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Developing a hybrid data-driven health-aware controller for optimizing
production in a gas-lifted oil well network

by SALMON YEMANE

In subsea oil and gas production systems, unexpected breakdown and mainte-
nance interventions are costly. Therefore, a maintenance strategy that can ensure
reliable operation is required. However, there is an intuitive trade-off between op-
timizing production and minimizing equipment degradation. For example, in most
oil wells, it is always desirable to extract as much oil as possible, which harms the
remaining useful life of the equipment. To avoid equipment wear, engineers often
adopt a conservative production strategy, leading to sub-optimal operation and po-
tential profit loss. This thesis proposes a new approach based on forecasting system
degradation through a predictive process model. Prognostics and health monitoring
(PHM) are then integrated into the control structure to avoid conservative operation
by actively steering plant degradation and preventing violation of health constraints.

This thesis develops, therefore, a novel method that aims at solving the com-
bined problem. Both the data-driven degradation model and the process models are
solved through hybrid data-driven model predictive control. In this control struc-
ture, the controller calculates the optimal inputs using the data-driven models, and
system feedback in the form of diagnostics is added to cope with the uncertainties
in the system. The proposed method is applied to a synthetic case study, in which
the system of interest is an oil and gas well network with artificial gas- lifting.

The simulation results show that hybrid model predictive control is a possible
alternative to solving the control problem. However, the plant-model mismatch was
observed to have a detrimental effect on the performance of the HAC controllers.
The HAC with NN model in both prognostics and diagnostics showed a more sig-
nificant plant-model mismatch and had the shortest breakdown time1. In contrast,
the HAC with no plant-model mismatch was the one with the longest breakdown
time. We can say that the hybrid data-driven HAC controllers were prone to plant-
model mismatch and managed to minimize conservativeness in production but at
the cost of constraint violation which made them break down early and, therefore,
produced less oil in total. The overall conclusion is that the performance of hybrid-
data-driven HAC is dependent on the type of data-driven model and the quality of
the feedback from diagnostics. In addition, the complexity of data-driven models
doesn’t necessarily give a better result.

1The time at which erosion of one of the wells exceeds the failure threshold

HTTPS://WWW.NTNU.EDU/
https://www.ntnu.edu/nv
https://www.ntnu.edu/chemeng
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Sammendrag

Uventede sammenbrudd og vedlikehold innen offshore oljeproduksjonssystemer
er kostbare. Derfor er det nødvendig å ha en vedlikeholdsstrategi som kan sikre
pålitelig drift for å opprettholde produksjonskapasiteten. Det er imidlertid viktig
å gjøre en avveing mellom det å optimere produksjonen, og det å minimere utstyr
degradering. For eksempel er det alltid ønskelig i de fleste oljebrønner å utvinne
så mye olje som mulig, noe som skader utstyrets gjenværende levetid. For å unngå
slitasje på utstyr, tar ingeniører ofte en konservativ produksjonsstrategi, noe som
fører til suboptimal drift og potensielt fortjenestetap. Målet med denne oppgaven
er å undersøke muligheten til å automatisere denne prosessen ved å bruke mod-
ellbasert prediktiv regulering (MPC) med integrert helseovervåkingsystem for å re-
dusere konservativ drift ved å aktivt styre degradering av strupeventilen (”choke
valve”) og forhindre brudd på helsebegrensninger.

Denne oppgaven utvikler derfor en ny metodikk som tar sikte på å løse det kom-
binerte problemet. Både den databasert prognose- degraderingsmodellen og pros-
essmodellen løses gjennom en hybrid datadrevet MPC. I denne kontrollstrukturen
bergener kontrolleren de optimale "inputs" ved hjelp av de datadrevne modellene,
og "system feedback" i form av diagnostikk legges til for å takle usikkerheten i sys-
temet. Den foreslåtte metoden ble anvendt på en syntetisk case-studie av subsea
oljeproduksjonssystem.

Simuleringsresultatene viser at hybridmodell prediktiv kontroll er et mulig al-
ternativ til å løse kontrollproblemet. Imidlertid ble "plant-model mismatch" ob-
servert til å ha en skadelig effekt på ytelsen til HAC-kontrollerne. HAC med NN-
modell i både prognostikk og diagnostikk viste en mer signifikant "plant-model mis-
match" og hadde kortest ytelsestid, mens HAC uten "plant-model mismatch" var
den med lengst ytelsestid. Vi kan si at de hybride HAC-kontrollerne var utsatt for
uoverensstemmelse mellom plantemodeller og klarte å minimere konservativitet i
produksjonen, men på bekostning av brudd på helse begrensningen som fikk dem
til å ha kort ytelsestid og derfor produserte mindre olje totalt. Den overordnede
konklusjonen er at ytelsen til hybrid HAC er avhengig av typen datadrevet modell
og kvaliteten på "feedback" fra diagnostikk. Videre, kompleksiteten til datadrevne
modeller gir ikke nødvendigvis et bedre resultat.
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Chapter 1

Introduction

1.1 Motivation

The global energy consumption in the last half-century has been increasing at an
unprecedented pace and is expected to continue to grow over the next 50 years
(Goswami and Kreith, 2015). Even though the transition to renewable energy sources
is also accelerating with emerging technologies, oil and gas remain relevant to the
energy sector. However, as old oil fields mature and get depleted, the capacity to
extract oil and gas in harsh offshore environments efficiently and safely will be es-
sential in the coming years.

Operating a subsea production facility in remote areas of the sea is challenging
due to the inaccessibility for maintenance and reliability checks. As a consequence,
performing maintenance in such facilities is costly. It is therefore critical to minimize
the downtime of the facility while maximizing both reliability and production. How-
ever, there is always a trade-off between optimizing production and maintaining
equipment’s health, which results in a conservative design and operation of equip-
ment such that the risk of failure is minimized. Moreover, since many of the units
in the subsea industry are remotely located, operational data can be scarce and inac-
curate. Traditional maintenance strategies can therefore lead to a large profitability
loss.

Over the recent years, condition-based maintenance (CBM) and prognostics and
health management (PHM) have emerged as powerful technologies impacting main-
tenance practices. We are witnessing a true paradigm shift in how complex dynamic
systems such as air-crafts, shipboard systems, and industrial and manufacturing
processes are operated and maintained (Vachtsevanos and Vachtsevanos, 2006). The
old approach was to perform maintenance when the equipment broke down, or per-
formance goes down severely. The new policy is based on forecasting system degra-
dation through a prognostic process on which the health of the equipment is con-
tinuously monitored for obtaining an early indication of failure. This new approach
enables significantly better equipment maintenance and prognosis of the RUL1.

This thesis addresses the questions raised above by developing a control struc-
ture that incorporates health monitoring, prognostics, and diagnostics of critical sys-
tem components. As, a result we obtain the so-called Health-aware control struc-
ture, which achieves the control and production objectives without jeopardizing the
equipment’s health.

1Remaining Useful Lifetime
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1.2 Objectives

The primary purpose of this thesis is to study the performance of the Health-aware
controller applied to a gas-lifted subsea oil and gas production network. Diagnos-
tics and prognostics models used in this thesis are based on (Jahren, 2020). Here,
the author used several statistical methods and an artificial data set to obtain the
prognostics and diagnostics of a choke valve in a gas-lifted subsea oil and gas pro-
duction network. Those models are integrated into the production planning prob-
lem to avoid conservative operation by actively steering the choke degradation and
preventing violation of health-critical constraints. Therefore, the health-aware MPC
controller is implemented using both data-driven models in the controller and a phe-
nomenological model in the plant. The hybrid nature of this control structure will
be the center of this thesis’s discussion. This leads to the main research question that
is answered in this thesis:

How can we systematically integrate PHM into an existing control structure,

and how will the plant-model mismatch in the prognostics and the imprecise system

feedback in diagnostics affect the performance of the Health-aware controller that

aims to maximize production without jeopardizing equipment RUL?

1.3 Thesis Structure

This thesis is structured as follows. Chapter 2 covers the literature review, high-
lighting important aspects that support this work. Chapter 3 describes the theory
used to obtain the results presented and discussed in Chapter 5. Chapter 4 presents
methodology and process description of the case study used in this thesis. This the-
sis is closed with the conclusion and final remarks in Chapter 6.

1.4 Thesis Contribution

In the Authors view , the main contributions of the thesis is

• A new method of simultaneously optimizing production and maintaining
the degradation of critical equipment’s below acceptable levels. This is im-
plemented by integrating equipment prognostics and diagnostics into the
control structure

• Developing a hybrid data-driven MPC controller that uses both data-driven
and first principal models in the control structure. The controller will use
the data-driven models instead of the actual plant model to calculate the
optimal inputs in this structure.

• The application of health-aware model predictive control into a gas-lifted
subsea oil and gas production network
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Chapter 2

Literature review

In this chapter, a literature review on the topic of prognostics and control is revised.
It is divided into three parts: (I) the first part covers condition-based maintenance
(CBM) and prognostics and health monitoring (PHM); (II) the second part covers
Model predictive control (MPC) and (III) the third part covers health-aware control
(HAC).

Part I

2.1 Condition Based Maintenance (CBM)

Traditionally, maintenance has been performed after the failure of the equipment.
This run-to-failure approach, known as reactive maintenance, has dominated the in-
dustry for decades (Vachtsevanos and Vachtsevanos, 2006). However, the focus has
recently shifted to proactive maintenance, where operational data is used to perform
maintenance at constant intervals (Vachtsevanos and Vachtsevanos, 2006). This ap-
proach is known as clock-based maintenance. Another more advanced approach
is age-based maintenance, which is based on frequent monitoring of the remaining
useful lifetime of the system through its age and available measurements. The prac-
tical drawback to deploying these approaches is that the time between maintenance
is based on statistical information, which is insufficient to ensure a satisfactory level
of operation until the next planned maintenance stop (Vachtsevanos and Vachtse-
vanos, 2006).

Currently, condition-based maintenance (CBM) is evolving rapidly and becom-
ing the standard approach in the industry (Vachtsevanos and Vachtsevanos, 2006).
Condition-based maintenance uses equipment run-time data to determine the equip-
ment’s failure condition, which is then used to plan repair and maintenance before
breakdown. In contrast to planned maintenance, where maintenance is performed
on predefined intervals, CBM is performed only after a decrease in the condition
of the equipment has been detected. This means that CBM is performed while the
equipment is operationally active, minimizing disruption and production stops.

The average operation maintenance prices of the different maintenance practices
mentioned above are shown in Figure 2.1. Due to the varying degrees of availability
for maintenance, the various maintenance practices have different operational costs.
Given perfect information about the degradation state of a system, condition-based
maintenance is shown to be the cheapest. Furthermore, we can also observe that
corrective maintenance is associated with the highest cost compared with the other
maintenance strategies. Clock-based and Age-based maintenance have relatively
lower prices compared to corrective maintenance.
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FIGURE 2.1: Cost comparison between different maintenance strate-
gies (Verheyleweghen, 2020)

2.2 Prognostics, diagnostics and health monitoring (PHM)

Understanding the condition and health of the system equipment is fundamental in
the field of maintenance optimization. However, the state and health of equipment
are usually not measurable directly and are typically estimated using the measure-
ments of other parameters in the process, such as temperature and pressure. In this
manner, we can assess the current failure state (diagnosis) and the future failure
states (prognosis). We can then use this information to detect failures and determine
if the given equipment can perform at an acceptable level until the next scheduled
maintenance stop.

Diagnostics and prognostics are often called prognosis and health management
(PHM) (Vachtsevanos and Vachtsevanos, 2006). The sole purpose behind PHM is
the prognosis, which is the ability to predict the remaining useful lifetime (RUL)
of a failing component precisely. The RUL of equipment is defined as the time the
equipment’s health indicator exceeds its failure threshold. Prognosis has been the
Achilles’ heel of the CBM and PHM due to considerable model uncertainty (Vacht-
sevanos and Vachtsevanos, 2006). Prediction of a component’s fault evolution re-
quires methodologies that can represent and manage the inherent uncertainties in
the model. Furthermore, good probabilistic models of fault growth and statistically
sufficient samples of failure data are essential for an accurate and precise progno-
sis. Therefore, prognosis performance metrics, robust algorithms, and experimental
platforms that can provide the needed data have been at the center of CBM/PHM
research in the past years (Vachtsevanos and Vachtsevanos, 2006).

Equipment failure prognostics has been approached through various techniques
ranging from Bayesian estimation and other statistical methods to artificial intelli-
gence methodologies. Some of the techniques include parameter estimation meth-
ods (Ljung, 1999), multi-step adaptive Kalman filter (Lewis, 1986), stochastic auto-
regressive integrated-moving-average models (Jardim-Gonçalves et al., 1996), and
Weibull models (Groer, 2000). While some other works are done using Physics-
based models, which explain the degradation process using a phenomenological
model. However, they are a minority in this field as the knowledge about degra-
dation processes is currently small (Vachtsevanos and Vachtsevanos, 2006). We can
generally categorize these prognosis schemes into three categories: model-based,
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probability-based, and data-driven. A comparison of the applicability, cost, and ac-
curacy of these schemes is summarized in Figure 2.2.

FIGURE 2.2: Prognosis technical approaches (Vachtsevanos and
Vachtsevanos, 2006)

2.2.1 Model-based techniques

The model-based prognostic schemes are based on a mathematical first principle
model representation of the system. Model-based approaches enable the user to cal-
culate the degradation of critical components as a function of operating conditions.
By using advanced stochastic modeling techniques, the model can be used to cal-
culate the statistical distribution of RUL for a particular fault. The advantages of
this approach are that they can be excellent if the model is accurate and that we can
reuse the same model for different systems by re-parameterizing the model. The
disadvantages are that deriving these models requires a deep understanding of the
underlying degradation factors, which can be challenging. Moreover, model-based
approaches often result in inaccurate prediction if some degradation factors are ne-
glected while deriving the model. The complex nature of components failure can
thus make the model too large and numerically expensive to solve.

2.2.2 Probability-based techniques

If a complete dynamic model of the system is impractical, probability-based prog-
nostics can be utilized. Failure data of equipment usually takes a statistical form as
failure occurs at different periods. We can therefore apply probabilistic methods to
such systems. The advantage of these modes is that they require less information
than the model-based techniques. The information needed is present in the prob-
ability density functions, not in the dynamic differential equations. Therefore, the
prognosis can be easily implemented using the PDFs 1 of the observed data. Fur-
thermore, confidence limits of the results can be used as a performance metric of the
accuracy of the predictions.

1Probability Density Functions
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2.2.3 Data-driven methods

Data-driven methods are machine learning methods that are based on pattern recog-
nition. These techniques can be used when historical fault data leading up to failure
is available. These techniques include Artificial Neural Networks (ANN) and fuzzy-
logic systems with broad applications in various industries. Neural Network is an
algorithm that is based on signal-processing methods present in the nervous sys-
tem. In contrast, fuzzy-logic systems are based on a system that resembles human
linguistic and reasoning abilities. These algorithms provide a structured nonlinear
function mapping between the available data and the desired response variables.
Some other commonly used methods include Bayesian Networks (BN) and hidden
Markov models (HMMs).

In the field of prediction, those mentioned methods have been providing an al-
ternative to both model-based and probability-based methods for years (Wilson and
Sharda, 1994). ANN-trained models are known to consistently outperform tradi-
tional statistical methods such as regression (Werbos, 1988). The advantages of ANN
are that, unlike the conventional model-based methods, ANN is both self-adaptive
and data-driven with very few assumptions. Furthermore, ANN algorithms can
learn from the data and capture the functional relationship in the data. Therefore,
those methods are well suited for most practical problems, where we have access
to data and not the complete knowledge of the underlying system. The drawback
of using such algorithms is that they are a “black box” and have limited ability to
identify possible relationships explicitly. They are also usually prone to overfitting
(Tu, 1996).

Part II

2.3 Model predictive control (MPC)

Many strategies have been developed in the field of control engineering to control
multiple-input multiple-output (MIMO) systems. One of the commonly used strate-
gies is the optimal control with the Linear Quadratic Regulator (LQR) control. In
those strategies, the optimal problems are solved offline with the assumption of a lin-
ear model representation of the system without system constraints (Skogestad and
Postlethwaite, 2007). In the early years, optimal control techniques were not very
popular in the industry due to their inability to deal with system constraints and
were often regarded as impractical. As a result, the industrial community started
developing a more robust control algorithm, the model predictive control (MPC).

First-generation MPC systems were first developed in 1970 by two industrial re-
search groups. Dynamic Matrix Control (DMC) developed by Shell Oil, and ADERSA
(Seborg et al., 2010). The main idea behind the MPC algorithm is to solve an online
constrained optimization problem at each time interval, in which the objective func-
tion to be minimized measures the closeness of controlled variables to their refer-
ence trajectories (Qin and Badgwell, 1997). Since its inception, MPC has become the
method of choice for difficult multivariable control problems with inequality con-
straints. One of its advantages is its ability to control large nonlinear multi-input
multi-output (MIMO) systems effectively.

In spite, however, of these advantages, there are serious drawbacks related to
its demanding computational capability. Recent technological advancements have
substantially reduced the costs and increased the capability of computers to make
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the benefits of using computationally intensive control systems larger. Simultane-
ously, advanced mathematical algorithms for optimization have also greatly im-
proved the speed and reliability of the calculations required by MPC. Informative
reviews of MPC are available in books ((Camacho, Bordons, and Normey-Rico, 2003;
Maciejowski, 2002; Rossiter, 2003) and research papers ((Chai, Qin, and Wang, 2014;
Darby and Nikolaou, 2012)).

Part III

2.4 Combining PHM and control in Health-aware control (HAC)

The main task of this thesis is to combine both PHM and control. Currently, control
strategies that consider diagnostics and prognostics into the control structure remain
little explored (Bernardino, 2019). Most of the control structures present today ignore
the effects of degradation and damage in the control hierarchy. As shown in the
block diagram of Figure 2.3, data from PHM is used for decision-making only by the
operators. When faults are detected and the alarm goes off, the operators use their
knowledge and experience to adjust the setpoints or schedule maintenance. In this
setup, the operator interacts with the system by changing the setpoints, tuning the
controller, or overriding the controller by directly defining the setpoints.

FIGURE 2.3: Block diagram of a system with health-monitoring
where an operator is used to adjust the setpoints manually based on

PHM data (Verheyleweghen, 2020)

The drawback with this type of control structure is that the decision is left to the
operator. The operator’s decisions are not always optimal, and there is always a de-
lay due to the human reaction time. This problem can be solved by closing the loop
and giving the controller the ability to make optimal decisions. This control struc-
ture could significantly improve the response time and performance of the system.
However, this requires the integration of PHM into the control structure. The relia-
bility of equipment is then taken into account by introducing new constraints in the
control problem. The proposed control structure is shown in Figure 2.4.
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FIGURE 2.4: Block diagram of a system with health-monitoring in-
tegrated in the MPC control framework and PHM data is used by
the controller to adjust the set-points automatically (Verheyleweghen,

2020)

During the late 70s and early 80s, engineers started discussing the idea of incor-
porating health prognostics in a control structure (Verheyleweghen, 2020). This was
mostly related to the application of control structures in airplanes. The plan was to
integrate a supervisory layer that adjusts the control structure based on fault detec-
tion and identification techniques. Thus, the control structure would still perform
at a satisfactory level despite the biased sensors and fault actuators present in the
system. (Chizeck, 1978) first used the term fault-tolerant control (FTC) to describe
the control structure. Since its inception, FTC has been the focus of research by the
aviation industry.

The first known usage of prognostics in a control structure is found in (Escobet,
Puig, and Nejjari, 2012). This paper tries to integrate control and prognosis where a
conveyor belt that uses an AC electric motor to move a cart from one end to the other
end is used as the system. This new method based on both current and future health
state estimates, provided by a prognosis module, takes into account the systems
health information in the control objectives. The objective was to extend the useful
lifetime of the conveyor belt by adjusting set-points to a simple PID controller.

More case studies that rely on advanced control techniques have also been ex-
plored. A research paper, (Sanchez et al., 2015) presented the use of MPC, integrated
with a fatigue-based prognosis approach to minimize the damage of wind turbines.
Another paper, (Verheyleweghen, Gjøby, and Jäschke, 2018) studied the use of a
health-aware robust MPC for a subsea compression system subject to degradation.
In this paper, a hierarchical approach was used for operating compressors subject to
degradation. The degradation was estimated using Paris Law, one of the most used
models to describe crack propagation in systems subject to stress, with a corrective
online parameter estimation.
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Chapter 3

Theory

This chapter introduces the theory used in the modeling and analysis of the data-
driven diagnostic and prognostic models of the choke valves in the gas-lifted subsea
oil and gas production network proposed by (Krishnamoorthy, Foss, and Skogestad,
2016). The theory behind the different statistical methods and analysis of the artifi-
cial data set used to obtain the prognostics and diagnostics models will be described.
Initially, the artificial data set have to be preprocessed, and for this, we will discuss
normalization. Afterward, the different regression methods will be introduced, in-
cluding classical statistical learning methods such as linear regression and more so-
phisticated artificial neural networks (ANN). Then we will show an overview of the
Economic Health- aware Model predictive controller.

3.1 Data Preprocessing

Data pre-processing is a widely used technique that involves transforming raw data
into another format before analysis. Raw data sets are often influenced by factors
such as noise, uncertainties, and large variance. Several methods exist, such as cen-
tering and scaling so that no single variable dominates the system due to its large
scale and variance. Furthermore, normalization can also be used when dealing with
different scales. Another method that can be applied is principal component analy-
sis (PCA), which is used when the data dimension is large and reduction of the data
without losing information is needed to manage the analysis better. In this project,
normalization is chosen due to the varying orders of magnitude and units of mea-
surements in the data. It should be noted that throughout this thesis, X is used to
denote a n by p data matrix that contains p different variables and n different sam-
ples

3.1.1 Normalization

Normalization is used when the data consists of variables with different scales. This
process compensates the variability in the orders of magnitude and units of mea-
surements in the data by scaling all the data to be centered with unit variance and
mean of zero. This is implemented using the standard score formula:

Z =
X � µ

s
(3.1)

where Z is the standard score, X is the original data matrix, µ is the mean, and s is
the standard deviation.
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3.2 Statistical data-driven methods

Data-driven methods are generally divided into prediction and description based on
what they are used for as shown in Figure 3.1,. The prediction methods are further
divided into two main groups: statistical methods and symbolic methods. The statis-
tical methods are characterized by the representation of knowledge through mathe-
matical models, while the symbolic methods are characterized by the representation
of knowledge through the means of symbols and connectives. In this thesis, we
are only interested in statistical methods. This section will therefore introduce the
statistical methods that will be applied throughout this work including Regression
models and Neural Networks. The methods in this section share the common fea-
tures of using a data matrix X or equivalently a normalized data matrix Z, to predict
a matrix or vector of responses Y . For simplicity in this chapter, X will be used even
if most of the work is done on normalized data.

FIGURE 3.1: Data-Driven methods (García, Luengo, and Herrera,
2015)

3.2.1 Regression Models

Regression Models are one of the oldest models, used in estimation tasks (García,
Luengo, and Herrera, 2015). Some of the most well known regression models are
Linear, quadratic and logistic regression. The central idea of regression is to obtain a
model for the functional relationship between a response variable and one or more
predictor variables (Ott and Longnecker, 2015).

Linear regression

Linear regression assumes that there is a linear relationship between a response vari-
able, Y, and a set of predictor variables X along with some noise e. In this model, the
error term e is assumed to be normally distributed, homoscedastic, meaning with
the same variance at every X and has mean of zero.

Y = BX + e (3.2)
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Given a training data we can generate the estimate for B, using the least squares
method that minimizes the residual sum of squares. The estimate B̂ can be obtained
with the analytic solution of the problem as follows:

B̂ = (X
T

X)�1
X

T
Y (3.3)

where Ŷ and B̂ are the estimates of the true values.
From these estimated parameters, the functional relationship between Y and X

can be found as follows:

Ŷ = B̂X (3.4)

The model used in the thesis contains cross-terms of the predictor variables. The
model is then modified and the interaction between the predictor variables are ex-
pressed as a product of the predictor variables as follows:

Yi = b0 + b1Xi,1 + b2Xi,2 + b3Xi,1Xi,2 + · · ·+ ei (3.5)

where b0, b1, b2 ,and b3 are the regression coefficient for the predictor variables,
and Yi is the value for the response variable for the ith case.

Subset Selection

The least-squares method can sometimes be further enhanced by setting some coef-
ficients to zero. In the cases where the matrix X is not well condition(for example,
strongly correlated predictors), the prediction accuracy of the linear model is nega-
tively affected. One alternative to solve the problem is to set some of the coefficients
in B to zero. In this case, the overall prediction accuracy is improved by adding bias
to reduce the variance of the predicted values. Furthermore, in the case of problems
with several predictors, subset selection is used to determine a smaller subset that
shows only the most potent effects.

The main purpose of subset selection is to retain only a subset of the predictor
variables and exclude the rest from the model. The least-squares method is then
used to estimate the coefficients of the predictor variables that are retained. There
are, however, several approaches to variable subset selection with linear regression,
such as the best-Subsetselection, Forward- and Backward- Stepwise Selection, and
Forward- stagewise regression. In this thesis, stepwise linear regression is used as it
is faster than the other model-selection methods (Glen, September 24, 2015).

Stepwise linear regression

Stepwise regression is a statistical method used to build a model by choosing the
best subset of models. This is done through a series of F-tests on the estimated coeffi-
cients aiming at adding or removing predictor variables of the original model. There
are different approaches to this algorithm, such as forward-stepwise and backward-
stepwise. Forward stepwise selection starts with the intercept and then sequentially
adds into the model the predictor that improves the fit the most. This is repeated
until further additions do not improve the fit significantly.

In contrast, the backward selection is initialized with a full model, including all
terms and terms whose loss gives the most insignificant deterioration of the model
fit are removed. It is also possible to combine both methods where terms are both
removed and added at each step in search of the best model. Here, the metric used to
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determine if the addition or subtraction of a predictor variable improves the model
fit is F-test which is defined statistically as follows:

F =
RSS1�RSS2

p2�p1
RSS2
n�p2

(3.6)

where RSS1 and RSS2 are the residual sum of squares, p is the number of parameters
in the models and n is the number of samples. This statistic follows an F distribution
with (p2 � p1, n � p2) degrees of freedom.

Forward-stepwise selection is a greedy algorithm, producing a nested sequence
of models. In this sense, it might seem sub-optimal compared to the best-subset
selection, which finds the best subset that gives the smallest residual sum of squares.
However, there are several reasons why it might be preferred. The first reason is
that forward-stepwise selection is superior computationally for models with a large
number of parameters. It is not always possible to compute the best subset sequence,
but we can always compute the forward stepwise sequence. The second reason is
that the size of variance in forward stepwise method is smaller than the best subset
algorithm. The best subset algorithm pays the price in variance for selecting the best
subset of each size (Hastie, Tibshirani, and Friedman, 2009).

3.2.2 Neural Network (NN)

Neural networks, also called Artificial Neural Networks is a set of algorithms that is
used to discover underlying relationships in a data set (Chen, December 23, 2020).
The NN is inspired by the biological nervous system translated to a computer. A
single neuron is shown in Figure 3.2. The connections of thousands of neurons com-
bined produces outstanding prediction results. The layers in NN are usually divided
into input layer, hidden layer and output layer. The simplest NNs have only one
hidden layer, see Figure 3.3. While more complex NNs have more than two hidden
layers. A nonlinear activation function is placed at each neuron in both the hidden
layer and the output layer. This activation function is responsible for the powerful
prediction power of the NN.

FIGURE 3.2: Diagram of a single neuron (Harrison Kinsley, 2020)
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A diagram representation of a static feedforward NN is shown in Figure 3.3. This
Neural Network model is described by the formula:

yi =
L

Â
j=1

wijs(
n

Â
k=1

vjkxk + qvj) + qwi i = 1, 2, 3, ..., m (3.7)

The values of xk are the NN inputs (predictor variables), and yi are the NN out-
puts (response). The function s(.) is a non-linear activation function found in the
NN model’s hidden layer. This Neural Network model has two layers of adjustable
weights. The vjk are the hidden layer weights, and the wij are the output-layer
weights. Furthermore, qvj and qwi are the hidden-layer biases and the output-layer
biases. L gives the number of hidden-layers,

FIGURE 3.3: Diagram of a neural network (Vachtsevanos and Vacht-
sevanos, 2006)

This can be represented using the weight matrices that contains biases as the first
column as follows;

V
T =

2

6664

qv1 v11 · · · v1n
qv2 v21 · · · v2n
...

...
...

...
qvL vL1 · · · vLn

3

7775
(3.8)

W
T =

2

6664

qw1 w11 · · · w1L
qw2 w21 · · · w2L

...
...

...
...

qwm wm1 · · · wmL

3

7775
(3.9)

The Neural Network can then be written as

Y = W
T s(V

T
X) (3.10)
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where Y = [y1 y2 · · · ym]T is the output vector. Moreover, as the biases are in
the first columns of the weight matrices, the input vector with predictor variables is
augmented by 1 and defined as follows.

X =
⇥
1 x1 x2 · · · xn

⇤T (3.11)

Then one has the jth row of V
T

X is given by:

⇥
qvj vj1 vj2 · · · vjn

⇤

2

666664

1
x1
x2
...

xn

3

777775
= qvj +

n

Â
k=1

vjkxk (3.12)

Similarly, the activation function s() used in the equation describing the NN is
the augmented hidden-layer function vector, defined for a vector w = [w1 w2 · · · wL]T

as follows

s(w) =
⇥
1 s(w1) s(w2) · · · s(wL)

⇤T (3.13)

The fact that the activation functions s(.) in NN are nonlinear and the weights
W and V can be tuned via learning procedures gives the NN a high computing
power. More information on NN is found at (Vachtsevanos and Vachtsevanos, 2006).
Common functions used as activation function are shown in Figure 3.4. In this thesis,
the sigmoid activation function is chosen due to the simple form of its derivative.

FIGURE 3.4: Common activation functions used in Neural Network
(Vachtsevanos and Vachtsevanos, 2006)

The main advantage of NN is that it can be trained to capture the required knowl-
edge, such as system modeling and prediction. The NN model "learns" by adjusting
the weights. One of the most common training techniques is a gradient algorithm
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based on back propagation error. The algorithm is as follows:

Wt+1 = Wt + Fs(V
T

t xd)E
T

t (3.14)

Vt+1 = Vt + Gxd(s0T
t WtEt)

T (3.15)

This algorithm is defined in discrete-time with time index t. The NN output
in response to the reference input xd 2 Rn is prescribed as yd 2 Rm. The output
error,Et at time t is then given by Et = yd � yt, where yt is the actual output at
time t. Furthermore, F and G are weighting matrices chosen by the the user and
determines how fast the algorithm converges. The term s0

t(.) is the hidden-layer
output gradient and is defined as the derivative of the activation function s(.). The
hidden-layer output gradient function for the sigmoid activation function is given
as by:

s0
t = diag{s(V

T
xd)}[I � diag{s(V

T
xd)}] (3.16)

where diag{} is a diagonal matrix with the indicated elements on the diagonal and
I is the identity matrix.

3.3 Model predictive control (MPC)

The main idea behind MPC is to solve a constrained optimization problem at each
time interval. The aim is to determine a sequence of input moves such that the
predicted response tracks a given setpoint. In this method, Np control actions are
calculated at each time step, and only the first control action is implemented. Once
a new measurement is available, the initial condition of the model is updated and
a new sequence of control action is calculated. This strategy is known as receding
strategy and it enables online tracking of unmeasured disturbances. (Camacho and
Alba, 1999)

FIGURE 3.5: A sketch of the measured, predicted, and input variables
in a model predictive control scheme (Commons, 2020)

A schematic representation of an MPC controller is shown in Figure 3.5. A
moving prediction horizon as seen in the figure uses a window with a finite num-
ber of samples, from sample k to k + Np (the prediction horizon, length of line in
cyan(aqua)) to predict the future output of the plant (line in brown), and at each
new time step this window is shifted forward. The longer the prediction horizon the
better is the steady state performance of the controller. However, this comes with a
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computational trade-off. The online computation will be impossible, if the sampling
time of the controller is shorter than the computation time. Furthermore, the pre-
diction horizon is divided into the input horizon and the output horizon. The input
horizon is the time period where the controller can manipulate the inputs, while the
time period between the input and out put horizon the input is kept constant. This
is done to prevent too aggressive input moves.

The simplified structure of the MPC strategy is shown in a block diagram (Figure
3.6). As illustrated in the figure, the process model predicts the future outputs based
on a sequence of inputs determined by the optimizer. Historical data in the form of
past inputs and outputs, is returned to the MPC as feedback from the true system.
Furthermore, the future errors are calculated such that the cost function is minimized
and the system constraints not violated. (Camacho and Alba, 1999).

FIGURE 3.6: Basic structure of MPC (Camacho and Alba, 1999)

The control calculations in MPC are based on optimizing an objective function.
There exists different types of objectives for the MPC such as economic control and
setpoint control. In this thesis, an economic objective is considered, where the ob-
jective is to minimize an economic cost function. In the following section we will
briefly explain economic model predictive control.

3.3.1 Economic model predictive control (EMPC)

In the Economic model predictive control (EMPC), the economic optimization and
the control problems are solved simultaneously at each sampling time in one control
layer. This control structure enables dynamic optimization over a moving horizon
of process economic performance. In this control structure, process constraints are
directly represented in the optimization problem. Furthermore, maximum freedom
for optimization is achieved for better economic performance.

Even though EMPC is theoretically the optimal strategy, it has some practical
drawbacks. Considering that EMPC must use a sufficiently large prediction hori-
zon to account for a time-varying economic cost, the optimization problem may be
challenging to solve fast enough to control the system in real-time. Additionally,
compared to traditional hierarchical control strategies, EMPC requires more detailed
and complex models to ensure that the constraints are satisfied, making the problem
more difficult to solve efficiently. Finally, it can be challenging to balance the two
different objectives of optimal economics and desired dynamic control performance
in a single controller (Oliveira, 2016).
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Formulation of Economic Model Predictive Control

In its basic formulation Economic Model Predictive Control looks at deterministic
plants governed by finite-dimensional difference equations of the following type:

x(t + 1) = f (x(t), u(t)) (3.17)

where x(t) is the state variable, and u(t) is the control variable. The goal of the
control design is to maximize profit or minimize costs, both during transient and
steady-state operation. With l(x, u) being the cost for operating the plant at state
x, subject to input u, throughout a sampling interval. In more general scenarios, of
course, both f and l might be time-dependent but, for the sake of simplicity, it is use-
ful to consider situations in which costs and dynamics do not change significantly
over the considered time window.

The stage cost is integrated over prediction horizon. Mathematically, the inte-
grated cost is defined as follows:

Jl(x,u) =
Np�1

Â
t=0

l(x(t), u(t)) + Y f (x(N)) (3.18)

where Np is the prediction horizon. The finite sequences of indexed variables are
denoted in bold fonts: x = [x(0),x(1), ...,x(Np)], u = [u(0), u(1), . . . , u(Np � 1)].
Furthermore, the final weighting function Y f (.) is used to mitigate the effects of
taking a short-sighted actions by providing some bound to the best achievable cost
incurred over a very long horizon.

Nevertheless, the main difference between tracking MPC and Economic MPC, at
the definition level, is in the stage cost, l(x, u). Typically, this is taken to be a positive
definite quadratic form of state and input, in the former, while it may be an arbitrary
continuous function in the latter case. For instance, the following objective function
is a typical choice in tracking MPC.

l(x, u) = (x � xs)
0Q ⇤ (x � xs) + (u � us)

0 ⇤ R ⇤ (u � us) (3.19)

where xs and us are state-input pair for a different equilibrium state.
Therefore, the stage-cost l is designed in order to penalize deviations from the

assigned setpoint, rather than optimizing the plants profits. A non-quadratic can
also be used for this purpose. Its particularly common to take l(x, u) to be positive
definite with respect to the point xs, us (Hedengren et al., 2014). Mathematically, it is
described as follows:

l(xs, us) < l(x, u) = 0 (3.20)

This inequality doesn’t have to hold for l in EMPC setups, even if (xs, us) is cho-
sen to be the best feasible equilibrium. This is demonstrated in Figure 3.7.
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FIGURE 3.7: Stage cost l(x, u) for Tracking vs Economic MPC
(Levine et al., 2018)

The Economic model predictive control scheme in general form is given by Fig-
ure 3.8. As can be seen in both Figure 3.8 and 3.9, the tracking cost function is re-
placed by an economic objective function leaving the controller with no setpoint to
track.

FIGURE 3.8: General form of an economic model predictive control

FIGURE 3.9: A sketch of the measured, predicted and input variables
in an economic model predictive control

The type of systems we are dealing with in this thesis consists of both alge-
braic and differential equations, resulting in a differential algebraic equation system.
These equations are used as constraints in the optimization problem. Furthermore,
there are also inequality constraints which specify both the allowed values of the
inputs and the changes in the inputs. The objective function and the model can
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therefore be simplified as follows

minY =
Z Np

0
(�l(t) +

1
2

Du(t)TRDuDu(t)) dt (3.21)

subject to

ẋ(t) = f (x(t), z(t), p(t), u(t)) (3.22)
0 = g(x(t), z(t), p(t), u(t)) (3.23)
0  h(x(t), z(t), p(t), u(t)) (3.24)

x(0) = ẋ0 (3.25)
z(0) = ż0 (3.26)

where Np is the prediction horizon, l(t) is the cost, the second term describes a
regularization term on the change in inputs, Du. This forces the controller to mini-
mize the change of inputs. R is a tuning parameter that weights the regularization
term in the objective function. ẋ describes the time derivative of differential states, x
describes the differential states, z the algebraic states, p are the parameters of the sys-
tem, u is the input of the system. The model differential equations and the algebraic
equations are represented by f and g, respectively.

All MPC optimization problems have to always be transformed from a conti-
nous problem into a discrete problem, holding a finite number of variables. The
discretized MPC can then be written in the form as a parameteric Nonlinear Pro-
gram (pNLP). Once in this form, the problem can be passed to commercial solvers,
such as IPOPT (Wächter and Biegler, 2006).

There exists several transcription algorithms that facilitates for efficient calcula-
tion of such problems. They are generally divided into two broad classes: shooting
methods and simultaneous methods. They differ in how they enforce the constraint
on the system’s dynamics. Shooting methods use a simulation to explicitly enforce
the system dynamics. Simultaneous methods enforce the dynamics at a series of
points along a trajectory.

Shooting methods

Single-shooting

Single-shooting is the most straightforward method for transcribing an optimal con-
trol problem. Consider the problem of trying to score a goal in a basketball game.
We have two decision variables (the firing angle and the amount of power we throw
the ball with) and one constraint (trajectory passes through the target). This system’s
dynamics are simple projectile motions, and the cost function is the amount of power
we exert. The single shooting method is similar to what a player might achieve with
practice. The player guesses the angle and the amount of power and then throws the
ball. If he throws the ball under the basketball hoop, he would perhaps increase the
amount of energy he exerts on the next throw. By repeating this method, he would
eventually score while using as little power as possible. Single shooting operates
the same way if we replace the practices with simulations. In single-shooting, an
arbitrary function such as piecewise linear is chosen to approximate the continuous
control input. Generally, single shooting works well with simple problems. How-
ever, it usually fails when faced with complicated problems. The main reason for
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this is the lack of a good approximation of the relationship between the decision
variables and the objective and constraint function in the linear (or quadratic) model
that the non-linear programming solvers use. (Kelly, 2015)

Multiple-shooting

We break up the trajectory into segments in multiple shooting method and solve
each segment using the single shooting method. As a result, when the segments get
shorter, the relationship between the decision variables and the objective function
and constraints becomes more linear. Furthermore, the difference between the end
of one segment and the start of the next is added to the problem as a constraint, in-
creasing the number of decision variables and constraints in the optimization prob-
lem. Although it might seem that this would make the optimization problem harder,
it turns out to make it easier. Even though, the Multiple shooting method results in
a higher-dimensional non-linear problem, it is more sparse and linear than the prob-
lem that is solved in single shooting method.(Kelly, 2015)

FIGURE 3.10: Single Shooting vs Multiple Shooting. In both methods
the state trajectory is stored as the result of a simulation. Notice that
multiple shooting is just like a series of single shooting methods, with
additional constraint added to make the trajectory continuous. (Kelly,

2015)

Simultaneous methods

Orthogonal Collocation

Orthogonal collocation is a simultaneous method that uses orthogonal polynomials
to approximate the state and control functions. Orthogonal polynomials have sev-
eral useful properties. The key concept is that a polynomial can be represented over
some finite domain by its value at a special set of grid points over that domain. When
represented in this form, it is easy to do fast and accurate numerical interpolation,
differentiation, and integration of the polynomial. (Kelly, 2015)

Orthogonal collocation on finite elements is based on dividing the prediction
horizon in to finite elements. Each of these elements are then further divided into a
given number of collocation points.
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FIGURE 3.11: Dynamic equations are discretized over a time horizon
and solved simultaneously. With one internal node for each segment,
this example uses a 2nd order polynomial approximation for each

step (Hedengren et al., 2014)
.

As shown in Figure 3.11 the dynamic equations are discretized over a time hori-
zon and solved simultaneously. The solid nodes in the figure represents starting and
ending point for local polynomial approximations that are stitched together over the
time horizon (Hedengren et al., 2014). The main idea behind orthogonal collocation
is to determine a weighting matrix M that relates the derivatives to non-derivative
values over a time horizon at points 1,...,n as exhibited in equation 3.27. The initial
value, x0, is either a fixed initial condition or equal to the final point from the last
interval.
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The solution of the differential equations at discrete time points is approximated
as a polynomial as follows:

x(t) = A + Bt + Ct2 + Dt3 (3.28)

where t is the placement of the collocation points on the finite element. The
derivative of x with respect to t is then given by:

ẋ(t) = Bt + 2Ct + 3Dt2 (3.29)

The collocation points used in this project is the Gauss-Radaue with numbers
(0.1151, 0.6449, 1.0000). The time points are shifted to a reference time of zero and
final time of 1. This enables the user to calculate the solutions without interpolation.
For initial value problems, the coefficients A is equal to x0, when the initial time is
defined as zero. The coefficients B, C, and D are calculated by substituting equation
3.29 into 3.27.
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Rearraging and setting A = x0 gives:
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Finally, rearranging and solving for M gives the solution:
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(3.32)

For intervals that are not between 0 and 1, a scaling parameter h is introduced.
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The objective function and constraints given in equations 2.5 - 2.8, becomes a
non-linear optimization problem which can be solved using orthogonal collocation.
A constraint on the differential states are enforced within every collocation point
to ensure that the trajectory for the differential states are continuous. The objective
function is then evaluated at the end of every collocation point.

Even though, sequential methods are easier to implement, they may use unrea-
sonable time to converge, especially problems with a large numbers of degrees of
freedom. The simultaneous methods have generally computational advantage over
sequential methods (Hedengren et al., 2014). Especially for control problems with
many decision variables and a moderate number of state variables. In this paper,
orthogonal collocation has been chosen as the preferred way of solving the dynamic
algebraic equation system for its low computational cost and its accurate results.
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Chapter 4

Methodology: Case study
modeling

In this chapter, the system model, along with the choke valve degradation model is
described. Furthermore, the sand production rate is assumed to be the main source
of damage to the choke valves. Hence, sand production is also described at the end
of this chapter.

4.1 Process Description

The system studied in this thesis is a subsea oil and gas production network con-
taining three wells. An illustration of the gas-lifted subsea oil and gas production
system is shown in Figure 4.1. The wells are connected to a common manifold. The
combined flow from the three wells goes through a riser to a topside facility. When
the reservoir pressure is not high enough to lift the fluids from the reservoir to the
top facility, artificial methods are often needed. Among the artificial lifting methods,
gas lift is a commonly used method in which a compressed gas is injected into fluid
mix to reduce the mixture density (Krishnamoorthy, Foss, and Skogestad, 2016). As
a consequence, the hydrostatic pressure drop in the well and the pressure at the well
bottom decreases, increasing the flow from the reservoir.

FIGURE 4.1: Illustration of the gas-lifted network (A. Ver-
heyleweghen, 2018)
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However, increased volume flow leads to increased equipment degradation, like
the choke valves in the system. In particular, the erosion of choke valves used to
shut down the wells when rerouting the production to different manifolds is severe.
A well stream typically consists of a mix between oil, gas, water, sand, and other
various particles. When all of these elements hit the internal surface of the choke
valves for long periods, it causes erosion, shortening the useful life of the choke
valves. Particularly, high production of sand has been known to cause considerable
erosion damage in critical parts of the choke valves (A. Verheyleweghen, 2018).
Additionally, if excessive gas is injected, the frictional pressure drop increases, which
negatively affects the flow rate. At some point, the benefit of reduced hydrostatic
pressure drop is overcome by the increase in the frictional drop (Krishnamoorthy,
Foss, and Skogestad, 2016). Hence, oil wells have a desirable gas lift injection rate.
Therefore, the objective is to find the optimal gas injection rate for each well so that
the total oil production is maximized while satisfying the health constraints.

4.2 Gas-Lift Model

The model used to describe this gas-lifted well system is based on the work by (A.
Verheyleweghen, 2018). A single gas-lift oil well is shown in Figure 4.2. It consists
of an annulus volume into which lift gas is injected through the gas-lift choke. An
injection valve located at the bottom of the annulus allows the gas to flow into the
tubing.

The injected gas, as mentioned above, reduces the density of the produced fluid
from the well, thereby reducing the pressure at the bottom of the well, often referred
to as the downhole pressure (DHP). The lower the downhole pressure, the higher
the rate of production from the reservoir.

A brief description of the production model for a gas lifted well model that is
used in the optimization problem is given in four parts: (i) the mass balance of the
different phases; (ii) the density models; (iii) the pressure models and (iv) the flow
models are described under. It should be noted that all these models are for a single
well, but they can be easily extended to the three wells.

The mass balance of each well is given by:

ṁga = wgl � wiv (4.1)

ṁgt = wiv � wpg + wrg (4.2)
ṁot = wro � wpo (4.3)

where the mga is the mass of the gas annulus, mgt is the mass of the gas inside the
well tubing, mot is the mass of oil in the well tubing, wgl is the gas lift injection rate,
wiv is the gas flow from the annulus to the tubing, wpg is the flow rate of produced
gas, wrg is the flow rate of gas from reservoir, wpo is the mass flow rate of produced
oil, and wro is the flow rate of oil from the reservoir. Note that the dot notation
indicates the derivative with respect to time.

These differential equations were set to be algebraic, due to the large time scale
difference between the erosion rate and the differential equations, i.e, the equation
over can be rewritten as:
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FIGURE 4.2: Illustration of a single gas-lift well adapted from
(Eikrem, 2006)

0 = wgl � wiv (4.4)

0 = wiv � wpg + wrg (4.5)
0 = wro � wpo (4.6)

The model is based on a large time horizon to capture the erosion dynamics. In
this thesis, the mass hold-ups are assumed to be constant and hence the dynamics
are dictated by gradual choke erosion and slow decline in reservoir pressure. In
such systems, the dynamics are usually dictated by the reservoir (Foss, Knudsen,
and Grimstad, 2018). Therefore, this is not a very restrictive assumption.

The density model is given by:

ra =
Mw pa

TaR
(4.7)

rw =
mgt + mot � r0Lr Ar

Lw Aw
(4.8)

where the ra is the density of the gas in the annulus. rw is the density if the fluid
mixture in the tubing, Mw is the molecular weight of the gas, R is the gas constant, r0
is the density of the oil in the reservoir, Ta is the annulus temperature, Lr is the length
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of the well above the injection point and Lw is the length below the injection point,
Ar is the cross-sectional area above the injection point and Aw is the cross-sectional
area below the injection point.

The pressure model is given by:

pa = (
TaR

Va Mw
+

gLa

La Aa
)mga (4.9)

pwh =
TwR
Mw

(
mgt

Lw Aw + Lr Ar � mot
r0

) (4.10)

pwi = pwh +
g

AwLw
(mot + mgt � r0Lr Ar)Hw (4.11)

pbh = pwi + rwgHr (4.12)

In this equations pa is the annulus pressure, pwh is wellhead pressure. pwi is
well injection point pressure, pbh is the bottom hole pressure, La is the length of the
annulus, Aa is the cross-sectional area of the annulus, Tw is the temperature of the
well tubing,Hr is the vertical height of the well tubing below the injection point,
Hw is the height of the well tubing above the injection point, g is the gravitational
acceleration.

The flow model is given by:

wiv = Civ

q
ramax(0, pai � pwi) (4.13)

wiv = Cpc

q
rwmax(0.pwh � pm) (4.14)

wpg =
mot

mgt + mot
wpc (4.15)

wpo =
mgt

mgt + mot
wpc (4.16)

wro = PI(pr � pbh) (4.17)

wrg = GOR ⇤ wro (4.18)

where wpc is the total flow through the production choke, Civ is the injection valve
coefficient, Cpc is the production choke valve coefficient, PI is the reservoir produc-
tivity index, pr is the reservoir pressure, pm is the manifold pressure and GOR is the
gas-oil ratio.

Gas to oil ratio (GOR) is among the essential parameters that is uncertain in the
production network. In this thesis, the GOR is assumed to be known for the three
wells for the nominal model.

4.3 Choke degradation model

Erosion of choke valves depends on a number of factors, such as physical properties
of the fluid and how particles hit the internal surface of the choke valves. Further-
more, erosion rates are heavily dependent on the physical geometry of the choke
valves in question, as this influences the flow patterns. Its therefore always a chal-
lenging task to develop a precise erosion model of a given choke valve, without
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performing expensive computational fluid dynamics (CFD) simulations. The ero-
sion model used in this project thesis is based on a choke erosion model in (DNV,
2015). The erosion model is given by Equation 4.19. For the rest of this thesis, this
phenomenological model will be used for representing the actual erosion of the sys-
tem. The data-driven models mentioned in Sections 3.2.1 and 3.2.2 will be used to
approximate its behavior.

Ė =
KF(a)Un

p

rt At
⇤ G ⇤ C1 ⇤ GF ⇤ ṁsand ⇤ Cunit (4.19)

where Ė is the erosion rate, while K, n, C1, GF and Cunit are constants. F(a) is the
ductility and is a function of particle impact angel a. Un

p is the particle impact veloc-
ity. ṁsand is the production rate and G is a parameter defined as

G =
dp ⇤ b ⇤ (1.88 ⇤ log(A)� 6.04)

Dpipe
(4.20)

where dp is the particle diameter, and Dp is the pipe diameter. b and A are dimen-
sionless parameters

A =
Re ⇤ tan(a)

b
(4.21)

b =
rp

r f
(4.22)

where Re is the Reynolds numbers of the flow, rp is the particle density and r f is the
fluid density.

Furthermore, the sand production, msand is assumed to have an exponential shape
as follows:

msand(t) = msand(0) ⇤ ek⇤t (4.23)

where msand(0) is the initial sand production rate and k is a parameter that affects
the rate of exponential growth. In addition, F(a) is defined as:

F(a) = 0.6 ⇤ [sin(a) + 7.2(sin a � sin2(a))]0.6 ⇤ [1 � exp(�20a)] (4.24)

The particle impact angel a is the is given by:

a = arctan(
1p
2r
) (4.25)

where r is the radius of the choke gallery. Lastly, The particle impact velocity Up is
calculated by:

Up =
3 ⇤ Q
4 ⇤ Ag

=
3 ⇤ Q

8 ⇤ H ⇤ d
(4.26)

where Q is the actual volumetric flow rate, Ag is the effective gallery area, H is the
effective height of the gallery, and d is the space between the choke cage and the
choke body, see Figure 4.3.
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FIGURE 4.3: Choke gallery (DNV, 2015)

4.4 Sand production rate

The sand production rate msand in the actual oil wells is not constant. It changes as
the field matures. Generally, the sand production rate increases significantly over
the lifetime of the production well (Hettema et al., 2006). Much work has already
been done on modeling the sand production rate (Pham, 2017). Nevertheless, this
thesis aims at estimating the sand production profile as an exponential function, as
seen in Equation 4.23. This sand profile is chosen because the sand rate is the key
driving force for the erosion in the choke-valves, and we wanted to see how the
health-aware controller would react to this extreme condition.

4.5 Simulation Data

This section presents a brief description of the simulated data sets used to provide
the training data for the data-driven models used in the hybrid MPC. Simulations
were carried out using the model described in Section 4.2. Note that the data gener-
ated in the following sections have already been trained and tested in (Jahren, 2020).

The data used of the data-driven model inside the MPC was generated with an
exponential growing sand production rate. The code that was used for this purpose
is shown in Appendix D. This simulation creates data for the three wells. In the
actual operation, engineers adjust the gas injection rate according to the production
plan. Thus, in the simulations we change the gas injection rate every 50 days. Fur-
thermore, to generate a data set that is informative enough to describe the process,
the input (gas lift rate) was randomly changed using a uniform distribution between
Umin + 1 · (Umax � Umin) to Umin + 3 · (Umax � Umin). Additionally, a noise was also
added in addition to random variation to incorporate the uncertainty in measure-
ments. The erosion profile is shown in Figure 4.4.
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FIGURE 4.4: Gas-lift rate and erosion in mm plotted against time in
days for 3 wells with exponential sand production profile

As can be seen in Figure 4.4, the erosion is increasing with an exponential shape
as expected. The simulations are run over 500 days iteration. This simulation gen-
erated data for the control input (gas-lift rate), measurement values of parameters
(predictors) and the response (erosion) of each well for 500 days. Since, the mod-
els used are trained on the normalized form of this data, the statistical data-driven
models were trained using this training data.
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Chapter 5

Results and discussion

This chapter presents and discusses the results of the case study, where the data-
driven statistical methods discussed in chapter 3 are applied to the data simulated
with the model presented in chapter 4. This chapter is organized as follows. First, we
present the preliminary study related to the prediction capacity of the data-driven
models, where we compare their accuracy with the phenomenological model. Note
that this study is performed in an open-loop (i.e., the data-driven models are not em-
bedded in the controller). The second part of this chapter is concerned with the per-
formance of the data-driven models when integrated into the MPC (Health-aware
controller). We use the perfect controller (complete feedback plus perfect model pre-
dictions, i.e., using the phenomenological model inside the HAC) as the baseline for
the comparison. The controller’s performance is compared in terms of financial re-
sults and conservativeness. The latter represents the loss in performance due to the
plant-model mismatch added by the data-driven approximation of the equipment
degradation.

5.1 Modelling erosion using Stepwise linear regression model

The models used in this project have already been trained and tested previously.
Thus, we only include a brief description of these steps. A more detailed description
can be found at (Jahren, 2020).

Prior to modelling, the simulated data consisting of 500 measured data points
was pre-processed. This data points were chosen in order to represent a significant
range of different operating conditions. The predictor variables shown in table 5.1
were subject to normalization as described in section 3.1.1 such that all the variables
have a standard deviation and mean of 1 and 0 respectively. This was done due to the
differing units of measurements in the data. Furthermore, the models were trained
using the gradient of erosion measurements instead of direct erosion measurements,
as such, erosion rate was used to predict the erosion, before it was transformed to
cumulative erosion.
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TABLE 5.1: The parameters used for the regression, with var 1-9 as
predictor variables and var 10 as response variable

Predictor variable Symbol Description

var1 pai Annulus pressure
var2 pwh Well head pressure
var3 wro Well head oil production rate
var4 wrg Well head gas production rate
var5 prh Riser head pressure
var6 pm Manifold pressure
var7 wto Riser head total oil production rate
var8 wtg Riser head total gas production rate
var9 wgl Gas lift rate
var10 ER Erosion rate (Response)

The results of the stepwise linear regression model are compared to the phe-
nomenological model in Figure 5.1. The comparison of the models is made with a
constant sand production rate of 0.1. Furthermore, to generate a simulation that is in-
formative enough to describe the comparison, the input (gas lift rate) was randomly
changed every 10 days using a uniform distribution between Umin + 1 · (Umax �
Umin) to Umin + 3 · (Umax � Umin). With Umin and Umax set to be 1.5 and 3.5 respec-
tively. From the three wells, well two is observed to be the one with the highest
plant-model mismatch. There seems to be a correlation between GOR and the plant-
model mismatch with an error percentage of below 2.5%.

On the other hand, well 2 has the largest GOR and presents the most signifi-
cant mismatch (error percentage of 4.7%). As mentioned in Section 4.2, GOR, which
is among the critical parameters in the production network, is in reality uncertain.
Therefore, such behavior indicates that these models should be used with caution in
practical applications.
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FIGURE 5.1: The phenomenological model vs the data-driven step-
wise linear prognostic model

5.2 Modeling erosion using Neural network

The data sets used for the NN modeling are exactly the same as the one in the step-
wise linear regression, see Table 5.2 . The trained neural network used in this thesis
has two hidden layers with 20 nodes each. The sigmoid activation function is intro-
duced to the model to facilitate flexibility in fitting non-linear functions. As seen in
Figure 5.2, the NN regression performed well. Differently from the stepwise model,
well one is observed to be the one with the highest plant-model mismatch. The pre-
diction was more accurate in comparison to the stepwise linear model, with an error
percentage of below 3% for the three wells. Despite the excellent prediction capacity,
a lower percentage of errors can indicate that the NN is over-fitting the data, mainly
because the data used in this preliminary analysis was inside the training data range.
NN models are usually prone to over-fitting training data due to a large number of
parameters present in the model (Tu, 1996).

We should note that those comparisons of accuracy with the phenomenological
model are made for constant sand production. However, in the controllers, a more
realistic exponential sand production profile is implemented. We can find the perfor-
mance of those models for this case study at (Jahren, 2020). The author’s data sets for
this case study are almost identical to the one we did with a constant sand produc-
tion rate. The only difference is adding one predictor, the sampled sand production
rate, sampled at a set interval. The sampling rate of the sand production rate was
found to have a significant impact on the model performances. This is reasonable as
the sand production rate is an essential predictor.
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TABLE 5.2: The parameters used for the regression, with var 1-9 as
predictor variables and var 10 as response variable

Predictor variable Symbol Description

var1 pai Annulus pressure
var2 pwh Well head pressure
var3 wro Well head oil production rate
var4 wrg Well head gas production rate
var5 prh Riser head pressure
var6 pm Manifold pressure
var7 wto Riser head total oil production rate
var8 wtg Riser head total gas production rate
var9 wgl Gas lift rate
var10 ER Erosion rate (Response)

FIGURE 5.2: Plant-model mismatch (Comparison of the real true ero-
sion vs the NN predicted erosion)

5.3 Performance of the Hybrid data-driven HAC controllers

The data-driven models developed in sections 5.1 and 5.2 were used for modeling
the erosion rate in the controller, while the phenomenological model was used for
the plant. Our approach is well presented in Figure 5.3. HAC with no plant-model
mismatch (i.e. perfect erosion rate model) is also included for comparison. We tested
the case studies with only prognostics first, and diagnostics was added afterward for
the hybrid MPC controllers. This is done to include system feedback in the form of
diagnostics in addition to prognostics to cope with the uncertainties in the system. In
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other words, we will be testing the influence of having an approximation of the ero-
sion model inside the controller (prognostics), and the influence of a not so accurate
feedback (diagnostics) on the overall performance of the HAC.

FIGURE 5.3: Block diagram of our approach (Matias, 2021)

The main objective of the MPC, as mentioned previously, is to maximize the total
production of oil while keeping the erosion for each well below a threshold value of
2mm which was chosen arbitrarily . The differential equations shown in Section
4.3 together with the algebraic equations shown in Section 4.2 represent the system
behavior. They will therefore be the constraints for the optimization problem. The
problem for the MPC can then be written as follows:

minY =
Z Np

0
(

3

Â
i=1

�wi,po(t) +
1
2

Du(t)TRDuDu(t) +
3

Â
i=1

ri,ssi(t) dt (5.1)

subject to:

Ė(t) = f (E(t), z(t), u(t)) t 2 [0, Np] (5.2)
g(z(t), u(t)) = 0 t 2 [0, Np] (5.3)

�Dumax  Du(t)  Dumax t 2 [0, M] (5.4)
umin  u(t)  umax t 2 [0, Np] (5.5)

Du(t) = 0 t 2 [M, Np] (5.6)
0  E(t) + s(t)  Emax t 2 [0, Np] (5.7)

In this optimization problem, g(.) are the algebraic equation mentioned in section
4.3. u is the gas flow rate, wpo is the wellhead oil production rate, and z are the
algebraic variables. Furthermore, the term si(t) is introduced to the problem as a
slack variable to give the controller flexibility to violate the constraint at a high cost
for the objective function. The penalty is given by the weighting parameters ri,s,
which was arbitrarily set to be 1000000 for the three wells. The main objective of the
slack variable is to ensure that the controller does not enter an infeasible region when
the controller can no longer satisfy the constraint on the maximum allowed erosion.
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In addition, M and Np represents the control and prediction horizon, respectively.
Du is a regularization term introduced to the problem if it is ill-conditioned and
therefore might make the controller unstable. The weighting of the regularization,
RDu, is set to be:

RDu =

2

4
1 0 0
0 1 0
0 0 1

3

5 (5.8)

Orthogonal collocation was used to solve the algebraic equations and was exe-
cuted at every collocation point. A lower input bound of 0.4kg/s and an upper limit
of umax = 2kg/s�1 for the gas lift rate were used. Furthermore, a conservative value
of Dumax = 0.01kg/s�1 was used in the simulation. The controller was run over a pre-
diction horizon of 100 days and control horizon of 70 day, where each time step is a
day. We simulate the system until its breakdown i.e, until one of the wells reaches
the maximum failure threshold value of 2mm.

Additionally, an exponentially varying sand production rate is used to simulate
the HAC controller. This sand profile is chosen because the sand rate is assumed
to be the key driving force for the erosion in the choke-valves, and we wanted to
see how the health-aware controller would react to this extreme condition. The flow
rates and the pressures from the plant, see Table 5.1 are measured with an added
noise to emulate a more realistic situation. Those values are then used to predict the
current value of erosion (diagnostics) is then fed back to the HAC.

It is important to note that the simulations are run to failure, i.e. until one of
the wells fails or crosses over the set failure threshold. Therefore, the HAC con-
trollers in the case studies are expected to have different breakdown times and total
oil production. We will, therefore, run the controllers to failure first to determine
the breakdown time. After that, they will all be simulated for the same time pe-
riod which is greater than their the breakdown time for illustration purposes only to
make it easier for the reader to compare the performance of the controllers.

The case studies investigated in this thesis are summarized as follows:

• In the first case study, we will investigate HAC with no plant-model mismatch
(i.e. perfect erosion rate model). Also, we assume that the erosion E(t) is mea-
sured at every sampling time

• In the second case study, we will investigate a hybrid data-driven HAC con-
troller. The controller calculates the optimal inputs with the data-driven step-
wise linear model developed, i.e., replace f in Equation 5.2 with the stepwise
model. First, we assume that the hybrid HAC has perfect feedback, in which
the erosion is measured. Then, to represent a more realistic situation, we study
the inclusion of a diagnostics step in the HAC loop. The need for diagnostics
steps comes from the fact that the current erosion is not measured in actual
applications, and we need to estimate it based on the current plant measure-
ments.

• In the third case study, we will investigate a hybrid data-driven HAC con-
troller. The controller calculates the optimal inputs with the data-driven Neu-
ral network model developed, i.e., replace f in Equation 5.2 with the NN
model. Similar to the previous case study, we tested the hybrid NN HAC with
perfect information first and then with the diagnostics step.
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TABLE 5.3: The MPC controllers studied for comparison in the three
case studies.

Case study Type of model in the controller Type of model in the plant

1 Phenomenological Phenomenological
2 Data-driven Stepwise linear model Phenomenological
3 Data-driven Neural Network model Phenomenological

5.3.1 Case study 1: HAC with no plant-model mismatch

We can see the simulation results for this case study in Figure 5.4. We start the simu-
lation with an arbitrarily chosen input value of [0.5, 0.5, 0.5] kg

min . At the beginning of
the simulation, the controller tries to maximize the total oil production by increas-
ing the gas lift rate as fast as possible. However, the controller is constrained by the
maximum allowed change of input, Du. Around 150 days, it reaches umax, where
the gas lift can no longer be increased and it is kept until day 173 in the maximum
value. This input sequence is determined by the controller because it predicts that
the erosion will not reach the maximum threshold within the prediction horizon M,
which can be clearly seen in the middle plot of Figure 5.4. At around day 173 (line
in green), the controller again adjusts the gas lift rate of well two by decreasing, as
the systems start to violate the constraint on the erosion.

In addition, the result showed that the erosion rate of the three wells within the
prediction horizon was different, with well 2 and 3 being the wells exposed to the
highest erosion. The main reason is the value of the chosen reservoir parameters,
especially GOR. These values were specified such that well 2 and 3 have higher pro-
ductivity indexes. With higher reservoir outflows, the choke valves of these wells
tend to erode faster. This behavior was purposely chosen for testing the HAC per-
formance. Due to different erosion rates, it needs to determine different input pro-
files for fast degrading wells. We see in the top plot of Figure 5.4 that indeed HAC
starts decreasing the inputs from wells 2 and 3 before well 1, which was expected.



38 Chapter 5. Results and discussion

FIGURE 5.4: Result of the Health-aware controller with no plant
model mismatch (Case study 1)

5.3.2 Case study 2: Hybrid HAC with stepwise linear model

The goal here is to analyze how the controller behaves when the plant and the con-
troller model are different, i.e., with a plant-model mismatch. The simulation results
of this case study are shown in Figure 5.5 and 5.6 with prognostics only and with
prognostics and diagnostics, respectively.

Stepwise linear prognostic model and perfect erosion feedback

We observe a similar behavior as the HAC with no plant- model mismatch at the
beginning of the simulation. The controller tries to maximize the total oil production
by increasing the gas lift rate as fast as possible—followed by a constant gas lift
injection period. However, in this case study, the controller decreases the gas lift
rate after 180 days (line in green) which is seven days after the original MPC. This
is due to the prediction error of the stepwise model. This controller does not predict
the true system is about to break, so it keeps on producing more. This increase in
production comes, therefore, at the cost of constraint violation. The system breaks
after 229 days (line in cyan(aqua)) which is one day before the HAC with no plant-
model mismatch and perfect feedback broke. As expected, the erosion rate of the
three wells was also different here, subject to the same arguments in case 1.
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FIGURE 5.5: Result of the Health-aware controller with Data-Driven
Stepwise linear prognostic model (Case study 2)

Stepwise linear prognostic model with diagnostics

In this case study, we added diagnostics to the control structure. A stepwise data-
driven model was used to estimate the current state of the erosion and inside the
controller for erosion prognostics. This controller showed similar results to the one
with prognostic model only, see Figure 5.6. The breakdown time (the time at which
the erosion of the wells exceeds the threshold) of this controller was the same as
the one without diagnostics, 229 days (line in cyan (aqua)). Therefore, we conclude
that the diagnostics step is accurate enough and does not influence the HAC overall
behavior. This controller decreases the gas-lift rate after 173 days (line in green) like
the HAC with no plant-model mismatch. It seems that the plant-model mismatch
that is shown in Figure 5.7 is not significant enough to deteriorate the performance.
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FIGURE 5.6: Result of the Health-aware controller with Data-Driven
Stepwise linear prognostic and diagnostic model (Case study 2)
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FIGURE 5.7: The plant-model mismatch of the stepwise linear diag-
nostic model in closed loop (real erosion vs the predicted erosion)
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5.3.3 Case study 3: Hybrid MPC with Data-driven Neural Network

The NN is implemented as explained in Section 3.2.2. The simulation results of this
case study are shown in Figure 5.8 and 5.9 with prognostics only and with prognos-
tics and diagnostics, respectively.

Neural network prognostic model and perfect erosion feedback

The result for this case study is shown in Figure 5.8. Like all the other case studies,
the controller is observed to increase the total oil production by increasing the gas
lift rate as quickly as possible at the start of the simulation. This is followed by a con-
stant gas lift period where the controller is constrained by the input upper bound.
The controller then starts to decrease the production by reducing the gas lift rate af-
ter 213 days (line in green). This is a late reaction, and as a result, the system breaks
at day 227 (line in cyan(aqua)), which is which is sooner than the other controllers.
The main reason for this is the NN model’s imperfect prediction, which leads to sig-
nificant plant-model mismatch. Although the NN had the best performance in the
case with a constant sand production rate, its performance degrades considerably as
the sand production rate increases exponentially. As mentioned in Section 5.2, the
NN models are prone to over-fitting training data and have poor extrapolating abil-
ity compared to stepwise linear regression models. They also have worse gradient
prediction abilities in comparison to stepwise linear model. The controller therefore
does not predict that the system is about to break. As a result, it keeps producing
more, leading to a shorter breakdown time.

FIGURE 5.8: Result of the Health-aware controller with Data-Driven
Neural-Network prognostic model (Case study 2)
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Neural network prognostic model with diagnostics

The simulation results for this case study is shown in Figure 5.9. At the beginning
of the simulation, the controller is observed to increase the total oil production by
increasing the gas lift rate. However, after the upper limit on the gas lift injection is
reached, the controller keeps the gas lift rate at this level until the breakdown time
have been reached. This is due to the large plant-model mismatch in the NN model
and the large deviation of the system feedback from the diagnostics, see Figure 5.10.
In this particular case, it seems that the plant the NN models poor extrapolating abil-
ity and gradient prediction ability has made the controller to behave in this manner
as its unable to accurately predict the erosion and see the system is about to break.
And as a result the controller keeps increasing the production and ends up with the
shortest breakdown time of 226 days (line in cyan(aqua)).

FIGURE 5.9: Result of the Health-aware controller with Data-Driven
Neural-Network prognostic and diagnostic model (Case study 2)
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FIGURE 5.10: The plant-model mismatch of the NN diagnostics in
closed loop (real erosion vs the predicted erosion)

5.4 Comparison of the performance of the five controllers

Generally, an increase in erosion was observed with an increase in the gas-lift rate
in all the case studies. The greater the mass flow rate through the production valve,
the greater the impact velocity of the sand particles hitting the surfaces of the choke
valves, causing more erosion on the valves. Moreover, the effect of the well-specific
reservoir parameter GOR, on the erosion of the three wells was observed. We note
that erosion increases with a larger GOR value. As a result, well two was eroded
faster during the simulation.

Furthermore, a trade-off between total oil production and constraint violation
was observed in the simulation results. The increase in production during the sim-
ulation horizon in the hybrid data-driven HAC controllers comes at the cost of con-
straint violation. In order to analyze this trade-off we compared the five controllers
in terms of the total oil we managed to produce, which is calculate by integrating
the area under the total production curve (bottom plot of Figures 5.4, 5.5, 5.6, 5.8,
and 5.9). Furthermore, the system breakdown time (the time at which the erosion
rate of the wells exceeds the threshold value), the time the controller starts to adjust
(decrease) the production, and the percentage of production from the perfect con-
troller are also compared in Table 5.4. Comparison of the total oil production before
breakdown for each case study is also shown in Figure 5.4.
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TABLE 5.4: Metrics used for comparison of the Health-aware con-
trollers studied in the three case studies

Case study Breakdown time Tot prod before breakdown Adjusting prod. time Relative production

1(HAC no-mismatch) 230 days 1.6834e+09 kg 173 days
2 (SW prognostics) 229 days 1.6764e+09 kg 180 days - 0.42 %
2 (SW prognostic + diagnostic) 229 days 1.6763e+09 kg 173 days - 0.42 %
3 (NN prognostic) 227 days 1.6625e+09 kg 213 days - 1.24 %
3 (NN Prognostic + diagnostic) 226 days 1.6551e+09 kg - 1.68 %

The results clearly show that the inclusion of the data-driven models had a detri-
mental effect on production before system breakdown. The stepwise linear models
resulted in a total production that is 0.42% lower than the perfect controller. The
system was observed to break down one day before the perfect controller. Further-
more, surprisingly the inclusion of diagnostics seemed to have a negligible effect
on the performance of the HAC with the perfect erosion feedback. This has led us
to believe that the diagnostics step is accurate enough and does not influence the
HAC overall behavior. This also makes sense as stepwise linear models have good
gradient prediction abilities in comparison to NN models. It could also be because
stepwise linear models have a better extrapolating ability due to the few system pa-
rameters that need to be tuned.

In contrast, the inclusion of the NN models resulted in a total production that
is 1.24% lower than the perfect controller. The system was observed to break down
after only 227 days, which is three days before the perfect controller breaks down.
This could be due to the proneness of the NN- models to training data over-fitting.
Furthermore, the inclusion of diagnostics as expected lowered the performance of
the HAC controller. The controller with diagnostics broke down after only 226 days,
which is one day before the HAC with perfect erosion feedback and four days be-
fore the perfect controller with no plant-model mismatch. Therefore, we can con-
clude that the diagnostic model with NN was not accurate enough to cope with the
uncertainties in the system. We believe that these results could be due to the poor
gradient prediction ability and extrapolating ability of the NN model compared to
the stepwise linear model.

Moreover, the comparison of the total oil production for HAC controllers is shown
in Table 5.4. As mentioned before, the controllers are run to failure, and as a result,
they had different breakdown times. We can observe that the HAC controller with
no plant-model mismatch had the highest total oil production as it run longer with-
out breaking. In contrast, the hybrid NN data-driven HAC with diagnostics had the
lowest total oil production as it had the shortest run time before breakdown. The
poor extrapolating ability of the NN model made the prediction way off from the
actual value. This led to constraint violation and high production of oil at the start
of the simulation. Hence, the constraints were violated early, causing the controller
to break down. While the HAC with no plant-model mismatch had the actual ero-
sion value and was, therefore, the controller that respected the constraints the most,
and as a result, the total production of oil was the highest as it was able to run for
longer days.

All the parameter values and erosion threshold were chosen arbitrarily and not
validated with actual information in this simulation. Therefore, the values here
should not be considered for quantitative analysis. They qualitatively indicate how
the performance of the HAC is tightly connected to the data-driven model used and
with the quality of the plant feedback, as expected. And, the most important result,



46 Chapter 5. Results and discussion

that the complexity of the data-driven model is not directly associated with perfor-
mance. A simpler model can yield better results.
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Chapter 6

Conclusion

This paper studied the incorporation of data-driven diagnostics and prognostics into
the health-aware controller loop. The controllers were tested in simulations of a gas-
lifted subsea oil/gas production network subject to sand-caused choke erosion. We
show that we can integrate the choke valve’s data-driven prognostic and diagnostic
models into the control framework to optimize production while keeping erosion
levels of choke valves below critical levels. In this manner, health monitoring and
prognostics are included in the production planning to find the optimal operational
strategy.

The MPC framework studied in this thesis is implemented using stepwise linear
and NN data-driven models. These models were used in diagnostics (erosion mea-
surement - feedback to the control) and prognostics (erosion model - erosion evo-
lution prediction). This is done to study the influence of having an approximation
of the erosion model inside the controller. After assessing the impact of the model
inside the controller, we included the diagnostics to study how much non-accurate
feedback will affect the overall performance. For comparison, we also implemented
a baseline controller, in which the erosion was measured, and its evolution model
inside the controller was perfect. The hybrid nature of the MPC controllers was
therefore at the center of the discussion.

The simulation results show that the hybrid Health aware controller is a possible
alternative to solving the problem. However, the plant-model mismatch was found
to have a detrimental effect on the performance of the HAC controllers. The NN
prognostic model with diagnostic gave the most significant plant-model mismatch
and constraint violation, while the stepwise linear prognostic model gave the least
significant mismatch. The plant-model mismatch present due to the limitation of
the data-driven method’s prediction ability was the main reason for the constraint
violation observed in the results. Furthermore, the imperfect feedback information
obtained by the diagnostics was also another reason for the constraint violation ob-
served in the data-driven HAC controllers.

In conclusion, it can be said that in this thesis, a qualitative analysis of the perfor-
mance of a hybrid data-driven health-aware controller (HAC) was performed. The
results show that the type of data-driven model used together with the quality of the
plant feedback was detrimental to the the performance of the HAC. In addition, the
results also showed that the complexity of data-driven models is not directly related
to the performance of the HAC. Simple models can give better results.
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6.1 Future work

For the future work, the robustness of the controllers should be analyzed using
Monte-Carlo simulation in order to ensure that the controllers have good perfor-
mance to adjust setpoints and decrease the effect of disturbances. Furthermore, to
account for the plant-model mismatch in the controllers, some of the parameter in
the systems can be considered to be stochastic. The objectives of this thesis was to
showcase the possibility of Hybrid Health-aware controller that incorporates both
data-driven and first principle models in the control framework, rather than provid-
ing results that correspond with real field data. We used therefore a simple choke
erosion model. Its however recommended to develop accurate models for the par-
ticular equipment of interest before real-world implementation.
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Appendix A

Calculation of dynamic viscosity of
mixture

The dynamic viscosity of the mixture of interest is calculated under the assumption
of ideal gas. The density of the gas, rg is calculated as a function of the molar mass,
pressure, and temperature as follows:

rg =
pm ⇤ Mmg

R ⇤ Tw
(A.1)

where pm is the manifold pressure and Tr is riser temperature.
The mixed volumetric flow is then the sum of the liquid volumetric flow and the

gas volumetric flow.

Qm = Qpg + Qpo =
wpg

rg
+

wpo

ro
(A.2)

where Qm,Qpg, and Qpo are the mixed, gas, and oil volumetric flows. The mixed
volumetric flow can then be calculated by substituting equation A.1 in equation A.2
as follows:

Qm =
wpo

ro
+

R ⇤ Tw ⇤ wpg

pwh ⇤ Mmg
(A.3)

The dynamic viscosity, µm for the mixture is then given by:

µm =
µo ⇤ Vo + µg ⇤ Vg

Vo + Vg
(A.4)

where µo and µg are the dynamic viscosity of oil and gas respectively. Vo and Vg are
the velocity of oil and gas and given as follows:

Vo =
Qpo

Ap
(A.5)

Vg =
Qpg

Ap
(A.6)

where Ap is the piupe diameter. The dynamic viscosity for the mixture can then be
rewritten as follow:

µm =
µo ⇤ Qpo

Qpo + Qpg
+

µg ⇤ Qpg

Qpo + Qpg
(A.7)

Under the assumption of that the viscosity of the gas, µg is much lower than the
viscosity of the liquid, µo and substituting equation A.3 in to equation A.7, the final
expression for the dynamic viscosity of the mixture is simplified as follows:
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µm = µo ⇤
wpo
ro

wpo
ro

+
R⇤Tw⇤wpg
pwh⇤Mmg

(A.8)
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Appendix B

Least Squares Estimator

The least squares estimation is a method in regression analysis that is used to mini-
mize the sum of squared error of the residuals, defined as:

e = Y � XB̂ (B.1)

where B̂ is a vector of estimate of B, and e denotes vector of residuals.
The least squares estimator is then determined, using the sum of squares of the

residuals as follows.

S(B̂) = Â e2
i
= eT e = (Y � XB̂)T(Y � XB̂)

= Y
T

Y � Y
T

XB̂ � B̂
T

X
T

Y + B̂
T

X
T

XB̂
(B.2)

The minimum of S(B̂) is determined by setting its derivatives equal to zero.
With further simplifications the equation is simplified as follows:

∂S

∂B̂
= �2X

T
Y + 2X

T
XB̂ (B.3)

The least squares estimator is then obtained by minimizing S(B̂). Setting the deriva-
tives equal to zero gives the normal equations

X
T

XB̂ = X
T

Y (B.4)

Rearenging and solving for B̂, we obtain

B̂ = (X
T

X)�1
X

T
Y (B.5)
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Appendix C

Parameters used in the simulation

C.1 Parameters for choke degradation model

TABLE C.1: Parameters used for erosion calculation

Parameter Unit Description value

rp kg m3 Density of sand particles 2.5 ·10�3

C1 - Model geometry factor 1.25
Cunit mm m�1 Unit conversion factor 1000
D m Length from cage and choke body 0.1
dp m Sand particle diameter 2.5 ·10�4

GF - Geometry factor 2.0
H m Height of Gallery 0.3
K - Material erosion constant 2 ·10�9

Mmg gmol�1 Molar mass of gas 20
ṁp kgs�1 Sand rate 50 ·10�2

n - Velocity exponent 2.6
r m Radius of curvature 0.2

C.2 Parameters for gas-lift model

TABLE C.2: Parameters used in the gas lift model

Parameter Unit Description value

µo Pa s Dynamic viscosity of oil 0.001
ro kgm�3 Density of oil 8 ·102

rro kg m�3 Density of oil in riser 8 ·102

Ar m2 Cross-sectional area of riser 0.0115
Cpr - Valve constant for riser valve 0.01
Dr m Diameter of riser 0.121
Hr m Height of riser 500
Lr m Length of riser 500
nw - Number of wells 3
ps bar separator pressure 20
T s Sampling time 86400
Tr K Riser temperature 303
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Appendix D

Matlab codes used for calculations

LISTING D.1: Code for calculating the parameters and the erosion
using the well plant model

function [xk,zk] = WellPlantModel(dx0,z0,u0,m0,par)
% based on a script by: Jose Otavio Matias

addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*

%% Parameters
%number of wells
n_w = par.n_w; %[]
%gas constant
R = par.R; %[m3 Pa /K /mol]
%molecular weigth
Mw = par.Mw; %[kg/mol?]

%properties
%density of oil - dim: nwells x 1
rho_o = par.rho_o; %[kg/m3]
%riser oil density
rho_ro = par.rho_ro;%[kg/m3]
%1cP oil viscosity
mu_oil = par.mu_oil;% [Pa s]

%project
%well parameters - dim: nwells x 1
L_w = par.L_w; %[m]
H_w = par.H_w; %[m]
D_w = par.D_w; %[m]
A_w = par.A_w;%[m2]

%well below injection - [m]
L_bh = par.L_bh;
H_bh = par.H_bh;
D_bh = par.D_bh;
A_bh = par.A_bh;%[m2]

%annulus - [m]
H_a = par.H_a;
V_a = par.V_a; %[m3]

%riser - [m]
L_r = par.L_r;
H_r = par.H_r;
D_r = par.D_r;
A_r = par.A_r;%[m2]
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%injection valve characteristics - dim: nwells x 1
C_iv = par.C_iv;%[m2]
%production valve characteristics - dim: nwells x 1
C_pc = par.C_pc;%[m2]
%riser valve characteristics
C_pr = par.C_pr;%[m2]
% account for differences in the vapor and oil velocity
slip = par.slip_real;

%% For erosion model
% Sand
d_p = par.d_p; %[m] particle diameter
rho_p = par.rho_p; %[kg/m3] particle density
mdot_p = par.mdot_p; %[kg/s] sand rate

% Choke
K = par.K; %[-] material erosion constant
rho_t = par.rho_t; %[kg/m3] sensity CS
r = par.r; %[m] radius of curvature
D = par.D; %[m] Gap between body and cage
H = par.H; %[m] Height of gallery

% Constants
C_unit = par.C_unit; % Unit conversion factor: now in mm/s
C_1 = par.C_1; %[-] Model/geometry factor
n = par.n; %[-] Velocity coefficient
GF = par.GF; %[-] Geometry factor

% Precalculations of erosion in choke:
alpha = par.alpha;
F = par.F;
A_g = par.A_g; %[m2] Effective gallery area
G = 1; % THIS MUST BE CHANGED
ER_constant = par.ER_constant;

gma = d_p./D;

%% Differential states
%symbolic declaration
%erosion rate
ER = MX.sym('ER',n_w); % 1-3[s]

%% Algebraic states
%pressure - annulus
p_ai = MX.sym('p_ai',n_w); % 1-3 [bar] (bar to Pa = x10^5)
%pressure - well head
p_wh = MX.sym('p_wh',n_w); % 4-6 [bar]
%pressure - injection point
p_wi = MX.sym('p_wi',n_w); % 7-9 [bar]
%pressure - below injection point (bottom hole)
p_bh = MX.sym('p_bh',n_w); % 10-12 [bar]
%density - annulus
rho_ai = MX.sym('rho_ai',n_w); % 13-15 [100 kg/m3]
%mixture density in tubing
rho_m = MX.sym('rho_m',n_w); % 16-18 [100 kg/m3]
%well injection flow rate
w_iv = MX.sym('w_iv',n_w); % 19-21 [kg/s]
%wellhead total production rate
w_pc = MX.sym('w_pc',n_w); % 22-24 [kg/s]
%wellhead gas production rate
w_pg = MX.sym('w_pg',n_w); % 25-27 [kg/s]
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%wellhead oil production rate
w_po = MX.sym('w_po',n_w); % 28-30 [kg/s]
%oil rate from reservoir
w_ro = MX.sym('w_ro',n_w); % 31-33 [kg/s]
%gas rate from reservoir
w_rg = MX.sym('w_rg',n_w); %34 -36 [0.1 kg/s]
%riser head pressure
p_rh = MX.sym('p_rh',1); % 37 [bar]
%mixture density in riser
rho_r = MX.sym('rho_r',1); % 38 [100 kg/s]
%manifold pressure
p_m = MX.sym('p_m',1); % 39 [bar]
%riser head total production rate
w_pr = MX.sym('w_pr',1); % 30 [kg/s]
%riser head total oil production rate
w_to = MX.sym('w_to',1); % 41 [kg/s]
%riser head total gas production rate
w_tg = MX.sym('w_tg',1); % 42 [kg/s]
%gas holdup @ annulus
m_ga = MX.sym('m_ga',n_w); % 43-45 [ton]
%gas holdup @ well
m_gt = MX.sym('m_gt',n_w); % 46-48 [ton]
%oil holdup @ well
m_ot = MX.sym('m_ot',n_w); % 49-51 [ton]
%gas holdup @ riser
m_gr = MX.sym('m_gr',1); % 52 [ton]
%oil holdup @ riser
m_or = MX.sym('m_or',1); % 53 [ton]
%particle impact velocity
V_p = MX.sym('V_p',n_w); % 54-56
%mixed dynamic viscosity
mu_f = MX.sym('mu_f',n_w); % 57-59
%g1
g1 = MX.sym('g1',n_w); % 60-62

%control input
%gas lift rate
w_gl = MX.sym('w_gl',n_w); %[kg/s]

%parameters
p_res = MX.sym('p_res',n_w);
%productivity index
PI = MX.sym('PI',n_w); %[kg s^-1 bar-1]
%GasOil ratio
GOR = MX.sym('GOR',n_w); %[kg/kg]
%Annulus temperature
T_a = MX.sym('T_a',n_w); %[oC]
%well temperature
T_w = MX.sym('T_w',n_w); %[oC]
%riser temperature
T_r = MX.sym('T_r',1); %[oC]
%separator pressure
p_s = MX.sym('p_s',1); %[bar]
%time transformation: CASADI integrates always from 0 to 1 and
%the USER does the time scaling with T.
T = MX.sym('T',1); %[s]

%sandrate rate
mdot_p = MX.sym('mdot_p',1); %

%% Modeling
%gas fraction (mass) of the well holdup - avoiding zero division
xGwH = (m_gt.*1e3./max(1e-3,(m_gt.*1e3+m_ot.*1e3)));
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%gas fraction (mass) of the riser holdup
xGrH = (m_gr.*1e3./(m_gr.*1e3+m_or.*1e3));
xGw = slip.*xGwH./(1 + (slip-1).*xGwH);
xOw = 1 - xGw;
xGr = slip.*xGrH./(1 + (slip-1).*xGrH);
xOr = 1 - xGr;

% ===================================
% Well model with/withou pressure loss
% ===================================
% algebraic equations (all symbolic) ...
%annulus pressure - %g = 9.81
f1 = -p_ai.*1e5 + ((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3)...

+ (Mw./(R.*T_a).*((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3)...
).*9.81.*H_a;

%well head pressure
f2 = -p_wh.*1e5 + ((R.*T_w./Mw).*(m_gt.*1e3./(L_w.*A_w + L_bh.*A_bh -...
m_ot.*1e3./rho_o))) - ((m_gt.*1e3+m_ot.*1e3 )./(L_w.*A_w)).*9.81.*H_w/2;
%well injection point pressure
f3 = -p_wi.*1e5 + (p_wh.*1e5 + 9.81./(A_w.*L_w).*max(0,(m_ot.*1e3+...

m_gt.*1e3-rho_o.*L_bh.*A_bh)).*H_w) + (128.*mu_oil.*L_w.*w_pc./...
(3.14.*D_w.^4.*((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./...
(m_ot.*1e3.*p_wh.*1e5.*Mw + rho_o.*R.*T_w.*m_gt.*1e3)));

%bottom hole pressure
f4 = -p_bh.*1e5 + (p_wi.*1e5 + rho_o.*9.81.*H_bh + 128.*mu_oil.*...

L_bh.*w_ro./(3.14.*D_bh.^4.*rho_o));
%gas density in annulus
f5 = -rho_ai.*1e2 +(Mw./(R.*T_a).*p_ai.*1e5);
%fluid mixture density in well
f6 = -rho_m.*1e2 + ((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./...

(m_ot.*1e3.*p_wh.*1e5.*Mw + rho_o.*R.*T_w.*m_gt.*1e3);
%well injection flow rate
f7 = -w_iv + C_iv.*sqrt(rho_ai.*1e2.*max(0,(p_ai.*1e5 - p_wi.*1e5)));
%wellhead prodution rate
f8 = -w_pc + 1.*C_pc.*sqrt(rho_m.*1e2.*max(0,(p_wh.*1e5 - p_m.*1e5)));
%wellhead gas production rate
f9 = -w_pg + xGw.*w_pc;
%wellhead oil prodution rate
f10 = -w_po + xOw.*w_pc;
%oil from reservoir flowrate
f11 = -w_ro + PI.*1e-6.*(p_res.*1e5 - p_bh.*1e5);
%gas from reservoir production rate
f12 = -w_rg.*1e-1 + GOR.*w_ro;
%riser head pressure
f13 = -p_rh.*1e5 + ((R.*T_r./Mw).*(m_gr.*1e3./(L_r.*A_r))) - ...

((m_gr.*1e3+m_or.*1e3 )./(L_r.*A_r)).*9.81.*H_r/2;
%riser density
f14 = -rho_r.*1e2 + ((m_gr.*1e3 + m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)./...

(m_or.*1e3.*p_rh.*1e5.*Mw + rho_ro.*R.*T_r.*m_gr.*1e3);
%manifold pressure
f15 = -p_m.*1e5 + (p_rh.*1e5 + 9.81./(A_r.*L_r).*(m_or.*1e3+m_gr.*1e3)...

.*H_r) + (128.*mu_oil.*L_r.*w_pr./(3.14.*D_r.^4.*((m_gr.*1e3 +...
m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)./(m_or.*1e3.*p_rh.*1e5.*Mw + ...
rho_ro.*R.*T_r.*m_gr.*1e3)));

%total production rate of well
f16 = -w_pr + 1.*C_pr.*sqrt(rho_r.*1e2.*(p_rh.*1e5 - p_s.*1e5));
%oil total production rate
f17 = -w_to + xOr.*w_pr;
%gas total production rate
f18 = -w_tg + xGr.*w_pr;
% setting differential equations as algebraic equations since the
% dynamics of ER is on a much larger time scale
f19 = (w_gl - w_iv).*1e-3;
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f20 = (w_iv + w_rg.*1e-1 - w_pg).*1e-3;
f21 = (w_ro - w_po).*1e-3;
f22 = (sum(w_pg) - w_tg).*1e-3 ;
f23 = (sum(w_po) - w_to).*1e-3 ;
f24 = - V_p + 3/(4*A_g)*(w_po/rho_o + R*T_w.*w_pg./(p_wh.*10^5*Mw));
f25 = - mu_f + mu_oil.*(w_po/rho_o)./(w_po./rho_o + R.*T_w.*w_pg./...

(p_wh.*10^5*Mw));
% Assuming that gamma < 0 (checked in main)
f26 = -g1 + gma/0.1;

% differential equations - (all symbolic) - [ton]
% Erosion rate
ER_constant = par.K*par.F*par.C_1*par.GF*mdot_p*par.C_unit/(par.rho_t...

*par.A_t);
df1 = ER_constant.*g1.*(V_p).^n;

% Form the DAE system
diff = vertcat(df1);
alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,...

f17,f18,f19,f20,f21,f22,f23,f24,f25,f26);

% give parameter values
alg = substitute(alg,p_res,par.p_res);
alg = substitute(alg,p_s,par.p_s);
alg = substitute(alg,T_a,par.T_a);
alg = substitute(alg,T_w,par.T_w);
alg = substitute(alg,T_r,par.T_r);

diff = substitute(diff,p_res,par.p_res);
diff = substitute(diff,T_w,par.T_w);

% concatenate the differential and algebraic states
x_var = vertcat(ER);
z_var = vertcat(p_ai,p_wh,p_wi,p_bh,rho_ai,rho_m,w_iv,w_pc,w_pg,w_po,...

w_ro,w_rg,p_rh,rho_r,p_m,...
w_pr,w_to,w_tg,m_ga,m_gt,m_ot,m_gr,m_or,V_p, mu_f,g1);

p_var = vertcat(w_gl,mdot_p,GOR,PI,T);

%end modeling
%% Casadi commands
%declaring function in standard DAE form (scaled time)
dae = struct('x',x_var,'z',z_var,'p',p_var,'ode',T*diff,'alg',alg);

%calling the integrator, the necessary inputs are: label;
%integrator; function with IO scheme of a DAE (formalized)
%;struct (options)
F = integrator('F','idas',dae);

%assuming inputs as symbolic in order to obtain
%the gradients symbolically
theta = MX.sym('theta',3);

%integration results
Fend = F('x0',dx0,'z0',z0,'p',[u0;m0;par.GOR;par.PI;par.T]);
%extracting the results (from symbolic to numerical)
xk = full(Fend.xf);
zk = full(Fend.zf);
xf = Fend.xf;

end

LISTING D.2: Code for generating the artificial training data
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clear
close all
clc

%% noise --> For reproducibility
% This is choosing a seed for generating random numbers
rng(1)

%%

%% Initializing the table to store multiple time series:

nTimeseries = 1;
dataSz = [nTimeseries 10];
varNames = {'Num','uArray', 'yMeas','erosionArray', 'H', 'x0', 'xk',...

'yk', 'z0', 'zk'};
varTypes = {'double', 'cell', 'cell', 'cell', 'cell', 'cell', 'cell',...

'cell', 'cell', 'cell'};
Data = table('Size', dataSz, 'VariableNames', varNames, 'VariableTypes',...

varTypes);

%% Model initialization
sandArray = sandproductionrate(0.01,500,'log',0.02);
%% [sandArray,sandArrayNoise,stepSandArray] =
%% sandproductionrate(0.01,500,'log',0.015);
for i_timeseries = 1:nTimeseries

% initial condition (pre-computed)
[x0,z0,u0] = InitialConditionGasLift_P;

%% model parameters

%par = ParametersGasLift(1);
par = ParametersGasLift(1,sandArray); % For varying sand production rate

%states to measurement mapping function
H = zeros(16,length(z0));
%pai - annulus pressure, well 1-3
H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
%pwh - well head pressure, well+ 1-3
H(4,4) = 1;
H(5,5) = 1;
H(6,6) = 1;
%wro - wellhead gas production rate, well 1-3
H(7,25) = 1;
H(8,26) = 1;
H(9,27) = 1;
%wrg - wellhead oil production rate, well 1-3
H(10,28) = 1;
H(11,29) = 1;
H(12,30) = 1;
%prh - riser head pressure
H(13,37) = 1;
%pm - manifold pressure
H(14,39) = 1;
%wto - riser head total oil production rate
H(15,41) = 1;
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%wtg - riser head total gas production rate
H(16,42) = 1;

%% Simulation parameters

% Number of simulation steps
nSim = 500; % time_total = 3600*24*500; %[s]

[dx0,z0,u0] = InitialConditionGasLift_P;

%sampling time /control interval /1 simulation iteration time
par.T = 3600*24; % [s]

%% Simulation initialization
xk = x0;
zk = z0;
uk = u0;
yk = H*z0;

%%
fprintf('Time series number: >>> %0.0f \n',i_timeseries)
%creating random array for the inputs
uArray = [];
%bounds on the inputs
uMin = 1.5;
uMax = 2.5;

for t = 0:nSim
if rem(t,50) == 0 %every 50 days we change the inputs

uk = (uMax - uMin).*rand(3,1) + uMin;
end
uArray = [uArray, uk];

end

% measurements (for plotting)
yMeas = yk;
erosionArray = xk;

for u = 1:nSim
sarray = sandArray(u);
%fprintf(' iteration >>> %0.0f \n',t)
% integrating the system
[xk,zk] = WellPlantModel(xk,zk,uArray(:,u),par);
%[xk,zk] = WellplantModelNN(xk,zk,uArray(:,u),par,sarray);
par = ParametersGasLift(u,sandArray); % Varying sand production
par.T = 3600*24;
% Adding noise to the measurements
yMeas = [yMeas, H*zk + par.scale.*randn(length(yk),1)];
erosionArray = [erosionArray, xk];

end
Data(i_timeseries, :) = {i_timeseries, uArray, yMeas, erosionArray, H,...

x0, xk, yk, z0, zk};

end
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%% saving the data in a mat file
filename = 'datamatrix_' + string(nTimeseries)+'.mat';
save(filename, 'Data')
%% saving the matrix in a mat file
%filename1 = 'hmatrix' + '.mat';
%save(filename1,'H')

%% Plotting
figure(1)

time = 0:1:nSim; %[days]

% System inputs
subplot(2,1,1)

stairs(time,uArray(1,:),'LineWidth',2);
hold on
stairs(time,uArray(2,:),'LineWidth',2);
stairs(time,uArray(3,:),'LineWidth',2);
legend('Well 1','Well 2','Well 3');

ylim([0,5]);
xlabel('Time [day]');
ylabel('Gas lift rate [kg/s]');

% erosion
subplot(2,1,2);

plot(time,transpose(Data.erosionArray{1,1}(1,:)),'LineWidth',2);
hold on
plot(time,transpose(Data.erosionArray{1,1}(2,:)),'LineWidth',2);
plot(time,transpose(Data.erosionArray{1,1}(3,:)),'LineWidth',2);
%ylim([0,5.2]);
legend('Well 1','Well 2','Well 3');
legend('Location','northwest');
xlabel('Time [day]');
ylabel('Erosion [mm]');

figure(2)

% Pressure
subplot(2,1,1)

plot(time,yMeas(4,:),'LineWidth',1.5);
hold on
plot(time,yMeas(5,:),'LineWidth',1.5);
plot(time,yMeas(6,:),'LineWidth',1.5);
axis([0 500 45 60]);
legend('Well 1','Well 2','Well 3');

%ylim([0,2.2]);
xlabel('Time [day]');
ylabel('Well head pressure [bar]');

% erosion
subplot(2,1,2);

plot(time,yMeas(15,:),'LineWidth',2); %oil
%plot(time,yMeas(14,:)); %gas
axis([0 500 50 100]);

xlabel('Time [day]');
ylabel('Flowrate [kg/s]');



Appendix D. Matlab codes used for calculations 67

LISTING D.3: ModelSandArray: Code for generating the sand pro-
duction rate

function [sandArray,sandArrayNoise,stepSandArray] = sandproductionrate....
(initial_mdot,days,type,k)

if (type == 'exp')
sandArray = [initial_mdot];

for n = 1:days
%sandArray = [sandArray initial_mdot*(0.5+exp(k*n))];
sandArray = [sandArray initial_mdot*(exp(k*n))];

end

stepSandArray = [];
step = 1;

for n = 1:days
stepSandArray = [stepSandArray sandArray(step)];
if mod(n,30) == 0

step = n;

end

end
end

if (type == 'log')
sandArray = (10*initial_mdot)/(1+exp(-k*(0-days/2)));

for n = 1:days
newVal = (10*initial_mdot)/(1+exp(-k*(n-days/2)));
sandArray = [sandArray newVal];

end

stepSandArray = [];
step = 1;

for n = 1:days
stepSandArray = [stepSandArray sandArray(step)];
if mod(n,30) == 0

step = n;

end

end
end

if (type == 'cst')
sandArray = initial_mdot*ones(1,days+1);

end

sandArrayNoise = sandArray + 0.1 * rand(1, length(sandArray));
end

LISTING D.4: Code used for building the dynamic model
function [diff,alg,x_var,z_var,p_var] = BuildingDynModel(par,modelFlag)

% Importing the CASADI library
addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*
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%% Normalization (for stepwise and NN)
norm = load('normalizationValues');

%% Parameters
% number of wells
n_w = 3; %[]
% gas constant
R = par.R; %[m3 Pa /K /mol]
% molecular weigth
Mw = par.Mw; %[kg/mol]

% properties
% density of oil - dim: nwells x 1
rho_o = par.rho_o; %[kg/m3]
%riser oil density
rho_ro = par.rho_ro;%[kg/m3]
%1cP oil viscosity
mu_oil = par.mu_oil;% [Pa s]

% project
% well parameters - dim: nwells x 1
L_w = par.L_w; %[m]
H_w = par.H_w; %[m]
D_w = par.D_w; %[m]
A_w = par.A_w;%[m2]

% well below injection - [m]
L_bh = par.L_bh;
H_bh = par.H_bh;
D_bh = par.D_bh;
A_bh = par.A_bh;%[m2]

% annulus - [m]
H_a = par.H_a;
V_a = par.V_a; %[m3]

% riser - [m]
L_r = par.L_r;
H_r = par.H_r;
D_r = par.D_r;
A_r = par.A_r;%[m2]

% injection valve characteristics - dim: nwells x 1
C_iv = par.C_iv;%[m2]
% production valve characteristics - dim: nwells x 1
C_pc = par.C_pc;%[m2]
% riser valve characteristics
C_pr = par.C_pr;%[m2]
% account for differences in the vapor and oil velocity
slip = par.slip_real;

%% For erosion model
% Sand
d_p = par.d_p; %[m] particle diameter
% Choke
D = par.D; %[m] Gap between body and cage
% Constants
n = par.n; %[-] Velocity coefficient
% Precalculations of erosion in choke:
A_g = par.A_g; %[m2] Effective gallery area
gma = d_p./D;
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%% Algebraic states
%pressure - annulus
p_ai = MX.sym('p_ai',n_w); % 1-3 [bar] (bar to Pa = x10^5)
%pressure - well head
p_wh = MX.sym('p_wh',n_w); % 4-6 [bar]
%pressure - injection point
p_wi = MX.sym('p_wi',n_w); % 7-9 [bar]
%pressure - below injection point (bottom hole)
p_bh = MX.sym('p_bh',n_w); % 10-12 [bar]
%density - annulus
rho_ai = MX.sym('rho_ai',n_w); % 13-15 [100 kg/m3]
%mixture density in tubing
rho_m = MX.sym('rho_m',n_w); % 16-18 [100 kg/m3]
%well injection flow rate
w_iv = MX.sym('w_iv',n_w); % 19-21 [kg/s]
%wellhead total production rate
w_pc = MX.sym('w_pc',n_w); % 22-24 [kg/s]
%wellhead gas production rate
w_pg = MX.sym('w_pg',n_w); % 25-27 [kg/s]
%wellhead oil production rate
w_po = MX.sym('w_po',n_w); % 28-30 [kg/s]
%oil rate from reservoir
w_ro = MX.sym('w_ro',n_w); % 31-33 [kg/s]
%gas rate from reservoir
w_rg = MX.sym('w_rg',n_w); %34 -36 [0.1 kg/s]
%riser head pressure
p_rh = MX.sym('p_rh',1); % 37 [bar]
%mixture density in riser
rho_r = MX.sym('rho_r',1); % 38 [100 kg/s]
%manifold pressure
p_m = MX.sym('p_m',1); % 39 [bar]
%riser head total production rate
w_pr = MX.sym('w_pr',1); % 40 [kg/s]
%riser head total oil production rate
w_to = MX.sym('w_to',1); % 41 [kg/s]
%riser head total gas production rate
w_tg = MX.sym('w_tg',1); % 42 [kg/s]
%gas holdup @ annulus
m_ga = MX.sym('m_ga',n_w); % 43-45 [ton]
%gas holdup @ well
m_gt = MX.sym('m_gt',n_w); % 46-48 [ton]
%oil holdup @ well
m_ot = MX.sym('m_ot',n_w); % 49-51 [ton]
%gas holdup @ riser
m_gr = MX.sym('m_gr',1); % 52 [ton]
%oil holdup @ riser
m_or = MX.sym('m_or',1); % 53 [ton]
%particle impact velocity
V_p = MX.sym('V_p',n_w); % 54-56
%dynamic viscosity of mixture
mu_f = MX.sym('mu_f',n_w); % 57-59
g1 = MX.sym('g1',n_w); % 60-62

% control input
% gas lift rate
w_gl = MX.sym('w_gl',n_w); %[kg/s]

% parameters
p_res = MX.sym('p_res',n_w);
%productivity index
PI = MX.sym('PI',n_w); %[kg s^-1 bar-1]
%GasOil ratio
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GOR = MX.sym('GOR',n_w); %[kg/kg]
%Annulus temperature
T_a = MX.sym('T_a',n_w); %[oC]
%well temperature
T_w = MX.sym('T_w',n_w); %[oC]
%riser temperature
T_r = MX.sym('T_r',1); %[oC]
%separator pressure
p_s = MX.sym('p_s',1); %[bar]
%time transformation: CASADI integrates always from 0 to 1 and
%the USER does the time scaling with T.
T = MX.sym('T',1); %[s]

%sandrate rate
mdot_p = MX.sym('mdot_p',1); %

%erosion rate
ER = MX.sym('ER',n_w); %

%% Modeling
%gas fraction (mass) of the well holdup - avoiding zero division
xGwH = (m_gt.*1e3./max(1e-3,(m_gt.*1e3+m_ot.*1e3)));
%gas fraction (mass) of the riser holdup
xGrH = (m_gr.*1e3./(m_gr.*1e3+m_or.*1e3));

xGw = slip.*xGwH./(1 + (slip-1).*xGwH);
xOw = 1 - xGw;
xGr = slip.*xGrH./(1 + (slip-1).*xGrH);
xOr = 1 - xGr;

% ===================================
% Well model with/withou pressure loss
% ===================================
% algebraic equations (all symbolic)
%annulus pressure - %g = 9.81
f1 = -p_ai.*1e5 + ((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3)...
+ (Mw./(R.*T_a).*((R.*T_a./(V_a.*Mw) + 9.81.*H_a./V_a).*m_ga.*1e3))...
.*9.81.*H_a;
%well head pressure
f2 = -p_wh.*1e5 + ((R.*T_w./Mw).*(m_gt.*1e3./(L_w.*A_w + L_bh.*A_bh...
- m_ot.*1e3./rho_o))) - ((m_gt.*1e3+m_ot.*1e3 )./(L_w.*A_w))...
.*9.81.*H_w/2;
%well injection point pressure
f3 = -p_wi.*1e5 + (p_wh.*1e5 + 9.81./(A_w.*L_w).*max(0,(m_ot.*1e3+...
m_gt.*1e3-rho_o.*L_bh.*A_bh)).*H_w) + (128.*mu_oil.*L_w.*w_pc./...
(3.14.*D_w.^4.*((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)./...
(m_ot.*1e3.*p_wh.*1e5.*Mw + rho_o.*R.*T_w.*m_gt.*1e3)));
%bottom hole pressure
f4 = -p_bh.*1e5 + (p_wi.*1e5 + rho_o.*9.81.*H_bh + 128.*mu_oil.*...

L_bh.*w_ro./(3.14.*D_bh.^4.*rho_o));
%gas density in annulus
f5 = -rho_ai.*1e2 +(Mw./(R.*T_a).*p_ai.*1e5);
%fluid mixture density in well
f6 = -rho_m.*1e2 + ((m_gt.*1e3 + m_ot.*1e3).*p_wh.*1e5.*Mw.*rho_o)...

./(m_ot.*1e3.*p_wh.*1e5.*Mw + rho_o.*R.*T_w.*m_gt.*1e3);
%well injection flow rate
f7 = -w_iv + C_iv.*sqrt(rho_ai.*1e2.*max(0,(p_ai.*1e5 - p_wi.*1e5)));
%wellhead prodution rate
f8 = -w_pc + 1.*C_pc.*sqrt(rho_m.*1e2.*max(0,(p_wh.*1e5 - p_m.*1e5)));
%wellhead gas production rate
f9 = -w_pg + xGw.*w_pc;
%wellhead oil prodution rate
f10 = -w_po + xOw.*w_pc;
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%oil from reservoir flowrate
f11 = -w_ro + PI.*1e-6.*(p_res.*1e5 - p_bh.*1e5);
%gas from reservoir production rate
f12 = -w_rg.*1e-1 + GOR.*w_ro;
%riser head pressure
f13 = -p_rh.*1e5 + ((R.*T_r./Mw).*(m_gr.*1e3./(L_r.*A_r))) - ...

((m_gr.*1e3+m_or.*1e3 )./(L_r.*A_r)).*9.81.*H_r/2;
%riser density
f14 = -rho_r.*1e2 + ((m_gr.*1e3 + m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)...

./(m_or.*1e3.*p_rh.*1e5.*Mw + rho_ro.*R.*T_r.*m_gr.*1e3);
%manifold pressure
f15 = -p_m.*1e5 + (p_rh.*1e5 + 9.81./(A_r.*L_r).*(m_or.*1e3+m_gr...

.*1e3).*H_r) + (128.*mu_oil.*L_r.*w_pr./(3.14.*D_r.^4.*((m_gr.*...
1e3 + m_or.*1e3).*p_rh.*1e5.*Mw.*rho_ro)./(m_or.*1e3.*p_rh.*...
1e5.*Mw + rho_ro.*R.*T_r.*m_gr.*1e3)));

%total production rate of well
f16 = -w_pr + 1.*C_pr.*sqrt(rho_r.*1e2.*(p_rh.*1e5 - p_s.*1e5));
%oil total production rate
f17 = -w_to + xOr.*w_pr;
%gas total production rate
f18 = -w_tg + xGr.*w_pr;
% setting differential equations as algebraic equations since the
% dynamics of ER is on a much larger time scale
f19 = (w_gl - w_iv).*1e-3;
f20 = (w_iv + w_rg.*1e-1 - w_pg).*1e-3;
f21 = (w_ro - w_po).*1e-3;
f22 = (sum(w_pg) - w_tg).*1e-3 ;
f23 = (sum(w_po) - w_to).*1e-3 ;
f24 = - V_p + 3/(4*A_g).*(w_po./rho_o + R*T_w.*w_pg./(p_wh.*10^5*Mw));
f25 = - mu_f + mu_oil.*(w_po./rho_o)./(w_po./rho_o + R.*T_w.*w_pg./...

(p_wh.*10^5*Mw));
f26 = -g1 + gma/0.1;
% differential equations - (all symbolic) - [ton]
% Erosion rate

if modelFlag(1) == 1
% Use phenomenological model
ER_constant = par.K*par.F*par.C_1*par.GF*mdot_p*par.C_unit/...

(par.rho_t*par.A_t);
df1 = ER_constant.*g1.*(V_p).^n;

else
% computing the regressors
%regr = [mdot_p; p_ai; p_wh; w_ro; w_rg; p_rh; p_m; w_to; w_tg; w_gl];
% separating the regressor for the three wells. Some regressors are
% shared by the three models

regr = [[mdot_p,mdot_p,mdot_p];
p_ai';
p_wh';
w_ro';
w_rg';
[p_rh,p_rh,p_rh];
[p_m,p_m,p_m];
[w_to,w_to,w_to];
[w_tg,w_tg,w_tg];
w_gl'];

% normalizing regressors with data from (ExpDataAnalysis.m)
regrN = (regr - norm.regrCenter)./norm.regrScale;

if modelFlag(2) == 1
% number of regressors
nReg = length(regr);
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% modeling stepwise
% putting the weights in the right place
SW_M1 = zeros(1,nReg);
SW_M1(1) = 0.936202622379369;
SW_M1(2) = -0.00210657217345035;
SW_M1(3) = 0.00340292568131542;
SW_M1(4) = -0.00201748541907079;
SW_M1(5) = 0.00805275248024692;
SW_M1(8) = 0.00991932368893031;
SW_M1(9) = 0.00896809727051577;
SW_M1(10) = 0.102758189995450;

SW_M2 = zeros(nReg,nReg);
SW_M2(1,2) = 0.0324197329838858;
SW_M2(1,10) = 0.0780912090793351;
SW_M2(2,4) = -0.00874738623206122;
SW_M2(2,5) = -0.0258263927628834;
SW_M2(2,8) = 0.160177833500558;
SW_M2(2,9) = 0.00893152554186846;
SW_M2(2,10) = 0.0117711262910581;
SW_M2(5,8) = -0.126740929538979;
SW_M2(5,10) = 0.0281549336959051;
SW_M2(8,9) = -0.0606654291484604;

intercept = -0.00741542407032436;

%building model
df1N = [];
for well = 1:3

df1N = [df1N, intercept + SW_M1*regrN(:,well) + ...
regrN(:,well)'*SW_M2*regrN(:,well)];

end

elseif modelFlag(3) == 1
% Use neural net model
% Input 1
x1_step1.xoffset = [-0.960381876486174;-4.46248802722717;...

-5.17852887458485;-4.48073715332605;-3.39270547151972;...
-4.89034267011056;-4.09638956423933;-22.1011864634595;...
-12.6725101583375;-1.68741224378933];

x1_step1.gain = [0.744587117901481;0.305647520874011;...
0.217139586607698;0.278754220747781;0.313094454989053;...
0.224952360464966;0.2398799497799;0.0883066374206199;...
0.130806471865733;0.582950679298246];

x1_step1.ymin = -1;

% Layer 1
b1 = [0.14367720318601545637;2.6585932597481978235;...

0.21614754193338026056;-0.77521005365754414029;...
-0.15016048001209872376;-0.18895893794020338086;...
0.33334021415001674482;1.0495651391350007131;...
0.09608445831444172025;0.091400705452594849243;...
0.9808633719414890928;-2.3640155618252562952;...
-3.9683753071066560913;2.4716459238704158174;...
.9103388722530324495;-1.6445206688436171394;...
1.7270617641242649309;1.3710565804733929607;...
-0.83839148097354254663;2.8957307008678130344];

IW1_1 = [-2.4154308174831933265 1.1316734083225514773...
-0.18798508993018392399 0.50752499754821289724 ...
0.26643122967183774374 0.18496867771410097081 ...
-0.084381354525935925448 0.07085802248326253383...
-0.16205693380690422423 -0.77140106419434217866;...
-2.5214783316455919859 -0.61767172907865119935 ...
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-0.010085000823519651991 -0.17096230134548739965...
-0.045858540570502259737 -0.075738671538680010786...
0.011697215615493047544 0.89427052368563375584...
0.017841955990787663339 0.36230068772579970826;...
-0.25273389398206069778 0.1998451513359776055...
-0.012532406301889509326 -0.38710321317608464842 ...
0.31744353291743737655 0.30392705893160959496 ...
-0.48629036603932135341 -0.38527217222465176549...
0.45637964870801228656 -0.0039633153238058721132;...
-0.14137397926041037066 0.22839219307467162334 ...
0.69305240971952908335 -0.84866491694379209143...
1.1527220931617192523 0.94439458980977164515 ...
-0.30465769707891104945 0.37955421319014276405...
0.40549188230617233542 -0.45339085921888461206;...
0.11430828401814195627 -0.11175304651558616575...
-0.47704525296752076091 0.64561656700497560557 ...
-0.916648058594788262 -0.7749657348705597526 ...
0.31298468285909419873 0.54810711313383120302 ...
-0.44114123533557358936 0.31640372701778679554;...
0.068730081107593654632 0.15546512469078524465...
0.050894605481055565921 -0.18914112137188648921...
0.018993525551347312241 0.19626799805238009933...
-0.03532588208090964299 0.055668577385928771917...
0.084229796875306933712 -0.26300932511266794656;...
2.6071271914854570184 1.4513736888071724351 ...
0.0074584607403650983112 0.033216876158219783843...
0.42244033655690699236 0.38798092469935352433 ...
-0.15221425801286470048 0.38258859113757298642...
0.73193461514120727873 -1.3507173453150382869;...
-0.028825152288339869061 -2.2081808752373786042...
-0.061859892727623107256 -0.24630047120646228476...
-0.14981246649827839601 -0.034852738621890928805...
-0.030574791510504781278 0.037204871248042073462...
-0.16536073768499864878 1.4525224141871446726;...
1.9848749283793558629 -0.65087570179592324493...
-0.015401431195047120964 0.033833379986935939454 ...
0.24766683536891354045 0.23619359560874905735...
-0.061828332005150851702 1.3513681000858552839...
0.474773459888372662 -0.10609490256059561641;...
-0.036487529426405596045 -0.97950882073050538068...
0.13802254156185905787 0.51835177883852656677 ...
0.5464992554107237499 -0.40436909977663293425 ...
0.054607279876782710559 0.2782474473205402421...
-0.15734213693163773273 0.19478347868992934577;...
1.0475016718182594833 2.6268066719483176286...
0.10555368421258967682 0.39987028553426201549...
0.18887696676464152401 0.070115438039725697106 ...
0.059914126014487971428 -0.4542320291164952395...
0.32303468224857806446 -1.6871729733077229785;...
2.7529274108906229834 -0.76501478843559456156...
0.0018168068356873841133 -0.18797317063029567175...
-0.056699649112672743934 -0.029790717506350518351...
0.0098212456763821752437 -1.0800017164180586438 ...
0.12325875968482226386 0.51340772757722163977;...
-4.5690876368247836936 0.29730258463782233136 ...
0.021112838346440350457 -0.10558917971050130191...
-0.12168972717260564953 0.0058857480734283767684...
-0.081390986053868324968 -2.0464715164136473291 ...
0.10785277117965144655 0.13108614636486201621;...
-4.8994890602218816866 0.35234830166711450516 ...
-0.010013370059842452778 0.070144745130894969876 ...
0.046229090500515740425 0.0041134165261851622294...
-0.024505471792468629805 2.3295584707548151471 ...
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-0.18538945206563731127 -0.24224570259646180381;...
1.2615286870191546598 -0.11816400022351983279...
-0.078271926206767192258 0.00040698798715488505471...
0.12261647857164348352 -0.025018061970269584587...
0.06275488348053152865 1.1711207094070865686...
-0.15128987683747979753 0.011625717221515827204;...
0.25536351914056132362 1.5069046552312748144...
0.040419707542304748882 -0.017552326786328720926...
0.2518564757364556983 0.15937380698629941 ...
-0.023214434568652780183 0.67048552164710273349...
0.19329951559387478777 -1.2091523245907629391;...
1.4177390842659385317 -0.05695648275691699014...
-0.10986006754139095165 -0.019963781991928088166 ...
-0.13614685136084950234 -0.35015709512873327558...
0.13999639673564417963 0.4251125746769744973 ...
-0.8814843316401170803 0.1666711241041228253;...
0.41968287139809840047 -2.6683330419759339058 ...
-0.098395196139792875933 -0.41495981268258286256...
-0.11880388438818172137 0.011362744772546578068 ...
-0.03973014734543630494 -0.50920599962215373768...
-0.053892242227375410091 1.6413468033934477397;...
-1.3231026141444686139 -1.8493906165810243269...
-0.056111174375088730681 -0.14865803431058338679 ...
-0.14887176618909070402 -0.071243715652375777525 ...
-0.020647144186653382941 0.35039232222030086694...
-0.26197868120861045327 1.2119089090990931012;...
-4.9902268121632555875 -0.4172149111317444703...
-0.0015895483878233280118 -0.15307047671214385476 ...
-0.02357680456433861732 -0.066690710366615932325 ...
-0.010463477723396974808 2.27970201198322453...
-0.10341726132984332964 0.25867357616550795685];

% Layer 2
b2 = -1.3850185588017143168;
LW2_1 = [-0.17239018609501124968 -2.4686570038789317216...

-0.28132495741565127778 -0.65952833029270596654 ...
-1.1372584731091543997 -1.9460586966551658428...
-0.41574234276122307152 1.7184263126322130155 ...
0.77527660655890684449 -0.38169495762906624492 ...
-1.1742597402214667301 -2.7883027491604210901 ...
-1.9903053748364492037 -2.069048211694330508 ...
-2.037627117462171622 0.86637931156103764607...
0.53376422641646292799 -0.94540883414461107659...
-1.9486075433738543339 2.0027264449775534771];

% Output 1
y1_step1.ymin = -1;
y1_step1.gain = 0.677942953516802;
y1_step1.xoffset = -1.24456183373413;

% ===== COMPUTING NN OUTPUTS ========
xp1 = (regrN - x1_step1.xoffset).*x1_step1.gain + ...

x1_step1.ymin;

% Layer 1
temp1 = b1 + IW1_1*xp1;
a1 = 2 ./ (1 + exp(-2*temp1)) - 1;

% Layer 2
a2 = b2 + LW2_1*a1;

% Output 1
df1N = (a2 - y1_step1.ymin)/y1_step1.gain + y1_step1.xoffset;
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end

% de-normalizing response (and also changing time units)
df1 = (df1N'*norm.predScale + norm.predCenter)/(par.T);

end

% Form the DAE system
diff = vertcat(df1);
alg = vertcat(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,...

f16,f17,f18,f19,f20,f21,f22,f23,f24,f25,f26);

% give parameter values
alg = substitute(alg,p_res,par.p_res);
alg = substitute(alg,p_s,par.p_s);
alg = substitute(alg,T_a,par.T_a);
alg = substitute(alg,T_w,par.T_w);
alg = substitute(alg,T_r,par.T_r);

diff = substitute(diff,p_res,par.p_res);
diff = substitute(diff,T_w,par.T_w);

% concatenate the differential and algebraic states
x_var = vertcat(ER);
z_var = vertcat(p_ai,p_wh,p_wi,p_bh,rho_ai,rho_m,w_iv,w_pc,w_pg,...

w_po,w_ro,w_rg,p_rh,rho_r,p_m,...
w_pr,w_to,w_tg,m_ga,m_gt,m_ot,m_gr,m_or,V_p, mu_f,g1);

p_var = vertcat(w_gl,mdot_p,GOR,PI,T);

end

LISTING D.5: Code for building the controller (Optimizer)
function solver = BuildingNMPC(diff,alg,x_var,z_var,p_var,par,nmpcPar)

addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*

%% Using 3 collocation points:
h = par.T;
% Radau
t = [collocation_points(3, 'radau')];
% Finding M
M = [t',0.5*t'.^2,1/3*t'.^3]*inv([[1;1;1],t',t'.^2]);

%% Defining system OF
% for computing Du
U_1 = MX.sym('U_1',nmpcPar.nu);
U1 = MX.sym('U1',nmpcPar.nu);

% slack variable
s = MX.sym('s',nmpcPar.nx);

% objective function
w_po = z_var(28:30);
L = -sum(w_po)+ nmpcPar.rho*sum(s) + 1/2 * ((U1 - U_1)'*nmpcPar.R*...

(U1 - U_1));

% creating system function (LHS of the dynamic equations)
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f = Function('f',{x_var,z_var,p_var,U1,U_1,s},{diff,alg,L});

%% Defining empty nlp-problem
% objective function
J = 0;

% declare variables (bounds and initial guess)
w = {};
% w0 = [];
% lbw =[];
% ubw = [];

% declare constraints and its bounds
g = {};
% lbg = [];
% ubg = [];

%% declaring parameters
xk_meas = MX.sym('xk_meas',nmpcPar.nx);
zk_meas = MX.sym('zk_meas',nmpcPar.nz);
uk_meas = MX.sym('uk_meas',nmpcPar.nu);

% mdot_p,GOR,PI,T - which are fixed
p = MX.sym('p',8);

%% Lifting initial conditions

% initial state
x_prev = MX.sym('X0',nmpcPar.nx);
w = {w{:},x_prev}; % 1-3
% lbw = [lbw,xk_meas];
% ubw = [ubw,xk_meas];
% w0 = [w0;xk_meas];

% initial input
uk = MX.sym('uk_init',nmpcPar.nu);
w = {w{:}, uk}; % 4-6
% w0 = [w0;uk_meas];
% lbw = [lbw;uk_meas];
% ubw = [ubw;uk_meas];

%% Looping through until timeend
for k = 1:nmpcPar.np

% storing the previous input
uprev = uk;

% creating current input
uk = MX.sym(['uk_' num2str(k)],nmpcPar.nu);
w = {w{:}, uk}; % 7-9

% w0 = [w0; uk_meas];
% lbw = [lbw;nmpcPar.umin*ones(nmpcPar.nu,1)];
% ubw = [ubw;nmpcPar.umax*ones(nmpcPar.nu,1)];

% creating current slack variables
s = MX.sym(['s_',num2str(k)],nmpcPar.nx);
w = {w{:},s}; % 10-12

% w0 = [w0;0*ones(nmpcPar.nu,1)];
% lbw = [lbw;0*ones(nmpcPar.nu,1)];
% ubw = [ubw;1*ones(nmpcPar.nu,1)];
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% Adding constraint for delta_u
duk = uk - uprev;
g = {g{:},duk};

% if k > nmpcPar.nm
% lbg = [lbg;zeros(nmpcPar.nu,1)];
% ubg = [ubg; zeros(nmpcPar.nu,1)];
% else
% lbg = [lbg;-nmpcPar.dumax*ones(nmpcPar.nu,1)];
% ubg = [ubg;nmpcPar.dumax*ones(nmpcPar.nu,1)];
% end

% Collocation points
fk = [];
Xk1 = [];
gk = [];
L1 = [];

for d = 1:3
% creating states at collocation points
Xk = MX.sym(['Xk_' num2str(k),'_',num2str(d)],nmpcPar.nx);
Zk = MX.sym(['Zk_' num2str(k),'_',num2str(d)],nmpcPar.nz);
w = {w{:}, Xk, Zk}; % 13-15 | 16 - 77

% w0 = [w0;xk_meas;zk_meas];
% lbw = [lbw;zeros(nmpcPar.nx,1);zeros(nmpcPar.nz,1)];
% ubw = [ubw;inf*ones(nmpcPar.nx,1);inf*ones(nmpcPar.nz,1)];

% for continuinity
Xk1 = [Xk1,Xk];

% Calculating xdot and objective function
[fk1,gk1,L] = f(Xk,Zk,vertcat(uk,p),uk,uprev,s);

L1 = [L1;L];
% if k > nmpcPar.nm
% L1(d) = L - 1/2 * ((uk-uprev)'*nmpcPar.R*(uk-uprev));
% end

fk = [fk, fk1];
gk = [gk, gk1];

end

% integrating the system
x_next1 = [];
for d = 1:3

% Calculating M*xdot for each collocation point
Mfk = M(d,1)*fk(:,1) + M(d,2)*fk(:,2) + M(d,3)*fk(:,3);

% Calculating x
x_next = x_prev+h*Mfk;
x_next1 = [x_next1,x_next];

% Adding xk and Xk1 as constrains as they must be equal - in
% collocation intervals
% algebraic constraints are set to zero in the collocation point
g = {g{:},x_next-Xk1(:,d),gk(:,d)};

% lbg = [lbg;zeros(nmpcPar.nx,1);zeros(nmpcPar.nz,1)];
% ubg = [ubg;zeros(nmpcPar.nx,1);zeros(nmpcPar.nz,1)];

end

% updating objective function
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ML = M*L1;
J = J + ML(3);

% New NLP variable for state at end
x_prev = MX.sym(['x_init_' num2str(k)],nmpcPar.nx);
w = {w{:}, x_prev}; % 78 - 80

% w0 = [w0;xk_meas];
% lbw = [lbw;zeros(nmpcPar.nx,1)];
% ubw = [ubw;inf*ones(nmpcPar.nx,1)];
%

% Gap
g = {g{:},x_next-x_prev};

% lbg = [lbg;zeros(nmpcPar.nx,1)];
% ubg = [ubg;zeros(nmpcPar.nx,1)];

% Constraint on erosion
g = {g{:},x_prev-s};

% lbg = [lbg;zeros(nmpcPar.nx,1)];
% ubg = [ubg;nmpcPar.x_threshold*ones(nmpcPar.nx,1)];

end

% Formalizing problem
nlp = struct('x',vertcat(w{:}),'g',vertcat(g{:}),'f',J,'p',vertcat...

(xk_meas,zk_meas,uk_meas,p));

% Assigning solver (IPOPT)
solver = nlpsol('solver','ipopt',nlp);

end

LISTING D.6: Codes used for calculating in the controller (optimizer)
function [u_,sArray,ehatArray,inputArray,ofValue,solFlag] = SolvingNMPC...

(solver,x_next,z_next,u_k,mdot_p,GOR,PI,T,nmpcPar)

% declare variables (bounds and initial guess)
w0 = [];
lbw =[];
ubw = [];

% declare constraints and its bounds
lbg = [];
ubg = [];

% initial state
lbw = [lbw,x_next];
ubw = [ubw,x_next];
w0 = [w0;x_next];

% initial input
w0 = [w0;u_k];
lbw = [lbw;u_k];
ubw = [ubw;u_k];

%% Looping through until timeend
for k = 1:nmpcPar.np

w0 = [w0; u_k];
lbw = [lbw;nmpcPar.umin*ones(nmpcPar.nu,1)];
ubw = [ubw;nmpcPar.umax*ones(nmpcPar.nu,1)];
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% creating current slack variables
w0 = [w0;0*ones(nmpcPar.nu,1)];
lbw = [lbw;0*ones(nmpcPar.nu,1)];
ubw = [ubw;10*ones(nmpcPar.nu,1)];

if k > nmpcPar.nm
lbg = [lbg;zeros(nmpcPar.nu,1)];
ubg = [ubg; zeros(nmpcPar.nu,1)];

else
lbg = [lbg;-nmpcPar.dumax*ones(nmpcPar.nu,1)];
ubg = [ubg;nmpcPar.dumax*ones(nmpcPar.nu,1)];

end

for d = 1:3
% creating states at collocation points
w0 = [w0;x_next;z_next];
lbw = [lbw;zeros(nmpcPar.nx,1);zeros(nmpcPar.nz,1)];
ubw = [ubw;inf*ones(nmpcPar.nx,1);inf*ones(nmpcPar.nz,1)];

end

% integrating the system
for d = 1:3

% Adding xk and Xk1 as constrains as they must be equal - in
% collocation intervals
% algebraic constraints are set to zero in the collocation point
lbg = [lbg;zeros(nmpcPar.nx,1);zeros(nmpcPar.nz,1)];
ubg = [ubg;zeros(nmpcPar.nx,1);zeros(nmpcPar.nz,1)];

end

% New NLP variable for state at end
w0 = [w0;x_next];
lbw = [lbw;zeros(nmpcPar.nx,1)];
ubw = [ubw;inf*ones(nmpcPar.nx,1)];

% Gap
lbg = [lbg;zeros(nmpcPar.nx,1)];
ubg = [ubg;zeros(nmpcPar.nx,1)];

% Constraint on erosion
lbg = [lbg;zeros(nmpcPar.nx,1)];
ubg = [ubg;nmpcPar.x_threshold*ones(nmpcPar.nx,1)];

end

% Solving the problem
sol = solver('x0',w0,'lbx',lbw,'ubx',ubw,'lbg',lbg,'ubg',ubg,'p',...

[x_next;z_next;u_k;mdot_p;GOR;PI;T]);

%% Extracting solution
w_opt = full(sol.x);

% catch error
if solver.stats.success ~=1

% solution failed
solFlag = 0;

u_ = u_k; % fix inputs
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%dummy
sArray = zeros(nmpcPar.nx,1);
ehatArray = zeros(nmpcConfig.nx,nmpcConfig.np + 1);

else
% solution succeeded
solFlag = 1;

% variable order
% 1-3: x0
% 4-6: u0
% 7-9: u1
% 10-12: s1
% 13-15 | 78-80 | 143 - 145: x11, x12, x13
% 16-77 | 81-142| 146 - 207: z11, z12, z13
% 208-210: xprev1

% 211-213: u2
% 214-216: s2
% 217-219 | 282-284 | 347 - 349: x21, x22, x23
% 220-281 | 285-346 | 350 - 411: z21, z22, z23
% 412-414: xprev2

% 415-417: u3
% 418-420: s3
% 421-423 | 486-488 | 551 - 553: x31, x32, x33
% 424-485 | 489-550 | 554 - 615: z31, z32, z33
% 616-618: xprev3

% total variables in one iteration = 3(u) + 3(s) + 9(xkd) +
% 186(zkd) + 3(xprev) = 204

u_ = w_opt(7:9);

ofValue = full(sol.f);

ehatArray = [w_opt(1:3), w_opt(208:210)];
inputArray = w_opt(7:9);
sArray = w_opt(10:12); %s1

for ii = 1:nmpcPar.np - 1
temp = 412 + (ii - 1)*204;
ehatArray = [ehatArray, w_opt(temp:temp + 2)];

temp2 = 214 + (ii - 1)*204;
sArray = [sArray, w_opt(temp2:temp2 + 2)];

temp3 = 211 + (ii - 1)*204;
inputArray = [inputArray, w_opt(temp3:temp3 + 2)];

end

end

end

LISTING D.7: Code used for initial conditions used in the calculation
function [dx0,z0,u0] = InitialConditionGasLift_5

%% Differential states
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%well erosion rate
ER0 = [1,1,1]'/(365*24*3600); %[mm/s] 9-11

%% Algebraic states
%pressure - annulus
p_ai0 = [61.9230, 62.1454, 62]';%[bar] 1-3 (bar to Pa = x10^5)
%pressure - well head
p_wh0 = [42.5851, 45.3082, 44]';%[bar] 4-6
%pressure - injection point
p_wi0 = [56.8713, 57.1119, 57]';%[bar] 7-9
%pressure - below injection point (bottom hole)
p_bh0 = [96.1433, 98.3867, 96.25]';%[bar] 10-12
%density - annulus
rho_ai0 = [0.4949, 0.4967, 0.4955]';%[100 kg/m3] 13-15
%mixture density in tubing
rho_m0 = [2.3400, 2.2359, 2.3]';%[100 kg/m3] 16-18
%well injection flow rate
w_iv0 = [0.5000, 0.5000,0.5000]';%[kg/s] 19-21
%wellhead total production rate
w_pc0 = [30.1212, 33.3235,32]';%[kg/s] 22-24
%wellhead gas production rate
w_pg0 = [3.1928, 4.0168, 4]';%[kg/s] 25-27
%wellhead oil production rate
w_po0 = [26.9283, 29.3067, 28]';%[kg/s] 28-30
%oil rate from reservoir
w_ro0 = [26.9283, 29.3067, 28]';%[kg/s] 31-33
%gas rate from reservoir
w_rg0 = [26.9283, 35.1680, 28]';%[0.1 kg/s] 34-36
%riser head pressure
p_rh0 = 22.9558;%[bar] 37
%mixture density in riser
rho_r0 = 1.3618;%[100 kg/m3] 38
%manifold pressure
p_m0 = 32.8920;%[bar] 39
%riser head total production rate
w_pr0 = 63.4446;%[kg/s] 40
%riser head total oil production rate
w_to0 = 56.2350;%[kg/s] 41
%riser head total gas production rate
w_tg0 = 7.2096;%[kg/s] 42

%%setting diff states as algebraic
%gas holdup @ annulus
m_ga0 = [1.0568, 1.0606, 1.0644]';%[ton] 43-45 mga(2) +(mga(2)-mga(1))
%gas holdup @ well
m_gt0 = [0.7470, 0.7956, 0.8442]';%[ton] 46-48 mgt(2) + (mgt(2)-mgt(1))
%oil holdup @ well
m_ot0 = [6.3000, 5.8047, 5.3094]';%[ton] 49-51
%gas holdup @ riser
m_gr0 = 0.1265;%[ton] 52
%oil holdup @ riser
m_or0 = 0.9863;%[ton] 53
%particle impact velocity
V_p0 = [2,2,2]'; % 54-56
%mixed dynamic viscosity
mu_f0 = [0.001,0.001,0.001]'; % 57-59
%g1
g10 = [0.2,0.2,0.2]'; % 60-62

%% Inputs
%gas lift rate
w_gl0 = [0.5,0.5,0.5]'; %[kg/s]
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dx0 = vertcat(ER0);
z0 = vertcat(p_ai0,p_wh0,p_wi0,p_bh0,rho_ai0,rho_m0,w_iv0,w_pc0,w_pg0,...

w_po0,...
w_ro0,w_rg0,p_rh0,rho_r0,p_m0,w_pr0,w_to0,w_tg0,m_ga0,m_gt0,m_ot0,...
m_gr0,m_or0,V_p0,mu_f0,g10);

u0 = w_gl0;

LISTING D.8: Code for the gas lift parameters
function par = ParametersGasLift

%number of wells
par.n_w = 3;
%gas constant
par.R = 8.314; %[m3 Pa/(K mol)]
%molecular weigth
par.Mw = 20e-3; %[kg/mol] -- Attention: this unit is not usual

%% Properties
%density of oil - dim: nwells x 1
par.rho_o = 8*1e2;%[8;8].*1e2; %[kg/m3]
%riser oil density
par.rho_ro = par.rho_o; %[kg/m3]
%1cP oil viscosity
par.mu_oil = 1*0.001; %[Pa s or kg/(m s)]

%% Project
%well parameters - dim: nwells x 1
%length
par.L_w = [1500;1500;1500]; %[m]
%height
par.H_w = [1000;1000;1000]; %[m]
%diameter
par.D_w = [0.121;0.121;0.121]; %[m]
%well transversal area
par.A_w = pi.*(par.D_w/2).^2;%[m2]

%well below injection - [m]
par.L_bh = [500;500;500];
par.H_bh = [500;500;500];
par.D_bh = [0.121;0.121;0.121];
par.A_bh = pi.*(par.D_bh/2).^2;%[m2]

%annulus - [m]
par.L_a = par.L_w;
par.H_a = par.H_w;
par.D_a = [0.189;0.189;0.189];
%volume of the annulus
par.V_a = par.L_a.*(pi.*(par.D_a/2).^2 - pi.*(par.D_w/2).^2); %[m3]

%riser - [m]
par.L_r = 500;
par.H_r = 500;
par.D_r = 0.121;
%riser areas
par.A_r = pi.*(par.D_r/2).^2;%[m2]

%injection valve characteristics - dim: nwells x 1
par.C_iv = [0.1e-3;0.1e-3;0.1e-3];%[m2]
%production valve characteristics - dim: nwells x 1
par.C_pc = [2e-3;2e-3;2e-3];%[m2]
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%riser valve characteristics
par.C_pr = [10e-3];%[m2]
%parameter to account for differences in gas and liquid pressures
par.slip_real = 1;

%parameters
%reservoir pressure
par.p_res = [150;155;160]; % [bar]
%Annulus temperature
par.T_a = [28+273;28+273;28+273]; %[K]
%well temperature
par.T_w = [32+273;32+273;32+273]; %[K]
%riser temperature
par.T_r = 30+273; %[K]
%separator pressure
par.p_s = 20; %[bar]

%sampling time /control interval /1 simulation iteration time
par.T = 3600*24; % [s]

%% For erosion model
% Sand
par.d_p = 2.5*10^(-4); %[m] particle diameter
par.rho_p = 2.5*10^3; %[kg/m3] particle density
par.mdot_p = 100*10^(-3); %[kg/s] sand rate

% Choke
par.K = 2*10^(-9); %[-] material erosion constant
par.rho_t = 7800; %[kg/m3] sensity CS
par.r = 0.2; %[m] radius of curvature
par.D = 0.05; %[m] Gap between body and cage
par.H = 0.15; %[m] Height of gallery

% Constants
par.C_unit = 1000; % Unit conversion factor: now in mm/s
par.C_1 = 1.25; %[-] Model/geometry factor
par.n = 2.6; %[-] Velocity coefficient
par.GF = 2; %[-] Geometry factor

% Precalculations of erosion in choke:
par.alpha = atan(1/sqrt(2*par.r));
par.F = 0.6*(sin(par.alpha) + 7.2*(sin(par.alpha) - sin(par.alpha)^2))...

^0.6 * (1-exp(-20*par.alpha));
par.A_g = 2*par.H*par.D; %[m2] Effective gallery area
par.A_t = par.D_w(1)^2*pi/(4*sin(par.alpha)); % Area exposed to erosion
par.ER_constant = par.K*par.F*par.C_1*par.GF*par.mdot_p *par.C_unit/...

(par.rho_t*par.A_t);

%System parameters for nominal model
par.GOR = [0.10;0.12;0.11];
par.PI = [5;5;5];

%% For scaling the noise
% pressure meters = 1
% flow meters = 0.1
par.scale = [1,1,1,1,1,1,0.1,0.1,0.1,0.1,0.1,0.1,1,1,0.1,0.1]';

LISTING D.9: Code for simulation the hybrid Health-aware con-
trollers
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% Implementation of Health Aware Controller based on Joachim's thesis
clear
close all
clc

addpath('/Users/SALI/Desktop/MATLAB/casadi-osx-matlabR2015a-v3.5.5')
import casadi.*

% for reproduciability
rng('default');

%% Configuration
% Flag to choose the model (choose only one)
phenomeno = 1;
stepwise = 0;
neuralnet = 0;
flagModel = [phenomeno,stepwise,neuralnet];

% show the plot while simulating
showPlot = true; % true | false

% setting simulation length
simLength = 231; % 450 | 500 | 550

% Initial condition
[x0,z0,u0] = InitialConditionGasLift_5;

% System parameters
par = ParametersGasLift;

%states to measurement mapping function
H = zeros(16,length(z0));
%pai - annulus pressure, well 1-3
H(1,1) = 1;
H(2,2) = 1;
H(3,3) = 1;
%pwh - well head pressure, well+ 1-3
H(4,4) = 1;
H(5,5) = 1;
H(6,6) = 1;
%wro - wellhead gas production rate, well 1-3
H(7,25) = 1;
H(8,26) = 1;
H(9,27) = 1;
%wrg - wellhead oil production rate, well 1-3
H(10,28) = 1;
H(11,29) = 1;
H(12,30) = 1;
%prh - riser head pressure
H(13,37) = 1;
%pm - manifold pressure
H(14,39) = 1;
%wto - riser head total oil production rate
H(15,41) = 1;
%wtg - riser head total gas production rate
H(16,42) = 1;
par.H = H;

% generating sand profile
sandArray = sandproductionrate(0.01,simLength,'exp',0.02);

% Building Dynamic Model
[diff,alg,x_var,z_var,p_var] = BuildingDynModel(par,flagModel);
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% control tuning
nmpcConfig.umax = 2; % 3 | 2
nmpcConfig.umin = 0.4;
nmpcConfig.dumax = 0.01;
nmpcConfig.x_threshold = 2; % 0.8 | 1 | 2
nmpcConfig.nx = size(x0,1);
nmpcConfig.nz = size(z0,1);
nmpcConfig.nu = size(u0,1);

nmpcConfig.nm = 70;
nmpcConfig.np = 100;
%nmpcConfig.rho = 1e3; % 1e3 | 999999
nmpcConfig.rho = 1000000; % 1e3 | 999999

nmpcConfig.R = 0.01*eye(nmpcConfig.nu); % 0 | 0.01 | 1

% Building NMPC
solverNMPC = BuildingNMPC(diff,alg,x_var,z_var,p_var,par,nmpcConfig);

%% Initializing the simulation
xk = x0;
xHat = x0; % initial value is assumed known
zk = z0;
uk = u0;
yk = par.H*z0;

% Initializing slacks (not needed plotting if not using the controller)
s = zeros(nmpcConfig.nx,nmpcConfig.np);
% erosion predict "inside the controller" --> prognostics
erosionHat = zeros(nmpcConfig.nx,nmpcConfig.np + 1);
% input sequence prediction
inputSeq = zeros(nmpcConfig.nx,nmpcConfig.np);

OF = 0;

solFlag = 0;
controlTime = 0;

% creating variable to save breakdown time (if applicable)
tBreak = [];

% preparing for plotting
%colors associated with each well
cc = {'r','k','b'};

% plant info
xPlant = [];
zPlant = [];
yPlant = [];
totalProductionPlant = [];

%diagnositics info
erosionHatDiag = [];

%control info
inputControl = [];
flagControl = [];
ofControl = [];
CPUtimeControl = [];

for ii = 0:simLength
erosionPrediction{ii + 1} = [];
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slackControl{ii + 1} = [];
inputPrediction{ii + 1} = [];

end

%% Simulating

for tt = 0:simLength
fprintf(' iteration >>> %0.0f [day]\n',tt)

if tt ~=0
% estimating the current erosion
xHat = Diagnostics(xk,xHat,yk,uk,sandArray(tt + 1),par,flagModel);

tic
% Calculating input with NMPC
% perfect information
[uk,s,erosionHat,inputSeq,OF,solFlag] = SolvingNMPC...

(solverNMPC,xk,zk,uk,sandArray(tt + 1)...
,par.GOR,par.PI,par.T,nmpcConfig);

% with diagnostics
% [uk,s,erosionHat,inputSeq,OF,solFlag] = ...
%SolvingNMPC(solverNMPC,xHat,zk,uk,sandArray(tt + 1)...
% ,par.GOR,par.PI,par.T,nmpcConfig);

% computing execution time
controlTime = toc;

end

% Finding the state after applying input u
[xk,zk] = WellPlantModel(xk,zk,uk,sandArray(tt + 1),par);

%%%%%%%%%%%%%%%
% Saving Data %
%%%%%%%%%%%%%%%
erosionHatDiag = [erosionHatDiag, xHat];

inputControl = [inputControl, uk];
flagControl = [flagControl, solFlag];
erosionPrediction{tt + 1} = erosionHat;
slackControl{tt + 1} = s;
inputPrediction{tt + 1} = inputSeq;
ofControl = [ofControl, OF];
CPUtimeControl = [CPUtimeControl, controlTime];

xPlant = [xPlant, xk];
zPlant = [zPlant, zk];

yk = par.H*zk + par.scale.*randn(length(yk),1);
yPlant = [yPlant, yk];
totalProductionPlant = [totalProductionPlant, sum(zk(28:30))];

if tt > 0 && showPlot %rem(t,50) == 0 % checking results sporadiacally
time = 0:1:tt;

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plotting --- controller %
%%%%%%%%%%%%%%%%%%%%%%%%%%%
f1 = figure(1);
clf
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subplot(3,1,1);
hold on
for well = 1:3

stairs(time,inputControl(well,:),cc{well},...
'LineWidth',2,'HandleVisibility','off'); %% 1.5 2

end

xline(simLength,'r:','HandleVisibility','off');
yline(nmpcConfig.umax,'k--','LineWidth',2); %%

ylim([0,3.75]);
xlim([0,simLength + 100]);
set(gca,'FontSize',14)
legend('Max. gas cap.','Position',[0.69 0.90 0.20 0.041])

xlabel('time [day]','fontsize',14);
ylabel('Gas lift rate [kg/s]','fontsize',14);

subplot(3,1,2);

yline(nmpcConfig.x_threshold,'k--','LineWidth',2); %% 1, 2
hold on
for well = 1:3

plot(time,xPlant(well,:),cc{well},'LineWidth',2); % 1.5 , 2
plot(tt:tt + nmpcConfig.np,erosionHat(well,:)...

,cc{well},'linestyle',':','LineWidth',1);
plot(tt,xHat(well),'MarkerFaceColor',cc{well},...

'marker','o','HandleVisibility','off');
end

xline(simLength,'r:');

text(simLength + 50,0.7,'\leftarrow Maintenance',...
'HorizontalAlignment','center','FontSize',7);

text(simLength + 50,0.5,'Stop','HorizontalAlignment',...
'center','FontSize',7);

set(gca,'FontSize',14)
legend({'threshold','Real','Predicted'},'Position',...

[0.14 0.59 0.17 0.11])

box on

ylim([0,nmpcConfig.x_threshold*1.5]);
xlim([0,simLength + 100]);
xlabel('Time [day]','fontsize',14);
ylabel('Erosion [mm]','fontsize',14);

subplot(3,1,3);
plot(time,totalProductionPlant,'b','LineWidth',2); %% 1.5 2
hold on
xline(simLength,'r:');
set(gca,'FontSize',14)
ylim([80,88]);
xlim([0,simLength + 100]);
xlabel('Time [day]','fontsize',14);
ylabel('Oil production [kg/s]','fontsize',14);

end

% % emulating system breaking if threshold is achieved
% if ~all(xk < nmpcConfig.x_threshold)
%
% % saving break time
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% tBreak = tt;
%
% % breaking loop
% break
% end

end

%% saving results
if flagModel(1) == 1

name = 'HAC_pheno';
elseif flagModel(2) == 1

name = 'HAC_step';
elseif flagModel(3) == 1

name = 'HAC_NN';
end

save(name,'simLength','tBreak','xPlant','zPlant','yPlant',...
'totalProductionPlant','slackControl','inputControl',...
'flagControl','erosionPrediction','CPUtimeControl',...
'ofControl','erosionHatDiag','inputPrediction')

%% Plotting the final profiles
f2 = figure(2);

if ~isempty(tBreak)
simLength = tBreak;

end
time = 0:1:simLength;

subplot(3,1,1);
stairs(time,inputControl(1,:),cc{1},'LineWidth',2,...

'HandleVisibility','off'); %% 1.5
hold on
stairs(time,inputControl(2,:),cc{2},'LineWidth',2,...

'HandleVisibility','off'); %% 1.5
stairs(time,inputControl(3,:),cc{3},'LineWidth',2,...

'HandleVisibility','off'); %% 1.5

yline(nmpcConfig.umax,'k--','LineWidth',2);

ylim([0,3.75]);
xlim([0,simLength]);
set(gca,'FontSize',14)
legend('Max. gas cap.','Position',[0.69 0.90 0.20 0.041])

xlabel('time [day]','fontsize',14);
ylabel('Gas lift rate [kg/s]','fontsize',14);

subplot(3,1,2);

yline(nmpcConfig.x_threshold,'k--','LineWidth',1.5);
hold on
plot(time,xPlant(1,:),cc{1},'LineWidth',2);
plot(time,xPlant(2,:),cc{2},'LineWidth',2);
plot(time,xPlant(3,:),cc{3},'LineWidth',2);

box on
set(gca,'FontSize',14)
legend({'threshold','Well 1','Well 2','Well 3'},...

'Location','northwest');
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ylim([0,3]);
xlim([0,simLength]);
xlabel('Time [day]','fontsize',14);
ylabel('Erosion [mm]','fontsize',14);

subplot(3,1,3);
plot(time,totalProductionPlant,'b','LineWidth',2);
hold on
set(gca,'FontSize',14)
ylim([80,88])
xlim([0,simLength]);
xlabel('Time [day]','fontsize',14);
ylabel('Total oil production [kg/s]','fontsize',14);

set(gcf,'color','w');

namePlot = [name,'_results.pdf'];
print(f2,'-r300','-dpdf',namePlot);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plotting --- diagnosis %
%%%%%%%%%%%%%%%%%%%%%%%%%%%
f3 = figure(3);

for well = 1:3
subplot(3,1,well);
yline(nmpcConfig.x_threshold,'k--','LineWidth',1.5);
hold on
plot(time,erosionHatDiag(well,:),cc{well},'LineWidth',2);
plot(time,xPlant(well,:),cc{well},'linestyle',':','LineWidth',2);

box on
set(gca,'FontSize',14)
legend({'threshold','Estimated','Real'},'Location','northwest');

ylim([0,nmpcConfig.x_threshold*1.5]);
xlim([0,simLength]);
xlabel('Time [day]','fontsize',14);
ylabel('Erosion [mm]','fontsize',14);

set(gcf,'color','w');

end

namePlot = [name,'_diag_results.pdf'];
print(f3,'-r300','-dpdf',namePlot);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plotting --- statistics %
%%%%%%%%%%%%%%%%%%%%%%%%%%%
f4 = figure(4);

subplot(2,1,1)
plot(time,flagControl,'marker','x','linestyle',':','markersize',5);

ylim([-0.1,1.1]);
yticks(0:1);
yticklabels({'no','yes'});
xlim([0,simLength]);
xlabel('iteration [-]','fontsize',14);
title('Control converged?','fontsize',14);
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subplot(2,1,2)
plot(time,CPUtimeControl,'marker','x','linestyle',':','markersize',5);

xlim([0,simLength]);
xlabel('Iteration [-]');
ylabel('exec. time [s]');
title('Control time');

set(gcf,'color','w');

namePlot = [name,'_stats.pdf'];
print(f4,'-r300','-dpdf',namePlot);

%%%%%%%%%%%%%%%%%%%%%%%
% Plotting --- slacks %
%%%%%%%%%%%%%%%%%%%%%%%
f5 = figure(5);

cmap = flip(gray(simLength));

for well = 1:3
subplot(3,1,well)
hold on
for ii = 1:simLength

plot(ii:(ii + nmpcConfig.np - 1),slackControl{1,ii}(well,:),...
'Color',cmap(ii,:),'LineWidth',0.75);

end

box on

ylim([0,1]);
xlim([0,simLength + nmpcConfig.np]);
xticks(0:50:500);
xlabel('Iteration [-]');
ylabel('slack [mm]');
title(['Well ',num2str(well)]);

end

set(gcf,'color','w');

namePlot = [name,'_slack.pdf'];
print(f5,'-bestfit','-r300','-dpdf',namePlot);

%%%%%%%%%%%%%%%%%%%%%%%
% Plotting --- inputs %
%%%%%%%%%%%%%%%%%%%%%%%
f6 = figure(6);

cmap = flip(gray(simLength));

for well = 1:3
subplot(3,1,well)
hold on
for ii = 1:simLength

plot(ii:(ii + nmpcConfig.np - 1),inputPrediction{1,ii}...
(well,:),'Color',cmap(ii,:),'LineWidth',0.75);

end

yline(nmpcConfig.umax,'k--','LineWidth',1);
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box on

ylim([0,2.75]);
xlim([0,simLength]);

xlabel('Iteration [-]');
ylabel('Gas lift rate [kg/s]');
title(['Well ',num2str(well)]);

end

set(gcf,'color','w');

namePlot = [name,'_input_seq.pdf'];
print(f6,'-bestfit','-r300','-dpdf',namePlot);

%%
%%%%%%%%%%%%%%%%%%%%%%%
% Plotting --- OF %
%%%%%%%%%%%%%%%%%%%%%%%
f7 = figure(7);

% computing terms
RtermArray = [];
StermArray = [];
for ii = 1:simLength
% Slack
temp1 = slackControl{1,ii};

% Regularization
temp2 = inputPrediction{1,ii} - [u0, inputPrediction{1,ii}(:,1:end - 1)];

Rterm = 0;
Sterm = 0;
for kk = 1:nmpcConfig.np

Rterm = Rterm + temp2(:,kk)'*nmpcConfig.R*temp2(:,kk);
Sterm = Sterm + nmpcConfig.rho*sum(temp1(:,kk));

end

RtermArray = [RtermArray, Rterm];
StermArray = [StermArray, Sterm];

end

plot(time,ofControl,'k','marker','d','linestyle','-','markersize',3);
hold on
plot(time(2:end),RtermArray,'r','marker','x','linestyle',':',...

'markersize',3);
plot(time(2:end),StermArray,'b','marker','o','linestyle','--',...

'markersize',3);

legend({'OF value','Reg. Term','Slack Term'})

xlim([0,simLength]);
xlabel('iteration [-]');
ylabel('OF value [-]');

set(gcf,'color','w');

namePlot = [name,'_obj_fun.pdf'];
print(f7,'-bestfit','-r300','-dpdf',namePlot);
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