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IMPORTANCE A head computed tomography (CT) with positive results for acute intracranial
hemorrhage is the gold-standard diagnostic biomarker for acute traumatic brain injury (TBI). In
moderate to severe TBI (Glasgow Coma Scale [GCS] scores 3-12), some CT features have been shown
to be associated with outcomes. In mild TBI (mTBI; GCS scores 13-15), distribution and co-occurrence
of pathological CT features and their prognostic importance are not well understood.

OBJECTIVE To identify pathological CT features associated with adverse outcomes after mTBI.

DESIGN, SETTING, AND PARTICIPANTS The longitudinal, observational Transforming Research and
Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study enrolled patients with TBI, including
those 17 years and older with GCS scores of 13 to 15 who presented to emergency departments at 18
US level 1 trauma centers between February 26, 2014, and August 8, 2018, and underwent head CT
imaging within 24 hours of TBI. Evaluations of CT imaging used TBI Common Data Elements.
Glasgow Outcome Scale–Extended (GOSE) scores were assessed at 2 weeks and 3, 6, and 12 months
postinjury. External validation of results was performed via the Collaborative European NeuroTrauma
Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. Data analyses were completed
from February 2020 to February 2021.

EXPOSURES Acute nonpenetrating head trauma.

MAIN OUTCOMES AND MEASURES Frequency, co-occurrence, and clustering of CT features;
incomplete recovery (GOSE scores <8 vs 8); and an unfavorable outcome (GOSE scores <5 vs
�5) at 2 weeks and 3, 6, and 12 months.

RESULTS In 1935 patients with mTBI (mean [SD] age, 41.5 [17.6] years; 1286 men [66.5%]) in
the TRACK-TBI cohort and 2594 patients with mTBI (mean [SD] age, 51.8 [20.3] years; 1658
men [63.9%]) in an external validation cohort, hierarchical cluster analysis identified 3 major
clusters of CT features: contusion, subarachnoid hemorrhage, and/or subdural hematoma;
intraventricular and/or petechial hemorrhage; and epidural hematoma. Contusion,
subarachnoid hemorrhage, and/or subdural hematoma features were associated with
incomplete recovery (odds ratios [ORs] for GOSE scores <8 at 1 year: TRACK-TBI, 1.80 [95%
CI, 1.39-2.33]; CENTER-TBI, 2.73 [95% CI, 2.18-3.41]) and greater degrees of unfavorable
outcomes (ORs for GOSE scores <5 at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58];
CENTER-TBI, 1.68 [95% CI, 1.13-2.49]) out to 12 months after injury, but epidural hematoma
was not. Intraventricular and/or petechial hemorrhage was associated with greater degrees of
unfavorable outcomes up to 12 months after injury (eg, OR for GOSE scores <5 at 1 year in
TRACK-TBI: 3.47 [95% CI, 1.66-7.26]). Some CT features were more strongly associated with
outcomes than previously validated variables (eg, ORs for GOSE scores <5 at 1 year in
TRACK-TBI: neuropsychiatric history, 1.43 [95% CI .98-2.10] vs contusion, subarachnoid
hemorrhage, and/or subdural hematoma, 3.23 [95% CI 1.59-6.58]). Findings were externally
validated in 2594 patients with mTBI enrolled in the CENTER-TBI study.

CONCLUSIONS AND RELEVANCE In this study, pathological CT features carried different
prognostic implications after mTBI to 1 year postinjury. Some patterns of injury were
associated with worse outcomes than others. These results support that patients with mTBI
and these CT features need TBI-specific education and systematic follow-up.
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A computed tomography (CT) with positive results for in-
tracranial hemorrhage is the gold-standard diagnos-
tic biomarker for acute TBI. Many (although not all)

studies have shown that complicated mild TBI (mTBI), or mTBI
with a positive head CT result, is associated with worse out-
comes compared with uncomplicated mTBI. However, posi-
tive head CT results include a wide spectrum of intracranial
lesions. A more precise understanding of the prognostic im-
portance of CT abnormalities in mTBI, beyond the simple pres-
ence vs absence of abnormal findings on CT, is timely.

Associations between individual CT imaging features and
outcomes have been demonstrated in moderate and severe TBI
(Glasgow Coma Scale [GCS] scores 3-12).1-3 Similar efforts for
mTBI have been stymied by subtler manifestations of im-
paired outcome, resulting in behavioral outcome measure-
ments with less variability and a greater skew toward normal.
Thus, a large study population is needed to accurately esti-
mate the prognostic importance of individual CT features in
patients with mTBI.

We used a large, longitudinal, observational cohort of pa-
tients with mTBI enrolled at US level 1 trauma centers for whom
outcomes were measured at 2 weeks and 3, 6, and 12 months
postinjury to determine the distribution and patterns of in-
tracranial hemorrhage in mTBI and their implications for prog-
nosis. We then externally validated these findings in a larger,
independent, longitudinal observational cohort of patients with
mTBI enrolled at European trauma centers.

Methods
Study Population
The Transforming Research and Clinical Knowledge in Trau-
matic Brain Injury (TRACK-TBI) study enrolled patients with
TBI who presented to the emergency departments of 1 of 18
US level 1 trauma centers (eTable 1 in Supplement 1) and were
treated along 1 of 3 care pathways (emergency department dis-
charge, hospital admission without intensive care, or hospi-
tal admission with intensive care) (Table 1). The inclusion cri-
terion for TRACK-TBI was presentation to a participating center
within 24 hours of injury with a clinical indication for a head
CT under American College of Emergency Medicine/US
Centers for Disease Control and Prevention guidelines.4

Exclusion criteria included pregnancy, incarceration, nonsur-
vivable physical trauma, and preexisting medical or neuro-
psychiatric conditions that could interfere with outcome as-
sessments. Institutional review boards of participating centers
approved all study protocols. Patients or their legal represen-
tatives gave written informed consent. The Galveston Orien-
tation and Amnesia Test was administered to determine abil-
ity to consent. For those without a passing score, a legally
authorized representative gave initial consent and the com-
petency screening was repeated at all follow-up visits. Race/
ethnicity data (with options defined by the investigators) were
collected to assess for racial/ethnic disparities in outcomes that
have been reported in previous studies.5-7

This article examines the subset of patients in the TRACK-
TBI study who were 17 years or older at time of enrollment with

GCS scores of 13 to 15 on emergency department arrival and
an initial head CT available for review. eFigure 1 in Supplement 1
shows the recruitment and retention flowchart for the partici-
pants included in this analysis.

The Collaborative European NeuroTrauma Effectiveness
Research in Traumatic Brain Injury (CENTER-TBI) study8,9 is
a prospective, longitudinal, observational study of patients
with TBI presenting to 1 of 55 trauma centers in Europe, with
the same inclusion criteria and treatment along the same 3 care
pathways as described for TRACK-TBI. The CENTER-TBI and
TRACK-TBI studies are part of the International Initiative for
TBI Research (https://intbir.incf.org/) and were codesigned for
international collaboration.10

CT Imaging and Evaluation of TBI Neuroimaging
Common Data Elements
In both TRACK-TBI and CENTER-TBI, the patients’ initial head
CT images after injury were deidentified, uploaded to a cen-
tral repository, and evaluated by a board-certified neuroradi-
ologist (E.L.Y. and 1 nonauthor associated with the CENTER-
TBI study) using National Institute of Neurological Disorders
and Stroke (NINDS) TBI Neuroimaging Common Data
Elements (CDEs).11,12 A positive CT result was defined as pres-
ence of any acute intracranial abnormality on the first head CT
after admission, consistent with the US Food and Drug Ad-
ministration definition.13 A positive CT result did not include
an isolated skull fracture without an acute intracranial abnor-
mality. The term petechial hemorrhage was used to describe
small subcortical or deep hemorrhages that are the most com-
mon CT manifestation of the CDEs, traumatic axonal injury,
and diffuse axonal injury. Readers (E.L.Y. and 1 nonauthor as-
sociated with the CENTER-TBI study) were blinded to clinical
information except sex and age (and care path stratum, for
CENTER-TBI). Figure 1 presents CDEs corresponding to differ-
ent types of acute traumatic intracranial hemorrhage.

Outcome Measure
The Glasgow Outcome Scale–Extended (GOSE) score is the most
widely used measure of global functional outcome after

Key Points
Question Are different patterns of intracranial injury on head
computed tomography associated with prognosis after mild
traumatic brain injury (mTBI)?

Findings In this cohort study, subarachnoid hemorrhage, subdural
hematoma, and contusion often co-occurred and were associated
with both incomplete recovery and more severe impairment out
to 12 months after injury, while intraventricular and/or petechial
hemorrhage co-occurred and were associated with more severe
impairment up to 12 months after injury; epidural hematoma was
associated with incomplete recovery at some points but not with
more severe impairment. Some intracranial hemorrhage patterns
were more strongly associated with outcomes than previously
validated demographic and clinical variables.

Meaning In this study, different pathological features on head
computed tomography carried different implications for mild
traumatic brain injury prognosis to 1 year.
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TBI.14-16 In CENTER-TBI, the primary outcome measure was
the GOSE score. In TRACK-TBI, the primary outcome mea-
sure was the GOSE-TBI score, which consists of the GOSE ad-
ministered with the intent of specifically capturing disability
associated with the TBI (ie, excluding any disability attribut-
able to co-occurring traumas, such as orthopedic injuries).

Statistical Analysis
Demographic, clinical, and CT characteristics were summa-
rized descriptively. Between-group comparisons used Wil-
coxon rank sum tests for continuous variables and Fisher ex-
act tests for categorical variables were used. We used
hierarchical cluster analysis (HCA) and multiple correspon-
dence analysis (MCA) to derive CT phenotypes, or clusters of
subtypes of intracranial hemorrhage, to mitigate potential mul-
ticollinearity issues.

Generalized estimating equation (GEE) models, a semi-
parametric approach to longitudinal analysis of correlated data,
were used to study the association of demographics, clinical

features, and CT features with incomplete recovery (GOSE
scores <8 vs 8) and greater degrees of unfavorable outcome
(GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and 12 months
postinjury. The model included GOSE scores at each
follow-up as the outcome; independent variables included de-
mographics (age, sex, race/ethnicity, years of education), base-
line clinical characteristics (prior TBI, neuropsychiatric his-
tory), CT clusters, data collection points (eg, 2 weeks), and
interaction between CT clusters and data collection points. An
unstructured working correlation matrix was used. We com-
pared the marginal pseudo-R2 statistic for models to assess the
contribution of CT variables.

We also performed GEE analysis to assess the association
of the single most common CT pattern of intracranial injury,
isolated subarachnoid hemorrhage (SAH), with incomplete re-
covery (GOSE scores <8 vs 8) and greater degrees of unfavor-
able outcome (GOSE scores <5 vs ≥5) at 2 weeks and 3, 6, and
12 months postinjury. Following complete analysis of the
TRACK-TBI mTBI cohort, the same analytical approach and

Table 1. Demographic and Baseline Clinical Characteristics by Head Computed Tomography (CT) Status
(n = 1935) in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study

Characteristic Total, No. (%)

Initial head CT with findings of acute
intracranial abnormality, No. (%)

P valueNegative Positive
Sex

Male 1286 (66.5) 782 (60.8) 504 (39.2)
.004

Female 649 (33.5) 438 (67.5) 211 (32.5)

Total 1935 (100.0) 1220 (63.0) 715 (37.0)

Race

White 1481 (77.5) 893 (60.3) 588 (39.7)

<.001Black 318 (16.6) 244 (76.7) 74 (23.3)

Other 113 (5.9) 71 (62.8) 42 (37.2)

Total 1912 (100.0) 1208 (63.2) 704 (36.8)

Hispanic ethnicity

No 1526 (79.8) 969 (63.5) 557 (36.5)
.68

Yes 387 (20.2) 241 (62.3) 146 (37.7)

Total 1913 (100.0) 1210 (63.3) 703 (36.7)

Neuropsychiatric history

No 1501 (77.7) 935 (62.3) 566 (37.7)
.24

Yes 432 (22.3) 283 (65.5) 149 (34.5)

Total 1933 (100.0) 1218 (63.0) 715 (37.0)

Prior traumatic brain injury

Yes 586 (31.5) 409 (69.8) 177 (30.2)
<.001

No 1272 (68.5) 768 (60.4) 504 (39.6)

Total 1858 (100.0) 1177 (63.3) 681 (36.7)

Care pathway

Emergency department discharge 503 (26.0) 453 (90.1) 50 (9.9)

<.001
Hospital admission without
intensive care

833 (43.0) 584 (70.1) 249 (29.9)

Hospital admission with
intensive care

599 (31.0) 183 (30.6) 416 (69.4)

Total 1935 (100.0) 1220 (63.0) 715 (37.0)

Age, y

Mean (SD) 41.5 (17.6) 37.7 (15.8) 47.8 (18.7)
<.001Median (IQR) [range] 38 (26-55)

[17-90]
34 (24-50)
[17-88]

48 (31-64)
[17-90]

Education, y

Mean (SD) 13.5 (2.9) 13.4 (2.7) 13.6 (3.2)
.046Median (IQR) [range] 13 (12-16)

[0-20]
12 (12-16)
[1-20]

13 (12-16)
[0-20]

Abbreviation: IQR, interquartile
range.

Pathological Computed Tomography Features Associated With Adverse Outcomes After Mild Traumatic Brain Injury Original Investigation Research

jamaneurology.com (Reprinted) JAMA Neurology September 2021 Volume 78, Number 9 1139

Downloaded From: https://jamanetwork.com/ by a Norwegian Institute of Public Health User  on 02/23/2022

http://www.jamaneurology.com?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2021.2120


code used for the TRACK-TBI mTBI cohort analyses were ap-
plied to the CENTER-TBI mTBI cohort for external validation.
All analyses were performed using R version 3.6.1 (R Founda-
tion for Statistical Computing), using a threshold for statisti-
cal significance of P < .05, 2-tailed. Analyses were performed
from February 2020 to February 2021.

Results
Demographic and Baseline Clinical Characteristics,
CT Features, and GOSE
A total of 1935 individuals were eligible for the TRACK-TBI
study. Of these, outcome measures (GOSE scores 1-8) (eTable 2
in Supplement 1) were available for 1497 (77.4%) at 2 weeks,
1381 (71.4%) at 3 months, 1311 (67.8%) at 6 months, and 1243
(64.2%) at 12 months. Table 1 presents demographic and base-
line clinical characteristics of the TRACK-TBI cohort. Most par-
ticipants were men (1286 [66.5%]). The most common clini-
cal care pathway was hospital admission without an intensive
care unit stay (833 [43.0%]). A positive head CT result was more
likely in men (504 of 1286 men [39.2%]; 211 of 649 women
[32.5%]; P = .004), individuals with higher education levels

(mean [SD]: with positive CT results, 13.6 [3.2] years; with nega-
tive CT results, 13.4 [2.7] years; P = .046), and participants with-
out a history of prior TBI (504 of 1272 participants without prior
TBI [26.0%]; 177 of 586 participants with prior TBI [34.8%];
P < .001). A positive head CT result was less likely in Black in-
dividuals (74 of 318 Black individuals [23.3%]; 588 of 1481 White
individuals [39.7%]; 42 of 113 individuals of other races [37.2%];
P<.001). There was no significant association with Hispanic eth-
nicity or history of neuropsychiatric disease.

Figure 2A shows an UpSet plot of CT patterns of intracra-
nial hemorrhage in descending order of frequency. Overall, 715
of 1935 individuals (37.0%) in this analytic cohort had a posi-
tive CT result for acute intracranial pathology. The most com-
mon pattern was isolated SAH (157 of 715 [22.0% of examina-
tions with positive CT results]). Other common patterns were
combined SAH, subdural hematoma (SDH), and contusion (92
examinations [12.9%]); isolated SDH (85 examinations [11.9%]);
and combined SAH and SDH (73 examinations [10.2%]).

Figure 2A shows overall numbers of CT examinations with
different acute intracranial hemorrhage subtypes. The most
common was SAH (present in isolation or in combination with
other findings on 473 CT examinations among all 1935 pa-
tients (24.4%), followed by SDH on 341 examinations (17.6%)

Figure 1. Examples of National Institute of Neurologic Disorders and Stroke Traumatic Brain Injury
Neuroimaging Common Data Elements Corresponding to Different Subtypes of Acute Intracranial Hemorrhage

Epidural hematomaA Subdural hematomaB

Subarachnoid hemorrhageD Intraventricular hemorrhageE

ContusionC

 Petechial hemorrhageF

Arrowheads indicate areas of
intracranial hemorrhage.
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Figure 2. Distribution and Co-occurrences of Intracranial Pathology on Computed Tomography (CT) in Mild Traumatic Brain Injury (mTBI) by Cohort
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A, Distribution of National Institute of Neurological Disorders and Stroke TBI
Neuroimaging Common Data Elements (CDEs) in participants 17 years and older
with Glasgow Coma Scale scores of 13 to 15 (n = 1935) in the Transforming
Research and Clinical Knowledge in TBI (TRACK-TBI) study. An UpSet plot shows
that the most common pattern of acute intracranial hemorrhage is isolated
subarachnoid hemorrhage (SAH), which constitutes 157 of 715 (22.0%) of all CT
examinations showing intracranial hemorrhage. (Hierarchical cluster analysis
demonstrates clusters of CT abnormalities. A dendrogram shows the distance at
which the cluster was formed along the vertical axis, with 3 clusters: contusion,
SAH, and/or subdural hematoma (SDH); intraventricular hemorrhage (IVH)
and/or petechial hemorrhage; and epidural hemorrhage (EDH). The bar graph in
the lower left corner shows that the most common acute intracranial
abnormality was SAH (in 473 of 1935 patients [24.4%]), followed by SDH (341

[17.6%]), brain contusion (244 [12.6%]), EDH (102 [5.3%]), petechial
hemorrhage (92 [4.8%]), and IVH (42 [2.2%]). B, Distribution of CDEs in
participants 17 years and older with Glasgow Coma Scale scores of 13 to 15
(n = 2594) in the Collaborative European NeuroTrauma Effectiveness Research
in Traumatic Brain Injury (CENTER-TBI) study. An UpSet plot shows that the
most common pattern of acute intracranial hemorrhage is isolated SAH, which
constitutes 234 of 1175 (19.9%) of all CT examinations positive for intracranial
hemorrhage. Hierarchical cluster analysis shows clusters of CT abnormalities.
A dendrogram shows the distance at which the cluster was formed along the
vertical axis. The most common acute CT finding was SAH (810 of 2594 patients
[31.2%]), followed by brain contusion (526 [20.3%]), SDH (476 [18.4%]), EDH
(211 [8.1%], IVH (116 [4.5%]), and petechial hemorrhage (99 [3.8%]).
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and contusion on 244 examinations (12.6%). Less common
were EDH on 102 examinations (5.3%), petechial hemorrhage
on 92 examinations (4.8%), and intraventricular hemorrhage
(IVH) on 42 examinations (2.2%).

The Rotterdam CT score1 (developed for moderate to se-
vere TBI) demonstrated very minimal variability in this popu-
lation of patients with mTBI. A total of 1873 of 1935 scores
(96.8%) for the entire cohort were either 2 or 3.

HCA and CT Phenotypes
Figure 2A shows results of HCA performed on CT intracranial
hemorrhage subtypes in 1935 patients in the TRACK-TBI co-
hort. The dendrogram shows the existence of common clus-

ters of CT abnormalities, or phenotypes. From the dendro-
gram and clinical experience, we define 3 clusters:
(1) contusion, SAH, and/or SDH; (2) IVH and/or petechial hem-
orrhage; and (3) EDH. Multiple correspondence analysis reca-
pitulated the HCA results, demonstrating identical groupings
of CT findings (eFigure 2 in Supplement 1).

Association of Demographics, Baseline Clinical Features,
and CT Phenotypes With GOSE Scores Postinjury
We used GEE models to assess the association of demograph-
ics, baseline clinical features, and CT phenotypes with incom-
plete recovery (GOSE scores <8 vs 8; Table 2) and greater de-
grees of unfavorable outcomes (GOSE scores <5 vs ≥5; Table 3)

Table 2. Associations of Demographic, Baseline Clinical, and Computed
Tomography (CT) Phenotypes With Incomplete Recovery at 2 Weeks
and 3, 6, and 12 Months Postinjury in the Transforming Research
and Clinical Knowledge in Traumatic Brain Injury Studya

Variable Odds ratio (95% CI) P value
CT phenotypes

Contusion, subarachnoid hemorrhage,
and/or subdural hematoma

2 wk 2.22 (1.61-3.06) <.001

3 mo 1.87 (1.43-2.44) <.001

6 mo 1.67 (1.28-2.17) <.001

12 mo 1.80 (1.39-2.33) <.001

Epidural hematoma

2 wk 3.08 (1.27-7.49) .01

3 mo 2.33 (1.28-4.24) .006

6 mo 1.27 (0.74-2.17) .39

12 mo 1.42 (0.85-2.37) .18

Intraventricular and/or petechial
hemorrhage

2 wk 2.23 (1.10-4.51) .03

3 mo 1.16 (0.69-1.93) .58

6 mo 1.19 (0.74-1.92) .46

12 mo 1.48 (0.92-2.38) .10

Demographics

Age (55 vs 26 y)b 1.17 (1.00-1.37) .04

Years of education (16 vs 12 y)b 0.64 (0.57-0.74) <.001

Sex (male vs female) 0.58 (0.48-0.70) <.001

Race (White vs Black) 0.76 (0.59-0.98) .09

Race (White vs other)c 1.22 (0.89-1.67) .43

Ethnicity (Hispanic vs non-Hispanic) 1.11 (0.86-1.43) .43

Baseline clinical characteristics

Neuropsychiatric history (yes vs no) 1.61 (1.31-1.99) <.001

Prior traumatic brain injury
(yes vs no)

1.39 (1.16-1.67) <.001

a A generalized estimating equation model was used to study the association of
demographic, clinical, and CT variables with incomplete recovery (Glasgow
Outcome Scale–Extended [GOSE] scores <8 vs 8) at 2 weeks and 3, 6, and 12
months postinjury. The model included GOSE scores (<8 vs 8) at each
follow-up as the outcome; independent variables included demographics,
baseline clinical characteristics, CT phenotypes, data collection points (eg, 2
weeks), and interaction between CT phenotypes and data collection points.
An unstructured working correlation matrix was used. The marginal R2 of the
generalized estimating equation model was 9.1% without CT variables and
11.2% with CT variables.

b For the continuous variables (age and years of education), we reported odds
ratios comparing the third quartile vs the first quartile.

c Other races includes Alaskan Native or Inuit, American Indian, Asian, Native
Hawaiian or other Pacific Islander, and unknown categories.

Table 3. Associations of Demographic, Baseline Clinical, and Computed
Tomography (CT) Features With Unfavorable Outcome at 2 Weeks and 3,
6, and 12 Months Postinjury in the Transforming Research and Clinical
Knowledge in Traumatic Brain Injury Studya

Variable Odds ratio (95% CI) P value
CT phenotypes

Contusion, subarachnoid hemorrhage,
and/or subdural hematoma

2 wk 2.14 (1.48-3.10) <.001

3 mo 2.18 (1.23-3.89) .008

6 mo 2.32 (1.23-4.38) .01

12 mo 3.23 (1.59-6.58) .001

Epidural hematoma

2 wk 1.23 (0.58-2.64) .59

3 mo 0.37 (0.08-1.64) .19

6 mo 0.37 (0.08-1.62) .19

12 mo 0.31 (0.06-1.70) .18

Intraventricular and/or petechial
hemorrhage

2 wk 1.47 (0.82-2.62) .19

3 mo 2.37 (1.14-4.92) .02

6 mo 3.42 (1.62-7.22) .001

12 mo 3.47 (1.66-7.26) <.001

Demographics

Age (55 vs 26 y)b 2.64 (2.02-3.46) <.001

Years of education (16 vs 12 y)b 0.60 (0.47-0.76) <.001

Sex (male vs female) 0.92 (0.64-1.31) .63

Race (White vs Black) 0.90 (0.56-1.44) .89

Race (White vs other)c 1.27 (0.60-2.69) .81

Ethnicity (Hispanic vs non-Hispanic) 0.70 (0.39-1.28) .25

Baseline clinical characteristics

Neuropsychiatric history (yes vs no) 1.43 (0.98-2.10) .07

Prior traumatic brain injury (yes vs no) 1.06 (0.73-1.53) .78

a A generalized estimating equation model was used to study the association of
demographic, clinical, and CT variables with unfavorable outcome (Glasgow
Outcome Scale–Extended [GOSE] scores <5 vs �5) at 2 weeks and 3, 6, and 12
months postinjury. The model included GOSE scores at each follow-up as the
outcome; independent variables included demographic, baseline clinical
characteristics, CT phenotypes, data collection points (eg, 2 weeks), and
interaction between CT phenotypes and data collection points. An
unstructured working correlation matrix was used. The marginal R2 of the
generalized estimating equation model was 7.8% without CT variables and
10.0% with CT variables.

b For the continuous variables (age and years of education), we reported odds
ratios comparing the third quartile vs the first quartile.

c Other races includes Alaskan Native or Inuit, American Indian, Asian, Native
Hawaiian or other Pacific Islander, and unknown categories.
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at the 4 postinjury points. Regarding demographics and base-
line clinical features, female sex (odds ratio [OR], 1.73 [95% CI,
1.43-2.08]; P < .001), neuropsychiatric history (OR, 1.61 [95%
CI, 1.31-1.99]; P < .001), and TBI history (OR, 1.39 [95% CI, 1.16-
1.67]; P < .001) were significantly associated with incomplete
recovery (GOSE scores <8) but not greater degrees of unfavor-
able outcomes (GOSE scores <5). Age and fewer years of edu-
cation were significantly associated with both incomplete re-
covery (GOSE scores <8; age [55 vs 26 years]: OR, 1.17 [95% CI,
1.00-1.37]; P = .04; education [16 vs 12 years]: OR, 0.64 [95%
CI, 0.57-0.74]; P < .001) and greater degrees of unfavorable out-
comes (GOSE scores <5; age [55 vs 26 years]: OR, 2.64 [95% CI,
2.02-3.46]; P < .001; education [16 vs 12 years]: OR, 0.60 [95%
CI, 0.47-0.76]; P < .001).

Regarding CT phenotypes derived from HCA or MCA, 3
trends emerged. The contusion, SAH, and/or SDH cluster was
significantly associated with both incomplete recovery (ORs
from 1.67 [95% CI, 1.28-2.17] at 6 months to 2.22 [95% CI, 1.61-
3.06] at 2 weeks) and greater degrees of unfavorable out-
comes (ORs from 2.14 [95% CI, 1.48-3.10] at 2 weeks to 3.23
[95% CI, 1.59-6.58] at 12 months) at all points from 2 weeks to
1 year. Epidural hematoma was associated only with incom-
plete recovery at earlier points (2 weeks and 3 months; ORs,
3.08 [95% CI, 1.27-7.49]; P = .01 and 2.33 [95% CI, 1.28-4.24];
P = .006, respectively) but not 6 or 12 months. Intraventricu-
lar and/or petechial hemorrhage was significantly associated
with greater degrees of unfavorable outcomes at 3, 6, and 12
months (ORs, 2.37 [95% CI, 1.14-4.92]; 3.42 [95% CI, 1.62-
7.22]; and 3.47 [95% CI, 1.66-7.26], respectively).

The marginal R2 of GEE models17 for incomplete recovery
was 9.1% without CT variables and 11.2% with CT variables.
The marginal R2 of GEE models for unfavorable outcomes was
7.8% without CT variables and 10.0% with CT variables.

We also performed post hoc GEE analysis of the associa-
tion of isolated SAH (157 of 715 positive CT examination re-
sults [22.0%] for intracranial injury) with outcomes (eTables 3
and 4 in Supplement 1) and found significant association with
incomplete recovery up to 6 months after injury (ORs: 2 weeks,
2.01 [95% CI, 1.19-3.39]; 3 months, 1.53 [95% CI, 1.00-2.35]; 6
months, 1.57 [95% CI, 1.01-2.43]). There was a trend toward sig-
nificant association of isolated SAH with incomplete recov-
ery at 12 months (OR, 1.36 [95% CI, 0.90-2.03]; P = .14).

When all 41 participants who underwent decompressive
hemicraniotomy (21 for epidural hematoma) were excluded from
the analytic cohort, odds ratios changed minimally (eTable 5 in
Supplement 1 and Table 2). Finally, because patients with GCS
scoresof13mayhaveworseprognosesthanthosewithGCSscores
of 14 or 15, we verified that the CT phenotypes remained prognos-
tic for outcome up to 1 year after injury, even after participants
with GCS scores of 13 were removed from the GEE models.

External Validation in CENTER-TBI
A validation analysis was conducted in the CENTER-TBI co-
hort (n = 2594). As with TRACK-TBI, most participants in
CENTER-TBI were men (1658 [63.9%] in CENTER-TBI vs 1286
of 1935 [66.5%] in TRACK-TBI) and had similar care pathways
(eTable 6 in Supplement 1). The CENTER-TBI cohort had a
higher incidence of positive CT findings (1175 of 2594 [45.3%]

in CENTER-TBI vs 715 of 1935 [37.0%] in TRACK-TBI)), were
older (mean [SD] ages, 51.8 [20.3] years vs 41.5 [17.6] years),
and had a lower incidence of prior TBI (282 of 2494 partici-
pants with available TBI history [11.3%] in CENTER-TBI vs 586
of 1858 [31.5%] in TRACK-TBI).

Isolated SAH was the most common pattern in CENTER-
TBI, similar to TRACK-TBI (234 of 1175 CT examinations with
positive findings [19.9%] in CENTER-TBI vs 157 of 1175 CT ex-
aminations with positive findings [22.0%] in CENTER-TBI), and
combined SAH, SDH, and/or contusion the second most com-
mon (126 [10.7%] vs 92 [12.9%]). Isolated SDH was the third most
common pattern in TRACK-TBI and fourth most common in
CENTER-TBI. Overall, the top 4 common patterns in TRACK-
TBI were within the top 5 common patterns in CENTER-TBI
(Figure 2B). Hierarchical cluster analysis and MCA in CENTER-
TBI reproduced nearly identical CT imaging phenotypes found
in TRACK-TBI (Figure 2; eFigures 2 and 3 in Supplement 1).

The GEE models also demonstrated consistent findings
across TRACK-TBI (Tables 2 and 3) and CENTER-TBI (eTables 7
and 8 in Supplement 1). In both studies, the contusion, SAH,
and/or SDH phenotype demonstrated significant associa-
tions with both incomplete recovery and greater degrees of un-
favorable outcome at all points up to 1 year (eg, ORs for GOSE
scores <8 at 1 year: TRACK-TBI, 1.80 [95% CI, 1.39-2.33];
CENTER-TBI, 2.73 [95% CI, 2.18-3.41]; ORs for GOSE scores <5
at 1 year: TRACK-TBI, 3.23 [95% CI, 1.59-6.58]; CENTER-TBI,
1.68 [95% CI, 1.13-2.49]). Intraventricular and/or petechial hem-
orrhage was associated with greater levels of unfavorable out-
come in both studies up to 1 year (ORs for GOSE scores <5 at 1
year: TRACK-TBI, 3.47 [95% CI, 1.66-7.26]; CENTER-TBI, 1.82
[95% CI, 1.00-3.29]) and incomplete recovery in CENTER-TBI
at 1 year (OR, 1.71 [95% CI, 1.11-2.62]). Epidural hematoma was
associated with incomplete recovery at 1 year in CENTER-TBI
(OR, 1.55 [95% CI, 1.02-2.36]) and at 2 weeks (OR, 3.08 [95%
CI, 1.27-7.49]) and 3 months (OR, 2.33 [95% CI, 1.28-4.24]) in
TRACK-TBI but was not associated with greater levels of
unfavorable outcome at any point in either study. The R2 of
GEE models17 for incomplete recovery and greater degrees of
unfavorable outcomes in CENTER-TBI were similar to those
in TRACK-TBI (10.2% vs 11.2% for GOSE scores <8, and 11.0%
vs 10.0% for GOSE scores <5).

Discussion
Fewer than half of all patients with mTBI evaluated at US level
1 trauma centers, and only 39% of patients with mTBI and posi-
tive head CT findings, receive follow-up care, including such
simple interventions as provision of TBI educational materi-
als at the time of discharge.18 In this study, we determined and
then externally validated the distribution, patterns, and (im-
portantly) clinical significance of intracranial CT findings in a
large longitudinal observational cohort of 1935 patients with
mTBI enrolled at 18 US level 1 trauma centers. The study popu-
lation was enriched for so-called complicated mTBI: 37% of
participants demonstrated intracranial hemorrhage on head
CT, while the mean positive head CT rate in US emergency de-
partments is approximately 9%.19 This enrichment provided
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sufficient power to determine the prognostic importance of CT
abnormalities at a more granular level than simply positive vs
negative categories. These more granular CT findings can im-
mediately aid in the triage to TBI-specific education and sys-
tematic follow-up of the nearly 5 million patients with mTBI
evaluated annually in US emergency departments.19 We also
demonstrate, to our knowledge for the first time, the exis-
tence of common CT patterns or phenotypes of intracranial in-
jury in mTBI and show that these different phenotypes have
varying implications for outcomes up to 1 year postinjury.

The external validation of the findings in an independent
prospective longitudinal observational cohort of 2594 pa-
tients with mTBI enrolled at 55 European trauma centers con-
firms the fidelity of our results. There was striking replication
of results across TRACK-TBI and CENTER-TBI: contusion, SAH,
and SDH often co-occur and were strongly associated with ad-
verse outcomes over a broad range of GOSE scores up to 1 year
postinjury in both studies. Intraventricular and/or petechial
hemorrhage was associated with greater degrees of unfavor-
able outcome (GOSE scores <5) up to 1 year postinjury in both
studies. Epidural hemorrhage was associated with incom-
plete recovery (GOSE scores <8 vs 8) at 3 months in TRACK-
TBI and 1 year in CENTER-TBI but had no significant associa-
tion with greater degrees of unfavorable outcome at any point
in either study. Finally, some CT patterns of injury were even
more strongly associated with outcomes than known demo-
graphic and clinical variables (older age, female sex, fewer years
of education, and neuropsychiatric history),20,21 the second of
which were reconfirmed across both studies to be variables sig-
nificantly associated with adverse outcome.

We observed several minimal differences between TRACK-
TBI and CENTER-TBI results. Intraventricular hemorrhage
and/or petechial hemorrhage was significantly associated with
incomplete recovery at 1 year in CENTER-TBI but not in TRACK-
TBI. This may be because of higher statistical power in CENTER-
TBI, based on both its larger sample size (n = 2594 vs n = 1935)
and higher rate of positive CT findings compared with TRACK-
TBI (45% vs 37%). In addition, a history of prior TBI had an ap-
parent protective association against an unfavorable out-
come in CENTER-TBI, while it was associated with incomplete
recovery in TRACK-TBI. This may be because of differences in
how prior TBI was assessed: CENTER-TBI used a short series
of questions regarding medical history, and TRACK-TBI used
a TBI-CDE standardized procedure for eliciting lifetime his-
tory of TBI via a structured interview,22 which may have cap-
tured more prior TBI events.

Most prior studies of mTBI outcome have treated head
CT results as a binary variable (ie, any finding of an acute trau-
matic intracranial abnormality).21,23-36 Although many
studies have reported an association of head CT positive
for any acute traumatic intracranial finding with poorer
outcome,24,29-31,33,35 others have shown no association,25,26,32

a weak association that does not endure in multivariable mod-
els that include demographic and other clinical factors,21,23,28,34

an association at 3 months but not at 6 months,27 or even an
association with a better outcome.36 Recently, van der Naalt
et al21,37 found that CT abnormalities were not associated with
the 6-month outcome in either an emergency department

model based on baseline factors nor an emergency department–
plus model that included additional information (indicators
of emotional distress and coping mechanisms) collected at a
2-week postinjury visit.

The few studies that have considered more granular CT pa-
thology have found that most or all individual CT features are
insignificant in multivariable models of outcome after
mTBI.38-40 In some cases, this may have been in part because
of a smaller study sample. However, even recent large studies
have demonstrated negative results. Jacobs et al38 found that
CT characteristics were not associated with significant im-
provement in an outcome prediction model based on clinical
variables alone in a 1998-2006 series of 1999 consecutive pa-
tients with mTBI at a level 1 trauma center in the Nether-
lands. Specifically, the addition of head CT results to a prog-
nostic model based on demographic and clinical characteristics
resulted in a nonsignificant increase in the area under the curve
from 0.69 to 0.70. Based on our results, we believe that re-
duced power because of a smaller sample size and/or lower
positive CT rate, in addition to covariances (collinearity) among
CT features, likely masked the significance of individual CT fea-
tures in these previously reported multivariable models. In ad-
dition, cumulative advances in CT technology have resulted
in continuous improvements in CT image quality over the past
decade. Computed tomography scanners at US trauma cen-
ters now typically have 64 to 320 detector rows and 360° gan-
try rotation times less than 0.3 seconds,41 making thin sec-
tions, high-resolution multiplanar reconstructions, and whole-
head acquisition in less than 1 second the new modern standard
of care in CT imaging. These changes have likely significantly
improved the diagnostic accuracy of CT imaging biomarkers
over the past decade.

Finally, we surmise that the CT phenotypes we have de-
scribed using data-driven analytics (HCA and MCA) provide a
window into mechanisms of injury. Subarachnoid hemor-
rhage, contusion, and SDH often occur in the same patient. We
speculate that these may occur primarily in injury mecha-
nisms with linear acceleration or deceleration. The intraven-
tricular and petechial hemorrhage category likely represents
injuries including a significant component of rotational accel-
eration or deceleration,42 with IVH representing more severe ro-
tational forces causing injury to deep structures. Superficial pe-
techial hemorrhages in the subcortical white matter (eg, superior
frontal gyrus) are more common and may represent milder cases
of rotational acceleration or deceleration. Finally, the associa-
tion of EDH with relatively good outcome has been demon-
strated in studies of patients with moderate to severe TBI.1 We
redemonstrate this in mTBI, showing that EDH is associated with
early incomplete recovery but not with greater degrees of un-
favorable outcome at any point. We also demonstrate that trau-
matic SAH, in isolation or combination with other features, is
strongly associated with outcome in mTBI.

Limitations
We recognize several limitations of this analysis. TRACK-TBI
had follow-up rates of 77% at 2 weeks, 71% at 3 months, 68%
at 6 months, and 64% at 12 months. The distribution of out-
comes in participants lost to follow-up may have differed from
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those who attended 1 or more follow-up appointments. We
note, however, that the 37% rate of positive CT findings in the
entire TRACK-TBI cohort (n = 1935) was not significantly dif-
ferent from the 38% rate of positive CT findings in partici-
pants who attended at least 1 follow-up appointment (n = 1602).
Also, both TRACK-TBI and CENTER-TBI were observational co-
hort studies designed to enroll participants in 3 care path-
ways (Table 1), resulting in 74% of the TRACK-TBI cohort and
70% of the CENTER-TBI cohort being admitted to the hospi-
tal or intensive care unit. Indeed, the incidence of CT abnor-
malities (37% in TRACK-TBI and 45% in CENTER-TBI) is higher
than in some prior studies of mTBI.38,43,44 However, the CT phe-
notypes identified using HCA and MCA should depend only
on the distribution of pathoanatomic results on head CT ex-
aminations positive for injury and should be unaffected by any
number of additional head CT examinations with normal re-
sults in the cohort. This was confirmed by nearly identical re-
sults for both HCA and MCA in TRACK-TBI and CENTER-TBI.

Conclusions
It is anecdotally taught that in moderate and severe TBI, out-
come is determined by what “the injury brings to the

patient”39(p92) while in mTBI it is what “the patient brings to
the injury.”39(p92) In this study, while reconfirming the
importance of patient baseline characteristics in mTBI out-
come, we demonstrate for the first time (to our knowledge)
that different pathological subtypes of intracranial hemor-
rhage are not equivalent in their implications for prognosis.
This finding of varying odds ratios for different subtypes of
intracranial hemorrhage, including high odds ratios for IVH
and petechial hemorrhage as markers for rotational injury,
appears to be a new observation in mTBI, and it invites fur-
ther validation. By demonstrating variability in prognostic
implications of different pathoanatomic lesion types, we
show that in mTBI, as in moderate and severe TBI, some
poor outcomes are attributable to what “the injury brings to
the patient.”39(p92)

Based on 2 large observational studies conducted on dif-
ferent continents, contusion, SAH, SDH, IVH, and petechial
hemorrhage are associated with adverse outcomes across a
broad range of GOSE scores up to 1 year after mTBI, while EDH
is not. These routinely obtained imaging findings can be used
to identify patients at risk for unfavorable outcomes and im-
prove clinical trial design. Patients with mTBI and these CT fea-
tures should be considered for TBI-specific education and
systematic follow-up.
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