper. Especially, the time
dimension of flexibility resources and their spatial differences are not addressed
explicitly.

In some energy-only market designs, the flexibility is withheld for peak load
hours by flexibility providers [55]. Many flexibility providers expect to recover their
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investment costs by trading their flexibility in peak hours. This strategy is in line
with the findings of our research, such as the use of flexibility for deferring grid
investments and recovering investment costs.

[56] describe the pricing and market mechanism for flexibility trading in the
presence of price caps and cost recovery conditions. Price caps in energy markets
lead to higher prices; hence, trading flexibility in peak hours increases the power
prices (ramp-up in scarcity hours). Price capping might be an option for market
mechanisms, but price cap revenues are related to revenues from flexibility trading.
The major cost recovery for flexibility investments comes from earnings from trading
pricing at peak pricing periods instead of off-peak or regular trading periods. Nat-
urally, prices for flexibility are mainly affected by (marginal) costs of technologies
and the applied price cap.

From the spatiality dimension perspective, aggregators can access different re-
sources in various locations. Hence, integration of different market zones, both in
time and spatiality, could increase the flexibility in the system if the products traded
are relevant over a large geographical area (e.g., active power in non-congested
grids). The combination of different areas and generators in the same market leads
to better allocation of reserves and reduces the costs of marginal generation, espe-
cially for supply-side flexibility resources [57, 58, 59, 60].

Another problem with existing market pricing mechanisms is the lack of incen-
tives for the flexibility providers of flexibility activation, in times of both power
scarcity and power surplus. In situations when flexibility is provided from demand-
side resources, we can observe that market power shifts from the generators to the
end users of electricity [61]. [62] show that demand-side flexibility resources and their
bids can outperform conventional price bids and reduce flexibility prices. Therefore,
it is essential to incentivize the demand-side flexibility in a market design.

Flexibility pricing examples from CAISO, MISO (Midcontinent Independent
System Operator), and SPP (Southwest Power Pool) markets indicate that the
flexibility products are subject to DA market and real-time (RT) pricing. In these
markets, flexibility is characterized by considering mainly the time dimension (i.e.,
ramping rate) [30, 38, 39, 40]. Another example is the Irish TSO, which proposes
products by considering the spatiality, resource, and time dimensions, but mainly
emphasizes the time dimension because of system needs. In EirGrid, the pricing of
fourteen different products is ideally done under real-time pricing [41, 52]. In the
French TSO case, capacity obligations and certificates construct the price mecha-
nism, especially for peak-hours electricity provision [42].

5.2 Local flexibility markets

The introduction of the entity “prosumer” to the power and energy markets changes
power market designs. The change in market designs from centralized to decentral-
ized, and the integration of prosumers into existing markets is investigated by [63],
with respect to four structural attributes: the peer-to-peer model, prosumer-to-
islanded microgrids, prosumer-to-interconnected microgrids, and the organized pro-
sumer group model. In the peer-to-peer model, prosumers are directly intercon-
nected with each other for buying and selling power and energy from others. In
prosumer-to-interconnected microgrids, prosumers provide their services to a micro-
grid that is a part of a larger grid. The prosumer-to-islanded microgrids comprise
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prosumers who provide services to independent, non-interconnected microgrids. In
the fourth and final market structure, organized prosumers create a pool among
themselves and trade with each other.

Each market design typology, whether pooled or bilateral, has different at-
tributes along our four dimensions. A local and consumer-centric market design,
such as a local flexibility market (LFM), might be an efficient market design for the
flexibility pricing and trading.

In order to design a local flexibility market, a general list of market design prin-
ciples needs to be followed before introducing the details of the flexibility trading.
According to [64], six principles of a good market design are as follows:

1. Correct the market as quickly as possible in cases of failure. By reducing the
reliability on subsidiarity, the market imperfection will be corrected as soon
as possible.

2. Allow for appropriate cross-country variation in market design. Ensuring the
security of supply is a local issue.

3. Use price signals and network tariffs to represent the value of electricity pro-
vision services. Include the provision of flexibility. This principle has long
and short-term effects such as deferring the investments and sustaining the
efficient dispatch.

4. Collect network fixed costs from the market. The difference between efficient
prices and regulated prices allows for revenue from end users.

5. Provide incentives for low carbon investment. Provide efficient risk-averse
financing for low-carbon and capital-intensive investments in electricity mar-
kets.

6. Retain the flexibility to respond to changing information in the market, such
as information relating to lower costs and different technologies.

In addition to the six fundamental principles of a market design, [65] propose four
local (flexibility) market design dimensions such as temporal, spatial, contractual,
and price-clearing.

A local flexibility market requires incentives for the valuing flexibility. For
stronger incentives to exploit flexibility from end users and to increase efficiency
in the market and systems, LFMs are crucial on specific grid or market purposes.
The need for an LFM is specific to each case. The majority of researchers con-
sider the need for LEMs as decentralized and separate from wholesale markets. In
some cases (e.g., [66]), they suggest that an LFM should complement the balancing
markets. According to Jin, Wu, and Jia (2020), recent studies have provided good
insights into an efficient market design for flexibility trading [67]. In addition, LFMs
are useful for various services, such as market-oriented services, system-oriented ser-
vices, and grid-oriented services [68]. Another detailed LFM modeling, challenges,
and implementation review research for grid and market problems is investigated
in [69] by considering blockchain applications for flexibility trading.

To design an LFM for pricing and trading flexibility, the market design needs
to address our four dimensions. According to the flexibility service, for example

15



the voltage deviation service or congestion management, the market considers the
spatiality of the flexibility resource because the voltage needs to be fixed at certain
locations in the grid topology (active and reactive power distribution) [70]. With
regard to another flexibility service, namely congestion management, it is important
to address the congestion with the correct timing (peak load time); this refers to
the time dimension of the flexibility. In case of risk dimension, the LFM is requires
to cope with the market liquidity risk in order to provide sufficient amount of power
from flexible resources (scarcity of flexibility). Hence, the LFM design needs to be
shaped with respect to the risk dimension discussed in this paper. However, the
TSO-DSO coordination and the coexistence of different LEMs have to be considered
for higher efficiency for flexibility usage.

5.3 The need for TSO-DSO services and coordination based on
flexibility

A system-wide approach to coordination among multiple market participants and
operators is needed for reliability and efficiency of the power system. DSOs can
deal with local problems by flexibility trading, while TSOs manage TSO-DSO in-
teraction [37, 71, 72, 73, 74]. Accordingly, [46], suggest five different coordination
models: centralized ancillary services market, local ancillary service market, shared
balancing responsibility, common DSO-TSO ancillary service market, and integrated
flexibility market. According to the [46], in the centralized ancillary services model,
a single market with only a TSSO as buyer is designed without the participation of
the DSO. In the local ancillary service market model, the DSO is the user of the
local flexibility and establishes a local market. The shared balancing responsibil-
ity model indicates that the local markets have to provide lower entry barriers to
DERs for TSO-DSO coordination. In a common TSO-DSO ancillary services mar-
ket model, the TSO and the DSO collaborate to use flexible resources optimally.
Lastly, the integrated flexibility model both increases the possibilities for BRPs to
solve supply-demand imbalances, and increases the market liquidity.

The provision of flexibility services by the TSO and DSO are related to volt-
age, congestion, balancing, black-start, and interoperability for coordinated pro-
tection [74]. There are ongoing discussions about pricing these services based on
flexibility assets, as we have mentioned in subsection 5.1. System services that are
provided by the DSO and the TSO (or ISO) are listed in Table 1 and Table 2,
according to [71] and [73].

Table 1: TSO and ISO services and pricing mechanisms [71, 73].

TSO/ISO services ISO pricing TSO pricing

Electrical energy Zonal

Transmission energy losses Local marginal prices (LMPs)

Transmission congestion Congestion management markets
Reserves Co-optimized with LMPs Balancing markets

Reactive power and voltage control

Regulated prices and bilateral contracts Regulated prices and bilateral contracts

Black-start
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Table 2: DSO services and pricing mechanisms [71, 73].

DSO services Pricing
Electrical energy

Distribution energy losses

Distribution congestion

Reactive power and local voltage control
Peak shaving

Network connection and reliability
Network deferral

Regulated or competitive retail supply tariffs

Averaged network tariffs

5.3.1 Interaction along flexibility resource

The distinction between DSO and TSO services in Table 1 and Table 2 originates
from the voltage and frequency requirements of the system. The TSO considers
frequency and grid congestion issues whereas the DSO focuses on voltage deviation,
grid congestion, and losses issues. The requirements of frequency deviations for con-
ventional resources (supply side) is much stricter than requirements for demand-side
resources. The reason for this is that the voltage should be higher when electric-
ity is injected into the grid from the supply side but should be lowered when it
reaches end users for utilization (high-voltage to low-voltage grid). Therefore, local
resources managed by the DSO have different voltage requirements compare with
the non-local resources owned by the TSO. As a result, besides voltage and fre-
quency challenges, the congestion management for an entire grid is diversified by
the DSO and TSO concerning their local flexibility and grid resources. TSO and
DSO services can differ because their products (e.g., flexibility resources) can differ.

According to [71], DSO and TSO services can compete with each other within
the same level of the grid. Moreover, flexible power resources can compete in DA,
ID or balancing markets as either energy or power, but not as capacity. Flexibility
resources should be bid to markets that are most profitable for them. Furthermore,
for flexibility trading, the bidding process should provide optimal incentives and
price signals for market participants to continue [71]. In this regard, the reduction
of market barriers would be helpful, as stated by [75].

5.3.2 Interaction along spatiality

To coordinate flexibility resources, system operators should communicate with each
other according to their spatial responsibilities. The spatial differences among flex-
ibility assets have impacts on their technology and their mitigation of grid prob-
lems [71]. Resources that are located in different geographies, as illustrated in
Figure 1, have different incentives, technologies, contracts, and market power. In
particular, we cannot expect flexibility resource from a transmission level (high-
voltage) to act in a similar way to a small demand-side resource in a distribution
grid.

The congestion management service is common in both types of system opera-
tors (i.e., TSOs and DSOs) and is increasing in importance due increases in local
power generation. DSOs can use demand-side and storage-side flexibility resources
for local congestion management, whereas TSOs can use supply-side and grid-side
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flexibility for transmission grid services. These facts stress the coordination of flex-
ible resources. The geographical information tags for DSO and TSO market bids
are presented by [72] for the coordination of flexible resources.

5.3.3 Interaction along time

Flexibility assets can provide long-term and short-term solutions for markets and
services. Furthermore, a short-term resource can bid for a long-term perspective,
and at any point in time there might be conflict (or overlap) among the contracts.
A DSO could use its resources for local voltage balancing, while a TSO might want
the same resources for congestion management in the grid. Such situations need a
high level of coordination between the TSO and DSO. As shown in Table 1 and 2,
the DSO and TSO provide different services, but both provide services for grid
congestion management.

The coordination of the DSO and TSO should be evaluated in two time peri-
ods, such as short term and long term. Currently, there is an ongoing TSO-DSO
coordination in long-term planning in the literature and in the industry. Smart
grid initiatives, network expansion planning, and research programs are examples
of long-term collaboration [71, 76]. However, the coordination between the DSO
and T'SO should include short-term solutions for congestion, voltage, and frequency
problems in further consideration of new market designs.

5.4 Need for change in existing power markets

The integration of VRES and the transition of energy systems affect the manage-
ment, technology, and economics of market designs and power systems from central-
ized to decentralized, and from a regulated structure to a deregulated structure [3].
From a centralized to decentralized perspective, the market scale is downsized from
a national design to local market design. The resources available in national markets
are still valid for use at the local scale, but it would be problematic to use certain
flexibility technologies due to their market power, amount of power produced, and
time of availability. Therefore, for flexibility trading, there is a need for change in
market designs from national to local scale.

A comparison of existing market designs and their participant profiles is impor-
tant in order to understand the need for change in market designs. Using DERs
and VRES increases the risk for power markets and systems due to the uncertainty
in generation and consumption profiles. Depending on the market design, the risk
can be reduced. A change in power markets needs to include the risk profiles of
intermittent resources in order to increase efficiency.

A structural comparison of flexibility provision in the current market situation
and a basic understanding of the need for change in power systems and markets is
presented in Table 3. Originally, [3] studied a similar version of this table with only
DERs. For this reason, we propose an extension with all flexibility technologies, in
a time-coupled context, considering our four dimensions, in addition to flexibility
products and related market mechanisms. Our novel expansion is the introduction
of uncertainty and risk in Table 3.

All dimensions discussed in this paper are incorporated in Table 3. In addition
to the four dimensions, the Table 3 shows existing market mechanisms, flexibility
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products, and the connection type of the grid. Time interval presents the availability
of flexibility resources according to the time dimension. Some of these resources
exist in multiple markets. The type of product is mainly related to the flexibility
resource. The technology of the resource is related to its location and connection to
the grid. Distribution grid (DSO) technologies are used for local purposes, whereas
transmission grid (TSO) technologies are used for non-local and local reasons.

For some flexibility technologies, it is possible to use the dimensions in multiple
market designs and time scales as shown in Table 3. However, the risk profiles
and spatiality of flexibility resources indicate a market design that is dimension-
specific, especially for small-scale technologies such as demand-side and storage-
side flexibility resources. In addition, throughout different market designs, the risk
has different impacts on market participants and their choice of market for trading
flexibility. Hence, there could be changes in existing market designs to include
more flexibility resources, in addition to designing local (flexibility) markets by
considering the discussed four dimensions.
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Connection

Time interval Market . Product m,_mu:._u::“% Spatiality to Uncertainty
mechanism provider .
grid
. Direct . o .
Real-time Household appliances Local Distribution Resource duration,
control Power
Demand,
Indirect Household appliances, Local Distribution Congestion
o control EVs
Within day . X

Balancing Energy and EVs, Industrial DS, Resource duration,
markets N Aggregators

: power - Demand,
Ancillary Aggregators, Conventional, X

. . . Congestion,
services Renewable Local and Transmission, R,

- non-local Distribution Fuel availability and cost,
Short term Intraday Energy Aggregators, Conventional, Wholesale market price,
: g Renewable VRES generation
7 Day-ahead Energy Aggregators, Conventional,

Medium term

Long term

Renewable, Storage

Forward Energy and  Conventional, Renewable,
markets power Storage
C ity . .

apacty Capacity Conventional, Renewable
markets

. Network reconfiguration,
Network expansion . . .
Capacity Grid expansion,

and investments

Capacity expansion

Demand,

Fuel availability and cost,
Wholesale market price,
VRES generation

Demand,
Fuel availability and cost,
Wholesale market price

Network investments,
Policy and regulation

Table 3: Structure of flexibility trading in current systems and market designs.
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6 Conclusion and Outlook

In this paper, we argue that the flexibility services have to be procured and deployed
in markets that recognize the four dimensions including time, space, resource type
and risk. We have presented products and services from different countries with
flexibility trading systems, that support the flexibility products and services that are
needed to balance the power markets supply and demand side on different horizons.
Typical problems to be solved by using flexibility are related to voltage, frequency
and congestion.

For an efficient valuation of the flexibility and allocation of resources, a local
flexibility market might be needed. Considering risk profiles and uncertainty of
flexibility assets in flexibility provision could help to decrease inefficiencies in flexi-
bility usage and local market design. At different levels in the networks, TSO-DSO
coordination is essential to provide services based on flexibility with optimal resource
allocation over time and space.
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several consumers rather than individual loads if combined peak load shaving is to be cost-optimal.
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1. Introduction

Successful mitigation of climate change will require decarbon-
ization of the energy sector, increased production from variable
renewable energy sources (RES), and electrification. Several of
these measures are likely to be decentralized and require cross-
sectoral thinking [1].

Flexibility in power systems relates to the ability to deal with
variability in supply and demand. Demand-side flexibility through
demand response has been proposed as being significant if assets
can be coordinated and aggregated [2—6]. We will refer to con-
sumers with demand-side flexibility as ‘prosumers’ because they
both consume and produce energy services. Prosumers are seen as
part of the solution to facilitate a large share of variable RES, making

Abbreviations: C1, Campus 1; C2, Campus 2; CA, Combined annual subscription
scheme; CW, Combined weekly subscription scheme; DG, Distributed generation;
DSO, Distribution system operator; IA, Individual annual subscription scheme; IW,
Individual weekly subscription scheme; PV, Photovoltaic; RES, Renewable energy
source.

* Corresponding author. Department of Industrial Economics and Technology
Management, Norwegian University of Science and Technology, Hagskoleringen 1,
7491, Trondheim, Norway.

E-mail address: stian.backe@ntnu.no (S. Backe).

https://doi.org/10.1016/j.energy.2020.117619

the demand-side more flexible through self-generation, market
participation and active responses to price signals [7,8].

Several studies have been performed to analyze prosumer
response to different grid tariffs [9—15]. However, to the authors’
knowledge, no previous study compares dynamic intra-annual
adjustment of tariff parameters with annually fixed parameters
and simultaneously considers the difference between providing
short-term price signals based on individual loads versus the
combined load of several prosumers. To cover this gap, we propose
a two-stage stochastic program where uncertainty is related to net
load and spot prices with an hourly resolution for different pro-
sumers. The novelty of this paper is using the two-stage stochastic
programming framework to compare dynamically adjusting tariff
parameters within a year versus statically fixing tariff parameters
for a complete year. The paper also has the original contribution of
comparing individual versus coordinated asset planning to analyze
how effective different versions of a capacity-based grid tariff are in
reducing load peaks in the grid. Based on our results, we address
the implications for successful grid tariff design, i.e., a design that
will trigger efficient utilization of the local flexible assets and
reduce the highest loads.

The outline of the paper is as follows: Section 2 introduces the
background regarding flexibility in energy systems and the purpose

0360-5442/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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of grid tariffs. Section 3 presents the model developed to analyze
subscribed capacity-based grid tariff schemes and the assumptions
and input for our case study. Section 4 states our model results,
while Section 5 discusses the implications of these results. Finally,
Section 6 concludes our paper and suggests further research.

2. Background and literature

This section elaborates on the literature and previous studies
related to our paper. The first part (Sections 2.1-2.3) explains the
context of our study linking flexibility in power systems to grid
tariff design, while the last part (Section 2.4) presents the reasoning
behind the use of the two-stage stochastic program in this paper.

2.1. Flexibility services in power systems

Flexibility is a term used to characterize a service or property
that is part of tangible assets [16]. Flexibility can be characterized
along three dimensions based on the Nordic Balancing Concept:
time, location, and resource type. Properties of the time dimension
include activation (response) time, ramp-up or down rate, and the
duration of the service. The location dimension describes how the
service from an asset can be provided in geographical locations, e.g.
individual unit (building), neighborhood, country, and cross-
border. For example, services based on reactive and active power
have different geographical relevance. The type of resource dimen-
sion describes the type of asset in the following classes: supply-
side, demand-side, grid-side, and storage [17].

In our analysis, we focus on time horizons with hourly resolu-
tion, demand-side flexibility assets, the neighborhood level, and
assume that all flexibility assets provide a firm service (there is no
uncertainty related to delivery). We assume that the scheduling of
flexible assets is driven by the prosumers’ wish to minimize the
total cost of energy consumption, including net trades in the spot
market and the grid tariff paid. In addition, we investigate the effect
of prosumer coordination by investigating what happens when an
aggregator controls all the flexibility assets to minimize total costs.
We do not discuss how to share the benefits of this, e.g. in a flexi-
bility market [18], only the total effect.

2.2. Allocation of ancillary service costs and flexibility

In a power system, distribution of electricity by preserving po-
wer quality and maintaining adequate assets in the low voltage grid
are the main tasks of a distribution system operator (DSO). The DSO
is commonly regulated as a natural monopoly which is challenged
by the development of a smart grid [19,20]. Full and timely recovery
of network costs is important for the DSO’s financial sustainability
[21]. A successful tariff design should increase network efficiency in
the short-term and signal efficient network capital development in
the long-term [22,23].

The tariff design normally includes up to three elements: a fixed
element, a volumetric (energy) element, and a capacity element.
Volumetric elements generally do not incentivize demand-side
flexibility services [24] as opposed to capacity elements that
partly charge consumers based on the power use over a measuring
period [23]. Due to an increase in distributed generation (DG),
especially solar photovoltaics (PV), power systems with net-
metering tariff designs are faced with the threat of a utility death
spiral [25]. The threat appears when DG behind the meter triggers
not just energy cost savings, but also tariff savings. Unless the DG
reduces the DSO’s costs, it creates a marginally higher cost for
consumers without DG, which is demonstrated in Ref. [26] where a
capacity element in the grid tariff increases the electricity costs up
to 10% for consumers with high power outtake in Norway. A

redesign of network tariffs is needed to avoid the allocation of grid
payments away from DG owners [27].

Most current grid tariff designs in Europe are static, i.e.,
dependent on a single element (commonly energy) without any
temporal rate variation [28]. In contrast, a dynamic tariff design will
depend on several elements and/or be subject to temporal varia-
tion. Static tariff designs are practical, predictable, and good at
achieving a single long-term objective, e.g. increasing energy effi-
ciency. In theory, dynamic tariffs reflect the DSO’s costs better and
could create signals to trigger flexibility services by prosumers [29].
However, dynamic tariffs are harder to implement [21] and could
cause political challenges related to an ‘unfair’ change in network
costs for certain consumer groups [30].

The signal for flexibility need could be provided using market-
based approaches, as proposed in e.g. Ref. [31—33]. An example of
a market-based approach calling for flexibility can be found in
Ref. [34] which proposes distribution locational marginal pricing.
The idea of activating demand-side flexibility in both market-based
solutions and through dynamic grid tariffs is to create price signals
to trigger efficient flexibility responses. We analyze how market-
based approaches could be similar to responding to a dynamic
grid tariff. In Ref. [35], they analyzed different ways of creating
incentives for prosumer flexibility, including tariff redesign and a
direct payment to flexibility providers. They find that a redesign of
network tariffs is up to 20% less costly than direct payment to
flexibility providers. However [35], does not consider how the
network tariffs should be redesigned.

2.3. Grid tariff design in Norway

Currently in Norway, grid tariffs for residential consumers have
a fixed element and a volumetric element. The volumetric element
is location dependent through a marginal loss factor, which reflects
how far electricity generation is from a consumer [28]. The current
Norwegian grid tariff design does not price high power outtakes for
households [26], and it is shown that dynamic tariffs provide in-
centives for better utilization of the grid [36].

In this paper, we analyze the ‘subscribed capacity’ grid tariff
scheme proposed by the Norwegian Regulator [37], where con-
sumers subscribe to a capacity level. If their hourly load exceeds the
subscribed level, a penalty is charged depending on the violation
(see Fig. 1). As consumers pay both for the subscribed level and the
penalty, they have incentives to subscribe to as low capacity as
possible providing they can stay below it most of the time. We
analyze four different versions of the subscribed capacity tariff
scheme. In the first version, consumers have individual sub-
scriptions that cannot be changed for a year (individual annual
subscription). The second version is individual subscriptions where
the consumers can adjust the subscription level on a weekly basis
(individual weekly subscription). The third version is a combined
capacity subscription on the total load of several consumers com-
bined, and the subscription is fixed for one year (combined annual
subscription). Finally, the fourth version is a combined subscription
for several consumers that can be changed on a weekly basis
(combined weekly subscription). By comparing these four versions
of the subscribed capacity grid tariff, our contribution is to elabo-
rate on the effect of providing inter-weekly rather than inter-
annual tariff adjustment and coordinated rather than individual
scheduling of flexibility assets. We study the effect on (1) the
resulting cost savings and cost-optimized responses by prosumers
minimizing their electricity bill and (2) the total peak load reduc-
tion for the grid. We assume the tariff rates are as presented in
Ref. [37] (see Table 1). These rates are suggested by the Norwegian
Regulator upon analyzing measured load data from 500 Norwegian
consumers, and the rates are determined subject to the criteria that
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Fig. 1. lllustration of the ‘subscribed capacity’ grid tariff scheme. The illustration shows an example of measured hourly load over 24 h for the combined load of Campus 1 (C1) and
Campus 2 (€C2) and a combined subscription. The horizontal line represents the subscription level which causes a penalty charge for hours 11 and 12 (load exceeds subscribed level).

Table 1
Grid tariff rates provided as input in all our 52 instances. The rates are assumed to be
as proposed by the Norwegian regulators [37] (see Section 2.3).

csub [NOK/kW /year]
Rates 689

cnorm [NOK/kWh] Pen[NOK/kWh]

0.0500 1.00

the same annual income to the DSO is provided as with the current
Norwegian gird tariff scheme.

2.4. Two-stage stochastic programming approach

Stochastic programming supports decision making under un-
certainty [38]. In Ref. [39], a stochastic programming approach is
used to analyze trading between prosumers under uncertainty;
however, there are not multiple stages. Throughout different stages
in stochastic programming, a decision maker ought to make de-
cisions for short-term and long-term plans, where stages represent
realization of uncertain outcomes. In our case, the short-term plans
include operating flexible assets to minimize costs given a reali-
zation of prosumer load and day-ahead prices, and the long-term
plan involves tuning the tariff parameters. We use two-stage sto-
chastic programming to analyze the difference between long-term
and short-term adjustment of the tariff parameters, where short-
term adjustment of the tariff parameters is analyzed by solving
deterministic versions of our two-stage stochastic program. Other
examples of two-stage programming approaches for addressing
uncertainty in energy management are [40—42].

3. The mathematical model

In this section, we present the model for the prosumer’s cost-
minimization problem. The model is a two-stage stochastic linear
program [43] where the first-stage decisions include deciding the
subscribed capacity level and the second-stage decisions include
operating flexible assets. The complete nomenclature of the model

can be found in Appendix A.

3.1. Time structure

The model considers one temporal scale with all operational
time periods defined in the ordered set.7 = {1,2,...,|.7|}. In every
time step, decisions about how to operate a flexible asset is sup-
ported. Operational (second-stage) decisions can be different in all
stochastic scenarios w in the set of all scenarios Q. Each stochastic
scenario represents one realization of prosumer load and electricity
spot prices for a time horizon. The flexible assets are located at
different prosumers pe.#, and the scenario independent first-
stage decision is the subscribed capacity x}D.

The model includes flexible asset types f.7. If asset type f is
located at prosumer p, it belongs to the set .7, <.7. Any flexible
asset type fis modelled as a conceptual storage. Depending on the
asset type, it can be flexibly charged (prosumer demand can be
increased, e.g. electric vehicle [44]); it can be flexibly discharged
(prosumer demand can be decreased, e.g. curtailable loads [45]); or
it can be both flexibly charged and discharged (e.g. battery [46]).
Note that there is no resolving of uncertainty within a scenario as
time passes, hence the storages are operated with perfect foresight
within a scenario. For a static tariff where the subscribed capacity is
decided for a year, each scenario may consist of all hours in a week
with .7~ = {1,2,...,168}. Scenarios can be sampled from historical
data, and ideally, they represent seasonal variations over a year. If
the scenarios represent all weeks of a year, we would have Q =
{1,2,...,52}. Note that each scenario is independent with no link or
dependency between operations or storage levels in two subse-
quent scenarios.

3.2. Objective function

The objective function for an individual prosumer, z!, minimizes
the electricity bill by scheduling flexible assets subject to energy
costs and a grid tariff:
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where xl are variables for the subscribed capacity level for pro-

sumer p, the , are scenario probabilities, and kp +, are variables
identifying the tariff cost depending on the prosumer’s grid inter-
action in different scenarios. Resulting load profiles (import from
the grid to the prosumer) are identified through the second-stage

variables y},"?‘l and vary by scenario. The objective contains a time

varying load dependent retail cost (cf%') and a fixed capacity

dependent subscription cost (csU°) for the capacity subscription.
For prosumer p, the tariff cost is identified through a two-step
linear cost function depending on the subscribed capacity level x{,

and the prosumer load yi2d :
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where c"°"™ and cP¢" are load dependent prices for loads below and
above the subscribed capacity, respectively. Constraints (2) make
sure that the tariff has a lower bound of load multiplied by the cost
below the subscribed capacity, whereas constraints (3) ensure that
the tariff cost is increased when load exceeds the subscribed ca-
pacity to the penalty cost multiplied by the load.

3.3. Constraints

The original load before scheduling of the flexible assets (ex-
pected net demand) for electricity at prosumer p at time t in sce-

nario ® is denoted E;f_?ﬂ). The total import from the grid to

prosumers is identified in the following constraints:

load load charge dlscharge discharge
Yotw="Eptw T Z( bfitw Wit )

pEJ’,tEJ,u)EQ,

(4)

charge

where Wt is charging of flexible asset type f at prosumer p

discharge

while Wotto is discharging. Constraints (4) ensure that pro-

sumer p at time t will have a resulting load equal to the original load
plus the charged and discharged energy from all the flexible assets

at the prosumer. Note that losses e;"“harge

discharged energy in (4).
In time period t, w;fj?;fﬁe is the available energy in flexible asset

type f at prosumer p. The balance of storage must be maintained in
between operational time steps:

are only considered for

Kpfnls)t})r]age + ;hargewlcjk}a;gz Wsi;f]bzrge W;tff)rlaie’p = MA,fE yp,
weQ.

(5)
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Constraints (5) make sure that a flexible asset type f at prosumer
p start the operational horizon (t = 1) in scenario v with an initial
energy level equal to a percentage of installed capacity (k) plus
charging (subject to losses) minus discharging. Constraints (6)
make sure that flexible asset type f at prosumer p has an energy
level equal to the energy level from the previous period (subject to
diffusion losses) plus charging in the current period (subject to
losses) minus discharging for all operational time steps and sce-
narios. Losses are type dependent factors for flexible asset type f

and they are considered for charging (Ch‘"ge) discharging

(s}““harge) and diffusion of stored energy content (sj?‘ff). Note that

no losses are considered for discharging in (5) or (6) since it is
accounted for in (4). The maximum energy content (nsmmge)

h

charge ) discharge

charging (11 and discharging (17 ) of flexible asset type f

at prosumer p are defined as upper bounds for all time periods and
scenarios.

Constraints (7) ensure that the energy level of flexible asset type
fat prosumer p is at least the required level y'eq in period ¢ for all
scenarios:

refqtgw“}"fge pEP.fEFp tET , WEQ. (7)

The individual objective z' in (1) is combined with constraints
(2)—(7) to find the subscribed capacity level that minimize the
combined energy and tariff cost.

3.4. Coordinated scheduling of flexible assets

The individual prosumer model can be extended to a model
where an aggregator coordinates all flexible assets by changing the
objective. The combined objective function minimizes the elec-
tricity bill for all consumers with flexible assets where the billing of
the grid tariff is based on the combined load profile in the following
way:

mmz

X om > (Kot | Do | ] (8)

weQ teT pe”

where xC is a decision variable for the combined subscription level
for all prosumers, and k{,, are variables identifying the combined
tariff cost depending on the sum of imports from the grid to all
prosumers.

The total electricity load of all prosumers will determine the
combined tariff cost through a two-step linear function:

load C T
cnorm Zyp(??.w < kt.m’ te7, weq, (9)
pPEZ

load _ ,C load C T
cren (57 ylat €] o crom Syt 46, e 7 wen
pEZ pE”

(10

Similar to constraints (2) and (3), constraints (9) make sure that
the tariff has a lower bound of the combined load multiplied by the
cost below the subscribed capacity, whereas constraints (10) ensure
that the tariff cost is increased when combined load exceeds the
subscribed capacity to the penalty cost multiplied by the load,
respectively.

The combined objective z€ in (8) along with constraints (4)—(7)
and (9)—(10) form a problem that cannot be decomposed per
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Table 2

Assumed operational characteristics of the flexible asset types available for demand-
side management at each of the two prosumers (Campus 1 (C1) and Campus 2 (C2)).
The parameters identify available capacity for charging, discharging and storage.

Flexible asset pcharge[kWh/h]  pdischarge[kwh/h]  gtorase [kwh]

Electric battery 100 100 200
Vehicle charging 50.0 0.00 500
Curtailable loads 0.00 50.0 200

prosumer due to constraints (9)—(10) that make the tariff cost kgw
dependent on the load of all prosumers.

4. Case study for capacity-based grid tariff in Norway

In this section, the models presented in Section 3 are used to
analyze the scheduling of flexible assets reacting to both an hourly
retail price and a subscribed capacity-based grid tariff. We present
the input data and assumptions (Section 4.1) before the results
(Section 4.2). All input data, the implemented model, and output
data is available in Refs. [47] for the reproduction of this case study.

4.1. Input data and problem instances

We build four classes of problem instances:

—_

. Individual Annual (IA): Subscribed capacity tariff based on the
individual objective (1) under annual decisions on subscribed
capacity level,

2. Individual Weekly (IW): Subscribed capacity tariff based on the
individual objective (1) under weekly decisions on subscribed
capacity level,

3. Combined Annual (CA): Subscribed capacity tariff based on the
combined objective (8) under annual decisions on subscribed
capacity level,

4. Combined Weekly (CW): Subscribed capacity tariff based on the

combined objective (8) under weekly decisions on subscribed

capacity level.

For IA and CA, we use stochastic models with sampled weeks
representing the scenarios. Each week is a scenario with 168 h. For
IW and CW, we optimize the subscribed capacity level weekly (only
one scenario). This resembles a dynamic subscribed capacity tariff.
As the model is solved under perfect foresight, it is overestimating
the ability to estimate exactly the optimal subscribed capacity for
the week.

The tariff rates used are as proposed by the Norwegian Regulator
in Ref. [37] (see Table 1). We sample historical hourly load profiles
from a rural Norwegian university campus, Campus Evenstad, from
50 weeks during 2016. We assume that two university campuses
exist in the same part of the distribution grid, ‘Campus 1’ (C1) and
‘Campus 2’ (C2). Odd weeks are sampled from Campus Evenstad to
create weekly load profiles with hourly resolution for C1 and even
weeks for C2. Here, the samples are made so that two consecutive
weeks from Campus Evenstad occur in parallel for C1 and C2
making up a total of 25 weeks for the study.

Three flexible asset types exist in the model at both prosumers:
electric battery, electric vehicle charging and curtailable loads (e.g.
fuel switching from electric to bio-based heating). Their assumed
operational characteristics are presented in Table 2. Losses are
assumed to be 1% for charging and discharging of all flexible assets.
Diffusion losses are only defined for the electric battery at 0.1% per
time step.

For vehicle charging, an annual demand of 14,000 km per

vehicle is chosen based on the average use of battery electric ve-
hicles in 2018 in the county of Campus Evenstad (Hedmark) [48].
Further, we assume one electric car needs 0.2 kWh per km,' so one
car needs (on average) 145200 (0.2) = 54 kWh/week. Then, a weekly
demand of 500 kWh covers nine to ten vehicles (see Table 2). Some
of the weekly demand must be met every 24 h, meaning daily
demands sum up to the total weekly demand (see Fig. 2). The
vehicle charging demand is essentially a lower bound for the en-
ergy level in the flexible asset f at prosumer p and time t imple-
mented through the variables 7;?tand constraints (7).

C1 and C2 face hourly retail prices that are dependent on the
historical market data from price zone NO1 in Nord Pool in 2016.
Retail prices follow the Nord Pool day ahead spot price plus Nor-
wegian electricity charges and 25% VAT, and we sample hourly
prices from odd weeks in 2016.

The two deterministic classes (IW and CW) for the two pro-
sumers represent in total 50 instances for the 25 weeks, while the
two stochastic classes (IA and CA) represent in total two instances
for the 25 weeks. The model is implemented in the open-source
optimization modeling language Pyomo [49] through Python
version 2.7.8 and solved using Gurobi version 8.0.1. The optimiza-
tion was run on a computer with an Intel(R) Core(TM) i7-7500U
processor with CPU at 2.70 GHz and 16.0 GB installed memory
(RAM). The total run time for all instances (50 deterministic + 2
stochastic) including reading, building, solving and printing results
is around 60 s.

4.2. Results

This section describes the results from analyzing the four ca-
pacity subscriptions (IW, CW, IA, and CA) presented in Section 4.
Recall that the modified load profile is a result of the model
responding to the different schemes by (a) finding the cost mini-
mizing subscribed capacity level and (b) operating the flexible as-
sets to minimize the total electricity bill including variable energy
costs and grid costs.

Table 3 presents the total electricity bill costs before and after
the flexibility responses are optimized for the four different
schemes. The cost ex-ante optimization is calculated by optimizing
the subscription level without any flexibility available and includes
constant charging to meet weekly vehicle charging demand of
500 kWh at each campus site. On average, the flexibility responses
contribute to 5—6% savings for the weekly subscriptions (IW and
CW), while 3% savings are achieved on average for the annual
subscriptions (IA and CA).

The top part of Table 3 shows the results from the most
expensive scenario (week 24), where costs avoided from
responding to the grid tariff scheme (‘Grid’ in Table 3) are the
dominant part of the savings as compared to the saved energy cost
(‘Energy’ in Table 3). The results of all weeks for the weekly sub-
scriptions (IW and CW) show that the grid savings are the domi-
nant part of the savings for 23 weeks, i.e., there are more savings
related to the grid tariff than hourly retail prices for the weekly
subscriptions. For the annual subscriptions, the grid savings only
dominate the savings for eight weeks for the IA scheme and six
weeks for the CA scheme, indicating that responding to retail prices
is more valuable than responding to the grid tariff for the annual
subscriptions (the opposite to the weekly subscriptions). The bot-
tom part of Table 3 lists the results from the scenario with the
highest savings (week 2). Here, the energy costs avoided from
responding to retail price variations are the dominant part of the

' https://pushevs.com/electric-car-range-efficiency-epa/accessed: April 15, 2020.
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Fig. 2. The lower bound for energy that must be charged by time t .7 to battery electric vehicles. This offers flexible charging in every time-step with some constraints (daily
demands).
Table 3 Table 4

Cost results summed for both prosumers in NOK ex-ante (before flexibility re-
sponses) and ex-post (after flexibility responses) for the individual weekly (IW),
combined weekly (CW), individual annual (IA), and combined annual (CA) schemes.
The table displays results for the most expensive scenario (week 24, top) and the
scenario with highest cost savings from flexible operation (week 2, bottom). The two
last columns show cost savings from responding to a variation in day-ahead spot
price (‘Energy’) and responding to the subscribed capacity scheme (‘Grid’).

Scheme Total cost, Total cost, Cost decrease

ex-ante ex-post Energy Grid
Week 24
w 59,300 NOK 57,600 NOK (—3%) 468 NOK 1220 NOK
cw 58,900 NOK 57,100 NOK (—3%) 494 NOK 1230 NOK
1A 69,100 NOK 67,900 NOK (—2%) 475 NOK 716 NOK
CA 68,100 NOK 66,800 NOK (—2%) 448 NOK 825 NOK
Week 2
w 48,200 NOK 43,300 NOK (—10%) 4170 NOK 676 NOK
w 46,900 NOK 42,300 NOK (—10%) 3990 NOK 615 NOK
1A 48,700 NOK 44,100 NOK (—9%) 4110 NOK 401 NOK
CA 46,900 NOK 42,400 NOK (—10%) 4000 NOK 526 NOK

savings for all schemes, which is linked to the average weekly spot
price being highest for week 2 (0.72 NOK/kWh). This indicates that
the load reduction in response to a grid tariff could be challenged
by high and variable retail prices if the two price signals are not
correlated.

Table 4 presents the weekly subscription level for C1 and C2. The
last two columns in Table 4 are the sum of subscription levels for C1
and C2 from the individual metering schemes. Note that for the
annual subscriptions (IA and CA), the subscription level is the same
for all weeks. The average of the weekly subscription levels for all
25 weeks is consistently less than the annual subscription levels
(see the bottom row in Table 4), which strengthens the need for the
two-stage stochastic programming approach. The highest weekly
combined subscription level is chosen in week 24 (591 kWh/h, see
the CW column in Table 4). The sum of the weekly individual
subscription levels for week 24 exceeds the combined subscription
level (246 + 374 = 620 kWh/h, see the last two columns in Table 4),
which is also the case for 92% of the weeks (all weeks except weeks
4 and 23, see Table 4). This is an indication that rationing several
prosumers combined is less conservative than rationing them
individually.

Resulting cost-optimal subscription levels in kWh/h in all 25 weeks. The columns
represent the subscription levels for the individual weekly (IW), combined weekly
(CW), individual annual (IA), and combined annual (CA) schemes for Campus 1 (C1),
Campus 2 (C2), and combined. The last column shows the sum of individual sub-
scription levels (C1+C2) for comparison with the combined subscription level.

C1 c2 Combined C1+C2

Week w 1A W 1A w CA w 1A

1 151 197 181 216 315 387 332 413
2 251 197 196 216 398 387 447 413
3 138 197 134 216 271 387 272 413
4 143 197 137 216 282 387 280 413
5 137 197 280 216 405 387 417 413
6 197 197 86 216 283 387 283 413
7 108 197 118 216 223 387 226 413
8 111 197 171 216 273 387 282 413
9 186 197 184 216 337 387 370 413
10 122 197 138 216 247 387 260 413
11 142 197 120 216 258 387 262 413
12 112 197 101 216 208 387 213 413
13 79 197 79 216 157 387 158 413
14 76 197 78 216 154 387 154 413
15 39 197 40 216 78 387 79 413
16 50 197 123 216 159 387 173 413
17 98 197 115 216 211 387 213 413
18 136 197 135 216 262 387 271 413
19 156 197 122 216 263 387 278 413
20 96 197 159 216 212 387 255 413
21 148 197 216 216 340 387 364 413
22 268 197 193 216 416 387 461 413
23 254 197 215 216 478 387 469 413
24 246 197 374 216 591 387 620 413
25 164 197 253 216 374 387 417 413

Average 144 197 158 216 288 387 302 413

Table 5

Annual original and resulting peak load in kWh/h for Campus 1 (C1), Campus 2 (C2)
and combined for the individual weekly (IW), combined weekly (CW), individual
annual (IA), and combined annual (CA) schemes. Note that the ‘original’ column
represents the annual peak load ex-ante flexibility responses. The bold font marks
the scheme triggering the lowest annual peak for C1, C2, and combined. The
numbers in parentheses identify the week in which the annual peak load occurs.

Prosumer Original w cw 1A CA

C1 413 (2) 322 (2) 365 (2) 413 (2) 410 (2)
c2 479 (5) 426 (24) 441 (24) 444 (24) 444 (24)
Combined 696 (24) 672 (24) 591 (24) 696 (24) 696 (24)
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Table 5 presents the results for the annual peak load at the in-
dividual prosumers (C1 and C2) and combined for both prosumers.
Weekly individual (IW) subscription triggers the largest individual
annual peak shaving, while weekly combined (CW) subscription
best achieves combined annual peak shaving. The CW scheme re-
duces the original annual combined peak by 105 kWh/h (—15%),
which is more than four times the annual combined peak shaving
triggered by the IW scheme (24 kWh/h, —3%) (see Table 5). Annual
subscriptions (IA and CA) trigger little or no annual peak load
reduction of individual or combined load profiles (see Original, IA,
and CA columns in Table 5).

Fig. 3 shows how the different schemes perform in reducing the
weekly peak loads. For weekly subscriptions (IW and CW), some
peak shaving is cost-optimal in all weeks, including weeks where
the original weekly combined peak load is small (see e.g. the blue
and orange bars in week 15 in Fig. 3). For annual subscriptions (IA
and CA), the weekly combined peak load generally increases in low
demand weeks and decreases in high demand weeks (see the
yellow and gray bars in Fig. 3). However, the highest weekly com-
bined peak load is unaffected for the annual subscriptions (see the
yellow and gray bars in week 24 in Fig. 3).

Fig. 4 presents the hourly load profiles in week 24 with the
highest annual combined load originally. The plot also shows the
hourly retail price linked to the hourly day-ahead wholesale price.
For all pricing schemes, flexible assets are operated to generally
increase the load in low retail price hours, and decrease the load in
high retail price hours: low loads occur in all pricing schemes when
the retail price (green dotted line) is peaking in Fig. 4. For the
weekly subscriptions (see Fig. 4a and b), load profile modifications
are similar; however, combined peak shaving is significantly larger
for the CW scheme compared to the IW scheme (see bottom row in
Table 5).

Fig. 5 presents the relationship between grid costs (grid price
multiplied by the load) and the combined load from C1 and C2 for
the different pricing schemes. The CA scheme (yellow in Fig. 5)
offers the highest cost (344 NOK/kWh) during the annual peak load
in week 24 because it is the highest combined load and it exceeds
the combined subscription level (387 kWh/h, see Table 4). Note that
(a) paying this high penalty is cost-optimal in the CA scheme
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10 11

B Combined Weekly

9

considering total cost over the whole year and (b) there is no
combined peak load shaving in week 24 as a consequence of the
high penalty (see the bottom row in Table 5 and the yellow bar in
week 24 in Fig. 3). Fig. 5 also shows that the IA scheme has many
penalty hours below the sum of the subscribed levels (413 kWh/h,
see Table 4) because the individual loads exceed the individual
subscription levels without causing a high combined load. This is a
shortcoming of the individual subscribed capacity tariff in terms of
signaling efficient grid utilization, as it often penalizes situations
where the total flow into C1 and C2 is lower than the joint sub-
scribed capacity (recall that the sum of the individual subscription
levels is higher than the combined subscription level in 92% of the
weeks, see Table 4). For the weekly subscriptions (IW and CW),
there are significantly less penalty hours than for the annual sub-
scriptions since the subscription can be adjusted for each week (see
yellow and gray dots compared to orange and blue dots in Fig. 5).
The CW scheme has the least amount of penalty hours after flexi-
bility responses (see orange dots in Fig. 5), and it is the scheme that
most successfully reduces the annual combined peak load (see
Table 5).

5. Discussion

Our case study has been performed assuming perfect foresight
on hourly load and retail prices for 25 weeks and no disutility
(costs) of operating flexible assets except energy losses (see con-
straints (4)—(3.3) in Section 3.3). This means our results represent
an upper bound to how much cost reduction prosumers can obtain
for the different pricing schemes. Note that the stochastic structure
of the problem in our case study is related to price and load vari-
ation between weeks, i.e., there is no uncertainty within a week.
Note also that because we consider energy losses from flexibility
responses, total energy consumption increases slightly after de-
mand response even though total costs decrease.

The CW scheme is better at decreasing the weekly combined
peak load than the IW scheme. This is a central feature as it is the
combined load that dimension the grid connecting C1 and C2 to the
rest of the system. However, three weeks show a higher combined
peak load for the CW scheme compared to the IW scheme (see

12 13 14 15 16 17 18 19 20 21 22 23 24 25
Week
Individual Annual Combined Annual M Original

Fig. 3. Weekly combined maximum load after cost-optimal response to the individual weekly (IW) scheme (blue), combined weekly (CW) scheme (orange), individual annual (IA)
scheme (gray), and combined annual (CA) scheme (yellow). The original maximum loads in the different weeks are displayed in black. The highest combined load occurs in week 24
where the combined weekly (CW) scheme triggers most peak load shaving. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)
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with the individual annual (IA) low) with the combined annual (CA)
scheme. scheme.
Fig. 4. Resulting combined hourly load profile for 168 h for the individual weekly (IW) scheme (Fig. 4a), combined weekly (CW) scheme (Fig. 4b), individual annual (IA) scheme

(Fig. 4c), and combined annual (CA) scheme (Figure d) in week 24 when the original maximum combined load is occurring. The left axis shows hourly load in kWh/h (solid lines)

and the right axis shows hourly retail price in NOK/kWh (green dotted lines). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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Fig. 5. Resulting hourly load dependent grid tariff costs, i.e., load dependent price multiplied by the load, in NOK/kWh plotted against the combined load of Campus 1 (C1) and
Campus 2 (C2) for the individual weekly (IW) scheme (blue), combined weekly (CW) scheme (orange), individual annual (IA) scheme (gray), and combined annual (CA) scheme
(yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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weeks 2, 4, and 21 in Fig. 3). This occurs due to three different (but
related) reasons that are worth noticing:

e For week 2, the opportunity to respond to retail prices is more
valuable than responding to the grid tariff scheme (see Table 3).
The two opportunities for cost saving could be conflicting.

e For week 4, the sum of the individual subscription levels is
slightly lower than the combined subscription level (see
Table 4), so the individual subscriptions are more ‘conservative’
than the combined subscription.

e For week 21, low subscription cost and high penalty loads in the
CW scheme are compensated by high subscription cost and low
penalty loads in the IW scheme, so peak shaving is not always
the cost-optimal response with the subscribed capacity scheme.

Two main factors should be considered depending on the goal of
introducing a capacity-based grid tariff scheme: (1) The dynamics
of the grid tariff, i.e., the adjustment frequency of tariff rates and
subscription levels, and (2) the load signal that the grid tariff will
depend on.

The first factor, the grid tariff dynamics, will impact the
achievement of peak shaving through flexibility (see Fig. 3). For an
annual decision on the grid subscription level, the cost-optimal
strategy is to consider a full year of costs when finding the best
subscription level. This consideration means the subscription level
is too low for critical hours because costs are minimized for the
whole year. Annual subscriptions also lead to more penalty hours
than weekly subscriptions, i.e., annual subscriptions make it cost-
optimal for prosumers to exceed their subscription level. Howev-
er, weekly subscriptions trigger load reduction in weeks when grid
capacity is not scarce, which results in a potential loss of consumer
welfare by penalizing utilization of idle grid capacity. A lower
bound on the subscription level combined with dynamic sub-
scription rates can be introduced to avoid rationing of capacity
during non-critical hours.

The second factor, the load signal, will impact at which
connection point peak shaving is triggered (see Table 5). Under the
condition that prosumers have significantly different hourly load
profiles,”> shaving peaks based on individual metering does not
maximize the annual peak shaving of the combined load profile.
There is more variety in load profiles of buildings for various pur-
poses (e.g. households, shops, offices, etc.) [50], and the flexibility
potential will likely vary for the different buildings [51]. The
objective of reducing individual loads could be in competition with
reducing the combined load, i.e., the individual load could increase
and the combined load decrease within a measuring period (and
vice versa). If the goal of a capacity-based grid tariff scheme is to
trigger combined peak load shaving for a collection of prosumers,
price signals based on individual metering are likely to be sub-
optimal (see Table 5) and could compromise consumer welfare
when considering the disutility of offering flexibility. If the price
signal is based on the combined load at a bottleneck connection of
the grid, it is more likely to trigger combined peak load shaving.

In Norway, all grid-connected consumers are obliged to have
individual metering, and this requirement is not challenged by
introducing combined price signals. One could identify combined
loads through: (a) summing individually metered data, or (b)
combined metering at a potential bottleneck. This also points to
other alternatives for local coordination in the grid, for example
through flexibility markets. The efficiency of flexibility markets for

2 A quality check has been performed with our model confirming there is no
difference between individual (IW and IA) and combined (CW and CA) metering
schemes when two prosumers have identical load profiles.

resource allocation, either as an alternative or supplement to dy-
namic capacity-based grid tariffs, is an interesting area of future
research.

6. Conclusion

This paper analyzes four different capacity-based grid tariff
subscriptions by using a two-stage stochastic programming model
in a case study of a Norwegian campus site with flexible assets. The
novelty of our analysis includes: (1) comparing long-term annual
tariff adjustment with short-term weekly tariff adjustment and (2)
comparing the combined and coordinated demand response of
several prosumers with the individual responses of single pro-
sumers. The results show that cost-optimal operation of the flexible
assets varies depending on the design of the grid tariff scheme. We
find that a weekly adjustment of the subscribed grid tariff triggers a
reduction in the maximum weekly load more efficiently than an
annual subscription in 92% of the simulated weeks, while the
combined subscription triggers combined load reduction more
efficiently than individual subscriptions in 88% of the simulated
weeks. According to our results, the capacity-based grid tariff
subscription scheme is likely to be successful in promoting efficient
grid development if: (1) the tariff parameters (subscription level)
can be adjusted more frequently than annually and (2) the price
signals for scarcity in the grid depend on the combined load of
several consumers rather than the individual loads. The analysis
also indicates that the tariff rates should be adjusted within a year
to account for annual load variability and avoid rationing when grid
capacity is not scarce. Depending on where a bottleneck in the grid
is located, the price signal from a capacity-based tariff should be
based on the combined load of several consumers behind this
bottleneck (rather than individual load profiles) given different
individual load profiles.

Further research should expand the stylized case study to see
the impact in a larger collection of different prosumers and con-
sumers. Also, the case study does not address remuneration to
flexibility providers, for example in a flexibility market as a sup-
plement or alternative to capacity-based grid tariffs. Combined
metering schemes call for some remuneration from all who benefit
from flexibility to those who provide flexibility. Further research
should compare the difference and substitution between flexibility
market designs and capacity-based grid tariff schemes.
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Appendix A. Nomenclature

List of model components

Sets
T Set of flexible asset types
Tp Set of flexible asset types at pe.#
P Set of prosumers
T Set of market clearing time steps
Q Set of stochastic scenarios
Input Data
b;harge Charging losses of fe.7
g;hff Diffusion losses (self-discharge) of fe.7
discharge Discharging losses of f€.7
ncl}arge Charging capacity of fe.7, at pe. 7
P
n;i;charge Discharging capacity of f&.7, at pe. 7
,,;t}lragﬁ Energy storage capacity of fe .7 at pe.”
a,’fffq[ Minimum required energy content of f .7, at pe.7 at time te.7
Kpf Share of energy storage capacity initially available in f&.7}, at pe.2
T Probability of scenario weQ
Elpozl?d Net demand for electricity at pe. in time te.7 and scenario weQ
cnorm Energy dependent grid cost below subscription level (per kWh)
cpen Energy dependent penalty cost for exceeding grid subscription level (per kWh)
cfet Retail cost of electricity import (incl. taxes) at time t<.7 and scenario w €Q (per kWh)
csub Grid subscription cost per power level (per kWh/h)
Variables
kS, The (combined) tariff cost on import from the grid in time t.7 and scenario weQ
k,[a.r.m The (individual) tariff cost on import from the grid to p€.# in time t€.7 and scenario ¥ €Q
chfmr'ge Charging of f€.7, at pe.7at time t€.7 and scenario w€Q
pftw
Wdifscharge Discharging of f&.7 at pe.7at time t€.7 and scenario w€Q
pfitw
;t}"rage Available energy in flexible asset type f .7, at prosumer p€.7 at time t€.7 and scenario © €Q
fto
xC The (combined) subscribed capacity level
XL The (individual) subscribed capacity level at prosumer p .
}’}f??,, Resulting grid import at p€.# in time t€.7 and scenario w €Q
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ABSTRACT The authors focus on a model for system operators that uses centralized scheduling of multiple
flexibility assets and services to minimize the cost of managing problems with grid congestion, voltages, and
losses. The model schedules flexibility assets using stochastic optimization for AC optimal power flow in an
active distribution network. The novelty of the contribution lies in its focus on how the dynamic capabilities
of the flexibility resources are defined with regard to how uncertainty is resolved in the model. The impact
of uncertainty is studied by using well-known quality measures from stochastic programming, such as the
value of the stochastic solution. Moreover, the authors introduce a new measure related to the impact of
representing uncertainty and flexibility when considering reactive power. By changing the time attributes of
flexibility assets, the authors show the impact of uncertainty and time structure on a scheduling problem.
The uncertainties considered are price and load levels. The findings reveal that the quality of the scheduling
of each flexibility resource depends on using a stochastic model with a rigorous consideration of time and
uncertainty.

INDEX TERMS Flexibility, active distribution networks, optimal power flow, scheduling, stochastic
programming, uncertainty.

NOMENCLATURE OLTC On load tap changer
PV Photo-voltaic module
Abbreviations: RP Recourse problem
ADN  Active Distribution Network SDP Semi-definite programming
CB Shunt capacitor banks SO System operator
DER  Distributed Energy Resource SOP Soft open point
DSO  Distribution System Operator SOS2  Special Ordered Sets of type 2
DVSS  Deviated value of stochastic solution SVC  Static VAR compensators
EEV  Expected value of expected solution TSO Transmission System Operator
FSP Flexibility Service Provider VoLL  Value of lost load
ICT Information-communication technologies VSS Value of stochastic solution
LV Low-voltage
MV Medium-voltage Parameters:
Bs.1 Power price from the grid parameter
The associate editor coordinating the review of this manuscript and nes Ng  Battery charge and discharge coefficients
approving it for publication was Shihong Ding . parameters
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an external grid

Historical load data for forecasting
Charging and discharging amount of a
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Amount of active power curtailment
Amount of active power shift

Active and reactive of scheduled pro-
duction from a generator

Amount of reactive power curtailment
Amount of reactive power shift
Reactive power flow between nodes i
and j

Current flow between nodes i and j
State of charge for a battery

Vs.ir  Voltage magnitude
Y,  Impedance value in AC-OPF model

I. INTRODUCTION

The penetration of Distributed Energy Resources (DER),
located close to where electricity is consumed, e.g., house-
holds or commercial buildings is increasing considerably in
the last years. However, due to the often-intermittent nature
of DERs, as well as variations in demand, such developments
can also cause several problems in low-voltage (LV) grid
designs such as voltage variations (drops/rises), grid con-
gestion, and network losses. Increases in electricity load are
likely to continue in the future [1]. To solve these problems at
grid level, distribution system operators (DSOs) have shifted
from traditional passive and unidirectional distribution net-
works to bidirectional active distribution networks (ADNs).

An ADN can be described as a network system with
control over its distributed generation resources. Some of
the enabling technologies for ADNs are storage resources,
demand-response programs, dynamic line ratings, and volt-
age/power control technologies [2].

In this regard, flexibility refers to the ability of a power sys-
tem to respond to changes in demand and supply [3]. Based on
recent developments in ICT, different levels of demand-side
flexibility resources based on demand response programs and
technologies could contribute to the efficiency of the ADNs
by activating end users and their flexibility assets [4]-[6].
In this paper, we focus on the grid-relevant issues, including
network congestion, voltage variation problems, and network
losses, and investigate the impact of time and uncertainty on
the activation of required flexibility services.

Several studies have reported on the traditional use of
active management resources, such as on-load tap changers
(OLTCs), static VAR compensators (SVCs), shunt capaci-
tor banks (CBs), and standard operating procedures (SOPs),
to deal with grid operational challenges(e.g., [7]). How-
ever, traditional solutions require significant investments in
grid infrastructure and therefore flexible electricity resources
can contribute to deferral of such investments. In this
study, we focus on flexible electricity resources such as
demand-response programs, change in supply, and batteries,
which do not require additional investments in grid infrastruc-
ture and technology [8].

A. RESEARCH METHOD

In a traditional power market, grid congestion, voltage vari-
ations, network losses, and frequency deviations are han-
dled by a system operator (SO) using ancillary services.
Recent developments in DERs and demand-side flexibil-
ity (response) programs [9], [10] suggest that low-voltage
grid issues resulting from high demand or high levels of
local power generation could be dealt with at the distribu-
tion networks level [11]. In this context, traditional passive
distribution networks are transformed into ADNs. Different
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flexibility assets, such as demand-side flexibility resources,
batteries, and DERs are considered local flexibility assets in
the ADN. Most of the aforementioned resources are stochas-
tic in nature [12], but they can still play a crucial role in
demand-side management and low-voltage grid operation.
This is particularly the case when central operators have the
possibility to shift or curtail loads over a particular period or
to use energy storage or batteries when necessary. Therefore,
the SO needs to assess possible future developments in terms
of uncertainties and time.

In this paper, we study the impact of time and uncertainty
on the decision processes of SOs in ANDs [13]. An SO uses
centralized scheduling of multiple flexibility assets and ser-
vices to minimize the cost of managing problems relating to
network congestion, voltage variations, and network losses.
A number of authors have studied uncertain parameters such
as price, load, renewable generation, and fault situations in
distributional grids in connection with optimal response to
system or market conditions [14]. The novelty in this paper
is our focus on how the dynamic capabilities of the flexi-
bility resources (e.g.,) time are defined, how uncertainty is
resolved in our optimal scheduling model, and the charac-
teristics of the flexible assets. Two important parameters for
optimal decision-making at the operational level are activa-
tion (response) time and duration of the flexibility provided
by the assets. Fig. 1 shows the characteristics of a flexibility
resource (asset), in which the SO procures a certain amount
of flexibility from flexibility service providers (FSPs).

Power (MW)

Energy

Ramp rate
(bidirectional)

P;

B

the——=> t (————————— >t Time (t)

Response Duration
(Activation) time

FIGURE 1. Characteristics of a flexibility resource base for time and
power [15].

To study the impact of uncertainty representation when
scheduling flexible assets in ADN management, we use
well-known quality measures from stochastic programming,
including the value of the stochastic solution. We also intro-
duce a new measure related to uncertainty and flexibility
when considering reactive power. By varying the character-
istics relating to activation time and duration of flexibility
provision from these assets, our analysis shows that the pre-
sentation of uncertain information regarding load and price
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in a model is very important when considering the value of
flexibility.

A stochastic two-stage AC optimal power flow (AC-OPF)
model is used in the analyses. The results can be generalized
to a multistage setting. However, two stages are deemed suftfi-
cient to illustrate the importance of the information structure
of the model, namely the time when uncertainty is resolved
and how that affects decisions and the representation of flex-
ibility in the available assets regarding activation time and
duration of the flexibility supply. In peak load situations in
which voltage drops and/or network congestion problems
occur, the SO implements dynamic scheduling of a portfo-
lio of flexible assets. The primary objective is to present
the impact of uncertainty representation and timing on both
active and reactive power. Accordingly, a moving interval
approach is used, whereby both the first stage decisions and
the recourse decisions in the second stage of the stochastic
model are affected by the response and duration times of the
assets. Fig. 2 shows the moving interval method, which uses
load shifting for flexibility.

l

[ Day stars | I reaksas | [ N

— £
y Ends

| I 1

Time interval for
load shifting

Moving interval

FIGURE 2. Timeline of the

d

- .
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B. LITERATURE REVIEW AND CONTRIBUTIONS

Authors in [16] investigated time aspects of flexibility pro-
vision through a qualitative survey-based study of different
companies. They found that timing-based business models
could perform in very short time intervals to complement
traditional power generation capabilities when managing
changes in generation or consumption plans.

An SO needs to choose between grid upgrades and using
flexibility products by considering the time dimension of the
network configuration and demand-side flexibility. Different
factors such as response time, duration, and power amount of
the demand-side flexibility, affect the ability to use flexibility
assets to replace or delay network upgrades [8].

The time characteristics of some flexibility assets (tech-
nologies) could enable the assets to provide value in multiple
time intervals. The authors in [15] conducted a survey to
evaluate different flexibility technologies with respect to their
time dimension and found that for optimal valuation and
usage of flexibility resources, the decision-maker (in our case
the SO) needs to know the time characteristics of the sched-
uled flexible asset before physical delivery of the flexibility
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services. The literature provides examples of stochastic mod-
els for scheduling flexible assets at the level of microgrids,
DSOs, and transmission system operators (TSOs), based on
central control [17], [18]. Often, such modeling approaches
are based on optimal power flow models for scheduling and
flexibility procurement [19], [20]. The importance of duration
and activation times for flexibility assets (time characteris-
tics) are discussed by [15], [21], but the authors do not present
quantitative studies of flexibility in grid operations and the
impact of uncertainty on flexibility services and assets. To our
knowledge, no studies to date have used stochastic program-
ming to examine both uncertainty and characteristics of flex-
ibility (e.g., duration, activation time, and their relationships)
in a dynamic schedule. This article makes a contribution in
this respect.

In the case of ADNs, some studies present methods to deal
with DERs and uncertain loads in cases of network conges-
tion and voltage variation problems. Besides active manage-
ment resources in ADNs, an SO or centralized management
could use economic incentives and market-based approaches
to mitigate such problems. As one approach, [22] present
a congestion management strategy with a market-based
mechanism and SOPs. Since original SOP-based conges-
tion management is a non-convex problem, they applied
convex relaxation, namely semidefinite programing (SDP).
They specifically did not use demand-side flexibility such
as load shifting and shedding. In another approach, authors
in [23] used flexible demand and storage systems for an
ADN with dynamic OPF modeling. Their results showed
the efficiency of the use of flexible demand and storage
systems for ADNs. In a recent study, [24] present a method
for two-stage hierarchical congestion management in ADNs
with SOPs, tie switches, DERs, and a microgrid. They used
SOPs and switches as direct control mechanisms, while DERs
contributed through a market. The above-discussed studies
demonstrate the efficiency of flexibility in ADN manage-
ment, but without emphasizing the impact of time and uncer-
tainty in scheduling and decision making.

The authors in [25] and [26] discuss reactive power provi-
sion from DERs via market designs (optimal reactive power
dispatch). Both sets of authors state the importance of uncer-
tainty from the DER perspective. However, they do not
discuss the provision of reactive power from demand-side
flexibility assets for grid operations according to the time
dimension. Our stochastic flexibility provision framework,
which is the second contribution of this paper, includes the
reactive power component.

Recent research on flexibility usage has focused on
demand uncertainty [27], uncertainty in renewable resource
generation [28], PV generation and ambient temperature
uncertainties [17], and uncertain reserves from demand
response [29]. In this paper, we mainly discuss uncertainties
regarding resources and their availability in a binary manner
(i.e., the power resource is either available at a certain level
or not), rather than representing duration and time lags for
activation (response).
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The contributions of this paper are summarized as follows:

« We investigated the impact of uncertainty in decision-
making and the importance of how to represent the time
dimension (i.e., duration and activation (response) time)
when scheduling flexibility assets and services as well
as how uncertainty is resolved in optimal scheduling
model.
« A new quality measure is introduced to evaluate the sig-
nificance of representing uncertainty about availability
of the usage in different assets, with a focus on reactive
power.
o The impact of uncertainty and time when scheduling
each flexibility asset is examined by applying two vari-
ants of our optimal scheduling model.
Our evaluations use both this new quality measure and tra-
ditional ones such as the Value of the Stochastic Solution [30].

The paper is structured as follows. Section II discusses the
concept and the different flexible assets. Section III describes
the mathematical model. Section IV explains the representa-
tion of stochasticity and scenario generation. Section V intro-
duces a case study from Norway and the results of optimal
scheduling. Section VI explains quality measures and the
impact of how uncertainty is represented with regard to the
activation time and the duration characteristics of the flexible
assets.

Il. FLEXIBILITY ASSETS AND SERVICES

Our study includes two primary demand-side flexibility
resources: demand response in terms of load curtailment and
load shifting; demand response in terms of storage.

A. DEMAND-SIDE FLEXIBILITY SERVICES-

LOAD SHIFTING AND CURTAILMENT

Load curtailment is defined as a reduction in the maximum
load (peak shaving) for a predefined duration and payment
for a prosumer/consumer. As a flexibility asset, load curtail-
ment is prepared for immediate use by the central system
operator. The cost of using load curtailment could be too
high in some circumstances and therefore the duration of this
asset is less than other assets. However, the response time is
shorter than that of other measures due to an immediate cut
in consumption.

Load shifting differs from load curtailment in terms of cost,
duration, and activation time. The main condition for shifting
any flexible load is that it is possible to meet total demand
after the shift. An SO or asset owner could shift the consump-
tion within a time interval for specific load volumes. The load
profile can be changed, but the total energy delivered over the
planning horizon must be preserved. Alternatively, the whole
load profile can be shifted. In this paper, we discuss the first
approach with load preservation within a planning horizon.
For a further discussion of the load shifting, see [31].

The duration and response time of load shifting, time
dimensions illustrated in Fig. 1, are important attributes
concerning its timing. The provision for flexibility through

82969



IEEE Access

G. Kara et al.: Impact of Uncertainty and Time Structure on Optimal Flexibility Scheduling in ADNs

load shifting needs careful consideration, as it must include
enough time to shift the volume as well as to meet the total
power demand. Moreover, the load shifting should remain
in the solution process for sufficient time for cost-efficient
solution (duration).

Demand-side flexibility assets such as load shifting and
load curtailment include uncertainty about their duration
response time and load amount. Any changes in the time
dimensions of these assets will also change the degree of
uncertainty during the flexibility usage for grid problems.

B. STORAGE FLEXIBILITY- BATTERIES

The use of batteries allows for flexibility without incurring
any operating costs. The reactive power compensation capa-
bility of PV inverters can be used to regulate the voltage
magnitude [32]. In this paper, we discuss only active power
sourced from batteries.

Batteries are flexible with respect to timing and managing
uncertainty. An SO can plan exactly how long a battery
should remain in flexibility usage process and batteries can
be activated whenever the SO needs them to provide power.

C. SYSTEM ARCHITECTURE

Our proposed power system architecture has a central SO
that can procure flexibility services from flexibility assets
connected to an LV grid within limits defined by bilateral
contracts with the asset owner. The contracts specify how
the load can be shifted or curtailed within predefined limits
and how batteries can be used to address grid operational
issues. The central SO procures flexibility from the FSPs at
a pre-agreed cost that reflects the batteries’ disutility. The
assets are located in residential areas, but the flexibility is
controlled by the operator. The architecture of the suggested
solution is shown in Fig. 3.

MV/LV Transformator

Central System
Operator

Grid

N

Qms \ Load Shifting

Load Shedding

Abus in grid with flexibility assets

FIGURE 3. Proposed power system architecture.

1) COSTS OF FLEXIBILITY ASSETS

In the studied case from Norway, load curtailment is a vol-
untary action. Therefore, the cost is set at 1500 EUR/MWh,
which is lower than the normal value of lost load (VoLL).
The disutility cost [31] used for load shifting is shown as a
piecewise-linear cost curve. The shifting is based on volun-
tary actions and therefore the cost is assumed to be lower than
the VoLL, but it will increase with volume.
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FIGURE 4. Piecewise-linear cost curve with four increments.

The disutility cost curve for load shifting includes four
increments and five breakpoints on the cost curve, as pre-
sented in Fig. 4. Breakpoints in the cost function, as well as
other details, are defined based on studies of variable costs of
end-user appliances [33], [34].

Ill. MATHEMATICAL MODEL: STOCHASTIC TWO-STAGE
AC OPTIMAL POWER FLOW

In this section, we present the stochastic two-stage AC-OPF
model with demand-side and storage flexibility. The back-
ground information on load shifting was sourced from [31],
whereas the AC-OPF model is based on the work of [35].
For comparison, both in terms of solution times and solution
quality, we consider an AC formulation and an alternative DC
relaxation formulation of power flow for the second-stage of
the stochastic model.

We used a two-stage stochastic program to model the
uncertainty in demand and prices [36]. The two stages,
the uncertainties, and the decision-making process are all
shown in Fig. 5. In the first 10 periods, all scheduling and
load/supply balances are performed without knowing which
of the scenarios will occur at # = 11 hence without knowing
the realizations of load and prices from that point until the end
of the problem’s time horizon. Before ¢+ = 11, the parameters
such as load and prices are deterministic. At # = 11 one of
the scenarios will be realized and scheduling of flexible assets
will be scenario-contingent from thereon. The main purpose

Scenarios

s=80

Stage 1: Prices and demand are deterministic =11 =12 =24 }

Stage 2: Prices and demand are uncertain

FIGURE 5. Two-stage decision-making structure with uncertainties.
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of the stochastic program is to minimize the expected costs
for all periods, considering the uncertainty process.

A. OBJECTIVE FUNCTION

The objective function in (1) aims to minimize the total sys-
tem cost. There are four terms in the expression. The first two
represent the deterministic first-stage decisions. The third and
fourth terms represent exactly the same costs in the second
stage and therefore variables are scenario-dependent, indexed
by s, and the terms are multiplied by probability R,. The
first term includes the cost of electricity imported from the
medium-voltage (MV) grid. DPg (» DP,, are active power
import and export from external grid and f; is the electricity
price. The second term consists of the active power load
curtailment Pf_hfd as well as the cost of load shifting at time ¢
in bus i, C;

L shift *

minimize Z Z [DP;, Bt + DP,, ﬂr]

teT geG
+ T (VoL P+ iy
iel teT
+ TR | L X (08 b+ D ]
seS teT geG
+> ) [VoLL 5 PShed 4 Cs,,-,t_\.,l,.,-,]} (1
iel teT

B. CONGESTION CONSTRAINTS
To prevent grid congestion, the equation 2 is added to the
optimization problem with active power flow AF S 1,i,j» Teac-

tive power flow RF2 .. and upper limit of the line usage,

S, t,1,]
S; between buses 7 and j.

AF?, ..+ RF?

2
5. =S5j @

NN

In the variant model with DC power flow, grid congestion
is modeled in (3). The equation provides an upper limit for
active power flow between buses i and j. The impacts of
equations (2) and (3) are discussed in Section VI.

AFsyij < Sij 3)

C. IMPORT AND EXPORT CONSTRAINTS FROM AN
EXTERNAL GRID

These import and export constraints in equations (4) and (5)
represent the imported active power, Py, ., and imported
reactive power, Qs o, from the external grid. In our case
study, the external grid is connected to the first bus in the
LV grid and can be considered as a source of an external
flexibility asset.

Psg(=DPl,, —DP_,, 4)
Qs,g,t = DQ:,—g,t - DQs_,g,t ®)
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D. POWER FLOW CONSTRAINTS
The AC power flow constraints enforces the active and reac-
tive power balance at each bus in the LV grid for voltage
regulations, Vy; j;, at each bus.

AFsij = y2 Yijcosty i

s, l t
— Vit Vs juiYijcos (83,,-1,
RFsj: = Vé it
— Vit Vsjit Yigsin (8s,i0 —
bVZ,
T2

In some the following formulations we use a DC optimal
power flow equation in case we want to see the impact of
uncertainty on just the active power balance (without consid-
ering voltage regulations):

- as,j,t + 9&,1’/’) (6)
Y,J-sinexvj,-
Ss,j,t + es,ij)

O]

AFyiji = Bij(6sir — 0sj1) ()
E. LOAD BALANCE CONSTRAINTS

For each bus in our grid topology, equations (9) and (10) rep-
resent net demand, including flexibility for active and reactive
power from all flexibility assets in the grid. In equation (9),
we obtain active power from batteries, demand-side assets
and services, and the main grid. In equation (10), we obtain
reactive power from demand-side assets and the main grid
only. The last two equations (11 and 12) show the upper and
lower limits of purchases from the MV grid.

AFsrij= ) Pigi+ (Pf’f - Pfhft)

8€Gi
shift P hed
+Pvlt[s/,,/,_Lvlt+P;118t 9
RFs,t.i,j = Z Qs.i,g,t
8<Gi
shift shed __ Lq 10
+QS‘L[[;]"/,+QSII‘ S,0,1 (10)
PZlin < Ps,t,g < Pgla)c (1 1)
O < Qs < O (12)

F. BATTERY CONSTRAINTS

Equations (13)—(16) represent the state of charge (SoC) in the
batteries (SoCs,; (), the limits of the SoC, and the maximum
and minimum charging capacities, respectively.

pdis

S0Cy.i = SoCyi -1y + P4 %y — nd’ (13)
SoC™" < SoC < SoC™* (14)
0 < P < Z; - SoCl"™ (15)

0 < PIs < 7, SoCI* (16)

G. LOAD CURTAILMENT CONSTRAINTS

In equations (18) and (19) the amount of load curtailment
is limited by L” , for active power demand, and LY ;o for
reactive power demand in each bus (the power factor in (17)
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is assumed to be constant at each bus).

Vel = Pt an(@:.) (a7
0= Pl <Ly, .
0< o<1, )

H. LOAD SHIFTING CONSTRAINTS
The load shifting formulation is based on [31] and states
that the total load volume could be reallocated in any period

lown t“!’

within the planning horizon: ty,; € I:tghift , shiﬁ] cT.

Within f, our model is obliged to satisfy all demands at
each bus.

Four equations represent the convex cost function of load
shift, and in Fig. 4 they are depicted as the cost curve. The
reference equation (20) gives the amount of load shifting
( ihl’f;; hiﬂ)’ and equation (21) gives the cost of load shift-
ing (Cs, i,fsm'ﬁ) as the function equation. The convexity equa-
tion (22) creates a convex combination of auxiliary variables
As it k with one of the variable’s immediate neighbors. In a
minimization problem with a convex and piecewise linear
cost curve, such a formulation leads to an exact formulation
without resorting to the formulation of Special Ordered Sets
of type 2 (SOS2) variables. Equation (23) is used to calculate
the load profile balance, which ensures that the shifted load
is energy preserving at the end of the interval. Equation (24)
calculates the shifted reactive power load.

hift . P
Py = D s kLl o0 (20)
kek

Coitgp = D rsivtaip kL 1 0k VG (21)

kekK
D sk =1 0= Aciggr <1 (22)
kekK
hift hift
ZPIX'J:W: + ZP§=f~7shm =0,
Tshift Tshift
down up
tshift = Ishift = tshz_’ﬁ (23)
QL = P # 1ans) 4

where oy represents the percentage of load considered in cor-
respondence of breakpoint k. After exceeding 10% and 90%
respectively of the total load in each bus, different variable
costs and increments in the cost function are activated. Con-
cerning the A ;. tohi K value, reference row increments will be
activated and will give the cost of a load shift according to the
related variable cost, yi. For the 10% shift and 90% shift, are
EUR 10/MWh and EUR 50/MWh respectively based on [33].

I. VOLTAGE ANGLE AND MAGNITUDE LIMITS
The following equation (25) gives the magnitude limits for
voltages:

09 < Vs.i,j,t <1.1 (25)
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IV. STOCHASTICITY AND SCENARIO GENERATION

The main analysis is performed with a two-stage stochastic
model in which load and electricity power prices are deter-
ministic to describe scenarios representing the second-stage
uncertainty, a scenario generation algorithm based on a
combination of forecasting and moment-matching of resid-
uals [37], [38] is used. This is similar to the approach
used by [39]. Our method, which is based on articles by
[37]-[39], collects the historical data, establishes (parame-
terizes) an autoregressive forecast model for load in the buses
and prices, and combines estimated realizations for these into
a scenario tree representing the realizations.

Probability distributions for the errors (residuals) in the
load and price forecasts are used as a basis for model-
ing the uncertainty. For each error distribution, we estimate
moments such as mean, variance, skewness, and kurtosis.
Next, we use an algorithm for moment-matching scenario
generation to estimate joint error distributions for prices and
the 80 buses for all periods in the second stage. The approach
captures both temporal correlations (through the forecasts)
and inter-variable correlation (through the moment match-
ing). The main feature of the scenario generation algorithm
is to combine the time series information for the load in the
80 buses and price with the generated error distributions from
the moment matching, thus enabling us to capture both the
time correlation and inter-variable correlation. The scenario
generation method is convenient to use in short-term scenario
tree constructions [40], as described in the following six
steps:

Step 1: Forecast the load in each bus. For each bus, use an
N order, AR(N)-process to forecast load:

N
Liji=a+ Y ¢uLipiom+ e (26)

m=1

where L, is the historical load data, i,+1 is forecasted load
level, €, is the residual or prediction error and ¢, and « are
AR(N)-process coefficients. This is parameterized based on
historical data.

Step 2: Calculate the historical residuals of the forecasted
parameters. This residual distribution will be the basis for all
scenarios in all periods as the error processes are stationary.

Step 3: Calculate the statistical properties of the error
distributions. Calculate the mean (€47 ~), variance
(Var(e;q1  ~)), skewness (Skew(e;+; ~)), and kurtosis
(Kurt(€;4+1 ~)) and correlations between the residual series
(Corr(e+1))

Step 4: Create a joint error distribution. It should be noted
that this is valid in all periods because the errors are station-
ary. Use Hgyland et al.’s moment-matching algorithm [37]
to create a discrete joint scenario tree with error distribution
for price and load in all the buses. The joint distribution
approximates the four moments and correlations using s out-
comes for the residuals (e; +l). In our case, the number of
scenarios in the distribution is s = 80. The spatial (inter-
variable) correlations of variables in scenarios are captured by
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the moment-matching algorithm. It should be noted that our
algorithm captures the correlation of forecast model residu-
als, not the variables themselves.

Step 5: Create the first stage of the scenario tree. A scenario
tree can be made by first using the forecasting methods
directly for the first #; periods in a rolling window approach
where in if 7 is the last observed period and 7 4 1 is the first
forecasted period, we will have

N
Liyi=a+ ) ¢ulisiom @7
m=1
Then, proceed with
N
Ly =a+¢iliyi+ Y duLita-m (28)
m=2
until
N
i’t+11 =a+ Z ¢mi‘t+tl—m (29)
m=1

Step 6: Create the second stage of the scenario tree. For
each second stage scenario s, we follow the same procedure,
but, add the term €/, which is a sample of the error in period
t used in scenario s. It is sampled from the s outcomes from
Step 4 (without replacement), such that all S outcomes are
used in a scenario within a period. This is then repeated for

t = ty,...,t. The variables in each of the second stage
scenarios can then be represented as
N
Lyy=a+) dulisim+e€ (30)
m=1
N
o=+ L+ bulipamte (3D
m=2
until
N
By =t ouliyninte (32)
m=1
wheres =1,...,8S.

Without loss of generality, the above assumes that m < £
and m < 1.

In our research, we parameterize 17 different (S)ARIMA
load models, one for each bus in the grid. The same procedure
is used to generate separate scenarios for the grid power
price. Thereafter, the load and price scenarios are combined
randomly, so that on expectation the expected correlation
between the load and price is zero. We generate 80 joint
scenarios for loads at every bus and the grid price. We capture
the spatial correlation of model residuals because the load
profiles of each variable are located in the same place, and
they have similar time-series patterns. Furthermore, variables
do not affect the national grid prices. Our model calculates
in-sample accuracy simultaneously while generating scenar-
ios at out-of-sample.
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V. CASE STUDY FROM SOUTHERN NORWAY

In this section, we analyze the results of our case study of
the islands that constitute Hvaler Municipality in southern
Norway, in January 2016. The municipality has approxi-
mately a population of 4100, in 2016, whereas on warm
summer days there can be ca. 40,000 people due to the
number of second homes [41]. Consumers locate in the area
are commercial buildings, two- to four-family houses, and
Norwegian holiday homes. In addition to the second homes,
there are two-family and to four-family residential buildings
and commercial buildings.

The 22kV and 230V radial grid structure in this study is
synthetically generated based on Hvaler Municipality, and it
contains 26 buses, of which 17 buses have electricity demand
and they represent households. The network is an LV grid and
therefore we expect to see voltage problems and congestion.
The radial topology of the grid is presented in Fig. 6. Red
buses are end users with demand-side flexibility capacities.
The first bus is the connection point to the MV grid with a
transformer. Therefore, possible congestion might occur on
the line between buses 1 and 26.

1

26

22 ) 11 5 2

LD BT ]

423 21 115141312 ]__1 7 6 4 3
25 201918 17 10 9

FIGURE 6. Radial grids structure based on Hvaler Municipality.

The anonymous data and demand-side flexibility parame-
ters were provided by a distribution system operator (DSO).
The data are observations of the grid participants and include
the load profiles of 17 end users from January 1, 2014 to
December 31, 2016. We used MATPOWER! to conducted
power flow analysis in order to identify existing voltage and
congestion problems on a predetermined day. Based on power
flow analysis, the active and reactive power demands from
each bus are represented in Fig. 7 and Fig. 8, respectively.

There are five batteries with 14 kW capacities connected to
buses 6, 10, 13, 18, 23 (battery sites). In cases of immediate
load curtailment, the system operator pays the VoLL to end
users.

We use two main approaches in this research for opti-
mal scheduling of flexibility assets. First, by using histori-
cal data, we solve a deterministic AC-OPF problem. Later,

! https://matpower.org/
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FIGURE 9. Congestion level on the predetermined sample day (hourly) in
the case study.

to observe the impact of uncertainty in load and prices,
we apply the two-stage stochastic AC-OPF model. The prob-
lems are solved using KNITRO and GAMS on a computer
with Intel(R) Core(TM) 17-7500U processor at 2.70GHz and
with 16GB RAM. The total run time for the deterministic case
is 33 seconds, and for the stochastic case is 15 minutes.

A. GRID PROBLEMS

1) CONGESTION PROBLEM

Congestion in an LV grid results from pushing the physical
limits of network lines, such as voltage limits, stability limits,
and thermal limits [42]. The level of congestion in the case
study on the predetermined sample day is presented in Fig. 9.

2) VOLTAGE VARIATIONS

If there is insufficient reactive power from system partici-
pants, a voltage variation problem will occur [42]. In our case
study, the problem was a voltage drop due to high demand on
the sample day (see Fig. 10).
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FIGURE 10. Voltage profiles on the sample day (hourly) in the case study.

B. DETERMINISTIC RESULTS

For the deterministic part of our study we used a single sce-
nario AC-OPF model to schedule flexibility assets to keep the
voltage within the required interval. In equations (6) and (7)
buses are kept within the voltage interval, and grid congestion
at the MV/LV transformer is prevented with Eq. (2). The
results of the imported power from the MV grid, the state of
charge (SoC) of the batteries, and the load shifting amount
are respectively presented in Fig. 11, Fig. 12, Fig. 13.
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FIGURE 11. Power from the main grid (MWh).
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FIGURE 12. Battery SoC in the deterministic solution (MWh).

1) DISCUSSION OF DETERMINISTIC RESULTS

The deterministic case observes a significant impact of flex-
ible assets when managing peak load hours. The main obser-
vation from Fig. 11 and Fig. 12 is that the feed from the main
grid is used for charging batteries until 06:00 in the morn-
ing. Until peak hours start, the batteries are fully charged.
As shown in Fig. 9, heavy congestion starts at 06:00. Between
06:00 and 21:00, load shifting is used to resolve voltage and
congestion problems (see Fig. 13).
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FIGURE 15. Battery state of charge at the first stage of AC-OPF (MWh).

C. STOCHASTIC RESULTS FOR WINTERTIME

The stochastic case includes 80 scenarios at the second stage
for loads and prices. The results of the scenario genera-
tion are presented in Fig. 14 as load factor in the grid,

. peak load . . .
ie., (7max' poss. Toad ) with an assumption of constant maxi-

mum load for every bus.

In the stochastic case, the AC-OPF model with all scenarios
provides different results from the deterministic case. The
peak period or increase in demand starts at 06:00. During the
first stage of our AC-OPF model, the observations presented
in Fig. 15 show that batteries are charging themselves from
the main grid, and load shifting occurs at the same time
(Fig. 16).

For the second stage, starting at 10.00, we observe load
shifting (Fig. 17), load curtailment (Fig. 18), and battery
power (Fig. 19). All these assets are contribute to grid
operations.

1) DISCUSSION OF STOCHASTIC RESULTS

The 80 scenarios at the second stage of our AC-OPF model
represent different paths in our LV grid. The results contain
individual scenario responses to the uncertainty in load and
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price levels. Similar to the deterministic case, we observe that
batteries are charging until 06:00 and discharging after that
(see Fig. 19) In addition, we also see load shifting in the active
and reactive power balance at the first stage Fig. 16.

In the second stage, the discharging process in the bat-
teries to provide active power to the grid can be observed
(Fig. 19), The load shifting shown in Fig. 17 shows different
load patterns between peak hours (06:00-21:00) and off-peak
hours (after 21:00). Moreover, load curtailment is observed
(see Fig. 18). Although it is not substantial at each hour,
it increases the cost of the solution compared with in the
deterministic case.
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The use of load curtailment is related to the interval used
for load shifting. Load shifting is available between peak
load hours, 06:00 to 21:00, and spans both stages. When the
applied model cannot shift enough load to off-peak hours,
the next option is to curtail the load. The difference between
the deterministic and the stochastic cases will become more
visible during the use of load curtailment. When uncertainty
both occurs and is non-negligible, the system will require
additional flexibility assets and services (i.e., additional to
batteries) in order to fix voltage drops and congestion prob-
lems, such as load curtailment and shifting. In the next
section, we discuss the relationship between uncertainty,
time, peak loads, and reactive power.

VI. THE IMPACT OF UNCERTAINTY AND TIME

In this section we study the effect of time structures on our
model’s solution. We measure the effect of varying time char-
acteristics of demand response assets. Moreover, we inves-
tigate how the timing of uncertainty is resolved and affects
flexible scheduling.

The value of the stochastic solution (VSS) measures the
expected difference between using the deterministic model
(replacing uncertainty with expected values) and the stochas-
tic model when the stochastic model is considered the true
model. We calculate the expected value of the expected value
solution (EEV). We start by replacing all stochastic variables
with their mean and solve the deterministic model. The EEV
will be the expected value of using this deterministic first
stage solution in the true stochastic model, and the corre-
sponding optimal second-stage responses are calculated. VSS
is the difference between the optimal solution value for the
stochastic model (recourse problem-RP) and the EEV [30].

Besides VSS, we define another measure in order to dis-
cuss the impact of uncertainty related to the relevance of
modeling reactive power: deviated value of stochastic solu-
tion (DVSS). To calculate DVSS, we first need to model an
AC/DC model that is a two-stage OPF model with AC-OPF
first stage and DC-OPF second stage. For this purpose, we use
equation (8) instead of equation (6). As is the case with VSS,
we start to calculate DVSS first by solving the AC/DC model
(model M1). Then, we solve the AC/AC model with fixed
first-stage decision variables (model M2) corresponding to
MI. Next, we solve the regular AC/AC model (model M3)
and calculate DVSS as the difference between the objective
function values of models M3 and M2. If DVSS is small
enough, it will be possible to use the two-stage AC/DC
model and obtain faster results, also allowing for decom-
position methods, such as Benders’ decomposition method
(e.g., [43]), and utilizing the fact that the second stage is
convex.

Furthermore, to see the relationship between the recourse
actions, load shifting/curtailment, and uncertainty in load and
prices, we apply a moving interval method to study load shift-
ing. The availability interval of the load shifting changes in
every instance of a problem in the moving interval. The begin-
ning of the load shift interval changes between 01:00 and
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10:00, but we keep the end of the interval at 24:00 as a fixed
point, as shown in Fig. 2.

Furthermore, we investigate the VSS and DVSS values
for two different instances in order to observe the impact on
flexibility assets individually. In Variant 1, we use both types
of flexibility assets (i.e., demand-side flexibility and storage)
simultaneously in the solution process of the grid operations.
Table 1 presents the changes in the values for VSS and DVSS
as a result of a change in the uncertain parameters.

VSS increases in particular instances when load curtail-
ment is a major part of the EEV, since the deterministic
solution is not able to meet the load in some scenarios, mainly
after 05:00. For both EEV and RP, the cost of load shifting and
the cost of purchase from the main grid to charge batteries are
almost the same. The main cost difference between RP and
EEV is due to load curtailment. The SO activates the load
curtailment if there is not enough time to shift the load in the
available time interval for load shifting, thus demonstrating
the importance of load shifting interval width. When the load
shifting interval is too short, the applied model needs to shed
load to deal with load uncertainty. The opposite case is also
true: if the load shifting time interval is long enough, the cen-
tral optimizer will not need to activate load curtailment and
the cost of flexibility procurement will be lower than using the
deterministic solution, hence the VSS will be lower. In that
case, the value of using the stochastic model will be higher
when solving a problem in which there is less flexibility.

DVSS measures the error of using the AC/DC model
instead of AC/AC. When this value is small enough, it is
possible to use AC/DC approximation instead of the AC/AC
model. Table 1 shows that, as in VSS, DVSS is mainly
impacted by load curtailment. In this case though, when
the load shifting interval is longer, the value of using an
AC/AC model will increase, and the AC/DC approximation
will not represent the flexibility adequately. It is important to
represent the AC power flow to utilize flexibility efficiently.
The difference between the two approaches indicates the
importance of reactive power and the impact of uncertainty.
Similar to the VSS results, the DVSS results indicate that to
fix voltage problem or insufficient reactive power problem at
the grid, SO should consider the time of availability for reac-
tive power flexibility resources. Otherwise, reactive power
provision could cost more than usual for the SO due to lack
of the activation time.

TABLE 1. The impact of uncertainty and time in Variant 1.

Load shift interval (hours)  VSS percentage  DVSS percentage
1-24 26 38
2-24 26 38
3-24 26 38
4-24 27 38
5-24 28 38
6-24 30 34
7-24 0 0
8-24 0 0
9-24 0 0
10-24 0 0
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TABLE 2. The impact of uncertainty and time in Variant 2.

Load shift interval (hours)  VSS percentage = DVSS percentage
1-24 29 35
2-24 29 38
3-24 29 38
4-24 30 35
5-24 33 35
6-24 27 20
7-24 0 0
8-24 0 0
9-24 0 0
10-24 0 0

In Variant 2, we observe that the VSS and DVSS values
change when demand-side flexibility, such as load shifting
and load curtailment assets, is possible. We observe a similar
result without the use of batteries. In the absence of batteries,
that are controllable, demand-side assets such as load shifting
and curtailment provide a solution to grid problems with
regard to their availability time and uncertainty. These results
are presented in Table 2.

In both variants of the case study from Norway, it is critical
for the quality of the solution that the hour when uncertainty
is resolved (the second stage starts) is within the load shift-
ing interval, rather than at the beginning of the peak load
hours. Then, load shifting will be the only flexibility asset
with a recourse possibility. If the load shifting interval does
not involve a stage break, both VSS and DVSS values will
erroneously indicate that the impact of uncertainty will be
insignificant. For an SO, this will require careful consider-
ation of the time structure of the stochastic model, the related
uncertainty structure, and, importantly, the representation of
time characteristics of the flexibility assets.

VII. CONCLUSION AND OUTLOOK

In this paper we have studied the scheduling of a portfolio
of flexibility assets to solve voltage variation and grid con-
gestion problems in an ADN. The main results indicate the
importance of considering the timing of decisions, the time
characteristics of the flexibility assets, and the represen-
tation of uncertainty in the stochastic AC-OPF model in
this research. Representation of flexibility assets, especially
demand-side flexibility assets, must include information on
duration and activation (response) times for those assets to
have optimal impact on flexibility provision. In order for the
assets to be effective for flexibility provision, the load shifting
interval of an asset must be seen in relation to the time when
uncertainty is resolved.

There are three main observations. First, if the available
load shifting capacity is available in a wide enough time
window to overlap with both the first and second stages of our
model, the stochastic model will be better than the determin-
istic model. Second, the narrower the duration time interval,
the more important the use of a stochastic model will become.
Third, we observe that the greater the amount of flexibility
available in the duration of the load shifting interval, the more
important it will be to use an AC model, also for the second
stage, to capture the value of this flexibility.
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Future research topics for optimal flexibility scheduling
under uncertainty might include risk-neutral or risk-averse
actors in a power market setting to investigate the efficiency
of the usage of the flexibility assets for grid operations.
Another approach would be to include the use of active
management technologies such as soft open point, on load tap
changer, and static VAR compensators in an integrated way
with flexibility assets. Furthermore, value could be added by
including the customer’s perspective in a market design in
cases where more solar power and wind power are available.
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Abstract

In order to unlock the flexibility potential of energy consumers and pro-
sumers, the development of market mechanisms for flexibility planning and
procurement is necessary. The authors propose a stochastic local flexibility
market to solve grid issues such as voltage deviations and grid congestion in
a distribution grid. Their proposed solution includes activation of flexibility
assets at the consumers’ premises, using a stochastic local flexibility market
design. They consider a pooled local flexibility market design under demand
uncertainty and stochastic bidding process. Mathematical modeling is used to
determine flexibility demand and supply bids by the distribution system op-
erator and the aggregator respectively. A stochastic AC-optimal power model
for the distribution system operator and a two-stage stochastic model for the
aggregator are implemented to simulate stochastic local flexibility market.
Consequently, the authors obtain stochastic flexibility supply bid curves, and
optimum flexibility supply dispatch. They prove that the cost of grid opera-
tions is reduced by up to 40% when the system uses the local flexibility market
compared to not using it. The proposed methodology is applicable for intra-
day market or local flexibility market designs to use the potential end-user
flexibility for grid operations.

1 Introduction

Electrification of sectors in the economy is not only beneficial for the power system,
but also introduces the need for more demand-side flexibility at the distribution grid
level in order to ensure grid security. The concept of flexibility in power systems
relates to their ability to respond to sudden changes in power consumption and
generation [1]. By using demand-side flexibility assets, such as load shifting or load
curtailment, it is possible to address some grid problems in real-time [2]. In some



cases of grid problems, this requires aggregating local flexibility resources [3] to
ensure security of supply. An optimal utilization of flexible electricity resources in
an efficient market design could address grid challenges and contribute to a deferral
of costly grid investments [4]. One option would be to solve grid problems by using
market pricing (indirect control). Another option would be to control flexible assets
directly [5]. A centralized control of the flexibility assets might pose problems in
terms of technical management of a large amount of resources by a single central
planner. In this respect, we propose the utilization of a Local Flexibility Market
(LFM) to solve grid problems using a market based mechanism between a group of
agents, each one in charge of the management of different portions of the grid.

In general, three market players are considered in LEM research, according to [6]:
consumers/the aggregators, the Distribution System Operator (DSO), and Balance
Responsible Parties (BRPs). According to [7], the three main operational processes
of an LEM are contracting and bidding, activation, and market settlement processes.
In this paper, we first discuss how, via an aggregator, a number of consumers can
provide flexibility from a portfolio of flexible assets in a market. Second, we discuss
how the buyers of flexibility, in our case a single DSO, bid their flexibility need in
the market. After the market is cleared, and the price and volumes are settled, the
agreed-upon flexibility is provided by using load shifting, curtailment, and batteries.
Thereafter, the optimal power flows, and load shedding if needed, are scheduled by
the DSO in order to minimize system costs and to meet the demand for power in
the local system.

[8] present the objectives and services of an LFM. According to them, the pri-
mary objective of an LFM is to support the trade of end-user flexibility for the
benefit of the DSO’s grid operations. According to [9], the congestion manage-
ment, the voltage/reactive power, and the controlled islanding are solved via LEM.
Furthermore, the cost of flexibility for congestion management is discussed by [10],
based on the real-time activation of flexibility. According to [11], the DSO should
make sure that the required flexibility is continuously available throughout the oper-
ational process. Such situations might be affected by short-term uncertainties [11].
In this paper we consider congestion management and voltage corrections under
uncertainty with reference to our suggestion for a market design for LFM based on
the paradigm of stochastic market clearing.

Stochastic dispatch and bidding strategies for reducing operational costs have
been investigated in the literature. For example, [12] argue that demand and supply
uncertainty can be addressed by using stochastic dispatch and clearing. Morales et
al. [13] investigated a two-stage stochastic model for dispatch in a pooled design.
Bjorndal et al. [14] consider an energy-only market with load uncertainty and flex-
ibility costs for a stochastic dispatch mechanism and compared it with a myopic
model (two-stage). In our research, we have designed a stochastic dispatch and
bidding mechanism with deterministic cost parameters, influenced by [14], [15],
and [16].

The main contributions of our research, presented in this paper, are as follows:

e We present a novel, stochastic LFM design in which flexibility is used for
distribution grid operations, such as voltage correction and congestion man-
agement, to supplement an intraday market for power.
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e We observed up to 40% cost reduction with a stochastic LFM design compared
with only the use of load shedding by the DSO for grid operations.

e We explain the nature of stochastic flexibility bids with deterministic cost
parameters in an LEM.

The remaining part of this paper is organized as follows. In Section 2 we present
the stochastic LFM design, system architecture, and bidding process. Section 3
provides the mathematical models. In Section 4 we describe the case study, grid
problems, and present the results of our research, which are then discussed in Sec-
tion 5. The main conclusions are provided in Section 6.

2 Market design

The design of an LFM must address the grid topology, timing aspects, and the
heterogeneity of flexibility technologies. In this paper, we present our design for a
pooled market, including an aggregator that bids on behalf of flexibility providers,
and a single buyer, the DSO. The approach can easily be widened to include more
buyers and sellers in the market place.

2.1 Bidding process details

In the pooled LFM design, we assume perfect competition, where each market
participant is a price-taker that does not act strategically. For the aggregator, this
means that the objective is to provide stochastic bids with the aim of minimizing
the expected cost of the flexibility supply by using the available demand-side assets.
For the DSO, the aim is to minimize the system cost of meeting demand in the
network (including the option to shed load at the cost of Value of Lost load VoLL).

The uncertainty structure of bidding is two-stage stochastic optimization, as
illustrated in Figure 1 [17]. The bidding process is modeled as a two-stage stochastic
problem due to the presence of flexibility assets that need to be considered over the
entire time-span. Until time %19, the parameters are deterministic and therefore
both they and the bids have the same same values for each scenario (the reason
for this particular choice is discussed by [18] for the same case study studied under
direct control). After t19 up to to4, the red filled-in circles in Figure 1 represent
scenario realizations that are uncertain when seen from time periods until ¢19. In
the suggested pooled market design, the aggregator bids stochastically into the LFM
to establish a flexibility supply curve for each scenario and each time period. At
period t11, the second stage—during which uncertainty is resolved—starts, and the
scenario-dependent demand for each customer becomes known.

Although we have stochastic power demand, the model (AC-OPF) to be solved
by the DSO at each time period and in each scenario is deterministic. This is because
the DSO always balances the system in real time using the flexibility procured and
the option to shed at VoLL, but otherwise does not have any flexibility or storage
option. This leads to a one-period deterministic problem for each time period and
scenario.

During the stochastic bidding process, the aggregator needs to know the indi-
vidual costs of flexibility assets in order to determine bid prices (i.e., the marginal
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Figure 1: Uncertainty structure and stages of the aggregator model.

costs of providing flexibility after scheduling flexibility assets and consumption).
This bidding process, based on marginal costs, establishes a flexibility supply curve
in the LFM under conditions of perfect competition. These flexibility cost parame-
ters are deterministic, but the load in the different scenarios is stochastic, as is the
demand for flexibility in the LFM.

At this time, the DSO examines how much flexibility is needed in the LFM to
solve voltage drops and grid congestion issues with minimum costs. The DSO has a
perfect foresight of the grid status and load in the buses. In the bidding phase, the
DSO does not know where flexibility will be provided in the grid, it just signals an
aggregated demand to the market. After the LFM market is cleared, the different
consumers’ flexibility supply is dispatched by the aggregator and communicated to
the DSO.

If the cost of flexibility supply (i.e., the LEM price) is higher than the VoLL, or
if the flexibility supply is insufficient to solve the grid problem, the DSO will apply
load shedding instead. This could also happen as a consequence of the dispatch, as
the grid location of flexibility is not known when bids are made.

2.2 The stochastic LFM design and process

In our proposed design for LEM, the customers are the flexibility providers, but they
are represented in the market by an aggregator. We assume perfect competition for
our proposed pooled LFM design. In this LFM, the flexibility supply bids are priced
at the marginal cost (similar to balancing markets [4]). The interaction between
the power customers (the flexibility providers), the aggregator, and the DSO in the
pooled market is summarized in Figure 2.

Every sixth period, the customers buy power from the grid at Intraday (ID)
price. The delivery of the power is determined by the consumers’ choice over the
six periods until the next intraday trade possibility. It should be noted that when
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this is done, demand is known for the five periods, due to the uncertainty structure.
In all periods, the aggregator can sell flexibility and the DSO can buy flexibility.

The DSO sees a set of stochastic scenarios of the active power demand for every
customer and location in the grid. The bidding is done under uncertainty, so the
DSO presents the flexibility demand bid for any time period in the form of a discrete
probability distribution, with flexibility demand represented for each of the scenarios
in every time period. The load used in these scenarios is before any demand-side
actions are taken or battery scheduling is done.

The aggregator sees the same information as the DSO, without knowing the
grid topology. However, as part of its bidding process the aggregator will perform
optimal scheduling of batteries, load shifting, and curtailment in order to provide
flexibility at an expected minimum cost over the whole horizon. The aggregator
provides scenario-dependent flexibility supply bids that consist of the price needed
to meet each scenario’s flexibility demand. Only active power is traded in the LFM,
but reactive power is considered by the DSO when solving the AC optimal power
flow (AC-OPF) problems to calculate the demand for flexibility.

The purpose of the flexibility bids and the stochastic dispatch is to enable market
clearing that equalizes the flexibility demand by the DSO to the flexibility supply
by the aggregator in every scenario at every time period. The DSO’s objective is
to avoid load shedding due to congestion or voltage drops. As the LFM is pooled,
the DSO cannot know or control which customer provides the dispatched flexibility;
rather, the decision is up to the aggregator.

In short, the steps in the bidding, market clearing, and dispatch process for a
specific time period are as follows.

Step 1. The DSO determines the amount of load shedding for active and reactive
power before flexibility trade for each scenario and period, by using a deter-
ministic AC-OPF model. After solving the AC-OPF problem, the DSO calcu-
lates flexibility demand according to the active power load shedding amount
and bids this flexibility demand to the LFM for each scenario and time period.

Step 2. By considering the demand in each scenario and period, as well as the proba-
bilities of the scenarios, the aggregator schedules flexibility assets, determines
the new demand level of each customer, and bids a price-quantity pair as a
scenario-dependent flexibility bid to the LEM for each period and scenario.

Step 3. For each scenario and period, the market is cleared so that the demand for
flexibility is equal to supply. In each scenario, this results in a flexibility price.
Prices in the LEM are the marginal costs of flexibility provision.

Step 4. For each scenario and period with a flexibility supply requirement and price,
flexibility of customers are dispatched by the aggregator according to the
schedule. The aggregator then communicates the dispatch to the DSO as
the provided flexibility service at the cleared price, and provides information
about the consumers’ new demand level.

Step 5. By considering new demand levels after flexibility procurement, the DSO
solves the new OPF. If new demand levels after the dispatch of flexibility
do not resolve the congestion or voltage problems, load shedding may still be



needed. This may also be because the flexibility has not been dispatched to
the locations in the grid where it is needed. When load shedding is used, the
DSO sells back purchased ID power to the main grid in order to compensate
for reduced demand compared with the volume bought by the aggregator.

DSO determines the load shedding amount.
Load shedding amount is bid to the market as flexibility demand.

The aggregator schedules flexibility assets and power consumption.
Flexibility supply and new customer-demand profiles are determined.

The market is cleared of the flexibility supply and price bids by the aggregator.

The aggregator dispatches the flexibility of customers.

The aggregator sends the dispatch information, new customer-demand profiles, and load curtailment
amounts to the DSO.

The DSO dispatches the flexibility of customers and mitigates to the grid problems according to the
information from Step 4.
If the LFM process is not sufficient to mitigate grid problems, the DSO uses load shedding.

Step 5:

On grid

Figure 2: The stochastic LFM design and process.

3 Mathematical models and equations

In this section we describe three used models for flexibility demand determination
by the DSO, for flexibility supply and LFM prices determination by the aggregator,
and for final stochastic dispatch by the DSO. The first subsection 3.1 presents the
AC-OPF formulations used by the DSO for determining how much flexibility is
needed in the operation of the system. The second subsection 3.2 presents a two-
stage stochastic aggregator model to schedule the flexibility supply from consumers
and the corresponding bidding and market clearing in the LFM. The third and final
subsection 3.3 presents the DSO’s final power flow optimization in which dispatched
flexibility is included and load shedding is used as the last resort. The nomenclature
of mathematical models are provided in Table 2 at Appendix A.

3.1 Model 1: The DSO’s calculation of the flexibility demand

To determine how much flexibility the DSO needs, we use a non-linear AC-OPF
model with load shedding. While consumers buy power from the ID market, the
DSO estimates how that will lead to congestion and voltage problems.
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We assume perfect competition and let the DSO minimize the system cost.
At this stage, the DSO does not consider the available consumer flexibility, but
rather considers the different households’ original demand, excluding the operation
of batteries, load shifting, and curtailment. The DSO solves the model for each
period and scenario in order to estimate flexibility demand based on the need for
load shedding. The shed volumes are then used as bids for buying flexibility in the
LEM. The aim is that the aggregator can provide flexibility at a lower cost than
VoLL. The equations in the following subsections present the mathematical model
used by the DSO for each of the scenarios and periods.

3.1.1 Load balance constraints

Equations 1 and 2 satisfy the active (Lf t ) and reactive power (Lft ) demand at
each bus by purchasing from the transmission grid, P, ;. and Qg7t75, and by load

shedding, P77¢? and Q3he?

i,t,s i,t,8
— P shed
E :AFi;J',t’S - E : P, Sts T Li,t,s + Pz t,s (1)
jeJ geG;
shed
E :RFi»jvtvé E ant s ’L t,s it (2)
jed geG;

3.1.2 Allocation constraint

The allocation constraint in equation 3 outlines the purchases of active power /
electricity from the ID market via the transmission grid according to consumer
demands. The purchase is done at every sizth period, but it is allocated to be used
in every period. The ID purchases take place in periods (ti,ts,t11,t16,t21) € T
which we call operational periods while allocation to demand is done in all periods
(from ¢ to ta4), which we call balancing periods.

The allocation process and interaction with the ID market and the LFM is
illustrated in Figure 3. The aggregator purchases power from the transmission grid
at ID prices (large circles in Figure 3). Purchased power is allocated to customers
and the LFM is cleared (filled-in circles).

090000000000000000000000
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O (@ (@
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Figure 3: ID and LFM alignment.

It is possible to buy electricity, fo?, from the ID market in every operational

period t € T* and it can be consumed (P, ;) in every period, t € 71U T? (alloca-
tion). More specifically, the purchase/consumption relation is modeled as

Qg = Py + Z Py 2.5, tteT! (3)

t2€T]
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with 7;? represents the balancing periods in which flexibility services can be
bought, but only previously purchased ID power from the operational period ¢; is
available, if not already consumed.

3.1.3 Grid congestion constraint

Equation 4 models the grid power flow limitation:
AFEj,t,s + RFiQ,j,t,s < Si2,j (4)

where S represents the installed capacity of the line.

3.1.4 Power flow constraints

AC power flow constraints enforce the active power balance (equation 5) and reactive
power balance (equation 6) at each bus in the distribution grid.

2
AF; s = Viy $Yij,sc080jis — Vi sVt sYijscos (Gies — 0jes +05is)  (5)

bV,
2 . . 1,t,8
RE; js = Vi oYijs8im0iis — Vit sViesYijssin (0is — 0jes + 05s) — —2

3.1.5 Load shedding equations

Equation 7 is used to keep the power factor constant at the bus where the load
shedding happens.
shed _ P_shed . tan(@i) (7)

i,t,8 i,t,s

3.1.6 Voltage magnitude limit

Equation 8 gives magnitude limits for voltage
K S V;,t,s S V (8)

3.1.7 The objective function of the DSO model

The objective function (equation 9) that is minimized under every scenario s € S
is defined by the total cost of the DSO’s grid operations (OF1), considering both
purchases of power (by the aggregator) and load shedding (by the DSO) in order to
meet system demand. The cost of power purchases from the main grid is given by
the ID market price, whereas the cost of load shedding is VoLL (EUR 3000/MWh).
It should be noted that this does not consider the use of flexibility on the consumer
side, as the purpose is to identify the flexibility demand from the system’s perspec-
tive. Based on this assumption, there exists a joint multivariate distribution for
all the consumer demands that the DSO, the aggregator, and the consumers see,
which is the best available demand prediction. This is an approximation, as the

8



consumers and the aggregator may have their own incentives to use demand-side
flexibility, such as the ID price.

minimize OF1= Z Z By - foslos + Z Z Piﬁzd - VoLLL 9)

tleT! geg teT i€

3.1.8 Flexibility demand bids to the LFM

After Model 1 is solved by the DSO and calculating the active and reactive power
shedding amounts from equations 1, 2, and 9, the DSO bids the required flexibility
amount, D; ¢ s, to the LFM as active power for each time period and scenario.

The index of consumers (¢ € C) in the aggregator model is mapped to the index
of buses (i € Z) in the DSO model. Each household represents a different bus in the
distribution grid topology, as illustrated in Figure 4, but not all buses corresponds
households (Z — C and C C Z). The demand for flexibility is transmitted to
the LFM as pooled (i.e., >, .7 D; s as post-calculation) without considering grid
topology.

i€l

3.2 Model 2: The aggregator and flexibility supply bids

The aggregator formulates a two-stage stochastic program under uncertainty to
schedule the use of flexible resources for all consumers, and provides aggregated
(over the consumers) flexibility bid curves (active power) for each scenario and
period. The scheduling process calculates the new demand level of each customer
according to the flexibility supply bid. While the DSO can solve the grid problems as
single-period single-scenario problems, the aggregator must solve the whole problem
jointly as a stochastic program because the periods and scenarios are interlinked by
using storage and load shifting.

3.2.1 Demand-side and storage-side flexibility balance

When considering the DSO flexibility demand and power prices, the main aim is
to schedule the flexibility supply to minimize total system costs. Load balance
equations are used to calculate the purchase from the ID market and scheduling
of each customer’s assets in order to define new demand levels after load shifting,
curtailment, and battery scheduling.

Equation 10 expresses the purchases of active power from the ID market in
every sixth period and allocation to consumer in every period, in the same way as
in equation 3 and Figure 3, where it is estimated by the DSO:

er}yﬂ’s = Pe,tl,s + Z Pe,t?,s (10)
t2€T]3

where t! € T,

The difference between Model 1 and 2 is that the DSO does not consider the
available flexibility to the consumers, whereas the aggregator does, as will be shown
in the following equations (equations 11, 12, 13, and 15). For every customer,
the aggregator schedules flexibility assets in order to use demand-side flexibility in
every scenario and period, and to determine new customer demand levels (L75%)

c,t,s
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when supplying the flexibility, as modeled in equation 11. This action corresponds
to Step 2 in subsection 2.2 and includes original load L.+, s, net battery discharge

(pgftfs - pgflt’:sL curtailment of4"! and load shifting out of the time period t, piht‘fst

Lc,t,s - ((pg,lts,s - pgﬁfs) - Qg,utfz - pil,ltl,f;) = L?jg (11)

where t € T and

0 S chrt < Lc,t,s (12)

c,t,s —

In equation 13, pf,t,S represents the volume of power flexibility for accommo-
dating the DSO’s flexibility request after scheduling the assets of consumers and
determining new demand levels. Equation 13 is used to ensure that the new de-
mand level after the aggregator has scheduled the flexibility assets is either equal
to or lower than the old demand level (i.e., the demand before shifting, curtailing,
and battery usage) during congested hours, for each scenario. It should be noted
that when flexibility supply is negative, it will correspond to the periods when bat-
teries are charged or load is increased in the shifting process. These are periods and
scenarios without flexibility demand from the DSO.

Lgetug + p?,t,s =Lets (13)

Equation 14 establishes the supply-demand balance in the ID market for the
new demand levels.

Lets = Pets (14)

3.2.2 Flexibility supply-demand balance in the LFM

The flexibility balance equation (equation 15) calculates the amount of flexibility
supplied by the aggregator to meet the DSO’s flexibility demand at each period and
scenario where flexibility demand D; ; , exists.

Zpét,s > ZDW S T ZDW >0 (15)
cec i€z i€T

where 7, 7 D; s is the pooled demand of flexibility from the DSO, which is
obtained as a result of solving the previous problem (Model 1).

The dual variable (6{}8) of equation 15 measures the marginal cost of flexibility
provision (Step 3 in Subsection 2.2). The aggregator’s flexibility bid to the pooled
market is for each scenario and time period in which the price (6;"‘8) is combined
with the volume Y .. p2, .

3.2.3 Import power limit from the main grid

Equation 16 keeps the purchase from the main grid under the installed capacity of
the transformer connecting the distribution grid to the main grid. The value 5; ;
shows the capacity of only one line, the line between LV and MV grid (between
buses 1 and 26),
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ch,t,s S Si,j (16)

ceC

3.2.4 Intertemporal constraints relating to batteries

Equation 17 calculates the state of charge for batteries, whereas equations 18, 19,
and 20 calculate the capacity of batteries, and charging and discharging limits,
respectively.

dis
chr chr pr S
Weps = Vey1,s + EMpy, — Edtis , s€S  ceC (17)
where t € T
g S \ch,t,s S E (18)
0<ply, <H-U (19)
0<plie, <H-T (20)

3.2.5 Load Shifting

Load shifting is modeled using four equations to make it convex and piecewise linear
using breakpoints k € K. Equation 21, represents x-axis values (amount of power) in
the load shifting cost function, whereas the function row, equation 22, represents the
y-axis (non-linear cost function). The data for x-axis values, oy, and variable costs
for the function’s slope, V Cy, are taken from [18] as are other load shifting, battery,
and load curtailment parameters. Equation 23 is used for the convex combination
of breakpoints. As the cost function is convex, two neighboring breakpoints will
be used by design, making the approximation as close as possible. Equation 24
restricts the usage of load shifting; that there cannot be any load shifting outside
a pre-specified time interval. Equation 25 emphasizes that within a specified time
interval the total load allocated in the different periods needs to be equal to the
total load withdrawn from the other periods.

pihtl,f; = Z )\c,t,s,kLc,t,sUk tdown <t< tvr (21)
kex

T = Ntk Lensok VO 40U <t <t (22)

ke
D dersk =1, 0<Apop <1 19 <p <y (23)

ke
peidl =0, t<tton g > g (24)
and
hift hift

S () =0 (25)

teTN[tdown tup]
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3.2.6 The cost of discharging battery

To assign a cost to battery usage, we consider a cost coefficient associated with
the battery discharge, while we assume that battery charge is done at no cost.
In equation 26, we multiply the amount of discharge (MWh) by the fixed cost of
battery discharge, EUR 0.140/MWh. The cost of the battery discharge is taken
from [19],

Legs = pl, - 1C (26)

3.2.7 Non-anticipativity constraints

The aggregator model is two-stages. Therefore, non-anticipativity constraints are
needed to keep first-stage variables at the same values for all scenarios [20] in the
first stage. The first-stage variables in the aggregator model are all variables up to
and including period t1q.

3.2.8 The objective function of the aggregator

The aim of the aggregator is to minimize equation 27, which defines the cost of
operations for the aggregator (OF2). The first term denotes the purchase from the
main grid; the second element is the sum of battery usage cost, the load shifting
cost, and the load curtailment cost. The third and fourth elements represent the
same costs at the second stage.

minimize OF2= Z (Bt}n : Q?lgg) + Z Z (Fc,tm + Wiﬁfft + CC““QS‘;:)

tLeTh c€C tm€Tm
agg shift curt curt
F P20 X (Bt ) + 0 2 (Ters il 0o
seS ceCtheT! ceCtn€Ty

(27)

3.3 Model 3: The DSO’s final dispatch of the flexibility

The formulation of the stochastic dispatch is mainly the same as in the AC-OPF
model presented in subsection 3.1, except for the load balance equations. This
corresponds to Step 4 in subsection 2.2. It should be noted that the new customer
demand levels need to be represented as both active power and reactive power,
hence L7 = L™ and the reactive power is calculated in equation 28 as follows

c,t,s c,t,s

LY =L - tan(0;) c€C (28)

c,t,s c,t,s

The new demand level levels, L:,Liué" and Lz’iﬁ;q, of each consumer of each con-
sumer are mapped into different nodes i € Z: (C — Z) and then into the respective
active and reactive power as follows (see also Figure 4 in subsection 4.1). An impor-
tant detail here is that although pricing of the flexibility supply is done in a pooled
market, the information about the new demand levels from individual consumers

are shared with the DSO by the aggregator (Step 4 in Subsection 2.2).
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Equations 29 and 30 model the load balance constraints of the DSO, considering
the flexibility services from the LFM and the new demand levels (Lf:u;” and LZ’?“SJQ)
(Step 5 in Subsection 2.2).

_ ) newp shed
Y AF 1= > Pigus— Lt + P (29)
jeJ rIsen

_ new shed
E RFi,j,t,s - E Qi’g,t,s - Li,t,sq + Qi,t,s (30)
jeJ g€G;

3.3.1 The objective function for the DSO’s dispatch

The objective function in equation 31 (OF3) aims to minimize the cost of electricity
traded in the transmission grid by the DSO and the aggregator at the ID price, in
addition to the cost of load shedding.

minimize OF3= » | > (Bi, - Qqns) + 3D (P! -VoLL) (41

tleT?! geG teT iel

4 Case study and results

The case study includes real-life data with extensive analysis and solution proposals
from a day with coercive conditions. First, we explain the grid structure and our
consumer data. Second, we go through the steps of bidding, market clearing, and
dispatch, as described above in subsections 3.1, 3.2, and 3.3.

4.1 Grid structure and consumer data

Our case study is a distribution system in the Norway-Hvaler municipality of Viken
County in southern Norway, and the data were recorded in January 2016. The
Hvaler area comprises small islands. The area has a population of 4000, but during
holidays the population increases up to 40,000. The case study data were recorded
in a single day, with coercive conditions for the grid. Most of the consumers in the
grid are commercial buildings, family houses, and Norwegian second homes [21].
The mentioned ID market prices are ELSPOT prices from Nord Pool for the same
period as for the demand data.

The case grid is a 22 kV and 230V radial structure, as shown in Figure 4. There
are 26 buses in the grid, and 17 end users. We assume that the lines have sufficient
capacity to feed end users, with the exception of the transformer between buses
1 and 26, they are connection to the transmission grid. The transformer has a
capacity of 0.3085 MVA (for active power) and might be congested during peak
load periods. End users and the aggregator have flexibility assets, such as load
curtailment, load shifting, and batteries. Every grid member has a battery with
14kW capacity without inverters.

To include uncertainty, we generate 80 scenarios for the demand data by using a
forecast-based moment-matching scenario generation algorithm [22, 23]. For details
of this process, see [18].
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Figure 4: Grid topology and market participants presentations.

We use CONOPT for Non-linear programming (NLP) and CPLEX for Linear
Programming (LP) problems as solvers, and our models are implemented in GAMS
using a computer with an Intel(R) Core(TM) i7-7500U processor at 2.70GHz and
16GB RAM. The total run time for the NLP model is less than five minutes, whereas
for the LP model it is 30 seconds.

4.2 Grid problems and analysis

In order to use the potential demand-side flexibility, we use the system data where
the electricity demand increases significantly in a sample day, with coercive condi-
tions for the grid. In our case study with consumer data, we observe voltage profiles
(Figure 5a) that are under the feasibility threshold (= 0.80 p.u. at the lowest), with
grid congestion (Figure 5b) that blocks the transfer from the transmission grid. We
use MATPOWER developed by [24] to perform power flow calculations.

To estimate the need for flexibility under the voltage drop and grid congestion
problems shown in Figure 5, the DSO initiates its AC-OPF model to determine how
much flexibility is needed to keep the system within the normal range of operation
(voltage within the range 0.9 p.u. and 1.1 p.u. and no grid congestion). The load
shedding amount, according to the equations from subsection 3.1, represents the
flexibility requested by the DSO that is bid to the LFM as demand.

In Figure 6 we observe the flexibility demand profile, where occurs mainly be-
tween tg and to7.
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4.3 The aggregator’s perspective

The aggregator schedules flexibility assets such as load shifting, load curtailment,
and batteries in order to meet load and flexibility demand. The scheduling results
for these flexibility assets for the case study are presented in Appendix B.

The LFM prices are varied in order to clear flexibility supply and demand ranges
between 4 EUR/MWh to 1500 EUR/MWh. Although it is possible to see lower
prices than 1500 EUR/MWh for some scenarios (Figure 7), the results show that
the aggregator often uses load curtailment as the marginal asset to supply flexibility,
as illustrated in Figure 14 in Appendix B.

Figure 8, shows the flexibility provision from the aggregator in all scenarios and
periods. It should be noted that this represents a stochastic market clearing, as in
each period the dispatched supply depends on the scenario-dependent demand.
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4.4 The DSO final dispatch

The DSO uses the new load from the aggregator’s dispatch schedule for each period
and scenario. The exception is the curtailed volumes, for which the DSO is free to
decide whether or not they will be curtailed. The DSO knows the price of flexibility
in each scenario and time period, as well as the new load for each consumer (bus).

It should be borne in mind that the main aim of the LFM is to reduce the
usage of the load shedding by the DSO and to obtain cost-efficient solutions to grid
problems. The flexibility supply by the aggregator’s customer portfolio is equal to
the flexibility demand by the DSO, but it is the aggregator, not the DSO, that
decides on the location of the flexibility supply. As a consequence, the DSO still
may need to use load shedding if the flexibility provided in the buses does not resolve
all issues (see Figure 9).

The load shedding decision by the DSO is followed by reselling the same amount
to the ID market to cancel out that part of the aggregator’s ID buying. The income
from this trade is paid by the DSO to the aggregator.

16



0.25

o
e —_ S
—- »n ()

Amount of used load shedding (MWh)

e
3
b

||||| u"\” ,,,,,,, sl b

|
-~ woe o ® -~ woe =3
TeeITLeLEISCZECSTILSIERES
...............

0 \l

Figure 9: Used load shedding by the DSO as active power (MWh).

5 Discussions

In this section we discuss the nature of the stochastic bids, the cost-efficiency of
using LFM, and the location of flexibility.

5.1 The stochastic bids

The cost parameters of our flexibility assets are deterministic. However, the ag-
gregated flexibility cost varies depending on which assets are available within the
flexibility portfolio of the aggregator in the different time periods and scenarios.
Hence, we observe same LFM prices for different flexibility supply amounts at each
scenario in Table 1.

In general, the curtailment or shifting of small amounts with a high number of
prosumers is more cost-efficient than dispatching all the flexibility from one pro-
sumer. This can be explained by the disutility curve used to calculate the cost of
load shifting [18] with increasing marginal cost. When the number of customers
providing flexibility increases, the cost of flexibility (bid price) will decrease. If
the same amount of flexibility is provided by a single consumer, the marginal cost
will increase. In our case study, we observe that the LFM prices increase for some
scenarios when we get closer to the end of the operational period (t24), due to the
limited number of flexibility providers.

5.2 The cost-efficiency of the LFM

The cost-efficiency of our stochastic LEFM is measured by considering the cost of
the aggregator, the DSO, and the system. These costs are compared with the case
without LEM, where only load shedding is available at the cost of VoLL. We separate
this into the DSO cost, the aggregator cost, and the system cost.

The DSO cost includes the load shedding cost from OF3 and the revenue pay-
ment for flexibility supply to the aggregator by the DSO (flexibility supply multiplied
by LFM price). The aggregator cost includes the aggregator’s ID market purchase
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Table 1: Price-quantity pairs (EUR/kWh-kW) for bid curves at each scenario per
period.
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(the net trading with ID market from OF3), battery, load shifting, and load cur-
tailment costs from OF2. The system cost includes the net trading with ID market
from OF3 and load shedding cost from OF3, in addition to the flexibility cost from
OF2 (load curtailment, shifting, and battery costs). All these costs are illustrated
in Figure 10.
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Figure 10: Cost profiles of the system and LEM participants -lines are valid only
in the scenario points.

The cost efficiency of the LFM usage becomes prominent, as shown by the com-
parison between the system cost and load shedding cost in Figure 10. All cost
profiles, especially the system cost (blue line), are lower than the only load shed-
ding usage cost (dashed black line). For the majority of the scenarios, the DSO
cost (red line) is lower than the system cost, except for scenarios when there is load
curtailment usage. Accordingly, the social benefit of using LFM is illustrated in
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Figure 10 as the area between load shedding cost and the system cost.

Figure 11 shows the flexibility revenue (blue line) and cost of using each flex-
ibility asset in the aggregator’s portfolio (red, green, and orange areas) for the
aggregator’s cost/revenue profiles. The flexibility revenue is defined as the revenue
payment for flexibility supply by the DSO and the revenue from the repayment of
ID market trades due to load shedding in OF3 (load shedding amount multiplied
with ID price). In every scenario, the flexibility revenue exceeds the overall flexibil-
ity cost (summation of load shifting, load curtailment, and battery discharge costs).
Especially in scenarios with load curtailment usage, such as scenario 6, most of the
flexibility is provided by the load shifting. Even the load curtailment is a more
expensive choice, as the load shifting and batteries are insufficient to supply all
flexibility. However, for the aggregator, the load curtailment is the marginal choice
for flexibility supply and it decides the price. Hence, the flexibility revenue of the
aggregator (flexibility supply multiplied by the marginal cost) exceeds the flexibility
cost because all flexibility supply is priced according to the marginal cost. When
the aggregator has no other flexibility options available, it activates the expensive
resource and that resource sets the LFM price.
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Figure 11: Cost and revenue profiles of the aggregator’s portfolio -aggregated for
all periods.

Thus, the usage of the LFM to mitigate the grid problems decreases the system
cost up by to 40% in scenarios without load curtailment. In scenarios with load
curtailment, the cost-efficiency is up to 30%. The usage of a local flexibility market
is efficient for solutions to grid problems too, as it is cost-efficient for all participants
in the LEM.

5.3 The location of flexibility

In the case study, the aggregator supplies flexibility for grid operations in real time
but still we observe the usage of the load shedding by the DSO at the VoLL. In
this regard, the location of a flexibility asset is important. As shown in Figures 12a
and 12b, the flexibility demand of the DSO is compared with the flexibility supply
of the aggregator from each customer for each scenario. We observe that the overall
flexibility supply from the aggregator meets the overall flexibility demand of the
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Figure 12: Comparison of flexibility in supply-demand locations in the case study.
Each color represents a scenario.

DSO in volume for each scenario. However, the location of the flexibility supply
(i.e., the customer who supplies the flexibility in the aggregator’s portfolio) does
not meet with the DSO’s location (bus) requirement. Hence, we observe the load
shedding in Figure 9 (Figure 4 can show how to convert consumer index ¢ to bus
index i at the x-axis of Figure 12).

Thus, a pooled LFM could mitigate grid problems and supply all the needed
flexibility demand in the right periods for each scenario, but to provide more ef-
fective and cost-efficient solutions, the spatiality of flexibility suppliers needs to be
considered. The location-specific problems, such as voltage drop, ideally need to
be addressed where they occur on the grid. An approach with direct control of
the flexibility (e.g., [18]), could provide more cost-efficient solution based on bilat-
eral contracts. However, this would have the drawback that there would not be an
established market, and price formation would not be clear.

6 Conclusion and Recommendation

In this paper we have presented the results of our research on an optimal LFM
design for grid operations under demand uncertainty. We have modeled a DSO
and a radial distribution grid with a deterministic AC-OPF model to determine
the flexibility demand for efficient grid operations. As the flexibility supplier for
the pooled LFM, an aggregator is modeled with a two-stage stochastic model for
bidding and scheduling with stochastic dispatch to clear the LFM.

The usage of a stochastic LEM provides efficient mitigation of grid problems.
With a stochastic LFM design, we achieved up to 40% more cost-efficient solutions
than a system with only load shedding (without LEM) for grid operations such as
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congestion and voltage management. The improvement was achieved by scheduling
flexibility products such as load curtailment, load shifting, and batteries.

Our results suggest that it is possible to mitigate grid congestion problems by
using a pooled LFM, but for the voltage problem, the DSO or the LFM needs to
address the locations of the flexibility assets.

In this LFM design, the aggregator supplied flexibility with correct timing ac-
cording to the stochastic demand distribution of the DSO. However, the spatiality
of the flexibility resource is important because voltage problems are location-specific
on the grid. For this reason, the DSO could not avoid load shedding. A direct con-
trol approach with bilateral contracts could avoid the problem, but it would have
the disadvantage that a market-based price formation would not exist. An area for
future research would be how to include spatiality in a pooled LEFM market design.
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Appendix A  Nomenclature

Table 2: Nomenclature

Sets

ceC Set of consumers indexed with ¢ and C C Z
teT Set of periods with index ¢

tm € T Set of periods for first-stage, m = {1, ..., 10}

tn € Tn Set of periods for second-stage, n = {11, ...,24}
T UTh =T

theT! Set of ID periods with index ¢!

t2cT? Set of LFM market periods with index 2

TIUT?2=T and T NT2=0

Index for break points in load shifting cost function

kek (decision maker defined)

seS Set of scenarios, index s

1€l Set of buses in network with index ¢
jed Set of buses in network with index j
geg Set of generators with index g
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Parameters

By, By Deterministic price at ID market
H Multiplying parameter for minimum battery capacity
U and U Maximum and minimum capacities of batteries
VCy Variable cost for load shifting
c Battery investment cost
Lesy Stochastic power demand
Ley Deterministic power demand
Eeht and pdis Charg'}ng and discharging efficiency
coefficients of a battery

P Probability of a scenario (%)

shed Amount of load shedding demanded

&tys by DSO per customer
. The percentage of demand in

k correspondence of breakpoint k
g . Line capacity limit of the distribution grid

J as active power (0.3085 MVA)
cevrt Cost of load curtailment (1500 EUR/MWh)
VoLL Value of lost load (3000 EUR/MWh)
L7, Ly, Active and reactive new demand

iutrzp The amount of active load curtailment
Variables
0499 The amount of total active power purchase

gt by the aggregator from ID market
ODSO The estimated amount of total power

g:t! purchase need by the DSO from ID market
0 The amount of net power purchase by

9.t the system from ID market
Pe,t,s The purchase from the ID market

ffjf k The amount of shifted load
pchr | pdis Charging and discharging amount of battery
D s Flexibility demand by the DSO
ocurt The amount of load curtailment by the aggregator
Wets State of charge for batteries at period ¢
Leys Battery discharge cost
Aest,s .k Continuous variable between 0 and 1

shilt Cost of load shifting
0o Amount of flexibility supply for DSO’s request
A Dual value, the marginal cost of flexibility

b8 provision for pooled market
AF; j+, RF; ;+ Active and reactive power flow between nodes i and j
L, LY, Active and reactive demand from bus ¢
Vit Voltage magnitude
pphed  Qshed Amount of active and reactive power shedding
Pi g, Qigy Active and reactive of scheduled production from a generator
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Y ij Impedance value in AC-OPF model

Oits Osi it Voltage angles between buses ¢ and j
Lnee The new demand profile for a customer after scheduling
OF1 Objective function result of Model 1
OF2 Objective function result of Model 2
OF3 Objective function result of Model 3

Appendix B Scheduling results of the aggregator model

The load shifting assets are scheduled to supply in LFM and minimize costs. The
results are presented in Figure 13. Load curtailment is an expensive asset. Accord-
ing to the results presented in Figure 14, the load curtailment is needed especially
when there is high flexibility demand. We assume batteries are already charged
at the initial period and they return to their initial stage of charge at the end of
operational period (t24). The results are illustrated in Figures 15 and 16. The re-
sults of power purchase from the main grid are illustrated in Figure 17 and limited
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Figure 13: Load shifting by the aggregator as active power. Results are aggregated
for customers. Each color represents a scenario.
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Amount of battery charging (MWh)

e

s £
S =
F =

o

t1 t2 t3 t4 t5 t6 t7 t8 9 10 tl1  t12 t13 tl4 t15 tl6 t17 t18 19 t20 21 22 23 24
Periods

Figure 15: Battery charging pattern of the aggregator as active power. Each color
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