
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Ingvild Brevik Høgstøyl

Exploring NVIDIA Ampere Tensor
Cores for an Event Generator Code
for High-Energy Physics

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
Co-supervisor: Dr. Maria Girone
July 2021M

as
te

r’s
 th

es
is

Ingvild Brevik Høgstøyl

Exploring NVIDIA Ampere Tensor Cores
for an Event Generator Code for High-
Energy Physics

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
Co-supervisor: Dr. Maria Girone
July 2021

Norwegian University of Science and Technology

Project Description

The demand and interest for more cost-effective solutions for the same amount
of processing power is increasing. In addition, data centers are now a mix of
HPC-systems that often include accelerators such as GPUs. To meet the computa-
tional demands of the future, CERN is working on porting CPU codes to GPU and
CPU+GPU versions.

CERN is also working on developing a new benchmarking suite to evaluate the
performance of the resources they have at their disposal through the Worldwide
LHC Computing Grid (WLCG). The current benchmark suite HEP SPEC 2006, a
subset of the SPEC CPU 2006 benchmark suite, has been found to show lack of
correlations with today’s HEP applications. A new approach for benchmarking
is being investigated using experiment workloads. The benchmarks are put into
containers to make them easier to execute in data centres.

Currently, the GPU version of Madgraph is a simple conversion of parts of the CPU
version, so this thesis will also focus on ways to optimize the GPU code. The new
NVIDIA A100 GPU offers several new features, such as 64-bit floating point tensor
cores, so one of the main foci of the optimization is to investigate whether one
or more of these new features can be used, and if so, profile and test them, and
if time permits, integrate them into the Madgraph GPU code. Containerizing the
application may also be considered.

iii

Abstract

There is an increasing interest and demand for more cost-effective solutions for
how to utilize the processing power of large HPC systems. Data centers are now
progressively offering more heterogeneous computing, that include accelerators
such as GPUs. To meet the computational demands of the future, CERN is working
on utilizing modern hardware such as GPUs, both to speed up their workloads,
but also to utilize all the hardware they have available through the Worldwide
LHC Computing Grid (WLCG).

The work of this thesis includes finding a suitable workload to work with. We
landed on that the focus should be on the MadGraph workload, a physics event
generator planned to be used as part of one of the benchmarking suites at CERN.
Event generators are large consumers of CPU resources, and their computational
cost is expected to increase with future upgrades of the experiments on which
they are built.

Our works expands on the current GPU version of the workload which is a simple
conversion of some of the parts of the CPU version. Many of the calculations in the
code involve double precision complex numbers, over-utilizing the FP64 pipeline
in the GPU, while under-utilizing the others. The work of this thesis therefore
focuses on investigating whether the code can be optimized by using the new
NVIDIA A100 GPU, which offers 64-bit floating point Tensor Cores.

The thesis also includes profiling resulkts from using Valgrind and KCachegrind on
the CPU as well as results from using Nsight Systems and Nsigth Compute for pro-
filing the GPU kernels. Integration the usage of Tensor Cores into the MadGraph
GPU code and analysing the effect of the changes, as well as some suggestions for
future work, are also included.

iv

Sammendrag

Det er en økende interesse og etterspørsel etter mer kosteffektive løsninger for
hvordan en kan utnytte regneresursene til store HPC-systemer.

Datasentrene er tilbyr nå mer heterogen databehandling, som inkluderer systemer
med akseleratorer, deriblant GPUer.

For åmøte fremtiden databeregningsbehov jobber nå CERN med å tilby fler og fler
heterogene systemer med GPUer for å få ’workloads’ (arbeidsmengden deres ap-
plikasjoner utgjør) til å gå raskere, men også for å kunne utnytte all maskinvaren
de har tilgjengelig via nettverket Worldwide LHC Computing Grid (WLCG).

Arbeidet i denne masteroppgaven inkluderer å finne en egnet ’workload’/applikasjon
å kunne jobbe med. Vi endte opp med å fokusere på en del av MadGraphm en
fysikk event-generator som det er planer om skal bli en del av benchmarking
suiten til CERN, Event-generatorer forbruker mange regneressurser, og dere krav
om beregningskraft er forventet å øke ytterligere i fremtiden ettersom eksperi-
mentene de bygger på oppgraderes.

Vårt arbeid videreutvikler den nåværende GPU versjonen av applikasjonene som
for tiden er en enkel oversettelse av ekelte deler av CPU-versjonen. Mange av
beregningene in koden involverer dobbel-presisjons komplekse tall, overlast på
FP64 pipen av GPUen, mens then ikke fullt ut benytter andre deler av GPUen.
Arebidet i denne masteroppgaven fokuserer derfor på å unersøke om koden kan
bli opimert for de nye NVIDIA A100 GPUenen som nå tilbyr 64.bit flytalls Tensor-
kjerner.

Masteroppgaven includerer også profileringer via Valgrind og KCachegrind på CPU
så vel som brukt av Nsight Systems og Nsigth Compute for profilering av GPU funk-
sjonene (kernels). Integrering bruken av Tensor-kjernene med MadGraph CPU-
koden og analyseringen av effekten av disse endrringene, så vels som forslag for
videre arbeider, er også tatt med.

v

Acknowledgements

I would especially like to thank Dr. Maria Girone, CTO of CERN openlab, for co-
advising and hosting me through the CERN technical student program, and the
Research Council of Norway for providing support for my stay at CERN.

Unfortunately, due to the ongoing pandemic situation, part of my intended stay at
CERN had to instead be done remotely from my home in Norway. I am therefore
especially grateful for all the weekly Zoom meetings with Maria and her group
and colleagues at CERN, including David Southwick, Victor Khristenko, Dr. Andrea
Valassi, and Stefan Roiser and for all their help and support that made this work
possible.

I would also like to thank the HPC-Lab and the Department of Computer Science at
NTNU for providing access to the GPU systems I used for a related pre-project, and
CERN and Ian Fisk who got me access to the NVIDIA A100s at the Flatiron Insti-
tute/San Diego Supercomputing Center (SDSC) in New York, where I developed
and profiled the key piece of this work.

Additionally, I would like to thank the people at the HPC-Lab for their ideas, con-
versations and enjoyable Zoom meetings during the pandemic. I would especially
like to thank Øystein Krogstie for his important help and discussions.

Last but not least, I would like to thank my main advisor, Prof. Anne C. Elster
for her invaluable support and insights. I would not have gotten the technical
studentship at CERN or finished this thesis without her.

vi

List of Abbreviations and
Selected Terms

Callgrind: CPU Profiling tool that is part of Valgrind.

CERN: The European Organization for Nuclear Research whose name stems
from the French acronym for ’Conseil Européen pour la Recherche Nuc-
léaire’.

Device: NVIDIA GPU, as in device kernel: a function running on a GPU.

GPU: Graphics Processing Unit.

GPGPU: General-purpose computing on graphics processing units: GPUs
that can be programmed in CUDA, OpenCL, HIP and other higher-level pro-
gramming environments.

HEP: High-Energy Physics.

ICT: Information and Communications Technology.

KCachegrind: Tool to visualize results from Callgrind.

Kernel: Function running on a GPU.

LHC: Large Hadron Collider.

MG5aMC: Madgraph5_aMC@NLO. The version of the Madgraph code con-
sidered for this thesis.

ML: Machine Learning.

Nsight Compute: NVIDIA Profiling tool at kernel-level. Provides detailed
performance details and graphs for given kernels.

vii

List of Abbreviations and Selected Terms viii

Nsight Systems: NVIDIA Profiling tool at system-level. Has lot higher over-
head than CPU profilers.

SM: NVIDIA term for Streaming Multiprocessor. Each NVIDIA GPU has an
array of SMs, each with several types of computational cores, register files
etc.

Tensor Cores: Special GPU processing cores on available on Volta and Ampere
architecture GPUs, among others, that target small matrix-operations com-
mon in Machine Learning.

Valgrind: Memory debugging tool and more.

Contents

Project Description . iii
Abstract . iv
Sammendrag . v
Acknowledgements . vi
List of Abbreviations and Selected Terms . vii
Contents . ix
Figures . xi
Code Listings . xii
1 Introduction . 1

1.1 The CERN Computing Challenge . 2
1.2 Benchmarking of Hardware Resources 3

1.2.1 The MadGraph Workload . 3
1.3 Goals and Contributions . 4
1.4 Thesis Outline . 4

2 Background . 6
2.1 CUDA and NVIDIA GPUs . 6

2.1.1 CUDA Warps . 7
2.1.2 Dynamic Parallelism in CUDA 8
2.1.3 Tensor Cores . 8

2.2 Madgraph . 11
2.2.1 The Madgraph Project . 11
2.2.2 The GPU Port . 12

3 Choosing the Workload and Profiling it on CPU and GPU 14
3.1 Choosing the Workload to Optimize . 14
3.2 Becoming Familiar with the Workload 15
3.3 CPU Profiling . 15
3.4 GPU Profiling . 16

3.4.1 Nsight Systems . 17
3.4.2 Nsight Compute . 18

4 Implementation and Results on the A100 GPU 20
4.1 Planning and Testing . 20
4.2 The First Implementation . 21
4.3 The Final Implementation . 22

ix

Contents x

5 Conclusion . 25
5.1 Future work . 26

Bibliography . 27
A Benchmarking and Containers . 30

A.1 Containers . 30
A.1.1 Docker versus Singularity . 30
A.1.2 Usage and build . 31

A.2 Containers and GPUs . 31
B Code Implementations . 32

B.1 Code Used for Testing . 32
B.1.1 Single-precision Tensor Core . 32
B.1.2 Blocking Algorithm Testing . 33
B.1.3 Complete Double-Precision Test Code using Tensor Cores . . 35
B.1.4 Makefile . 39

B.2 The first implementation in Madgraph 39
B.3 The final implementation in Madgraph 41

C CERN openlab Technical Workshop Presentation 42

Figures

2.1 Example of architecture differences of CPUs and GPUs. 6
2.2 GA100 . 7
2.3 A100-SM . 9
2.4 Lagrangian of the Standard Model . 12
2.5 Feynman diagram . 12

3.1 Valgrind call from command line . 16
3.2 Call graph of the CPU version Madgraph 16
3.3 Nsight Systems call from command line. 17
3.4 Complete result of profiling on Nsight Systems 17
3.5 Zoomed in result of profiling on Nsight Systems 18
3.6 Nsight Compute call from command line. 18
3.7 Profiling with Nsight Compute showing the SM vs. Memory usage . 18
3.8 Profiling with Nsight Compute showing the pipelines 19

4.1 The blocking of A and B . 22
4.2 Profiling of the sigmaKin_goodhel kernel 23
4.3 Profiling of the sigmaKin kernel . 24

xi

Code Listings

4.1 Blocking algorithm used in the first implementation 21
B.1 Test code for a single-precision Tensor Core matrix multiplication

using 16*16 size matrices. 32
B.2 Test code to validate the blocking algorithm for both one- and two

dimensional matrices, using colour matrix from Madgraph. 33
B.3 Complete test code using colour matrix from Madgraph doing block-

ing, padding and Tensor Core matrix multiplication. 35
B.4 Makefile for running the code in B.1 and in B.3. 39
B.5 Set up code with blocking and padding 39
B.6 Tensor Core kernel from the naive implementation 41

xii

Chapter 1

Introduction

This thesis is the product of a collaboration between the Norwegian University
of Science and Technology (NTNU) and CERN Openlab. The European Organiz-
ation for Nuclear Research, more commonly known as CERN, is an international
organization whose main area of research is particle physics. CERN Openlab facil-
itates collaborations between CERN and both leading companies in information
and communications technology (ICT) and research institutes, to tackle major
challenges CERN faces in its mission. During the work of this thesis the author
worked as a technical student at CERN Openlab.

With the limits of computer speed gained from frequency scaling hitting its limits
back in 2005 (know as the power wall) it more important than ever that compu-
tational intensive applications, such as the ones used at CERN, to take advantage
of the parallel computing platforms available.

Graphical Processing Units (GPUs) offer thousands of computational cores per
chip. The GPUs are specialized hardware units designed to perform operations on
data in parallel. The technology was originally used to offload the graphics pro-
cessing from the CPU and early GPUs could perform the most common graphical
computations. In recent years however, as they have become more programmable,
GPUs have been found to be useful for other types of calculations beyond graph-
ics that are highly data parallel. This was the birth of General-Purpose Graphics
Processing Unit (GPGPU) computing and the GPUs are programmable instead of
fixed-function. Several vendors offers GPGPUs and there are multiple frameworks,
that are either cross-platform or vendor specific, to program them. One of these is
the NVIDIA´s CUDA programming environment described in more details in the
next chapter.

Students at the HPC-Lab (Heterogeneous and Parallel Computing Lab) at NTNU
have been working on GPU computing since 2006 [1] , and continue to look at
performance modeling and finding new and better ways to take advantage of the
computational power of the GPUs as well as multi-core systems[2, 3].

1

Chapter 1: Introduction 2

We are particularly interested in exploring new GPU features for HPC workloads.
As GPUs now are have become popular computing platforms for artificial intelli-
gence, and in particular machine learning (ML), NVIDIA and other GPU vendors
have added special compute cores, known as tensor cores, that target the many
small matrix-vector operations associated with ML-based tasks. How to take ad-
vantage of these tensor cores for non-ML work loads is still a formidable challenge,
and one that will be explored in this thesis work.

1.1 The CERN Computing Challenge

CERN operates the Large Hadron Collider (LHC), a 27-kilometre ring consisting
of superconducting magnets, which is the largest and most powerful particle ac-
celerator in the world. Inside the LHC, two particle beams travel in opposite dir-
ections at almost the speed of light and are then made to collide in a detector
at an experiment. As many as one billion particle collisions can happen inside an
experiment’s detector in a second. Automatic triggers pick out potentially inter-
esting events, but even with this reduction to a fraction of the data, the CERN
data centre still record approximately 1 GB/s of data as of the second period of
particle collision production, known as Run 2 [4].

However, experimental programs and data are only part of what CERN concerns
itself with. Exploring High-Energy Physics (HEP) starts with theories and simula-
tions and one of the steps is event generation. Event generators are programs that
generates events as those produced by particle accelerator collider experiments
and they help bridge the gap between theoretical calculations and the complex
detector signatures and data.

After 2025, the upgraded version of the LHC, the High Luminosity LHC (HL-LHC),
is planned to come online for Run 4 and it is expected that the compute require-
ments will be 50-100 times greater than today [5], as it requires more complicated
and accurate analysis of both the experimental and generated data.

To satisfy the need for storage, distribution and analysis of all the data, the World-
wide LHC Computing grid (WLCG) was created in 2002. It consists of about 900
000 computer cores in 170 facilities in 42 countries [6]. The increasing interest
and demand for more cost-effective solutions for the same amount of processing
power, has caused data centres to gradually offer more heterogeneous computing
resources, such as GPUs . Currently these resources are under-utilized by the LHC
experiments.

In 2017, CERN openlab published a white paper detailing the major ICT chal-
lenges CERN and others faces in the coming years [7] and their possible solu-
tions. In R&D Topic 2 they identify, among other things, utilizing heterogeneous
hardware, such as GPUs, to close the resource gap: the difference between re-
sources needed and resources available. By utilizing GPUs CERN may speed up

Chapter 1: Introduction 3

their workloads, but also utilize all the hardware they have available through the
WLCG.

1.2 Benchmarking of Hardware Resources

Evaluation of hardware resources date back to the 1980’s with the "CERN Unit".
Workloads used in that benchmark were derived from applications used in HEP
computing at that time. In the 1990’s it was replaced by benchmarks based on
the SPEC benchmarking suite, as it was shown that the benchmarks adequately
represented the computing patterns of the HEP applications. However, in the last
years the current benchmark HEP SPEC 2006, a subset of the SPEC CPU 2006
benchmarking suite, has been shown to lack correlation with today’s HEP applic-
ations. This has been found to also apply to the new version, the SPEC CPU 2017
benchmarking suite after being analyzed by the HEPiX BWG [8]. The BWG has
therefore been working on replacement benchmarking suite based on actual HEP
workloads, and which is also representative of the evolving hardware landscape,
such as the increasing heterogeneity of data centres. Of particular interest is there-
fore codes related to experiments at CERN that take advantage of modern GPUs.

1.2.1 The MadGraph Workload

The different workloads from the LHC experiments include several different steps,
such as event generation, simulation, digitization and reconstruction. The work
in this thesis concerns itself with the event generation(GEN) step. GEN workloads
represent a major fraction of total CPU time for CERN workloads, which is ex-
pected to increase in the future with the HL-LHC, as more accurate theoretical
predictions are required for physics analysis [9].

The work of this thesis will focus on the MadGraph5_aMC@NLO workload (here-
after referred to as MG5aMC), a physics event generator. It is currently being por-
ted to GPU, as part of a project that aims to utilize modern hardware architectures
to optimize the code for both CPU and GPU. It is considered well suited for a GPU
port, as it consists of highly-parallelizable tasks that usually are computationally
intensive depending on the particles involved.

So far, the GPU version of the workload is a simple conversion of some of the
parts of the CPU version. Many of the calculations in the code involve double
precision complex numbers, over-utilizing the FP64 pipeline in the GPU, while
under-utilizing the others. The work of this thesis will therefore focus on invest-
igating whether the code can be optimized by using the new NVIDIA A100 GPU,
which offers 64-bit floating point Tensor Cores, and if so, integrate the use of them
the into the Madgraph GPU code.

Chapter 1: Introduction 4

1.3 Goals and Contributions

The goals of this thesis are to:

• Evaluate whether 64-bit floating point NVIDIA Tensor Cores can be used to
optimize the Madgraph4GPU code.

• Implement the usage of Tensor Cores in the Madgraph4GPU code
• Evaluate the effect of the usage of the Tensor Cores on the code

We also started to look at containerization of the application, but did not complete
this task due to time constraints and the desire to do a good analysis on the A100
given that we were able to test them on the SDCS/Flatiron Institute resources.
However, some notes on containerization by the author is included in Appendix
A.

This main contributions from this thesis are:

• An example software implementation of matrix-vector multiplication using
NVIDIA Tensor Cores, including blocking and padding of the matrix and
vector.

• A software implementation using NVIDIA Tensor Cores to do the matrix-
vector multiplication involving color flow physics in Madgraph4GPU, in-
cluding blocking and padding of the matrix and vector.

1.4 Thesis Outline

The rest of the thesis consists of the following chapters:

• Chapter 2: Background – give some basic introdiction to CUDA, Tensor
Cores and the main compute aspects of the Madgraph function analyzed

• Chapter 3: Methodology describing how we profiled and optimized the
MadGraph kernal for on V100 and A100 GPUS, including utilizing Tensor
Cores.

• Chapter 4: Benchmarking and Results

• Chapter 5: Conclusions and Future Work

• Appendix A: Containers – some background and thoughts containers.

• Appendix B: Main Code Listings

• Appendix C: OpenLab Workshop talk by author – Slides of the small

Chapter 1: Introduction 5

presentation given by the author on March 9 at the CERN openlab Tech-
nical Workshop.

Chapter 2

Background

This chapter gives an overview of GPUs, specifically NVIDIA GPUs and the com-
puting unit called a Tensor Core, and an overview of the MG5aMC software, and
current efforts to port it to GPU.

Figure 2.1illustrates the architectural differences between CPUs and GPUs, where
the CPU has fewer more complete cores with their own caches whereas modern
GPUs consist of several cores sharing caches and executed instructions in chunks
of 32 threads using 32 cores, called warps, and are as such more similar to vector
units.

Figure 2.1: Example of architecture differences of CPUs and GPUs [CUDA-guide].
Figure used with permission from NVIDIA.

2.1 CUDA and NVIDIA GPUs

Compute Unified Device Architecture (CUDA) is NVIDIAs parallel computing plat-
form and application programming interface (API). It makes it possible to use

6

Chapter 2: Background 7

CUDA-enabled GPUs for general purpose processing. CUDA comes with a software
environment allowing it to be used with with high-level programming languages
such as C ior C++ [10].

CUDA is a heterogeneous programming model that use both the CPU and the GPU.
In CUDA, host refers to the CPU and its memory, while device refers to the GPU
and its memory. The code that is running on the host can launch kernels, which are
functions that are executed in parallel on the GPU by many threads. To determine
how many device threads execute the kernel, the execution figuration is set when
launching with two arguments. The first argument determines how many thread
blocks in the grid, while the second specify how many threads in a thread block.
Grid size multiplied with block size gives the total amount of threads. It is also
possible to launch the grid and thread blocks in three dimensions.

Modern NVIDIA GPU consists of an array of Stream Multiprocessors (SMs), Fig-
ure shows Figure 2.2 shows an illustration including the 128 SMs of the NVIDIA
GA100 Architecture. The A100s used in this thesis has 108 SMs, whereas the smal-
ler GPUs used for embedded applications, such as the Jetson TX2 have only two
Pascal Streaming Multiprocessors (SMs) with 128 CUDA cores each.

Figure 2.2: GA100 Full GPU with 128 SMs. The A100 Tensor Core GPU has
108 SMs From https://developer.nvidia.com/blog/nvidia-ampere-architecture-
in-depth/ Figure is used with permission from NVIDIA.

2.1.1 CUDA Warps

CUDA GPUs seamlessly schedule groups of 32 threads, known as warps that ex-
ecute the same instructions at the time, following the SIMT (Single Instruction
Multiple Treads) model. Each SM may schedule up to 4 warps at a given time. We
will use this concept of warps throughout this thesis.

Chapter 2: Background 8

2.1.2 Dynamic Parallelism in CUDA

NVIDIA GPUs running CUDA date back to 2006. The early GPUs up through the
NVIDIA Fermi GPU architectures limited all kernel launches from the CPU – that
is, the GPU acted as a co-processor where its CPU host generated the work (all
function calls).

CUDA 5.0 and the Kepler architecture introduced the concept of dynamic paral-
lelism where the GPUs can themselves generate more work. This avoids having to
statically allocate worst-case grids and lets the user map the compute to the prob-
lem. By letting the GPU threads spawn more threads, and is thus general useful
for problems that require nested parallelism, such as generating the Mandelbrot
set.

See: https://developer.nvidia.com/blog/introduction-cuda-dynamic-parallelism/

and

http://developer.download.nvidia.com/GTC/PDF/GTC2012/PresentationPDF/
S0338-GTC2012-CUDA-Programming-Model.pdf

This dynamic parallel feature will also be used in connection with taking advant-
age of the tensor cores available on recent GPUs. Tensor cores will be described
in more details in the next subsection

Further details on the CUDA programming environment can be found in the CUDA
programming guide, currently at 11.4 available in PDF here:

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

Other recent CUDA features provided by the CUDA 11 introduced in 2020 include
the Compute-Sanitizer tool that replaces the cuda-memcheck tool and support for
the A100 tensor cores. For details on the Compute-Sanitizer tool, see

https://docs.nvidia.com/cuda/sanitizer-docs/SanitizerApiGuide/index.html

2.1.3 Tensor Cores

As mentioned in the introduction, recent GPUs have Tensor Cores that can perform
fast matrix tailored for Machine Learning (ML), but that also may provide useful
for general HPC loads that can leverage matrix operations. Unlike regular CUDA
cores that may execute one operation per cycle, the tensor core are executed at
multiple operations per cycle, a bit like CPU vector processors.

The A100 SM architecture including the Tensor Cores, as well as the other com-
pute units and memory structure is shown in Figure 2.3. Note that each SM has 4
warp schedulers so that each part of the SM can stay busy,

A summary of the main related features of the three most recent GPU architectures
from NVIDIA is shown in table 2.1

Chapter 2: Background 9

Figure 2.3: The A100 SM architecture
From https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
Figure is used with permission from NVIDIA.

Chapter 2: Background 10

Table 2.1: Main features and Compute Capabilities of recent NVIDIA GPUs (P100,
V100 and A100) for HPC
Based on figures in
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Chapter 2: Background 11

In C++ CUDA, Warp matrix operations may use Tensor Cores to accelerate matrix
calculations on the form M = A∗B+C . The calculations requires the cooperation
of all the threads in a warp and supports mixed precision floating point data for
devices with compute capability 7.0 or above. The NVDIA Tesla V100 has com-
pute capability 7.0, while the A100 has compute capability 8.0. By including the
namespace nvcuda:wmma you get access to the useful functions and types.

2.2 Madgraph

This section gives a brief introduction to the MG5aMC software and the ongoing
efforts to port it to GPU. The sections is based on the paper submitted to 25th
International Conference on Computing in High-Energy and Nuclear Physics and
more details about the project, physics background, design and implementation
can be read in the paper [9].

2.2.1 The Madgraph Project

MG5aMC is a software framework for physics event generation used in the data
processing workflow in HEP experiments, such as ATLAS1 and CMS2 at the LHC.
Event generators are one of the large consumers of CPU time and their compu-
tational cost is predicted to increase with the High Luminosity upgrade of the
LHC, as more accurate theoretical predictions are required. To mitigate this ex-
pected increase in resource usage, there is an ongoing work to re-engineer the
Madgraph software to exploit modern hardware capabilities, such as CPUs with
multiple cores and wide vector registers.

CERN relies on the WLCG and in recent years many HPC centers have deployed
heterogeneous systems where the main computing power comes from GPUs. These
resources are currently under-utilized by the LHC experiments and the current
production version of MG5aMC is only developed to run on CPUs. There has been
previous work to port components of Madgraph to CUDA, but the effort never
reached production quality [11–15]. Therefore, together with improving the code
on modern CPU architectures, the project also includes the effort to port MG5aMC
to GPU. The project includes several different ports to run on NVIDIA, AMD and
Intel in several different languages and abstract layers, such as HIP, Alpaka, Kokkos
and SYCL. This thesis will focus on the C/C++ CUDA implementation.

MG5aMC acts as a unified framework to provide all the elements necessary for the
study of HEP collision processes, both within the Standard Model and beyond3.
It is designed as Python meta-code, that automatically generates the source code
for the relevant process. The source code can be generated in C++ and Python,
however the default is Fortran, which is used in production.

1https://atlas.cern/
2https://cms.cern/
3https://home.cern/science/physics/standard-model

Chapter 2: Background 12

L= −
1
4

FµνFµν

+ iψ̄�Dψ

+ψi yi jψ jφ + h.c.

+ |Dµφ|2 − V (φ)

Figure 2.4: A simplified Lagrangian representing the Standard Model of physics

Figure 2.5: A Feynman diagram showing a photon exchange

The code-generation part takes a given process and the corresponding Lagrangian
describing the physics model as input, determines the relevant Feynman diagrams,
which describe the behaviour and interactions of subatomic particles, and gener-
ates the source code, which can then be compiled and run. An example of a Lag-
rangian can be seen in Figure 2.4 and an example of a Feynman diagram can be
seen in Figure 2.5.

Some of the processes involve quarks. In quantum chromodynamics quarks have
an attribute called color, that can have three values. The more particles in the final
state of a process, the larger the pre-computed ’color matrix’ involved, so speeding
up this part of the code may not show up significantly in this test case, but can
give a significant performance boost as this code develops. It has been shown that
colour algebra can take up to 60% of the computational time [16].

2.2.2 The GPU Port

MG5aMC is an good candidate for a simple GPU port as almost all the numerical
operations for transforming the input data to the output data are the same for
generated events in the same sub-process. Because of the data parallelism, the
code can be implemented using lockstep processing on GPU. Therefore the en-
gineering effort so far has mostly focused on implementing every data processing
step into a function that can operate on multiple events.

In the CUDA implementation, each event is processed by one thread. When launch-

Chapter 2: Background 13

ing the program, three command-line inputs are given: the number of blocks per
grid, the number of threads per block and the number of iterations. The number
of events generated in one iteration will therefor be the product of the numbers
of blocks per grid and the number of threads per block and the product of this
number and the number of iterations gives the total number of events generated.

The code can be run with double or single precision. Double precision is the de-
fault, as it follows the choice of the production Fortran version to achieve the
required physics accuracy. Single precision was implemented to allow the code
to run on consumer grade GPUs, but it also allows for a much higher computing
performance when run on GPUs in data centres, as the GPUs usually have a lot
more single precision cores than double precision cores.

The GPU version currently uses the NVIDIA cuRAND library for random number
generation for the MC integration. It produces pseudo-random numbers, which
ensures a deterministic output. It is useful for development, but will eventually
be switched out for an algorithm that has been validated for LHC physics.

Chapter 3

Choosing the Workload and
Profiling it on CPU and GPU

The basic idea for the thesis was to utilize some feature of the new NVIDIA A100
GPU in collaboration with CERN. So, the first step was to find a suitable workload
that could benefit from features offered by the A100. This process will be de-
scribed in the following section. The last two sections describes how we profiled
the selected application kernel on CPU and GPU, respectively.

3.1 Choosing the Workload to Optimize

Most of the production code from CERN are huge programs, that has been de-
velopment and maintained for many years and very few of those are programs
utilizing GPUs. The challenge here was to find a GPU workload that didn’t have
an advanced setup or required a lot of knowledge to run it, but also not a too
simple program, with no real practical application or that it could not benefit
from the advanced features the A100 offers.

The first two candidates were Patatrack and Simpletrack. While they both have
’tracking’ in their name, they deal with two different types of ’tracking’ in the
LHC. The Patatrack workload [17] is part of the reconstruction step. It recon-
structs events chosen by a software trigger by ’tracking’ or reconstructing the path
of particles after a collision happens in the CMS experiment [18]. Simpletrack
[19] is a simplified version of SixTrack and part of the simulation step. Simple-
track/SixTrack tracks the long-term path of a particle through a high-energy ring,
such as the LHC [20].

After discussing both workloads with the programmers behind them, the conclu-
sion was that Patatrack was possible to use, but rather complicated to set up and
run. Meanwhile, Simpletrack was not very complicated, but because it was a sim-
plified version of the real algorithm, it didn’t have as much practical application

14

Chapter 3: Choosing the Workload and Profiling it on CPU and GPU 15

for CERN in its current version.

Another candidate was Madgraph4GPU [21]. After looking at the code and dis-
cussing with developers, it seemed to be the best choice as it was under active
development, had a minimal set up and was easy to run, was computationally
complex enough and had a real practical application. It did not come with a de-
tailed documentation, but it was possible to have active communication with the
developers which mitigated the problem a bit.

3.2 Becoming Familiar with the Workload

After deciding on the Madgraph workload, I needed to familiarize myself with
the code, which was not trivial, as large parts of it was auto-generated and thus
not as easy to read for humans. The developers explained their workflow of auto-
generating code by using the MG5aMC version to generate it and then they mod-
ified this code to use CUDA and then back-ported this to the MG5aMC and gen-
erated a new version, with the new changes, which they could further work and
improve on. So, to become familiar with the code, but also at the same time try to
discover hot-spots in it that could be optimized, I started with profiling both the
CPU and the GPU version of the auto-generated code.

My findings and experiences from this part of the work for this thesis became a
presentation that I held at the CERN openlab Technical Workshop [22] and can
be seen in appendix C, and my contribution to GPU part of the paper: HEPiX
benchmarking solution for WLCG computing resources [23].

3.3 CPU Profiling

I started by profiling the generated C++ CPU code from epoch 0, before any
changes were introduced to the code, with Valgrind. Valgrind was originally a
memory debugging tool, but today also provides profiling tools such as Callgrind.
I then used KCachegrind to visualize the results from Callgrind. When running the
code, the number given as the argument decides how many events are generated.
I started by creating only one event, then ran the code several times and increased
the number of events by a factor of 100 until the call graph stabilised at 1 million
events.

The command line calling sequence for Valgrind is shown in Figure 3.1 and the
result of that run is showed in figure 3.2.

Figure 3.2 shows that there are two main parts of the program: get_momenta and
the functions it calls and sigmaKin and the function it calls. Called functions are
showed as an arrow from the function that calls it to the function. Both main
functions are called 1 million times, the same amount as the number of events
generated.

Chapter 3: Choosing the Workload and Profiling it on CPU and GPU 16

Figure 3.1: Valgrind call from command line

Figure 3.2: The call graph of the CPU version of Madgraph generating 1 million
events, generated by the tool Callgrind in Valgrind visualized using Kcachegrind.

A number in percent is given for each of the functions: this shows the amount of
time spent in that function and the functions it calls, in relation to the time of
the entire program. For instance, sigmaKin uses 74% of the time, but calls cal-
culate_wavefunction which uses 71% of the time. This means that only roughly
3% is actually spent in sigmaKin. All the functions pre-fixed by MG5_sm are auto-
generated functions that depend on what process was chosen when generating
the code. _muldc3 is a C++ function that is used for multiplying floating point
complex numbers.

By running and profiling the CPU code, I discovered the structure of GitHub re-
pository, how to run the desired code version with different number of events, the
structure of the code and certain characteristics to look for in the GPU code. The
GPU version is similar in structure, but also includes the CPU version in the same
files split by pre-processor variables.

3.4 GPU Profiling

I then moved on to profiling the GPU version of the code. Here I chose to base
the profiling on epoch 1, as development had moved on to epoch 2, and epoch
1 was mostly stable. I used Nsight Systems for system-level profiling and Nsight
Compute for kernel-level profiling. The profiling was done on a V100 connected

Chapter 3: Choosing the Workload and Profiling it on CPU and GPU 17

to the host over a PCI Express link.

3.4.1 Nsight Systems

Profiling with Nsight Systems incurred a much larger overhead than the profiling
with Valgrind and Callgrind had done, and I could therefore only run with 12
iterations. However, this was representative enough. The command line call is
shown in figure 3.3.

Figure 3.3: Nsight Systems call from command line.

The argument given to the CPU program both indicated the number of iterations
and the number of events generated. Every CPU iteration, generated one event,
however on GPU each thread will each generate one event times the number of
iterations. I profiled the e+e−→ µ+µ− processes from epoch 1. Figure 3.4 shows
the complete result from profiling and it is possible to see the 12 iterations as the
12 vertical pink lines in the figure. Figure 3.5 shows a zoomed in version on one
of the iterations.

Figure 3.4: The complete result of profiling the e+e−→ µ+µ− process on Nsight
Systems.

The 3.5 figure shows that most of the time is spent on memory transfer, which
is the long horizontal pink line. The short blue lines are the kernels. So for the
e+e− → µ+µ− process, the calculations done are quite simple, compare to the
time it takes to do the memory transfer. However, I know that the g g → t t̄ g g
process is being developed in epoch 2, using the same kernels. So, I choose to
look closer at the largest kernel, which is SigmaKin, which will also be relevant
for the more advanced processes.

Chapter 3: Choosing the Workload and Profiling it on CPU and GPU 18

Figure 3.5: The result zooming in on one of the iterations of the e+e− → µ+µ−

process on Nsight Systems.

3.4.2 Nsight Compute

With Nsight Compute I only ran 1 iteration, as the profiler itself runs the kernel
enough times to get a stable result. The command line call is shown in 3.6.

Figure 3.6: Nsight Compute call from command line.

From the profiling done with Nsight Systems, I could see that the SigmaKin kernel
was a hot-spot. I therefore continued by profiling it in Nsight Compute to look at
it closer. Figure 3.7 and 3.8 show part of the result from the profiling. Clearly the
Fp64 pipline heavily used compared to the other pipelines and the application is
compute-bound not memory-bound.

Figure 3.7: The result of the profiling with Nsight Compute showing the SM vs
Memory usage.

After discussing my profiling of the code together with two of the developer of
Madgraph4GPU, we identified a part of the code that is a potential computational
hot-spot: a matrix-vector multiplication in the g g → t t̄ g g process. We came up
with the idea to try to optimize this spot as it also takes up part of the FP64
pipeline. The idea was to use the Tensor Cores of the A100, as it has double preci-
sion floating cores in contrast to the V100 which only has single precision Tensor

Chapter 3: Choosing the Workload and Profiling it on CPU and GPU 19

Figure 3.8: The result of the profiling with Nsight Compute showing the pipelines.

Cores. It is an ongoing discussion whether double precision is needed for accur-
ate enough results, but to mitigate the restrictions of only doing calculations in
double precision, the idea was to offload the calculations to the Tensor Cores as
an alternative.

Chapter 4

Implementation and Results on
the A100 GPU

This chapter details my implementation of the usage of Tensor Cores for the
matrix-vector multiplication identified in the last chapter. The chapter includes
details on my first, naive implementations, the problems with this and the im-
proved and final implementation, as well as some details on the code I used to
test features before implementing them in the Madgraph code. My implementa-
tions in their entirety can be found in appendix B.

4.1 Planning and Testing

The first step was to figure out if I could use a library that supported Tensor Cores
for easier implementation. I looked into cuBLAS [24] and CUTLASS [25], how-
ever both need to be launched from host, while the current structure of the code
required me to launch from within another kernel, called dynamic parallelism. It
is a possible plan for the future to split the large kernels into smaller pieces and
launch everything from host, however this was not in the scope of this thesis.

Since I could neither use cuBLAS or CUTLASS I used the wmma CUDA instructions.
These provide memory structures, called fragments, that handle the alignment
requirements for the matrices, as well as functions for executing the tensor cores.
Using these are mostly just filling out C++ CUDA templates.

Tensor cores only perform one specific operation: C = A∗B+C , where A, B and C
are matrices and they only takes very specific matrix sizes as input. The available
sizes depends on the precision. For double precision floating point there is only
one choice. Matrix A must be 8*4, matrix B must be 4*8 and the accumulator C
must be 8*8.

My initial implementation was a separate, standalone program using tensor cores,

20

Chapter 4: Implementation and Results on the A100 GPU 21

to avoid complicating it with the matrix and vector from the Madgraph program.
It was implemented in single precision, so that I would be able to test it on a
V100 GPU, as I had easier access to V100s than A100s. The code can be seen in
appendix B.1.

4.2 The First Implementation

The process g g → t t̄ g g, has a fixed size colour matrix of size 24*24, this matrix
is matrix A in my calculation. The Matrix B is not a matrix, but a column vector
of size 24. To fit the matrix and the vector into the Tensor Cores, the vector needs
to be padded and both need to be blocked. The vector is padded to 24*8 and the
complex number is split up into the real and imaginary component. Real numbers
were placed in the firs column and imaginary in the second, while the rest of the
columns were filled up with zeros. The listing 4.1 shows the blocking algorithm
and the figure 4.1 shows an illustration of how the Matrix A and B are blocked.

Code listing 4.1: Blocking algorithm used in the first implementation

int base_offset_a_row = 0;
int base_offset_a_col = 0;
int base_offset_a_block = 0;
int curr_offset_a_row = 0;
int curr_offset_a_col = 0;
int curr_offset_a_block = 0;
for (int blockrow = 0; blockrow < 3; blockrow++) {
for (int blockcol = 0; blockcol < 6; blockcol++) {
base_offset_a_row = blockrow*8;
base_offset_a_col = blockcol*4;
base_offset_a_block = 32*(6*blockrow + blockcol);
for (int row = 0; row < 8; row++) {
for (int col = 0; col < 4; col++) {
curr_offset_a_row = base_offset_a_row + row;
curr_offset_a_col = base_offset_a_col + col;
curr_offset_a_block = base_offset_a_block + row*4 + col;
A_block[curr_offset_a_block] = cf[curr_offset_a_row][curr_offset_a_col];

}
}

}

After blocking into sub-matrices that fit into the tensor core requirements, the
block matrices had dimensions of 3*6 and 6*1. The matrix blocks were stored
row-major in memory, block by block. To calculate the matrix product of the two
blocked matrices, 18 matrix multiplications were run on the tensor cores.

I elected to not use the accumulation function as that allowed me to run all 18
sub-matrix multiplications in parallel and store the results of the multiplications
separately, sub-matrix by sub-matrix in row major order. All matrix multiplica-
tions were launched together, with one thread block with 32 threads each. This
guarantees that every block can be executed as a warp, as required by the tensor
cores.

Chapter 4: Implementation and Results on the A100 GPU 22

Figure 4.1: Illustration showing the blocking of Matrix A and B

After the tensor core kernel finishes, the sub-matrix multiplications are summed
up into the final result block matrix of 3*1 blocks. Each of the blocks are the sum
of six matrix multiplication results. From this result matrix, the real and imaginary
numbers are extracted and put into a complex vector. This vector now contains
the result of the full matrix-vector multiplication. Finally, the complex numbers
are stored in the result vector are used to calculate meHelSum.

Since the Tensor Core kernel is called from another kernel, called dynamic paral-
lelism, the files need to be compiled with the flags -rdc=true and -lcudadevrt
to enable this.

To ensure that the code changes does not affect the calculations the output gives
out an average value of the results that can be compared between the original
and the modified code. Since the random number generator used in Madgraph is
using a deterministic seed, equal runs should give equal results.

4.3 The Final Implementation

After developing and testing the first version, some issues materialized.

When allocating the new memory I needed in the GPU kernel, I allocated onto the
heap, using malloc. The GPU only has 8MB of allocated heap memory by default
[26] and could thus only support 11 blocks of 32 threads before memory was used
up. The solution implemented was to stack allocate on the host before launching
the kernel.

Chapter 4: Implementation and Results on the A100 GPU 23

I also launched the Tensor Core kernels kernel by kernel in a for-loop. This was
very inefficient, so I changed the launch parameter to launch all the kernel at
the same time and removed the for-loop. Then I calculated the offsets inside the
tensor Core kernel using blockId.

Another issue is that all thread blocks the same matrix. As they all write the same
value, it is not a race condition. However, it is very inefficient and may also cause
weird behaviour. The best solution would be to do the blocking in its own kernel
launched from the host. Since restructuring the entire kernel was not in the scope
of this thesis, this has not been implemented.

After implementing the improvements, the modified code was profiled using Nsight
Compute and compared to the baseline Madgraph version. This is shown in figure
4.2 and 4.3. The code for the g g → t t̄ g g process is slightly different in structure
than the code for the e+e− → µ+µ− process. The sigmaKin kernel is split into
SigmaKin_goodhel and SigmnKin.

Figure 4.2: The profiling summary and the Compute Workload analysis of the
sigmaKin_goodhel kernel of the original Madgraph code compared to the Tensor
Core version of it

Chapter 4: Implementation and Results on the A100 GPU 24

Figure 4.3: The profiling summary and the Compute Workload analysis of the
sigmaKin kernel of the original Madgraph code compared to the Tensor Core
version of it

Chapter 5

Conclusion

The computational demands of the future, is ever increasing, especially at CERN
where they are working on utilizing modern hardware such as GPUs, both to speed
up their workloads, but also to utilize all the hardware they have available through
the Worldwide LHC Computing Grid (WLCG).

The work of this thesis sprung out from my technical student internship at CERNs
openlab and focused on selecting a suitable code to work with with and to use new
GPU features such as the A100’s FP64 CUDA cores for speeding up the application.

After careful evaluations of several candidates, the choice landed on the Mad-
Graph5_aMC@NLO workload, a physics event generator used at CERN. This ap-
plication includes kernel that are expected to increase with future upgrades.

My work expanded on the the current GPU version of the workload which is a
simple conversion of some of the parts of the CPU version. Many of the calcu-
lations in the code involve double precision complex numbers, over-utilizing the
FP64 pipeline in the GPU, while under-utilizing the others. The work of this thesis
therefore focused on investigating whether the code could be optimized by using
the new NVIDIA A100 GPU, which offers 64-bit floating point Tensor Cores.

The thesis work also included extensive profiling using Valgrind and Kcachegrind
on the CPU code as well as Nsight Systems and Nsight Compute on the GPU ker-
nels.

The Tensor Cores does not show up in the profiling done with Nsight Compute.
This is likely because the Tensor Core part is too small compared to all the FP64
calculations.

The Tensor Core code is likely slower, because it uses dynamic parallelism and
because the setup introduces a bit of overhead. For more complicated processes
with a larger pre-computed colour matrix, it might outweigh the overhead of using
tensor Cores. In the future when the large kernels are split up, dynamic parallelism

25

Chapter 5: Conclusion 26

can be removed and the code can then run faster, as more compiler optimizations
are then available.

Ideas for future work are listed in the following chapter.

5.1 Future work

Following is a list of several items for future work:

• Generalise the Tensor Core kernel so it can be used for both single and
double precision. Add pre-processors to check if the tensor core can be used
on the architecture it is run on.

• Split up the large kernels, so that everything is launched from the host, to
avoid the drawback of dynamic parallelism. Implement the blocking in its
own kernel launched from host.

• Backport the Tensor Core Madgraph code to the MC5aMC generator. Are
there any additional issues with the code, before this can be done?

• Share the blocked matrix between the Tensor Cores and FP64 cores. Find
the ideal split on how much gets sent to the tensor Cores and how much
gets sent to the FP64 cores This is possible with the way blocking done now.

Bibliography

[1] C. Larsen and C. A. Elster, Utilizing gpus on cluster computers, NTNU Master
thesis pre-project, Dr. Anne C. Elster advisor, Tor Fevang, Schlumnberg, co-
advisor, Dec. 2006.

[2] J. C. Meyer and A. C. Elster, ‘Performance modeling of heterogeneous sys-
tems,’ in 2010 IEEE International Symposium on Parallel Distributed Pro-
cessing, Workshops and Phd Forum (IPDPSW), 2010, pp. 1–4. DOI: 10.1109/
IPDPSW.2010.5470682.

[3] L. Bjertnes, J. O. Tørring and C. A. Elster, ‘Ls-cat: A large-scale cuda autotun-
ing dataset,’ IEEE International Conference on Applied Artificial Intelligence
(ICAPAI 2021), vol. 31, May 2021.

[4] Processing: What to record? https://home.cern/science/computing/
processing-what-record, Accessed: 2021-02-27.

[5] Computing, https://home.cern/science/computing, Accessed: 2021-02-
27.

[6] The Worldwide LHC Computing Grid (WLCG), https://home.cern/science/
computing/grid, Accessed: 2021-02-27.

[7] ‘CERN Openlab white paper on future ICT challenges in scientific research,’
CERN Openlab, Tech. Rep., 2017.

[8] Giordano, Domenico, Alef, Manfred and Michelotto, Michele, ‘Next Gener-
ation of HEP CPU Benchmarks,’ EPJ Web Conf., vol. 214, p. 08 011, 2019.
DOI: 10.1051/epjconf/201921408011. [Online]. Available: https://doi.
org/10.1051/epjconf/201921408011.

[9] A. Valassi, S. Roiser, O. Mattelaer and S. Hageboeck, Design and engineering
of a simplified workflow execution for the mg5amc event generator on gpus
and vector cpus, 2021. arXiv: 2106.12631 [physics.comp-ph].

[10] CUDA C++ Programming Guide, NVIDIA, https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html, Accessed: 2021-07-05.

27

https://doi.org/10.1109/IPDPSW.2010.5470682
https://doi.org/10.1109/IPDPSW.2010.5470682
https://home.cern/science/computing/processing-what-record
https://home.cern/science/computing/processing-what-record
https://home.cern/science/computing
https://home.cern/science/computing/grid
https://home.cern/science/computing/grid
https://doi.org/10.1051/epjconf/201921408011
https://doi.org/10.1051/epjconf/201921408011
https://doi.org/10.1051/epjconf/201921408011
https://arxiv.org/abs/2106.12631
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Bibliography 28

[11] K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, ‘Fast
calculation of helas amplitudes using graphics processing unit (gpu),’ The
European Physical Journal C, vol. 66, no. 3-4, pp. 477–492, Mar. 2010, ISSN:
1434-6052. DOI: 10.1140/epjc/s10052-010-1276-8. [Online]. Available:
http://dx.doi.org/10.1140/epjc/s10052-010-1276-8.

[12] K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, ‘Cal-
culation of helas amplitudes for qcd processes using graphics processing
unit (gpu),’ The European Physical Journal C, vol. 70, no. 1-2, pp. 513–524,
Oct. 2010, ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-010-1465-5.
[Online]. Available: http://dx.doi.org/10.1140/epjc/s10052-010-
1465-5.

[13] K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura and T. Stelzer, ‘Fast compu-
tation of madgraph amplitudes on graphics processing unit (gpu),’ The
European Physical Journal C, vol. 73, no. 11, Nov. 2013, ISSN: 1434-6052.
DOI: 10.1140/epjc/s10052-013-2608-2. [Online]. Available: http://dx.
doi.org/10.1140/epjc/s10052-013-2608-2.

[14] J. Kanzaki, ‘Monte carlo integration on gpu,’ The European Physical Journal
C, vol. 71, no. 2, Feb. 2011, ISSN: 1434-6052. DOI: 10.1140/epjc/s10052-
011-1559-8. [Online]. Available: http://dx.doi.org/10.1140/epjc/
s10052-011-1559-8.

[15] J. Kanzaki, ‘Application of graphics processing unit (gpu) to software in
elementary particle/high energy physics field,’ Procedia Computer Science,
vol. 4, pp. 869–877, 2011, Proceedings of the International Conference
on Computational Science, ICCS 2011, ISSN: 1877-0509. DOI: https://
doi.org/10.1016/j.procs.2011.04.092. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050911001505.

[16] K. Ostrolenk and O. Mattelaer, Speeding up madgraph5_amc@nlo, 2021.
arXiv: 2102.00773 [hep-ph].

[17] Patatrack – Git repository, https :/ / github. com /cms - patatrack, Ac-
cessed: 2021-07-05.

[18] A. Bocci, V. Innocente, M. Kortelainena and M. R. F. Pantaleo1, Cms pata-
track project, https://indico.cern.ch/event/759388/contributions/
3303050/attachments/1814366/2964775/slides_mk_patatrack_20190319.
pdf, 2019.

[19] Simpletrack – Git repository, https://github.com/rdemaria/simpletrack,
Accessed: 2021-07-05.

[20] SixTrack - 6D tracking Code – Git repository, http://sixtrack.web.cern.
ch/SixTrack/, Accessed: 2021-07-05.

[21] Madgraph4GPU – Git Repository, https://github.com/madgraph5/madgraph4gpu,
Accessed: 2021-07-05.

https://doi.org/10.1140/epjc/s10052-010-1276-8
http://dx.doi.org/10.1140/epjc/s10052-010-1276-8
https://doi.org/10.1140/epjc/s10052-010-1465-5
http://dx.doi.org/10.1140/epjc/s10052-010-1465-5
http://dx.doi.org/10.1140/epjc/s10052-010-1465-5
https://doi.org/10.1140/epjc/s10052-013-2608-2
http://dx.doi.org/10.1140/epjc/s10052-013-2608-2
http://dx.doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.1140/epjc/s10052-011-1559-8
https://doi.org/10.1140/epjc/s10052-011-1559-8
http://dx.doi.org/10.1140/epjc/s10052-011-1559-8
http://dx.doi.org/10.1140/epjc/s10052-011-1559-8
https://doi.org/https://doi.org/10.1016/j.procs.2011.04.092
https://doi.org/https://doi.org/10.1016/j.procs.2011.04.092
https://www.sciencedirect.com/science/article/pii/S1877050911001505
https://www.sciencedirect.com/science/article/pii/S1877050911001505
https://arxiv.org/abs/2102.00773
https://github.com/cms-patatrack
https://indico.cern.ch/event/759388/contributions/3303050/attachments/1814366/2964775/slides_mk_patatrack_20190319.pdf
https://indico.cern.ch/event/759388/contributions/3303050/attachments/1814366/2964775/slides_mk_patatrack_20190319.pdf
https://indico.cern.ch/event/759388/contributions/3303050/attachments/1814366/2964775/slides_mk_patatrack_20190319.pdf
https://github.com/rdemaria/simpletrack
http://sixtrack.web.cern.ch/SixTrack/
http://sixtrack.web.cern.ch/SixTrack/
https://github.com/madgraph5/madgraph4gpu

Bibliography 29

[22] I. Brevik Høgstøyl, Profiling code on nvidia gpus, Presentation at CERN
OpenLab Workshop March 9, 2021. Attached as Appendix C.

[23] M. F. Medeiros, M. Alef, L. Atzori, J.-M. Barbet, I. B. Høgstøyl, O. Dat-
skova, R. De Maria, D. Giordano, M. Girone, C. Hollowell et al., ‘HEPiX
benchmarking solution for WLCG computing resources,’ [Online]. Avail-
able: http://heprcdocs.phys.uvic.ca/papers/CPU_Benchmark_CHEP2021.
pdf.

[24] cuBLAS, https://docs.nvidia.com/cuda/cublas/index.html, Accessed:
2021-07-05.

[25] CUTLASS, https://developer.nvidia.com/blog/cutlass- linear-
algebra-cuda/, Accessed: 2021-07-05.

[26] Dynamic Global Memory Allocation and Operations, https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html#dynamic-global-
memory-allocation-and-operations, Accessed: 2021-07-05.

[27] A. Valassi, M. Alef, J.-M. Barbet, O. Datskova, R. De Maria, M. Fontes Medeiros,
D. Giordano, C. Grigoras, C. Hollowell, M. Javurkova and et al., ‘Using hep
experiment workflows for the benchmarking and accounting of wlcg com-
puting resources,’ EPJ Web of Conferences, vol. 245, C. Doglioni, D. Kim,
G. Stewart, L. Silvestris, P. Jackson and W. Kamleh, Eds., p. 07 035, 2020,
ISSN: 2100-014X. DOI: 10.1051/epjconf/202024507035. [Online]. Avail-
able: http://dx.doi.org/10.1051/epjconf/202024507035.

[28] What is a Container? https://www.docker.com/resources/what-container,
Accessed: 2021-04-01.

http://heprcdocs.phys.uvic.ca/papers/CPU_Benchmark_CHEP2021.pdf
http://heprcdocs.phys.uvic.ca/papers/CPU_Benchmark_CHEP2021.pdf
https://docs.nvidia.com/cuda/cublas/index.html
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/cutlass-linear-algebra-cuda/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#dynamic-global-memory-allocation-and-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#dynamic-global-memory-allocation-and-operations
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#dynamic-global-memory-allocation-and-operations
https://doi.org/10.1051/epjconf/202024507035
http://dx.doi.org/10.1051/epjconf/202024507035
https://www.docker.com/resources/what-container

Appendix A

Benchmarking and Containers

This appendix includes some of the early reflections the author did after reading
up on containers for HPC work-loads.

A.1 Containers

As described in the previous section, CERN went from using the CERN Unit, which
consisted of HEP workloads, to using the SPEC benchmarking suite. This was due
to the fact that it was to deemed to complicated to capture all of the software and
data dependencies of a HEP application in a benchmark. However, today CERN
chooses again to turn to its own workloads to get representative benchmarks,
as technologies available today can solve the problems that seemed unsolvable
30 years ago [27]. One of these technologies are OS-level virtualization, more
commonly known as containers. A container is described as a lightweight and
standalone software package that is ready to be executed as it includes everything
one needs to run: code, runtime, system tools, system libraries and settings [28].
This enables packaging and distribution of HEP workloads with all dependencies
and ensures reproducible of the results when running on different machines.

A.1.1 Docker versus Singularity

Docker was the first major container service and is today still one of the biggest.
It has however not been embraced by the majority of the HPC community. HPC
centers have strict security to ensure the protection of client data as several users
jobs may be simultaneously executed on the same node and to ensure this all jobs
must be executed unprivileged(cite hpc vchep paper). Docker containers execute
with the help of docker deamon, which previously always has run as root. Docker
has been working on a rootless mode, however in-between many have turned to
Singularity instead.

Singularity is another container service, designed from the beginning to be used in

30

Chapter A: Benchmarking and Containers 31

scientific computing. It runs with the same privileges as the host user, that means
that the container will only have root privileges if the host is root outside the
container. It is compliant with the Open Container Initiative (OCI) and can nat-
ively translate Docker Images. In addition, it manages seamless integration with
a number of resource management and job scheduling systems, where Docker
would require modifications.

A.1.2 Usage and build

For the current HEP workloads, both Docker and Singularity can be used. How-
ever, images are only built as docker images in the source code. This is because
Docker images can be converted to the Singularity Image Format (SIF), but not
the other way around, as Singularity from the beginning has been focusing on
interoperability with Docker.

The docker image is built in layers. This is done to enable efficient caching. The
first layer is the one least updated and the last layer is the most updated. Layers
are useful for caching, since a layer that is not changed can be reused if non of
the layers preceding it are changed as well. When an image is converted to a SIF,
the layers are squashed into each other, but the SIF is cached as well, so as long as
there are no changes it re-runs fast. Since Singularity images are only one layer,
they require no building as Docker does.

There are also discussions of branching out to other container services in the fu-
ture, such as Podman 1.

A.2 Containers and GPUs

While containment technology for CPU related tasks has been around for some
time, support for host hardware, such as GPU accelerators, is a relatively new
addition. In this nascent development, harnessing host peripherals requires ad-
ditional configuration to a standard container call to inform the container of the
resources outside the container runtime. For GPUs, this requires that a driver be
present and loaded into the host kernel, and exposed to the container runtime
and container being launched. Within the container, a library compatible with the
exposed host hardware driver must be included, as there is no uniform way to
expose host hardware libraries. This adds additional overhead to container devel-
opment and image size. This becomes problematic when a host GPU architecture
is unknown, resulting in many images maintained for a variety of accelerator ar-
chitectures, or many libraries being included in a single image with the hopes of
supporting more hardware.

1https://podman.io/

Appendix B

Code Implementations

B.1 Code Used for Testing

B.1.1 Single-precision Tensor Core

Code listing B.1: Test code for a single-precision Tensor Core matrix multiplica-
tion using 16*16 size matrices.

1 #include <mma.h>
2 #include <iostream>
3
4 using namespace nvcuda;
5
6 __global__ void wmma_ker(half *a, half *b, float *c) {
7 // Declare the fragments
8 wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
9 wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::row_major> b_frag;

10 wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag;
11
12 // Initialize the output to zero
13 wmma::fill_fragment(c_frag, 0.0f);
14
15 // Load the inputs
16 wmma::load_matrix_sync(a_frag, a, 16);
17 wmma::load_matrix_sync(b_frag, b, 16);
18
19 // Perform the matrix multiplication
20 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
21
22 // Store the output
23 wmma::store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);
24 }
25
26 __global__ void setup(float* res) {
27 half *d_a, *h_a, *d_b, *h_b;
28 float *d_c;
29 h_b = new half[16*16];
30 h_a = new half[16*16];
31 d_a = (half*) malloc(16*16*sizeof(half));
32 d_b = (half*) malloc(16*16*sizeof(half));

32

Chapter B: Code Implementations 33

33 d_c = (float*) malloc(16*16*sizeof(float));
34 for (int i = 0; i < 16*16; i++) {
35 h_a[i] = 1.0f;
36 h_b[i] = 1.0f;}
37 memcpy(d_a, h_a, 16*16*sizeof(half));
38 memcpy(d_b, h_b, 16*16*sizeof(half));
39 wmma_ker<<<1,32>>>(d_a, d_b, d_c);
40 for (int i = 0; i < 16*16; i++) {
41 res[i] = d_c[i];
42 }
43 }
44
45 int main(){
46 float res[16*16] = {0};
47 float *res_d;
48 cudaMalloc(&res_d, 16*16*sizeof(float));
49 cudaMemcpy(res_d, res, 16*16*sizeof(float), cudaMemcpyHostToDevice);
50 setup<<<1,1>>>(res_d);
51 cudaMemcpy(res, res_d, 16*16*sizeof(float), cudaMemcpyDeviceToHost);
52 for (int i = 0; i < 16*16; i++) std::cout << res[i] << ",";
53 std::cout << std::endl;
54 cudaFree(res_d);
55 }

B.1.2 Blocking Algorithm Testing

Code listing B.2: Test code to validate the blocking algorithm for both one- and
two dimensional matrices, using colour matrix from Madgraph.

1 #include <iostream>
2
3 void printMatrixDouble(double* A, int m, int n) {
4 for(int row = 0; row < m; row++) {
5 for(int col = 0; col < n; col++) {
6 std::cout << A[row*n + col] << ",␣";
7 }
8 std::cout << "\n";
9 }

10 std::cout << "\n";
11 }
12
13 int main(void) {
14
15 const int a_rows = 24;
16 const int a_cols = 24;
17
18 double A_1[24][24] = {{512, -64, -64, 8, 8, 80, -64, 8,
19 8, -1, -1, -10, 8, -1, 80, -10, 71, 62, -1, -10, -10, 62, 62, -28}, {-64,
20 512, 8, 80, -64, 8, 8, -64, -1, -10, 8, -1, -1, -10, -10, 62, 62, -28, 8,
21 -1, 80, -10, 71, 62}, {-64, 8, 512, -64, 80, 8, 8, -1, 80, -10, 71, 62,
22 -64, 8, 8, -1, -1, -10, -10, -1, 62, -28, -10, 62}, {8, 80, -64, 512, 8,
23 -64, -1, -10, -10, 62, 62, -28, 8, -64, -1, -10, 8, -1, -1, 8, 71, 62,
24 80, -10}, {8, -64, 80, 8, 512, -64, -1, 8, 71, 62, 80, -10, -10, -1, 62,
25 -28, -10, 62, -64, 8, 8, -1, -1, -10}, {80, 8, 8, -64, -64, 512, -10, -1,
26 62, -28, -10, 62, -1, 8, 71, 62, 80, -10, 8, -64, -1, -10, 8, -1}, {-64,
27 8, 8, -1, -1, -10, 512, -64, -64, 8, 8, 80, 80, -10, 8, -1, 62, 71, -10,
28 62, -1, -10, -28, 62}, {8, -64, -1, -10, 8, -1, -64, 512, 8, 80, -64, 8,
29 -10, 62, -1, -10, -28, 62, 80, -10, 8, -1, 62, 71}, {8, -1, 80, -10, 71,

Chapter B: Code Implementations 34

30 62, -64, 8, 512, -64, 80, 8, 8, -1, -64, 8, -10, -1, 62, -28, -10, -1,
31 62, -10}, {-1, -10, -10, 62, 62, -28, 8, 80, -64, 512, 8, -64, -1, -10,
32 8, -64, -1, 8, 71, 62, -1, 8, -10, 80}, {-1, 8, 71, 62, 80, -10, 8, -64,
33 80, 8, 512, -64, 62, -28, -10, -1, 62, -10, 8, -1, -64, 8, -10, -1},
34 {-10, -1, 62, -28, -10, 62, 80, 8, 8, -64, -64, 512, 71, 62, -1, 8, -10,
35 80, -1, -10, 8, -64, -1, 8}, {8, -1, -64, 8, -10, -1, 80, -10, 8, -1, 62,
36 71, 512, -64, -64, 8, 8, 80, 62, -10, -28, 62, -1, -10}, {-1, -10, 8,
37 -64, -1, 8, -10, 62, -1, -10, -28, 62, -64, 512, 8, 80, -64, 8, -10, 80,
38 62, 71, 8, -1}, {80, -10, 8, -1, 62, 71, 8, -1, -64, 8, -10, -1, -64, 8,
39 512, -64, 80, 8, -28, 62, 62, -10, -10, -1}, {-10, 62, -1, -10, -28, 62,
40 -1, -10, 8, -64, -1, 8, 8, 80, -64, 512, 8, -64, 62, 71, -10, 80, -1, 8},
41 {71, 62, -1, 8, -10, 80, 62, -28, -10, -1, 62, -10, 8, -64, 80, 8, 512,
42 -64, -1, 8, -10, -1, -64, 8}, {62, -28, -10, -1, 62, -10, 71, 62, -1, 8,
43 -10, 80, 80, 8, 8, -64, -64, 512, -10, -1, -1, 8, 8, -64}, {-1, 8, -10,
44 -1, -64, 8, -10, 80, 62, 71, 8, -1, 62, -10, -28, 62, -1, -10, 512, -64,
45 -64, 8, 8, 80}, {-10, -1, -1, 8, 8, -64, 62, -10, -28, 62, -1, -10, -10,
46 80, 62, 71, 8, -1, -64, 512, 8, 80, -64, 8}, {-10, 80, 62, 71, 8, -1, -1,
47 8, -10, -1, -64, 8, -28, 62, 62, -10, -10, -1, -64, 8, 512, -64, 80, 8},
48 {62, -10, -28, 62, -1, -10, -10, -1, -1, 8, 8, -64, 62, 71, -10, 80, -1,
49 8, 8, 80, -64, 512, 8, -64}, {62, 71, -10, 80, -1, 8, -28, 62, 62, -10,
50 -10, -1, -1, 8, -10, -1, -64, 8, 8, -64, 80, 8, 512, -64}, {-28, 62, 62,
51 -10, -10, -1, 62, 71, -10, 80, -1, 8, -10, -1, -1, 8, 8, -64, 80, 8, 8,
52 -64, -64, 512}};
53
54 double A_2[24*24] = {512, -64, -64, 8, 8, 80, -64, 8,
55 8, -1, -1, -10, 8, -1, 80, -10, 71, 62, -1, -10, -10, 62, 62, -28, -64,
56 512, 8, 80, -64, 8, 8, -64, -1, -10, 8, -1, -1, -10, -10, 62, 62, -28, 8,
57 -1, 80, -10, 71, 62, -64, 8, 512, -64, 80, 8, 8, -1, 80, -10, 71, 62,
58 -64, 8, 8, -1, -1, -10, -10, -1, 62, -28, -10, 62, 8, 80, -64, 512, 8,
59 -64, -1, -10, -10, 62, 62, -28, 8, -64, -1, -10, 8, -1, -1, 8, 71, 62,
60 80, -10, 8, -64, 80, 8, 512, -64, -1, 8, 71, 62, 80, -10, -10, -1, 62,
61 -28, -10, 62, -64, 8, 8, -1, -1, -10, 80, 8, 8, -64, -64, 512, -10, -1,
62 62, -28, -10, 62, -1, 8, 71, 62, 80, -10, 8, -64, -1, -10, 8, -1, -64,
63 8, 8, -1, -1, -10, 512, -64, -64, 8, 8, 80, 80, -10, 8, -1, 62, 71, -10,
64 62, -1, -10, -28, 62, 8, -64, -1, -10, 8, -1, -64, 512, 8, 80, -64, 8,
65 -10, 62, -1, -10, -28, 62, 80, -10, 8, -1, 62, 71, 8, -1, 80, -10, 71,
66 62, -64, 8, 512, -64, 80, 8, 8, -1, -64, 8, -10, -1, 62, -28, -10, -1,
67 62, -10, -1, -10, -10, 62, 62, -28, 8, 80, -64, 512, 8, -64, -1, -10,
68 8, -64, -1, 8, 71, 62, -1, 8, -10, 80, -1, 8, 71, 62, 80, -10, 8, -64,
69 80, 8, 512, -64, 62, -28, -10, -1, 62, -10, 8, -1, -64, 8, -10, -1,
70 -10, -1, 62, -28, -10, 62, 80, 8, 8, -64, -64, 512, 71, 62, -1, 8, -10,
71 80, -1, -10, 8, -64, -1, 8, 8, -1, -64, 8, -10, -1, 80, -10, 8, -1, 62,
72 71, 512, -64, -64, 8, 8, 80, 62, -10, -28, 62, -1, -10, -1, -10, 8,
73 -64, -1, 8, -10, 62, -1, -10, -28, 62, -64, 512, 8, 80, -64, 8, -10, 80,
74 62, 71, 8, -1, 80, -10, 8, -1, 62, 71, 8, -1, -64, 8, -10, -1, -64, 8,
75 512, -64, 80, 8, -28, 62, 62, -10, -10, -1, -10, 62, -1, -10, -28, 62,
76 -1, -10, 8, -64, -1, 8, 8, 80, -64, 512, 8, -64, 62, 71, -10, 80, -1, 8,
77 71, 62, -1, 8, -10, 80, 62, -28, -10, -1, 62, -10, 8, -64, 80, 8, 512,
78 -64, -1, 8, -10, -1, -64, 8, 62, -28, -10, -1, 62, -10, 71, 62, -1, 8,
79 -10, 80, 80, 8, 8, -64, -64, 512, -10, -1, -1, 8, 8, -64, -1, 8, -10,
80 -1, -64, 8, -10, 80, 62, 71, 8, -1, 62, -10, -28, 62, -1, -10, 512, -64,
81 -64, 8, 8, 80, -10, -1, -1, 8, 8, -64, 62, -10, -28, 62, -1, -10, -10,
82 80, 62, 71, 8, -1, -64, 512, 8, 80, -64, 8, -10, 80, 62, 71, 8, -1, -1,
83 8, -10, -1, -64, 8, -28, 62, 62, -10, -10, -1, -64, 8, 512, -64, 80, 8,
84 62, -10, -28, 62, -1, -10, -10, -1, -1, 8, 8, -64, 62, 71, -10, 80, -1,
85 8, 8, 80, -64, 512, 8, -64, 62, 71, -10, 80, -1, 8, -28, 62, 62, -10,
86 -10, -1, -1, 8, -10, -1, -64, 8, 8, -64, 80, 8, 512, -64, -28, 62, 62,
87 -10, -10, -1, 62, 71, -10, 80, -1, 8, -10, -1, -1, 8, 8, -64, 80, 8, 8,
88 -64, -64, 512};
89

Chapter B: Code Implementations 35

90 double* A_block_1 = (double*) malloc(a_rows*a_cols*sizeof(double));
91 for (int i=0;i<a_rows*a_cols; i++) A_block_1[i]=0;
92
93 double* A_block_2 = (double*) malloc(a_rows*a_cols*sizeof(double));
94 for (int i=0;i<a_rows*a_cols; i++) A_block_2[i]=0;
95
96 int base_offset_a_row = 0;
97 int base_offset_a_col = 0;
98 int base_offset_a_block = 0;
99 int curr_offset_a_row = 0;

100 int curr_offset_a_col = 0;
101 int curr_offset_a_block = 0;
102 for (int blockrow=0; blockrow<3; blockrow++) {
103 for (int blockcol=0; blockcol<6; blockcol++) {
104 base_offset_a_row = blockrow*8;
105 base_offset_a_col = blockcol*4;
106 base_offset_a_block = 32*(6*blockrow + blockcol);
107 for (int row=0; row<8; row++) {
108 for (int col=0; col<4;col++) {
109 curr_offset_a_row = base_offset_a_row + row;
110 curr_offset_a_col = base_offset_a_col + col;
111 curr_offset_a_block = base_offset_a_block + row*4 + col;
112 A_block_1[curr_offset_a_block] = A_1[curr_offset_a_row][curr_offset_a_col];
113 }
114 }
115 }
116 }
117
118 int curr_offset_a = 0;
119 int base_offset_a = 0;
120 for (int blockrow=0; blockrow<3; blockrow++) {
121 for (int blockcol=0; blockcol<6; blockcol++) {
122 base_offset_a = blockrow*8*a_cols + blockcol*4;
123 base_offset_a_block = 32*(6*blockrow+blockcol);
124 for (int row=0; row<8; row++) {
125 for (int col=0; col<4;col++) {
126 curr_offset_a = base_offset_a + row*a_cols + col;
127 curr_offset_a_block = base_offset_a_block + row*4 + col;
128 A_block_2[curr_offset_a_block] = A_2[curr_offset_a];
129 }
130 }
131 }
132 }
133 int acc = 0;
134 for(int i=0; i<24*24; i++) {
135 acc = A_block_1[i] - A_block_2[i];
136 }
137
138 std::cout << acc;
139
140 }

B.1.3 Complete Double-Precision Test Code using Tensor Cores

Code listing B.3: Complete test code using colour matrix from Madgraph doing
blocking, padding and Tensor Core matrix multiplication.

1 #include <complex>

Chapter B: Code Implementations 36

2 #include <iostream>
3 #include <cstring>
4
5 #include "mma.h"
6 #include <thrust/complex.h>
7
8 using namespace nvcuda;
9

10 typedef thrust::complex<double> cxtype;
11
12 __global__ void wmma_ker(double *a, double *b, double*c) {
13
14 int a_offset = blockIdx.x*32;
15 int b_offset = (blockIdx.x%6)*32;
16 int c_offset = blockIdx.x*64;
17
18 // Declare fragments
19 wmma::fragment<wmma::matrix_a, 8, 8, 4, double, wmma::row_major> a_frag;
20 wmma::fragment<wmma::matrix_b, 8, 8, 4, double, wmma::row_major> b_frag;
21 wmma::fragment<wmma::accumulator, 8, 8, 4, double> c_frag;
22
23 // Fill accumulator matrix with 0s
24 wmma::fill_fragment(c_frag, 0.0);
25
26 // Load inputs into factor fragments
27 wmma::load_matrix_sync(a_frag, a+a_offset, 4);
28 wmma::load_matrix_sync(b_frag, b+b_offset, 8);
29
30 // Do matrix multiplication C = A*B+C
31 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
32
33 // Store output
34 wmma::store_matrix_sync(c+c_offset, c_frag, 8, wmma::mem_row_major);
35 }
36
37 void printMatrixCX(cxtype* A, int m, int n) {
38 for(int row = 0; row < m; row++) {
39 for(int col = 0; col < n; col++) {
40 std::cout << A[row*n + col] << ",␣";
41 }
42 std::cout << "\n";
43 }
44 std::cout << "\n";
45 }
46
47 void printMatrixDouble(double* A, int m, int n) {
48 for(int row = 0; row < m; row++) {
49 for(int col = 0; col < n; col++) {
50 std::cout << A[row*n + col] << ",␣";
51 }
52 std::cout << "\n";
53 }
54 std::cout << "\n";
55 }
56
57 __global__ void matrixVectorMultiply(cxtype* res, double* meHelSum, double* A_block, double* B, double* C) {
58
59 const unsigned int a_rows = 24;
60 const unsigned int a_cols = 24;
61 const unsigned int block_matrix_rows = 3;

Chapter B: Code Implementations 37

62 const unsigned int block_matrix_cols = 6;
63 const unsigned int block_rows = 8;
64 const unsigned int block_cols = 4;
65
66 double A[a_rows][a_cols] = {{512, -64, -64, 8, 8, 80, -64, 8,
67 8, -1, -1, -10, 8, -1, 80, -10, 71, 62, -1, -10, -10, 62, 62, -28}, {-64,
68 512, 8, 80, -64, 8, 8, -64, -1, -10, 8, -1, -1, -10, -10, 62, 62, -28, 8,
69 -1, 80, -10, 71, 62}, {-64, 8, 512, -64, 80, 8, 8, -1, 80, -10, 71, 62,
70 -64, 8, 8, -1, -1, -10, -10, -1, 62, -28, -10, 62}, {8, 80, -64, 512, 8,
71 -64, -1, -10, -10, 62, 62, -28, 8, -64, -1, -10, 8, -1, -1, 8, 71, 62,
72 80, -10}, {8, -64, 80, 8, 512, -64, -1, 8, 71, 62, 80, -10, -10, -1, 62,
73 -28, -10, 62, -64, 8, 8, -1, -1, -10}, {80, 8, 8, -64, -64, 512, -10, -1,
74 62, -28, -10, 62, -1, 8, 71, 62, 80, -10, 8, -64, -1, -10, 8, -1}, {-64,
75 8, 8, -1, -1, -10, 512, -64, -64, 8, 8, 80, 80, -10, 8, -1, 62, 71, -10,
76 62, -1, -10, -28, 62}, {8, -64, -1, -10, 8, -1, -64, 512, 8, 80, -64, 8,
77 -10, 62, -1, -10, -28, 62, 80, -10, 8, -1, 62, 71}, {8, -1, 80, -10, 71,
78 62, -64, 8, 512, -64, 80, 8, 8, -1, -64, 8, -10, -1, 62, -28, -10, -1,
79 62, -10}, {-1, -10, -10, 62, 62, -28, 8, 80, -64, 512, 8, -64, -1, -10,
80 8, -64, -1, 8, 71, 62, -1, 8, -10, 80}, {-1, 8, 71, 62, 80, -10, 8, -64,
81 80, 8, 512, -64, 62, -28, -10, -1, 62, -10, 8, -1, -64, 8, -10, -1},
82 {-10, -1, 62, -28, -10, 62, 80, 8, 8, -64, -64, 512, 71, 62, -1, 8, -10,
83 80, -1, -10, 8, -64, -1, 8}, {8, -1, -64, 8, -10, -1, 80, -10, 8, -1, 62,
84 71, 512, -64, -64, 8, 8, 80, 62, -10, -28, 62, -1, -10}, {-1, -10, 8,
85 -64, -1, 8, -10, 62, -1, -10, -28, 62, -64, 512, 8, 80, -64, 8, -10, 80,
86 62, 71, 8, -1}, {80, -10, 8, -1, 62, 71, 8, -1, -64, 8, -10, -1, -64, 8,
87 512, -64, 80, 8, -28, 62, 62, -10, -10, -1}, {-10, 62, -1, -10, -28, 62,
88 -1, -10, 8, -64, -1, 8, 8, 80, -64, 512, 8, -64, 62, 71, -10, 80, -1, 8},
89 {71, 62, -1, 8, -10, 80, 62, -28, -10, -1, 62, -10, 8, -64, 80, 8, 512,
90 -64, -1, 8, -10, -1, -64, 8}, {62, -28, -10, -1, 62, -10, 71, 62, -1, 8,
91 -10, 80, 80, 8, 8, -64, -64, 512, -10, -1, -1, 8, 8, -64}, {-1, 8, -10,
92 -1, -64, 8, -10, 80, 62, 71, 8, -1, 62, -10, -28, 62, -1, -10, 512, -64,
93 -64, 8, 8, 80}, {-10, -1, -1, 8, 8, -64, 62, -10, -28, 62, -1, -10, -10,
94 80, 62, 71, 8, -1, -64, 512, 8, 80, -64, 8}, {-10, 80, 62, 71, 8, -1, -1,
95 8, -10, -1, -64, 8, -28, 62, 62, -10, -10, -1, -64, 8, 512, -64, 80, 8},
96 {62, -10, -28, 62, -1, -10, -10, -1, -1, 8, 8, -64, 62, 71, -10, 80, -1,
97 8, 8, 80, -64, 512, 8, -64}, {62, 71, -10, 80, -1, 8, -28, 62, 62, -10,
98 -10, -1, -1, 8, -10, -1, -64, 8, 8, -64, 80, 8, 512, -64}, {-28, 62, 62,
99 -10, -10, -1, 62, 71, -10, 80, -1, 8, -10, -1, -1, 8, 8, -64, 80, 8, 8,

100 -64, -64, 512}};
101
102 cxtype b[24];
103 for(int i=0; i<24;i++) {
104 b[i] = cxtype(i, i*2);
105 }
106
107 // STEP 1: PAD VECTOR B TO MATRIX
108 const int paddedWidth = 8; // Width of padded matrix
109 for (int i=0; i<a_cols*paddedWidth; i++) B[i]=0;
110 for (int row=0; row < a_cols; row++) {
111 B[paddedWidth*row+0] = b[row].real();
112 B[paddedWidth*row+1] = b[row].imag();
113 }
114
115 // STEP 2: BLOCKING
116 int base_offset_a_row = 0;
117 int base_offset_a_col = 0;
118 int base_offset_a_block = 0;
119 int curr_offset_a_row = 0;
120 int curr_offset_a_col = 0;
121 int curr_offset_a_block = 0;

Chapter B: Code Implementations 38

122 for (int blockrow=0; blockrow<block_matrix_rows; blockrow++) {
123 for (int blockcol=0; blockcol<block_matrix_cols; blockcol++) {
124 base_offset_a_row = blockrow*block_rows;
125 base_offset_a_col = blockcol*block_cols;
126 base_offset_a_block = block_rows*block_cols*(block_matrix_cols*blockrow + blockcol);
127 for (int row=0; row<block_rows; row++) {
128 for (int col=0; col<block_cols;col++) {
129 curr_offset_a_row = base_offset_a_row + row;
130 curr_offset_a_col = base_offset_a_col + col;
131 curr_offset_a_block = base_offset_a_block + row*block_cols + col;
132 A_block[curr_offset_a_block] = A[curr_offset_a_row][curr_offset_a_col];
133 }
134 }
135 }
136 }
137
138 // STEP 3: USE TENSOR CORES
139 wmma_ker<<<18,32>>>(A_block, B, C);
140 cudaDeviceSynchronize();
141
142 // STEP 4: SUM TENSOR CORE RESULT INTO FINAL RESULT MATRIX
143 double real_sum = 0;
144 double imag_sum = 0;
145 for (int output_row=0; output_row<a_cols; output_row++) {
146 int input_block_row = output_row/8;
147 for (int input_block_col=0; input_block_col<6; input_block_col++) {
148 real_sum += C[input_block_row*6*8*8 + (output_row%8)*8 + input_block_col*64];
149 imag_sum += C[input_block_row*6*8*8 + (output_row%8)*8 + input_block_col*64 + 1];
150 }
151 res[output_row].real(real_sum);
152 res[output_row].imag(imag_sum);
153 real_sum = 0; imag_sum = 0;
154 }
155
156 // STEP 5: COMPLETE MEHELSUM BY USING THE REAL COMPONENT FROM FINAL RESULT MATRIX
157 for (int i=0; i<24; i++) {
158 (*meHelSum) += ((res[i] * thrust::conj(b[i])).real())/54;
159 }
160
161 }
162
163 int main(void) {
164 int threads = 32;
165 int blocks = 16384;
166
167 cxtype res[24] = {0};
168 double meHelSum = 0;
169 double* A_block;
170 double* B;
171 double* C;
172 cxtype* res_d;
173 double* meHelSum_d;
174
175 cudaMalloc(&res_d, 24*sizeof(cxtype));
176 cudaMalloc(&meHelSum_d, sizeof(double));
177 cudaMalloc(&A_block, 24*24*sizeof(double));
178 cudaMalloc(&B, 24*8*threads*blocks*sizeof(double));
179 cudaMalloc(&C, 8*8*18*threads*blocks*sizeof(double));
180
181 cudaMemcpy(res_d, res, 24*sizeof(cxtype), cudaMemcpyHostToDevice);

Chapter B: Code Implementations 39

182 cudaMemcpy(meHelSum_d, &meHelSum, sizeof(double), cudaMemcpyHostToDevice);
183
184 matrixVectorMultiply<<<blocks, threads>>>(res_d, meHelSum_d, A_block, B, C);
185
186 cudaMemcpy(res, res_d, 24*sizeof(cxtype), cudaMemcpyDeviceToHost);
187 cudaMemcpy(&meHelSum, meHelSum_d, sizeof(double), cudaMemcpyDeviceToHost);
188
189 cudaFree(meHelSum_d);
190 cudaFree(res_d);
191 cudaFree(A_block);
192 cudaFree(B);
193 cudaFree(C);
194
195 // Only guaranteed to be correct if run with 1 block and 1 thread for debugging purposes
196 std::cout << "RES:␣\n";
197 printMatrixCX(res, 24, 1);
198
199 std::cout << "meHelSum:␣\n";
200 std::cout << meHelSum;
201 }

B.1.4 Makefile

Code listing B.4: Makefile for running the code in B.1 and in B.3.

1 EXECUTABLE_NAME = runTensor
2 EXECUTABLE_NAME_SINGLE = runSinglePres
3
4 NVCC_LOCATION = /usr/local/cuda-11.0/bin/nvcc
5
6 run: compile
7 ./$(EXECUTABLE_NAME)
8
9 single: single-pres-test.cu

10 $(NVCC_LOCATION) -rdc=true -arch=sm_70 single_pres_test.cu -o $(EXECUTABLE_NAME_SINGLE) -lcudadevrt
11 ./$(EXECUTABLE_NAME_SINGLE)
12
13 compile: tensor.cu
14 $(NVCC_LOCATION) -rdc=true -arch=sm_80 tensor.cu -o $(EXECUTABLE_NAME) -lcudadevrt
15
16 .PHONY: clean
17 clean:
18 rm -rf *.o $(EXECUTABLE_NAME) $(EXECUTABLE_NAME_SINGLE)

B.2 The first implementation in Madgraph

Code listing B.5: Set up code with blocking and padding

1 #ifdef __CUDACC__
2
3 const int a_rows = ncolor;
4 const int a_cols = ncolor;
5
6 //STEP 1: PAD VECTOR B TO MATRIX
7 const int paddedWidth = 8; //Width of padded matrix
8 double* B = (double*) malloc(a_cols*paddedWidth*sizeof(double));

Chapter B: Code Implementations 40

9 for (int i = 0; i < a_cols*paddedWidth; i++) B[i] = 0;
10 for (int row = 0; row < a_cols; row++) {
11 B[paddedWidth*row + 0] = jamp[row].real();
12 B[paddedWidth*row + 1] = jamp[row].imag();
13 }
14
15 //STEP 2: DO BLOCKING HERE!
16 double* A_block = (double*) malloc(a_rows*a_cols*sizeof(double));
17 for (int i = 0; i < a_rows*a_cols; i++) A_block[i] = 0;
18
19 int base_offset_a_row = 0;
20 int base_offset_a_col = 0;
21 int base_offset_a_block = 0;
22 int curr_offset_a_row = 0;
23 int curr_offset_a_col = 0;
24 int curr_offset_a_block = 0;
25 for (int blockrow = 0; blockrow < 3; blockrow++) {
26 for (int blockcol = 0; blockcol < 6; blockcol++) {
27 base_offset_a_row = blockrow*8;
28 base_offset_a_col = blockcol*4;
29 base_offset_a_block = 32*(6*blockrow + blockcol);
30 for (int row = 0; row < 8; row++) {
31 for (int col = 0; col < 4; col++) {
32 curr_offset_a_row = base_offset_a_row + row;
33 curr_offset_a_col = base_offset_a_col + col;
34 curr_offset_a_block = base_offset_a_block + row*4 + col;
35 A_block[curr_offset_a_block] = cf[curr_offset_a_row][curr_offset_a_col];
36 }
37 }
38 }
39 }
40
41 //STEP 3: USE TENSOR CORES
42 double* C = (double*) malloc(8*8*18*sizeof(double));
43 for (int i=0; i<8*8*18; i++) C[i] =0;
44 for (int i=0; i<18;i++) {
45 multiplyMatrixTensorCore<<<1,32>>>(A_block+32*i, B+32*(i%6), C+64*i);
46 }
47 cudaDeviceSynchronize();
48
49 cxtype* resultVector = (cxtype*) malloc(24*sizeof(cxtype));
50
51 double real_sum = 0;
52 double imag_sum = 0;
53 for (int output_row = 0; output_row < a_cols; output_row++) {
54 int input_block_row = output_row/8;
55 for (int input_block_col = 0; input_block_col < 6; input_block_col++) {
56 real_sum += C[input_block_row*6*8*8 + (output_row%8)*8 + input_block_col*64];
57 imag_sum += C[input_block_row*6*8*8 + (output_row%8)*8 + input_block_col*64 +1];
58 }
59 resultVector[output_row].real(real_sum);
60 resultVector[output_row].imag(imag_sum);
61 real_sum = 0; imag_sum = 0;
62 }
63
64 for (int row = 0; row < 24; row++) {
65 meHelSum += ((resultVector[row] * thrust::conj(jamp[row])).real())/denom[row];
66 }
67
68 //STEP 4: FREE MEMORY

Chapter B: Code Implementations 41

69 free(B);
70 free(A_block);
71 free(C);
72 free(resultVector);
73
74 #else
75
76 // Sum and square the color flows to get the matrix element
77 for(int icol = 0; icol < ncolor; icol++)
78 {
79 cxtype ztemp = cxmake(0, 0);
80 for(int jcol = 0; jcol < ncolor; jcol++)
81 ztemp = ztemp + cf[icol][jcol] * jamp[jcol];
82 meHelSum = meHelSum + cxreal(ztemp * conj(jamp[icol]))/denom[icol];
83 }
84 #endif
85
86 // Store the leading color flows for choice of color
87 // for(i=0;i < ncolor; i++)
88 // jamp2[0][i] += real(jamp[i]*conj(jamp[i]));
89
90 mgDebug(1, __FUNCTION__);
91 return;
92 }

Code listing B.6: Tensor Core kernel from the naive implementation

1 #ifdef __CUDACC__
2
3 __global__ void multiplyMatrixTensorCore(double *a, double *b, double*c) {
4
5 // Declare fragments
6 wmma::fragment<wmma::matrix_a, 8, 8, 4, double, wmma::row_major> a_frag;
7 wmma::fragment<wmma::matrix_b, 8, 8, 4, double, wmma::row_major> b_frag;
8 wmma::fragment<wmma::accumulator, 8, 8, 4, double> c_frag;
9

10 // Fill summand/accumulator matrix with 0
11 wmma::fill_fragment(c_frag, 0.0);
12
13 // Load inputs into factor fragments
14 wmma::load_matrix_sync(a_frag, a, 4);
15 wmma::load_matrix_sync(b_frag, b, 8);
16
17 // (you can see how c_frag is both summand and accumulator)
18 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);
19
20 // Store output
21 wmma::store_matrix_sync(c, c_frag, 8, wmma::mem_row_major);
22 }
23 #endif

B.3 The final implementation in Madgraph

Updated version of the code can be found here: https://github.com/ingvildh/
madgraph4gpu

https://github.com/ingvildh/madgraph4gpu
https://github.com/ingvildh/madgraph4gpu

Appendix C

CERN openlab Technical
Workshop Presentation

Slides from a presentation the authro gave at the CERN openlab technical work-
shop in March 2021 based on my findings and experiences with profiling code to
familiarize myself with it, while also trying to identify computational hot-spots.

42

1

Profiling code on NVIDIA GPUs
CERN openlab Technical Workshop 2021

Anne C. Elster (NTNU-Trondheim) and Maria Girone (CERN)

Ingvild Brevik Høgstøyl (NTNU-Trondheim, CERN)

2

Goal and Overview

● Profiling CPU code
○ Using Valgrind, Callgrind and KCacheGrind

● Profiling GPU code using Nsight Systems
○ Identify overall system bottlenecks

● Profiling GPU code using Nsight Compute
○ Identify bottlenecks in kernels

3

● Madgraph application
https://github.com/madgraph5/madgraph4gpu

● Generate callgraph
○ Valgrind & Callgrind

● Hotspot visualization
○ KCacheGrind
○ Obtain overview

Profiling CPU code

number of times function is called

percentage of time spent in this function
and the functions it calls

number of iterations

4

● Profiling:
○ Nsight Systems CLI
○ Overhead on profiling GPUs vs CPUs

● Visualization:
○ Nsight Systems GUI
○ Overall behaviour of the application

Profiling GPU code: Nsight Systems

12 iterations

blocks/grid

threads/block

iterations

5

Profiling GPU code: Nsight Systems

● Performance bottlenecks:
○ Memory transfer
○ Kernel

6

● Profiling:
○ Nsight Compute CLI
○ Kernel profiling

● Visualization
○ Nsight Compute GUI
○ SigmaKin kernel

● Performance bottlenecks
○ SM vs Memory

utilization
○ Utilization of pipe

Profiling GPU code: Nsight Compute

create file with results blocks/grid

threads/block

iteration
s

7

Future work

● Ideas for GPU optimizations
○ Vary the number of threads/block

○ Change memory utilization

○ Reduce precision

● Use sampling information to identify hotspots

8

Thank you!

ingvild.brevik.hoegstoeyl@cern.ch

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

Ingvild Brevik Høgstøyl

Exploring NVIDIA Ampere Tensor
Cores for an Event Generator Code
for High-Energy Physics

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
Co-supervisor: Dr. Maria Girone
July 2021M

as
te

r’s
 th

es
is

	Project Description
	Abstract
	Sammendrag
	Acknowledgements
	List of Abbreviations and Selected Terms
	Contents
	Figures
	Code Listings
	Introduction
	The CERN Computing Challenge
	Benchmarking of Hardware Resources
	The MadGraph Workload

	Goals and Contributions
	Thesis Outline

	Background
	CUDA and NVIDIA GPUs
	CUDA Warps
	Dynamic Parallelism in CUDA
	Tensor Cores

	Madgraph
	The Madgraph Project
	The GPU Port

	Choosing the Workload and Profiling it on CPU and GPU
	Choosing the Workload to Optimize
	Becoming Familiar with the Workload
	CPU Profiling
	GPU Profiling
	Nsight Systems
	Nsight Compute

	Implementation and Results on the A100 GPU
	Planning and Testing
	The First Implementation
	The Final Implementation

	Conclusion
	Future work

	Bibliography
	Benchmarking and Containers
	Containers
	Docker versus Singularity
	Usage and build

	Containers and GPUs

	Code Implementations
	Code Used for Testing
	Single-precision Tensor Core
	Blocking Algorithm Testing
	Complete Double-Precision Test Code using Tensor Cores
	Makefile

	The first implementation in Madgraph
	The final implementation in Madgraph

	CERN openlab Technical Workshop Presentation

