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A B S T R A C T

A modular model for maneuvering in regular and irregular waves is presented. A new model is presented for
the y-component of the rudder inflow. Moreover, an efficient time-domain method for estimation of slowly
varying drift loads in irregular waves is presented. Simulations of turning circles in irregular waves with the
time-domain method, are compared to simulations where the difference-frequency loads, with the Newman
approximation, is used to estimate the slowly varying drift loads. These two methods show similar accuracy, but
the time-domain method is significantly faster. The numerical simulations are compared with new free running
experiments of the Duisburg Test Case (DTC). Based on extensive wave documentation in the Ocean basin
at SINTEF Ocean, the uncertainty in maneuvering experiments, due to variation of wave height throughout
the basin, is investigated. The uncertainty is not insignificant, but it is less than expected. The sensitivity to
number of realizations in the same irregular wave spectrum is investigated, both experimental and numerical.
For some responses, up to 20 repetitions are needed before the width of the 95% confidence intervals approach
convergence.
1. Introduction

Maneuvering in waves has received increasing attention the last
decades. The main focus has been on maneuvering in regular waves.
Based on a two-time scale assumption, Skejic and Faltinsen (2006)
presented a modular maneuvering model for maneuvering in regular
waves. The assumption is that the slowly varying maneuvering motions
have a more slowly varying time scale than the linear wave induced
motions. Hence, the dominating contribution to the maneuvering mo-
tion from regular waves is the second-order drift loads. This two-time
scale assumption is used by several other authors, e.g. Yasukawa and
Nakayama (2009), Seo and Kim (2011), Zhang and Zou (2016), Cura-
Hochbaum and Uharek (2016), Chillcce and el Moctar (2018), and Yu
et al. (2021). The models mentioned above are based on different
frameworks, the one thing in common is that the effects of regular
waves are accounted for by the second-order drift loads only, i.e. the
rest of the hydrodynamic loads on the ship are calculated as for calm
water. In Rabliås and Kristiansen (2021) the authors’ of the present
paper, applied the two-scale assumption in a modular maneuvering
model, to simulate turning circles with 35◦ rudder angle, of the Duis-
burg Test Case (DTC), for a range of wavelengths, with satisfactory
accuracy.

In ship maneuvering in deep water, there is a consensus that the
slowly varying drift loads are the most dominating contribution from
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waves. This is exemplified by the high accuracy of the models above
(and other models using this approach). However, this does not exclude
that the waves can affect other modules of the maneuvering model,
e.g. the propeller thrust and rudder loads. Moreover, the two-time
scale assumption can be questionable for long waves, in particular for
following sea. This is because when the encounter wave frequency
is low, the linear wave induced motions can experience the same
time-scale as the maneuvering motion.

Seo et al. (2019) compared numerical simulations of turning circles,
in regular and irregular waves, where the drift loads were accounted
for, with experiments. They suspected that one of the reasons to the
discrepancy from experiments, for the longest waves, was because the
effects of waves on rudder and propulsion was ignored. Wang et al.
(2018) investigated surf-riding and broaching, where propeller and
rudder immersion due to waves were accounted for. They concluded
that rudder immersion is the key factor for the emergence of broach-
ing motions. Aung and Umeda (2020) investigated, with a modular
maneuvering model, the sensitivity of rudder and propeller emergence
in adverse weather conditions. The velocity was not significantly af-
fected, while the trajectory was affected by the rudder and propeller
emergence. Nguyen et al. (2018) investigated, with CFD, the effects of
regular waves on the rudder forces, for five different wave headings
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and a range of wavelengths, 𝜆∕𝐿 = 0.4–2. Their results indicated a
significant influence on the rudder lift and drag, in particular for the
longest waves. Tello Ruiz et al. (2019) investigated experimentally,
for wavelengths 𝜆∕𝐿 = 0.2–0.8, the effects of waves on the rudder
loads. Their results indicated that the effect of waves, for the tested
conditions, on the propeller and rudder were negligible. However, only
head sea and following sea were tested, and the wave amplitudes were
moderate.

Nakamura and Naito (1975) showed that the wake velocities fluc-
tuate due to waves and ship motions, and the mean of the fluctuations
differs from the calm water wake. Furthermore, their experiments
indicated that the pitch motion was the dominating cause to the change
in wake. Faltinsen et al. (1980) proposed a wake model that accounts
for the increase in mean propeller inflow due to wave induced pitch
motion. Ueno et al. (2013) presented a method for the fluctuating part
of the wake velocity. Taskar et al. (2016) combined the two methods
above, and presented a method that takes into account both the change
in mean wake and the fluctuating part. The wave modified wake, affects
the propeller inflow velocity, as well as the x-component of the rudder
inflow. However, there is no one, in the authors’ knowledge, that has
presented a model for the y-component of the wave modified rudder
inflow.

For maneuvering in a seaway, there is done less research compared
to maneuvering in regular waves. Skejic and Faltinsen (2013) used the
Newman approximation, with random phase angles, to calculate the
second-order difference-frequency loads, i.e. the slowly varying drift
loads. They simulated, with a modular maneuvering model, turning cir-
cles in irregular waves. Yasukawa et al. (2018) simulated turning circles
in irregular waves, where only the steady average force was accounted
for, i.e. the stochastic behavior was not accounted for. Both methods
above use a wave spectrum for an irregular sea state, and calculate the
drift loads for each component in the spectrum with the same numerical
method as for regular waves. For the average loads, a single sum is
computed for each time instants the drift loads are calculated. For
the difference-frequency loads, in principle it is necessary to compute
a double sum, which is computationally demanding. It is possible to
approximate the double sum to a single sum, which will reduce the
computational cost somewhat. However, even the single sum can be
computationally demanding, meaning that the time needed to perform
a simulation in irregular waves is significantly higher compared to
regular waves.

If a maneuver is repeated in an irregular sea state, the trajectory
and velocities will not be identical for different repetitions. This is
due to the stochastic variation of the wave elevation in an irregular
sea state. The stochastic behavior is not accounted for if only the
averaged second-order drift loads are accounted for. Seo et al. (2019)
simulated turning circles in irregular waves, where the second-order
difference-frequency loads, with random phase angles, were accounted
for. They investigated the sensitivity of different time realizations in
the same wave spectrum, for drifting distance and drifting angle. Their
results indicated that the variation around the mean converged after 15
repetitions.

In the present work, the modular maneuvering model in Rabliås
and Kristiansen (2021) is further developed. The drift loads in regular
waves are calculated with a new approach, where the added resistance
(x-drift) is calculated with the same strip-theory as in Rabliås and
Kristiansen (2021), while the y- and yaw-drift are calculated with a
3D panel code with no forward speed effects. This is similar to the
approach presented in Yasukawa et al. (2018). This is justified by
the fact that the forward speed has only a small effect on the y- and
yaw-drift. A new model is presented for the rudder inflow. The x-
component of the inflow is calculated with the model in Taskar et al.
(2016), while the y-component of the inflow is derived consistently to
account for the same effects as the x-component. The slowly varying
drift loads in irregular waves are calculated with two different methods,
the difference-frequency loads using the Newman approximation, and
2

Fig. 1. Body-fixed coordinate system 𝑥𝑦𝑧 and Earth-fixed coordinate system 𝑋0 , 𝑌0 , 𝑍0.
Positive direction of yaw, 𝛹 , yaw-rate, 𝑟, rudder angle, 𝛿, and initial wave heading, 𝛽0
are indicated.

a ‘‘time-domain’’ method where the incident wave elevation is decom-
posed into a series of individual waves. The time-domain method was
first presented by Hsu and Blenkarn (1972), and it is fundamentally
different to the methods that uses the wave spectrum. Prpic-Orsic and
Faltinsen (2012) used this time-domain method to calculate speed loss
in a seaway. However, the method has not, to the authors’ knowledge,
been applied in a maneuvering model.

The numerical simulations are compared with experimental results
for the Duisburg Test Case (DTC). Turning circles with 35◦ rudder an-
gle, in regular and irregular waves, for a range of wave conditions, are
presented. In irregular waves, the sensitivity to different time realiza-
tions, are investigated both experimental and numerical. Furthermore,
new dedicated experiments of maneuvers of the DTC hull in irregular
waves are presented, and the uncertainty of the experimental results,
introduced by variation of the wave height throughout the basin, is
investigated.

2. Mathematical model

Two coordinate systems are applied: one right-handed body-fixed
coordinate system, 𝑥𝑦𝑧, with the 𝑧-axis pointing upwards through the
center of gravity, with 𝑧 = 0 at calm water level, and one Earth-
fixed coordinate system 𝑋0𝑌0𝑍0, which is a right-handed coordinate
system with the 𝑍0-axis pointing upwards. Both coordinate systems are
illustrated in Fig. 1.

The mathematical maneuvering model is the same as in Rabliås and
Kristiansen (2021), which is a 4-DOF modular model based on Skejic
(2008). The equation of motion is provided in Eq. (1).

The hull lifting coefficients, 𝑌𝑣, 𝑌𝑝, 𝑌𝑟, 𝐾𝑣, 𝐾𝑝, 𝐾𝑟, 𝑁𝑣, 𝑁𝑝, and 𝑁𝑟,
are calculated by slender body theory, while the zero-frequency added
mass terms 𝑋�̇�, 𝑌�̇�, 𝑌�̇�, 𝑌�̇�, 𝐾�̇�, 𝐾�̇�, 𝐾�̇�, 𝑁�̇�, 𝑁�̇�, and 𝑁�̇� are calculated
with the 3D panel code WAMIT. Subscript 𝑅, 𝑃𝑅𝑂𝑃 , and 𝐶𝐹 represents
rudder loads, propulsion loads, and loads due to viscous flow separa-
tion. The transverse viscous loads due to flow separation are calculated
with the 2D+t approach presented in Rabliås and Kristiansen (2021).
The term 𝐶 is an empirical reduction factor due to viscous effects, in
𝑇𝑁
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the present work 𝐶𝑇𝑁 = 0.5. 𝑅 represents slowly varying second-order
oads due to regular or irregular waves. Calm water rudder loads and
ropulsion loads are calculated with the same conventional methods as
n Rabliås and Kristiansen (2021).

The time integration is performed with a fourth-order Runge–Kutta
cheme. The time-step is 0.1 in full scale. All time-varying terms in
1), except the slowly varying second order wave loads, are updated at
ach sub-step of the time integration. The two-time scale assumptions
s applied for the wave loads, which means that it is assumed that the
lowly varying maneuvering motions have a different time scale than
he linear waved induced motions, and only the slowly varying second
rder wave loads are accounted for. The slowly varying wave loads are
ecoupled from the rest of the equation system, and they are updated
t a different time scale. In regular waves the slowly varying second
rder wave loads are updated at a predetermined threshold for heading
nd velocity. Based on a convergence study, where the threshold was
ystematically varied, the threshold is set to 𝛥𝛹 = 2◦ and 𝛥𝑢 = 0.2 m/s
full scale). How the second order wave loads are updated in irregular
aves is discussed in Section 2.2.2.

Even though the linear waved induced motions are neglected in the
quation of motion (1), it is of high importance to accurately calculate
he linear wave induced motions, in order to properly calculate the
econd order wave loads. In the present work, the linear wave induced
otions, in six-degrees of freedom, 𝜂1 − 𝜂6, are solved in the frequency
lane with the STF strip theory. The amplitudes and phase angles of
he linear wave induced motions are updated at the same threshold as
he second order wave loads.

For more information about the numerical model, we refer to
abliås and Kristiansen (2021). The present paper presents further
evelopments related to effects of waves on the rudder and propeller,
nd the calculation of second-order wave loads, in regular and irregular
aves.

.1. Wave effects on propulsion and rudder loads

Nakamura and Naito (1975) showed that the wake velocities fluc-
uate due to waves and ship motions, and the mean of the fluctuations
iffers from the calm water wake. Furthermore, their experiments
ndicated that the vessel pitch motion was the dominating cause to the
hange in wake. The wake velocities affect both the propeller loads and
he rudder loads. Hence, it is possible that wave effects on the wake
elocities can have a significant effect on the maneuvering behavior.

Faltinsen et al. (1980) proposed a formula that accounts for the
ncrease in mean propeller inflow due to wave induced pitch motion,

𝑚𝑒𝑎𝑛 =

√

(

1 −
𝛥𝑝

2

)

𝑈 (2)
3

0.5𝜌𝑈 i
where, 𝑈 is the free stream velocity, 𝜌 is the density of water, and
𝛥𝑝 ∼ − 𝜌

4𝜔
2
𝑒 |𝜂5|

2𝑥2𝑝 is the pressure gradient due to pitching motion, 𝜂5.
𝜔𝑒 is the encounter frequency and 𝑥𝑝 is the 𝑥-position of the propeller.

Ueno et al. (2013) presented a method for the fluctuating part of the
wake velocity, where the water particle motion and the surge motion
of the ship are accounted for.

𝑉𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑛𝑔 =
(

1 −𝑤𝑝
) {

𝑈 − 𝜔𝑒𝜂1,𝑎 sin (𝜔𝑒𝑡 − 𝜀1)
}

+

𝛼𝜔𝜁𝑎 exp(𝑘𝑧𝑝) cos𝜒 cos(𝜔𝑒𝑡 − 𝑘𝑥𝑝 cos𝜒) (3)

where 𝑤𝑝 is the effective calm water wake fraction, 𝜂1,𝑎 is the amplitude
of the surge motion, 𝜀1 is the phase of the surge motion, 𝜁𝑎 and 𝑘 are
he wave amplitude and wave number of the incident wave, 𝜒 is the
ave heading, and 𝑧𝑝 is the 𝑧-position of the propeller. 𝛼 is a factor that

akes into account that the incident wave amplitude is modified due to
he present of the hull,

=

⎧

⎪

⎨

⎪

⎩

0.2
(

𝜆
𝐿𝑝𝑝| cos𝜒|

)

+ 0.5, for 𝜆
𝐿𝑝𝑝| cos𝜒|

≤ 2.5

1, for 𝜆
𝐿𝑝𝑝| cos𝜒|

> 2.5
(4)

where 𝜆 is the wavelength and 𝐿𝑝𝑝 is the length between perpendicu-
lars.

Taskar et al. (2016) combined the method by Faltinsen et al. (1980)
and Ueno et al. (2013) to estimate the time varying wake velocity in
waves

𝑈𝐴 =
((

1 −𝑤𝑝
) {

𝑈 − 𝜔𝑒𝜂1,𝑎 sin (𝜔𝑒𝑡 − 𝜀1)
}

+

𝛼𝜔𝜁𝑎 exp(𝑘𝑧𝑝) cos𝜒 cos(𝜔𝑒𝑡 − 𝑘𝑥𝑝 cos𝜒)
)

√

(

1 −
𝛥𝑝

0.5𝜌𝑈2

)

(5)

askar et al. (2016) compared the predicted wake from (5) with
easured wake data from model tests, and a good match between the
redicted and measured wake was obtained. In the present work, (5) is
sed to calculate the inflow to the propeller.

The rudder loads are strongly dependent on the inflow velocity,
oth the x-component and the y-component. The longitudinal and
ransverse components of the ambient flow can be written as

𝑢𝑟 = 𝑈𝐴[1 + 𝑘𝑚(
√

1 + 𝐶𝑡ℎ − 1)]

𝑣𝑟 = 𝑣 + 𝑥𝑟𝑟 + 𝑣𝑟,𝑤
(6)

here 𝑈𝐴 is the propeller inflow velocity calculated by Eq. (5), 𝐶𝑡ℎ is
he propeller thrust loading coefficient, 𝑘𝑚 accounts for the distance-to-
ropeller diameter ratio, 𝑣 is the sway velocity of the ship, 𝑟 is the yaw
ate of the ship, and 𝑣𝑟,𝑤 is the wave induced velocity in the transverse
irection.

When the x-component of the rudder inflow is calculated with
q. (6), where 𝑈𝐴 is calculated by Eq. (5), the effects of waves are

mplicitly accounted for. To consistently account for the wave modified
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inflow velocity, the y-component of the inflow velocity should also
be modified due to waves. This has not, to the authors’ knowledge,
been accounted for earlier. Now we need to establish how to calculate
the wave modified inflow velocity in the transverse direction. In (5),
the incident wave velocity, and linear wave induced surge- and pitch
velocities are accounted for. A first approximation is to account for the
same effects as in Eq. (5), namely the incident wave velocity and linear
wave induced sway-, roll-, and yaw-velocities. The inflow velocity due
to waves can then be written as

𝑣𝑟,𝑤 =
(

𝜔𝑒𝜂2,𝑎 sin (𝜔𝑒𝑡 − 𝜀2) − 𝑧𝑟𝜔𝑒𝜂4,𝑎 sin (𝜔𝑒𝑡 − 𝜀4)
+ 𝑥𝑟𝜔𝑒𝜂6,𝑎 sin (𝜔𝑒𝑡 − 𝜀6)

)

− 𝛼𝜔𝜁𝑎 exp(𝑘𝑧𝑟) sin𝜒 cos(𝜔𝑒𝑡 − 𝑘𝑥𝑟 cos𝜒) (7)

where 𝜂2,𝑎, 𝜂4,𝑎, 𝜂6,𝑎, 𝜀2, 𝜀4, and 𝜀6 are the amplitudes and phase angles
of the first order wave induced sway, roll, and yaw motion. 𝑥𝑟 and 𝑧𝑟
are the 𝑥- and 𝑧-position of the rudder. In the current maneuvering
model equation (5)–(7) are used to calculate the inflow velocities to the
rudder. The amplitudes and phase angles of the linear wave induced
motions, 𝜂𝑖,𝑎 and 𝜀𝑖,𝑎 for 𝑖 = 1 − 6, are calculated with the STF strip
theory in the seakeeping module. The amplitudes and phase angles are
updated with the same interval as the second order wave loads.

2.2. Estimation of second-order wave loads

2.2.1. Regular waves
Following a two-time scale assumption, we assume that the ma-
4

neuvering motions follow a more slowly varying time scale than the
linear wave loads. This is in general true for head sea, quartering,
and beam side, but may be questionable in following sea. In regular
waves, the waves loads are accounted for by the mean second-order
drift loads. In Rabliås and Kristiansen (2021) the drift loads were
calculated by two methods based on strip theory. For the wave lengths
where the ship motions dominates, the drift loads were calculated by
the pressure integration method presented by Faltinsen et al. (1980).
For the shortest wavelengths where wave reflection dominates, the
drift loads were calculated by the asymptotic method in Faltinsen
et al. (1980). The linear wave induced ship motions, in six degrees
of freedom, are calculated with the STF-strip theory (Salvesen et al.,
1970). For some wavelengths both the ship motions and wave reflection
will contribute to the drift loads. A modified version of the formula
by Fujii (1975) was applied to combine the pressure integration method
and asymptotic method, more information can be found in Rabliås and
Kristiansen (2021).

In Rabliås and Kristiansen (2021), some discrepancies were ob-
served when the calculated drift loads were compared with experi-
ments, in particular for following waves, and for sway- and yaw-drift.
This was suggested to be a main cause for the deviation of the ma-
neuvering simulations compared to experiments. In order to improve
the accuracy of the numerical model, the drift loads for regular waves
are calculated with a different approach in the present work. The main
steps of this approach follows in the next paragraphs.

Yasukawa et al. (2018) measured the drift loads experimentally, on
a bulk carrier, for a range of wavelengths, wave headings, and Froude

numbers. They observed that while the added resistance was sensitive
Fig. 2. Mean drift loads for the DTC hull in oblique waves, wave headings 60◦ (left) and 120◦ (right) (head sea is 180◦ and following sea is 0◦). Froude number 0.052. Numerical
calculations performed with strip-theory with pressure integration and calculations performed with WADAM, are compared with experimental results from Sprenger and Fathi
(2015). Upper row: y-drift. Lower row: yaw-drift.
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to forward velocity, the forward velocity effect on the lateral drift loads
was small. Another observation was that the x- and y-drift were esti-
mated with acceptable accuracy with a strip theory method, while the
accuracy of the calculated yaw-moment was not acceptable. Inspired by
this, they introduced a modular maneuvering model, where the x-drift
was calculated with a strip theory that accounts for forward velocity
effects, while the lateral drift was calculated with a 3D panel code
without forward velocity effects. A similar approach is implemented in
the present work. The x-drift is calculated with the same strip theory
as in Rabliås and Kristiansen (2021), while the y- and yaw-drift are
calculated with the 3D panel code WADAM, with no forward velocity.
The y-drift and yaw-drift loads are pre-calculated for a range of wave
frequencies, with 5◦ spacing in the wave heading. During a simulation
he lateral drift loads are interpolated from the pre-calculated table
ased on the encounter frequency and wave heading. This approach
nsures that the forward velocity effects are taken into account for the
-drift, while accuracy of the y- and yaw-drift are improved compared
o the results in Rabliås and Kristiansen (2021).

In Fig. 2, the y-drift and yaw-drift, calculated with strip theory
ith pressure integration and WADAM, for 60◦ and 120◦ wave heading
nd Fn = 0.052, are compared with experiments from Sprenger and
athi (2015). As an attempt to visualize the trends in the experimental
esults, a spline representation is included in the figure. We have
o information about the experimental values between data points,
hus should this spline representation be considered for visualization
urposes only. Overall, the drift loads calculated with WADAM, where
nly the encounter frequency is taken into account, show a better
greement with the experimental results compared to the strip theory
ith pressure integration. Moreover, sensitivity studies (not presented
ere) show that turning circles in regular waves compare better with
ur experiments when the y-drift and yaw-drift are estimated with
ADAM.

.2.2. Irregular waves
In an irregular sea state we can formally write the second-order

ifference-frequency loads, i.e the slowly varying loads, as

𝑆𝑉
𝑖 =

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝐴𝑗𝐴𝑘

{

𝑇 𝑖𝑐𝑗𝑘 cos
[

(𝜔𝑘 − 𝜔𝑗 )𝑡 + (𝜎𝑘 − 𝜎𝑗 )
]

+𝑇 𝑖𝑠𝑗𝑘 sin
[

(𝜔𝑘 − 𝜔𝑗 )𝑡 + (𝜎𝑘 − 𝜎𝑗 )
]

}

(8)

where 𝐴𝑖 and 𝜔𝑖 are the wave amplitude and circular wave frequency
for wave component 𝑖 in the wave spectrum. 𝜎𝑖 = 𝜀𝑖 + 𝑘𝑖𝑋0(𝑡) cos𝜒 +
𝑘𝑖𝑌0(𝑡) sin𝜒 , where 𝜀𝑖 is a random phase angle, 𝑘𝑖 is the wavenumber,
𝑋0(𝑡) and 𝑌0(𝑡) are the ship position in the global coordinate system, and
𝜒 is the wave heading. The coefficients 𝑇 𝑖𝑐𝑗𝑘 and 𝑇 𝑖𝑠𝑗𝑘 can be considered as
quadratic transfer functions. These coefficients can be challenging and
time consuming to compute, especially the off-diagonal terms. Newman
(1974) proposed that the coefficients could be approximated as

𝑇 𝑖𝑐𝑗𝑘 = 𝑇 𝑖𝑐𝑘𝑗 =0.5(𝑇
𝑖𝑐
𝑗𝑗 + 𝑇

𝑖𝑐
𝑘𝑘)

𝑇 𝑖𝑠𝑗𝑘 = 𝑇 𝑖𝑠𝑘𝑗 =0
(9)

Using Eqs. (8) and (9) it is sufficient to calculate the diagonal
terms of the quadratic transfer function. Hence, the same methods as
for regular waves can be used to calculate the drift loads for each
wave component in the spectrum. In the current model, the coefficients
𝑇𝑗𝑘 are updated at the same threshold as for regular waves, when

◦

5

the heading changes 2 or the forward velocity changes 0.2 m/s,
Fig. 3. Example of irregular wave elevation. Zero-upcrossing points are indicated with
orange stars. The wave height (H) and wave period (T) for three consecutive waves
are indicated with arrows. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

while the summation in Eq. (8) is performed every tenth time step
to account for the ship motion. Newman (1974) proposed as a further
approximation, that Eq. (8) could be simplified by the square of a single
sum. This single sum approach was also implemented, which reduced
the computational time somewhat. However, the computational time
with the double sum was acceptable, and it was considered that we
not wanted to approximate the calculations further. Thus the double
summation is applied in the current work.

The calculation of the slowly varying drift loads, in irregular waves,
with Eq. (8) is based on the wave spectrum, and the random phase
angle 𝜀𝑖 ensures that you get a realistic time trace of the loads. An
lternative method is a ‘‘time-domain’’ method, first proposed by Hsu
nd Blenkarn (1972). This method is not based on the wave spectrum,
ut the time-series of an irregular wave. The irregular time trace of
he wave elevation can be considered as a series of regular waves
ith different wave heights and wavelengths. By locating either zero-
pcrossing or zero-downcrossing time instants, a series of individual
aves can be obtained. When the zero-crossing (upwards or down-
ards) time instants are determined, the wave period is taken as

he time between two zero-crossing time instants. The wave height is
aken as the distance between the maximum wave elevation and the
inimum wave elevation between two zero-crossing time instants. An

xample of an irregular wave elevation, with illustration of how the
ave height and wave period are determined is illustrated in Fig. 3.
or each wave encounter, the drift loads are estimated as if there was
steady regular wave with wave period and wave height equal to that
ave encounter. Prpic-Orsic and Faltinsen (2012) used this method to

alculate velocity loss in a seaway. However, this method has not, to the
uthors’ knowledge, been applied in a maneuvering problem earlier.
his approach can use measured time-series of the wave elevation
irectly, or a time-series can be generated from a wave spectrum.

In the original formulation of the ‘‘time-domain’’ method, the wave
ncounter at the origin of the body-fixed coordinate system, is used
n the calculation of the slowly varying drift loads. However, for a
ontainer ship, in realistic sea states, a significant number of the waves
ill be relative short compared to the ship length. This means that

here will be several waves along the ship at the same time. As a first
pproximation to account for this effect, the wave loads are calculated
or all waves along the ship, and the weighted sum is used in the
aneuvering simulations, where the wave encounter at the origin has
ost weight. Sensitivity studies (not shown here) indicate that this

pproach improve the results. However, more research is needed on
his topic.
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Table 1
Particulars of the presently investigated Duisburg Test Case (DTC) hull.

Particulars Ship Model

𝐿𝑝𝑝 [m] 355 5.577
𝐵 [m] 51 0.801
𝑑 [m] 14.5 0.228
𝛥 [kg] 173468000 673.27a

𝐶𝐵 [–] 0.661 0.661
𝑥𝐺b [m] 174.059 2.721a

𝑦𝐺 [m] 0 0
𝐾𝐺 [m] 19.851 0.311a

𝐺𝑀 [m] 5.100 0.081a

𝐼44 [kgm2] 7.148E+10 41.51c

𝐼55 [kgm2] 1.322E+12 1294.2a

𝐼66 [kgm2] 1.325E+12 1268.4
𝐿𝑏𝑘 [m] 14.85 0.23a

aMeasured values.
bRelative to aft perpendicular.
cEstimated from measured natural roll period and numerical added mass.

3. Experimental setup

In January 2020, we performed tests of a 1:63.65 scale model of the
Duisburg Test Case in the Ocean basin at SINTEF Ocean in Trondheim.
20/20 Zig-Zag tests and turning circles, with 25◦ and 35◦ rudder angle,
were tested in calm water, regular and irregular waves, with emphasize
on tests in irregular waves. This test campaign was follow-up of the test
campaign described in Rabliås and Kristiansen (2019), where the focus
was on tests in regular waves.

The test-setup is identical with the setup in Rabliås and Kristiansen
(2019), except that rudder loads were measured in the current tests.
The model was made at SINTEF Ocean in conjunction with the SH-
OPERA Project (Sprenger and Fathi, 2015). Before the current test
campaign the model was refurbished and repainted. The main particu-
lars of the model are presented in Table 1. Detailed information about
the hull, propeller, and rudder can be found in el Moctar et al. (2012).

3.1. Wave documentation

Traditional wave calibration was not performed before the model
tests. However, the waves were documented with a significant amount
of wave probes distributed in the testing area (without model). The
measured wave steepness in general deviates somewhat from the target
value. Moreover, the wave amplitude varies slightly throughout the
basin. There will also be a deterioration of the wave climate over time
due to wave reflection from the beach. Before the model tests, the
results from the wave documentation were investigated in detail, such
that the maneuvering tests could be performed in the region in the
basin where the wave heights had least variation, and that the tests
were executed in the most steady time-window.

An overview of the tested wave conditions with representative
measures of amplitudes and variation, is presented in Tables 2–3. The
regular wave conditions are given in Table 2 and the irregular wave
conditions are given in Table 3.

For the regular waves, the time-varying wave height was obtained
with the Hilbert-transformation. The irregular waves were generated
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from a Jonswap wave spectrum with 𝛾 = 3.3. The measured signifi-
cant wave heights provided in Table 3 are 𝐻𝑚0, calculated from the
experimental wave spectrum based on the time-series of the wave
elevation. The standard deviation over all wave probes in the basin
is also presented in Tables 2–3, i.e. how the wave height varies over
all wave probes in the basin. The standard deviation is based on the
time-averaged wave height for all wave probes in the basin. In Table 2
we can see that the standard deviation is between 8.65% and 9.90%
of the mean wave height for the regular waves, while for the irregular
waves (Table 3) the standard deviation is between 2.95% and 4.93%
of the mean wave height. This indicates that the spatial variation of
the wave height is similar for different wave conditions. Moreover, the
spatial variation is higher for regular waves than for irregular waves.

In Fig. 4, the variation in wave height for regular wave test 80030 is
illustrated. The wave heights in the figure are the time-averaged wave
heights after the time-instant when the steady wave environment is
reached. Each grid point represents a wave probe. In total 480 wave
probes were distributed in the basin, with 2 m spacing. The wavemaker
side and beach side of the basin are indicated in the figure, the
wavemaker is located at 𝑥 = 66.7 m and the beach starts approximately
at 𝑥 = 0 m. In addition, there is a wavemaker on the left side of the
basin (not used in the present tests), with a corresponding beach on
the right side of the basin. The variation of the wave height is most
significant on the sides of the basin, on the right side there are some
regions where the wave height is significantly higher than in the rest of
the basin, while on the left side of the basin the wave heights are lower
than in rest of the basin. Preliminary numerical investigations indicate
that the pattern on the right hand side, with increased wave height, is
caused by the wave beach at the right hand side, while the pattern
on the left hand side is cause by imperfections in the basin wall at
the left hand side. In the free running maneuvering tests these regions
were, as far as possible, avoided. Relevant testing area of free running

Fig. 4. Example results from wave documentation for regular wave test 80030. Time-
averaged wave heights for 480 wave probes are presented, the grid points represent the
480 wave probes. The target wave height is 7.60 m, the mean measured wave height
in the basin is 8.08 m, and the standard deviation is 0.8 m. Colorbar in meters (full
scale). The wavemaker is located at x = 66.7 m and the beach starts approximately at
x = 0 m.
Table 2
Regular wave conditions tested in the present model tests.

Wave ID 𝜆∕𝐿𝑝𝑝 T [s] H [m]

Target Meas. Diff. std std/H

80010 0.44 9.97 3.88 3.93 +1.29% 0.34 m 8.65%
80020 0.63 11.96 5.58 7.26 +30.11% 0.66 m 9.09%
80030 0.86 13.96 7.6 8.08 +6.32% 0.80 m 9.90%
80040 1.12 15.95 9.93 10.81 +8.86% 1.06 m 9.81%
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Table 3
Irregular wave conditions tested in the present model tests.

Wave ID 𝑇𝑝 [s] 𝐻𝑠 [m]

Target Meas. Diff. std std/𝐻𝑠

85000 9.97 3.12 3.45 +10.58% 0.17 m 4.93%
85010 11.97 3.18 3.56 +11.95% 0.11 m 3.09%
85020 11.97 4.97 5.43 +9.26% 0.16 m 2.95%
85030 13.96 4.33 4.71 +8.78% 0.16 m 3.40%
85040 11.97 8.0 8.57 +7.13% 0.28 m 3.28%
Fig. 5. Trajectory of three experimental repetitions of turning circles with 35◦ rudder
angle in initial head sea. The starting positions of the tests are indicated with red
squares. The outer sides of the basin, the beach area, and the position of the wavemaker
are indicated. In the area of the basin where results from the wave documentation are
available, the time-averaged wave heights are illustrated with a colormap. The colormap
is the same as presented in Fig. 4 (WAVE ID 80030).

maneuvering tests is exemplified in Fig. 5, where three experimental
repetitions of a turning circle with 35◦ rudder angle, are indicated in
the same figure as a colormap of the time-averaged wave heights. The
starting positions of the maneuver are indicated with red squares. The
target wave height and wave period are 𝐻 = 8.08 m and 𝑇 = 13.96
s, and the incident wave direction is head sea. The outer sides of the
basin, the beach area, and the position of the wavemaker are indicated
in the figure. The colormap of the wave heights is the same as in Fig. 4.
The wave height in the basin varies also with time, hence Figs. 4–5 are
only for illustration purposes.

For the documentation of the irregular waves, the wave probes were
arranged slightly different compared to the documentation of regular
waves. Most of the wave probes were located along the center line of
the basin, with some extra wave probes closer to the sides, 35 wave
probes in total. The arrangement is illustrated in Fig. 6. Some results
from the documentation of wave 85020 are also presented in the figure,
to exemplify the results. The significant wave heights are indicated next
to the wave probes. The numbers without parenthesis represents 𝐻1∕3,
calculated from a zero-crossing analysis of the measured time series,
while the numbers in parenthesizes represents 𝐻 = 𝐻 , calculated
7

𝑠 𝑚0
Fig. 6. Overview of wave probe positions of the 35 wave probes used in the docu-
mentation of irregular waves. Wave probes are indicated by circular dots. Results, for
selected wave probes, for wave 85020 are indicated. The numbers without parenthesis
are 𝐻1∕3 calculated from zero-crossing analysis of measured time series, while the
numbers in parenthesis are 𝐻𝑠 = 𝐻𝑚0 calculated from spectral analysis of the measured
time series. The target significant wave height for this sea state was 𝐻𝑠 = 4.97 m. The
measured values are significant higher than the target value. The wavemaker is located
at x = 66.7 m and the beach starts approximately at x = 0 m.

from the wave spectrum based on the measured time series. The
significant wave heights calculated from the measured wave spectrum
are slightly higher than the significant wave heights calculated from a
zero-crossing analysis. However, the difference between the significant
wave heights calculated from the wave spectrum and time-series are
relatively small, and within the range we could expect. The results
in Fig. 6 indicate that the variation of the significant wave height is
relatively small along the center line of the basin, below 4%, while
there are more variation of the significant wave height for the wave
probes along the sides of the basin. This is in accordance with the
observations in Fig. 4.

The irregular waves were documented for 22 min (model scale).
Due to short waves traveling slowly, it take some time to obtain the
wanted sea state in the basin. To ensure that we had a ‘‘steady’’ sea
state, no model tests were initiated the first five minutes after the
wavemaker started. Moreover, the five first minutes of the measure-
ment are disregarded when the time-series of the wave documentation
are post-processed. This means that the measured wave spectra and
significant wave heights are based on 17 min of wave documentation,
which corresponds to 2 h and 15 min in full scale. After 22 min the
wavemaker repeats the signal.
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Fig. 7. Definitions of Advance (𝐴𝑑 ), tactical diameter (𝐷𝑇 ), drifting distance (𝐻𝐷), and
drifting angle (𝜇𝐷) during a turning circle in waves.

4. Results

In this section, numerical and experimental results are presented for
turning circles with 35◦ rudder angle, with the DTC hull. Results are
presented for calm water and a range of different regular and irregular
wave conditions. All simulations are performed in model scale. For
presentation purposes, the results presented in this section, are scaled
to full scale by Froude scaling. In order to evaluate the results, and
observe trends, for a range of conditions, some global responses are
chosen to present the results. These are: the tactical diameter (𝐷𝑇 ),
advance (𝐴𝑑), drifting distance (𝐻𝐷), and the drifting angle (𝜇𝐷), their
definitions are illustrated in Fig. 7.

First, results for calm water are presented to verify the calm water
maneuvering model. The trajectory and roll motion of the DTC hull
during a turning circle with 35◦ rudder angle towards starboard, in
calm water, with initial velocity corresponding to a Froude number
equal to 0.14, are presented in Figs. 8–9. The trajectory is in good
agreement with experimental results. However, the steady roll angle
is underestimated in the numerical simulations compared to the exper-
iments. The steady roll angle estimated with the numerical model is
approximately 40% lower than the experimental results, which indi-
cates that all physical effects in the roll equation are not represented
adequately.

Since the calm water maneuvering in the present work is based on
the maneuvering model in Rabliås and Kristiansen (2021), results for
calm water will not be discussed further, and we refer to Rabliås and
Kristiansen (2021) for more comprehensive results and discussions.

Fig. 8. Trajectory of a turning circle of the DTC hull with 35◦ rudder angle in calm
water. The initial velocity corresponds to a Froude number, Fn = 0.14. Time instants for
heading 𝛹 = −90◦, −180◦, −270◦, and −360◦ are indicated for the numerical results.
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Fig. 9. Roll motion of the DTC hull during a turning circle with 35◦ rudder angle
in calm water. The initial velocity corresponds to a Froude number, Fn = 0.14.
Time instants for heading 𝛹 = −90◦, −180◦, −270◦, and −360◦ are indicated for the
numerical results.

4.1. Regular waves

4.1.1. Wave effects on propulsion and rudder loads
The sensitivity to the variation of the inflow velocity to rudder and

propeller due to regular waves, for turning circles with 35◦ rudder an-
gle, is presented in this section. Simulations where the inflow velocity
is estimated by Eqs. (5) and (7) are compared to simulations where only
the effective calm water wake fraction 𝑤𝑝 is taken into account.

The vessel trajectory and propeller thrust obtained by the simu-
lations and experiments in regular waves, with wavelength 𝜆∕𝐿𝑝𝑝 =
0.63, are presented in Fig. 10. Overall, the predicted propeller thrust
from simulations is in good accordance with experiments. However, the
propeller thrust from numerical simulations are slightly lower than the
measured thrust. For the simulations where the wave dependent wake
is applied, the oscillations have similar amplitude as the experiments.
The high frequency oscillations are most prominent, but some low
frequency behavior due to waves are also present.

In the beginning of the maneuver, the two methods predict almost
identical trajectory. The difference grows with time, and it is most
evident around heading 𝛹 = −540◦. The difference between the two
methods is smaller than the difference between simulations and the
experiments. However, the effect of waves on the propeller and rudder
inflow is not insignificant.

The tactical diameter, advance, drifting distance, and drifting angle
for a range of wavelengths are presented in Fig. 11. For wavelengths
𝜆∕𝐿𝑝𝑝 = 0.438 and 0.86, 95% confidence intervals, based on repetition
tests, are indicated with error bars for the experimental results. We note
that while the stochastic uncertainty is relative low for advance and
tactical diameter, the stochastic uncertainty is significantly higher for
drifting distance and drifting angle, especially for wavelength 𝜆∕𝐿𝑝𝑝 =
0.86. However, for wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, the confidence interval
is based on three repetitions only. For wavelength 𝜆∕𝐿𝑝𝑝 = 0.63 and
shorter, the simulations with calm water wake fraction and wave
modified inflow velocity predict very similar results. For wavelengths
𝜆∕𝐿𝑝𝑝 = 0.86 and 1.12, the two models predict different results, which
suggest that the effect of waves on the propeller and rudder inflow is
most important for long waves.
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Fig. 10. Results of a turning circle of the DTC hull with 35◦ rudder angle in regular waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.63, wave steepness 𝐻∕𝜆 = 1/40, head sea (𝛽0 = 180◦)
ncident wave direction, and 13.92 knots approach velocity (Fn = 0.12). Simulations with calm water wake, and where the inflow to the propeller and rudder is modified due to
aves, are compared with experimental results. Incident wave direction is indicated with an arrow. Time instants for heading 𝛹 = −90◦, −180◦, −270◦, −360◦−450◦, and −540◦

are indicated for the simulation where calm water wake is applied. Left: Trajectory. Right: Propeller thrust.
Fig. 11. Experimental and numerical results of a turning circle of the DTC hull with 35◦ rudder angle in regular waves, for a range of wavelengths in initial head sea. Simulations
where calm water wake fraction are applied is compared to simulations where inflow to the propeller and rudder is modified due to regular waves. 95% confidence intervals,
based on repetition tests, are indicated with error bars for the experimental results with wavelength 𝜆∕𝐿𝑝𝑝 = 0.438 (five repetitions) and 0.86 (three repetitions). Upper row:
Advance and tactical diameter. Lower row: Drifting distance and Drifting angle.
9
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Fig. 12. Trajectory of a turning circle of the DTC hull with 35◦ rudder angle in regular waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, head sea (𝛽0 = 180◦) approach angle, and 11.14
knots approach velocity (Fn = 0.1). Simulations with constant wave height, H = 8.02, and simulations where the wave height is updated for each time instant where the drift loads
are calculated, are compared to experimental results. For the experimental results, the mean path, based on repetition tests, is given, and in addition the shaded area represents
the standard deviation due to three repetition tests. Incident wave direction is indicated with an arrow. Time instants for heading 𝛹 = −90◦, −180◦, −270◦, −360◦−450◦, and
−540◦ are indicated for the simulation where constant wave height is applied.
Fig. 13. Example of variation of wave amplitudes during a turning circle with
35◦ rudder angle in regular waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86. The black line
represents the mean wave amplitude measured in the basin (see Fig. 4). The green line
represents the time- and space-varying wave amplitudes measured in the basin. The
two vessel paths using mean and varying wave amplitudes are presented in Fig. 12.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

4.1.2. Sensitivity to variation of wave height
The second-order wave loads is in general the dominating con-

tribution from the wave environment during maneuvering in waves.
Since the second-order loads are proportional to the wave amplitude
squared, in general a moderate uncertainty in the wave amplitude can
introduce a significant uncertainty in the results. In a wave basin, the
wave amplitude varies slightly throughout the basin, as documented
in Section 3.1. This can for example be due to the accuracy of the
wave maker, uneven bottom, equipment mounted in the basin or at
the side walls, and the shape of the wave beach. When experiments are
compared with numerical simulations, where the wave height typically
is assumed to be constant, the variation in wave height throughout the
10
basin can introduce an uncertainty to the results. This issue is, to some
degree, present in all wave basins, and it is important to have an idea
of the magnitude of the uncertainty this introduces. Furthermore, if one
have information of how the wave climate varies throughout the basin,
this uncertainty can be minimized by performing the experiments in the
most steady region of the basin.

In this section, simulations in regular waves with constant wave
amplitude are compared to simulations in a ’’virtual wave basin’’. In
the ’’virtual basin’’ the wave amplitude is updated, from time-series of
the wave documentation described in Section 3.1. For each time step
where the second-order wave loads are calculated, the wave amplitude
is obtained from measurements of the wave elevation at the position of
the ship. Before a simulation, a run from the free-running experiments
is used as a reference, such that the initial position in the basin and
the time instant when the maneuver begins, can be determined. This
ensures that the time-series of the wave elevation in the numerical
simulations is as similar as possible to the experiments.

The trajectory of simulations of turning circles with 35◦ rudder
angle in regular waves with wavelength 𝜆∕𝐿𝑝𝑝 = 0.86, with constant
wave amplitude and with space- and time-varying wave amplitude are
presented in Fig. 12. The wave amplitudes for these two simulations
are presented in Fig. 13. At some time instants the measured local wave
amplitude deviates significantly, up to 17.3%, from the mean value in
the basin, and it oscillates around the mean value. In the beginning of
the maneuver these two simulations follows each other closely, while
the difference grows from heading 𝛹 = −360◦. This trend is recognized
in Fig. 14, where the tactical diameter, advance, drifting distance, and
drifting angle are presented for a range of wavelengths. For tactical
diameter and advance, the difference is below 3.5%, for all conditions,
when the wave amplitude is updated compared to using a constant
wave height. There are more prominent differences for the drifting
distance and drifting angle, especially for the longest waves. These
results illustrates that variation of the wave height throughout the basin
can introduce a significant uncertainty in some responses. However, the
deviation is in general less than we expected, and several responses are
nearly unaffected. This has practical consequences in light of existing
published maneuver experiments.
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Fig. 14. Experimental and numerical results of a turning circle of the DTC hull with 35◦ rudder angle in regular waves, for a range of wavelengths in initial head sea. Simulations
with constant and varying wave amplitude are compared with experimental results. 95% confidence intervals, based on repetition tests, are indicated with error bars for the
experimental results with wavelength 𝜆∕𝐿𝑝𝑝 = 0.438 (five repetitions) and 0.86 (three repetitions). Upper row: Advance and Tactical diameter. Lower row: Drifting distance and
Drifting angle.
4.2. Irregular waves

In this section experimental and numerical results of turning circles
with 35◦ rudder angle, with the DTC hull, are presented for a range
of irregular sea states. Results of numerical simulations where the drift
loads are calculated with the two methods described in Section 2.2.2,
the time-domain method and the Newman approximation with double
sum, are presented.

In Section 4.1, it was shown that the wave modified inflow velocity
to rudder and propeller, and the variation of wave height, could influ-
ence the maneuvering behavior. These effects are therefore included
in the simulations in irregular waves. For the time-domain method,
measured time-series of the wave elevation are applied. A reference
run of the free running experiments is used to synchronize the starting
time and starting position of the maneuver. This ensures that the wave
elevation in the numerical simulations are as close to experiments as
possible. The numerical results are compared with this reference run.
For the simulations where the slowly varying loads are calculated with
the Newman approximation, wave spectra based on the measured wave
elevation are applied. Wave spectra are calculated for all wave probes
along the center line of the basin (see Fig. 6), the mean of these wave
11
spectra is then applied in the calculations. To calculate the slowly
varying loads, the wave spectrum is divided into 50 components.

The trajectory, surge velocity, sway velocity, and the yaw-rate, for
a turning circle with 35◦ rudder angle, in an irregular sea state with 𝑇𝑝
= 11.97 s and 𝐻𝑠 = 4.96 m (WAVE ID 85020), initial head sea (𝛽0 =
180◦) approach angle, are presented in Figs. 15–18. The initial velocity
is 15.10 knots, which corresponds to a Froude number 𝐹𝑛 = 0.13.

Considering the trajectory in Fig. 15, the simulation where the time-
domain method is applied for the drift-loads follows the experimental
results more closely in the initial phase, compared to the simulation
where the slowly varying loads with the Newman approximation is
applied. Both methods under-estimate the drift. However, the time-
domain method predicts the drift distance best. In Fig. 16 we can
see that both methods predict the velocity drop in the initial phase
correctly, while there is more deviation later in the maneuver. This
is so in particular in following sea, where the experiments shows an
increase in the surge velocity. This indicates that the added resistance in
following waves is not predicted correctly, which is in accordance with
the observations for regular waves in Rabliås and Kristiansen (2021).
Since the same method as in Rabliås and Kristiansen (2021) is used
to calculate the added resistance, some discrepancies for the added
resistance in following sea were expected also in irregular waves.
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Fig. 15. Trajectory of a turning circle of the DTC hull with 35◦ rudder angle in
an irregular sea state with 𝑇𝑝 = 11.97 s and 𝐻𝑠 = 4.96 m (WAVE ID 85020), in
nitial head sea (𝛽0 = 180◦) approach angle, and 15.10 knots approach velocity (Fn =
.13). Simulations where the drift loads are calculated with the time-domain method,
nd the Newman approximation are compared with experimental results. Incident
ave direction is indicated with an arrow. Time instants for heading 𝛹 = −90◦,
180◦, −270◦, −360◦, −450◦, and −540◦ are indicated for the simulation where the

ime-domain method is applied.

Fig. 16. Surge velocity during a turning circle of the DTC hull with 35◦ rudder angle
n an irregular sea state with 𝑇𝑝 = 11.97 s and 𝐻𝑠 = 4.96 m (WAVE ID 85020), in
nitial head sea (𝛽0 = 180◦) approach angle, and 15.10 knots approach velocity (Fn =
.13). Simulations where the drift loads are calculated with the time-domain method,
nd the Newman approximation are compared with experimental results. Time instants
or heading 𝛹 = −90◦, −180◦, −270◦, −360◦, −450◦, and −540◦ are indicated for the
imulation where the time-domain method is applied.
12
Fig. 17. Sway velocity during a turning circle of the DTC hull with 35◦ rudder angle
n an irregular sea state with 𝑇𝑝 = 11.97 s and 𝐻𝑠 = 4.96 m (WAVE ID 85020), in
nitial head sea (𝛽0 = 180◦) approach angle, and 15.10 knots approach velocity (Fn =

0.13). Simulations where the drift loads are calculated with the time-domain method,
and the Newman approximation are compared with experimental results. Time instants
for heading 𝛹 = −90◦, −180◦, −270◦, −360◦, −450◦, and −540◦ are indicated for the
simulation where the time-domain method is applied.

Fig. 18. Yaw rate during a turning circle of the DTC hull with 35◦ rudder angle in an
irregular sea state with 𝑇𝑝 = 11.97 s and 𝐻𝑠 = 4.96 m (WAVE ID 85020), in initial
head sea (𝛽0 = 180◦) approach angle, and 15.10 knots approach velocity (Fn = 0.13).
Simulations where the drift loads are calculated with the time-domain method, and
the Newman approximation are compared with experimental results. Time instants for
heading 𝛹 = −90◦, −180◦, −270◦, −360◦, −450◦, and −540◦ are indicated for the
simulation where the time-domain method is applied.
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Fig. 19. Slowly varying second order wave loads during a turning circle of the DTC hull with 35◦ rudder angle in an irregular sea state with 𝑇𝑝 = 11.97 s and 𝐻𝑠 = 4.96 m
WAVE ID 85020), in initial head sea (𝛽0 = 180◦) approach angle, and 15.10 knots approach velocity (Fn = 0.13). Left: x-drift. Middle: y-drift. Right: yaw-drift.
The sway velocity and yaw-rate, in Figs. 17 and 18 are in reasonably
ood agreement with experiments for both the time-domain method
nd the method using the Newman approximation. Due to the two-time
cale assumption only the slowly varying surge velocity, sway velocity,
nd yaw rate are included in Figs. 16–18, for the numerical results.
or the experimental results the first order wave induced velocities
re also included, which explains the wave-frequency oscillations. The
eduction in the sway velocity around heading 𝛹 = −90◦ is better
epresented with the time-domain method. However, there are some
ocal peaks in both the sway velocity and the yaw rate, e.g. at heading 𝛹
−315◦, in the time-domain method. The slowly varying second order
ave loads during the maneuver are presented in Fig. 19. The second
rder wave loads calculated with the difference frequency method and
he time-domain method share the same qualitatively behavior, but
he time-domain method has narrower and more distinct peaks. For
xample, the peak in the sway velocity at heading 𝛹 = −315◦ coincides
ith a peak in the y-drift, for the time-domain method (indicated with
red circle in Fig. 19). These peaks are not physical, and represent
weakness of the method. One explanation of these peaks is the

ature of the method, where the drift loads are calculated for every
ave encounter, and memory effects are therefore not accounted for.
his means that extreme waves will influence the drift loads to a

arger extent than that in reality. This is confirmed in Fig. 20, where
he wave amplitudes of individual wave encounters that are used in
he calculation of second order wave loads, with the time-domain
ethod, during the maneuver, are presented. The peak in the y-drift

oincides with the wave encounter with the highest wave amplitude
uring the maneuver (marked with a red circle in Fig. 20). Moreover,
f the numerical calculation, for the mean wave drift load, for this
pecific wave period and wave heading is inaccurate, this effect will
e magnified. Since the method using the Newman approximation,
ncludes contribution from all components of the wave spectrum, the
ehavior is more smoothed and these peaks are less prominent. We
cknowledge that more research is needed to eliminate these peaks.
owever, the velocities returns quickly back to the correct magnitude,
nd it seems like the overall results are not affected by this behavior.

In Fig. 21 the advance, tactical diameter, drifting distance, and
rifting angle, are presented for the five considered irregular sea states.
he corresponding 𝐻𝑠 and 𝑇𝑝 can be found in Table 3. Both the time-
omain method and the method using the Newman approximation
ollow the same trends as the experiments. However, the time-domain
ethod is in general somewhat closer to the experimental results.

Overall, the time-domain method and the method using the New-
an approximation show similar accuracy. The main motivation to
se the time-domain method is therefore to reduce the computational
ffort compared to using the Newman approximation. In the current
ork, the time-domain method is 10–100 faster than the method using

he Newman approximation. In the Newman approximation, the wave
pectrum was divided into 50 components. If the wave spectrum is
ivided into more components, the computational time will increase
13

urther. Another difference is that the time-domain method accounts
Fig. 20. Wave amplitudes of individual wave encounters that are used in the calcula-
tion of second order wave loads, with the time-domain method, during a turning circle
with 35◦ rudder angle.

for the actual wave elevation, which means that extreme waves affects
the drift loads directly. This can be an advantage when you compare
numerical simulations with experiments, since the exact same time-
series of the waves can be applied. Also in ship simulators this can be
an advantage, that the loads on the ship correspond to the visualization
of the waves. However, a weakness of the time-domain method is
that numerical inaccuracies for certain wave frequencies and headings
together with high encounter wave heights, can cause nonphysical
peaks in the velocities, as exemplified above.

Considering the results in Figs. 15–21, it is important to remember
that the experimental results are for a specific test, corresponding to
the tests that are used as reference runs for the time-domain method.
Since the numerical method using the Newman approximation uses
random phase angles, 𝜀, in reality the wave-elevation is not identical
to the ones used in the time-domain method and in the experimental
results. Moreover, it is expected that different time-realizations of the
same wave spectrum will affect the results. This is investigated in the
following paragraphs.

The effect of different time-realizations of the same wave spectrum,
i.e. different time-series of the wave elevation, is presented in Fig. 22.
Advance, tactical diameter, drifting distance, and drifting angle, from
experimental turning circles of the DTC hull with 35◦ rudder angle,
are presented for the same irregular sea states as considered so far.
For each sea state, the maneuver is repeated in different time-windows
in the wave spectrum, i.e. the time signal of the wave elevation is
different. The maneuver is repeated 5 to 10 time windows for each
sea state. The mean values, based on the actual performed number of
repetitions, are presented. In addition, 95% confidence intervals are
indicated with error bars. The 95% confidence intervals are calculated
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Fig. 21. Experimental and numerical results of turning circles of the DTC hull with 35◦ rudder angle in five different irregular sea states, in initial head sea. Upper row: Advance
and tactical diameter. Lower row: Drifting distance and Drifting angle.
according to ITTC (2014). The confidence intervals are sensitive to the
numbers of repetitions, 𝑁 , especially when relative few repetitions are
vailable. To illustrate the sensitivity to 𝑁 , the confidence intervals
re presented with different values of 𝑁 . As expected, the confidence
ntervals decrease when 𝑁 increases.

If we disregard sea state 85040, which represents adverse weather,
he confidence intervals for advance and tactical diameter are below
.6% of the mean values, while for sea state 85040 the confidence
ntervals are 4.9% and 9.2% for advance and tactical diameter. The
onfidence intervals for drifting angle are below 10% of the mean
alues for all sea states. Considering the drifting distance, the relatively
ncertainty is significantly higher than for the other responses. When
he confidence intervals are calculated with 𝑁 = 5, the highest relative

uncertainty is observed for sea state 85030, where the confidence
interval is 42.9% of the mean value. However, if the confidence interval
is calculated with 𝑁 = 10, the relative uncertainty is 18.2% for this
ea state. The high variation in this response indicate high sensitivity
o one, or more probably, a range of physical effects. This is consistent
ith the results for regular waves, where the stochastic uncertainty was

ignificant for some responses. This could also be one of the reasons to
he discrepancies between the numerical results and experiments.

For some conditions, repetition tests in the same time-window were
erformed (not presented here). The maneuvers were initiated at the
ame position (within one meter) and the same time instant (within
s). The results from these repetition tests indicate that the stochastic

ncertainty, for the same realization, is less than the difference between
ifferent realizations in the same wave spectrum.
14
The sea state with 𝐻𝑠 = 4.33 m and 𝑇𝑝 = 13.96 s (WAVE ID 85030)
is further investigated in Fig. 23, where the cumulative mean and
95% confidence intervals are presented as function of N. Experimental
values are presented for 10 realizations, while numerical simulations
are presented for up to 30 realizations of the same wave spectrum.
In the numerical simulations, the wave elevation is obtained from
the experimental wave spectrum, with deterministic amplitudes and
random phase angles. The width of the 95% confidence intervals based
on numerical simulations and experiments are similar. However, the
experiments were only performed for 10 different time-windows, which
means that the width of the experimental confidence intervals are not
converged.

Based on the numerical results in Fig. 23, the 95% confidence
intervals of the advance and tactical diameter are below 1.4% of the
mean value when the number of realizations 𝑁 ≥ 5, both when the drift
loads are calculated with the time-domain method and the Newman
approximation. The 95% confidence intervals in the experiments are
also low, but about twice as high, 2.51% and 1.58% of the mean values
for advance and tactical diameter after 5 realizations, while after 10
realizations the confidence intervals are 1.51% and 0.75% of the mean
values.

The drifting distance and drifting angle are more sensitive to num-
ber of realizations of the same spectrum. After 10 experimental realiza-
tions, the 95% confidence interval for the drifting distance is 25.4% of
the mean value. After 10 numerical realizations with the time-domain
method and the Newman approximation, the confidence intervals are
20.6% and 23.7% of the mean value. 29 numerical realizations with the
Newman approximation are needed before the 95% confidence interval



Ocean Engineering 243 (2022) 110186Ø. Rabliås and T. Kristiansen
Fig. 22. Experimental results of turning circles of the DTC hull with 35◦ rudder angle in five different irregular sea states. The sea states corresponding to the Wave IDs in the
figure are given in Table 3. The experiments are performed for different time series in each sea state. The mean value and 95% confidence intervals are presented. The 95%
confidence intervals are presented for different values of repetitions, N. Upper row: Advance and tactical diameter. Lower row: Drifting distance and Drifting angle.
for the drifting distance is below 10% of the mean value. With the time-
domain method, the 95% confidence intervals never gets below 10% of
the mean, after 30 realizations the 95% confidence interval is 10.7%
of the mean drifting distance. However, the results indicate that the
width of the numerical confidence intervals approaches convergence,
after 20 realizations the confidence intervals are below 15% of the
mean drifting distance, both when simulations are performed with the
time-domain method and the Newman approximation.

For the drifting angle, 9 realizations with the time-domain method
and 7 realizations with the Newman approximations are needed to get
the 95% confidence intervals below 10% of the mean value, while
5 experimental realizations are needed to get the confidence interval
below 10% of the mean.

Seo et al. (2019) performed a similar study with numerical sim-
ulations for the S175 hull. They concluded, for the S175 ship, that
the variation around the mean value, converged after 15 repetitions.
In general, it is difficult to conclude the exact number of realizations
that are needed before the variation of the results converge. This will
depend on the hull form and the sea states. However, it is reasonable
to assume that between 10–20 realizations are needed before the 95%
confidence intervals of the drifting distance and drifting angle are close
to 15% of the mean value. In this context it is important to remember
that the surface elevation is generated with deterministic amplitudes,
i.e. the amplitude of each wave component in the spectrum is the
same for every realization, while the phase angles are random. If the
surface elevation was generated with amplitudes that were considered
to be random variables, following a statistical distribution, it could
15
be that the confidence intervals converge slower compared to using
deterministic amplitudes.

The results in Figs. 22–23 illustrates the importance of considering
the stochastic behavior when maneuvers in irregular waves are eval-
uated. If the drift loads are estimated with random surface elevation,
one should be careful to conclude based on few repetitions.

5. Conclusion

A rational modular maneuvering model for maneuvering in regular
and irregular waves is presented. A new model for the wave-modified
inflow to the rudder is presented. For the x-component of the inflow,
methods from the literature are applied. The y-component of the inflow
is derived consistently with respect to the x-component. Sensitivity
studies show that the effect of waves on the inflow velocities is most
important for long waves.

The sensitivity to the variation of wave height during a turning
circle in regular waves was investigated for a range of regular waves.
Based on an extensive wave documentation of the wave environment
during dedicated tests in the ocean basin at SINTEF Ocean, numerical
simulations in a ‘‘virtual’’ basin, with varying wave height, were com-
pared to simulations using constant wave height. For most responses
there was no significant difference between these two simulation meth-
ods. However, for the drifting distance, in particular for the two longest
waves, there was a significant difference between these two simulation
methods. Overall, this implies that the variation of wave height in a
basin contribute less to the uncertainty than expected.
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The slowly varying second-order drift loads in irregular waves are
calculated with two methods: The difference-frequency loads method
using the Newman approximation, and a ‘‘time-domain’’ method where
the incident wave elevation is decomposed into a series of individual
waves, which are considered as regular waves. Both methods perform
acceptable compared to experiments, for a range of sea states. However,
the time-domain method performs in general slightly better than the
method using the Newman approximation. One contribution to the
difference can be that the difference-frequency method applies random
phase angles, while the time-domain method uses the same wave
elevation as the experiments. The most significant difference between
the two methods is the computational time. In the current work, the
time-domain method is 10–100 faster than the method using the New-
man approximation. The drift loads calculated with the time-domain
method, are for each wave encounter, proportional to the incident
wave amplitude squared. This means that numerical inaccuracies, for
specific encounter frequencies and/or wave headings, is magnified for
extreme wave heights. This was recognized in the results, where some
nonphysical peaks were observed for the sway velocity and yaw rate.
It seems like the overall results are not affected by this behavior.
However, this is something which needs further research. The slowly
varying drift loads with the Newman approximation estimates the wave
amplitudes, with contribution from all wave components in the wave
spectrum, which results in a behavior that is less sensitive to individual
large wave events.

New experimental free running maneuvering tests are presented
for the DTC hull. Turning circles with 35◦ rudder angle were tested
16
in regular and irregular waves. The experiments in irregular waves
were performed for several time-windows for each wave spectrum. The
variation of advance, tactical diameter, drifting distance, and drifting
angle, due to different time-realizations of the wave spectrum was
investigated both experimental and numerical. The 95% confidence
intervals for advance and tactical diameter converges, to below 10%
of the mean value, for less than 5 realizations. The drifting distance
and drifting angle are more sensitive to number of realizations. Since
maximum 10 experimental realizations were performed, it is not pos-
sible, based on the experiments, to conclude about the number of
realizations for convergence of drifting distance and drifting angle.
After 20 numerical realizations, the 95% confidence interval for drifting
distance converges, to below 15% of the mean value. For the drifting
angle, 9 realizations are needed to get the 95% confidence interval
below 10% of the mean value.
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Fig. 23. Variation of advance, tactical diameter, drifting distance, and drifting angle as a function of number of realizations in the same sea state. 𝐻𝑠 = 4.33 m and 𝑇𝑝 = 13.96
s (WAVE ID 85030). Cumulative mean and 95% confidence intervals are presented. A maximum of 10 repetitions were run in our experiments. 30 numerical simulations are
included to illustrate the rate of convergence. 95% confidence intervals are illustrated with dotted lines. Upper row: Advance and tactical diameter. Lower row: Drifting distance
and drifting angle.
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