
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Andreas H
am

m
er

Analyzing H
alo Com

putations on M
ulticore CPU

s

Andreas Hammer

Analyzing Halo Computations on
Multicore CPUs

Master’s thesis in Computer Science
Supervisor: Professor Anne C. Elster

June 2021

M
as

te
r’s

 th
es

is

Andreas Hammer

Analyzing Halo Computations on
Multicore CPUs

Master’s thesis in Computer Science
Supervisor: Professor Anne C. Elster
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Problem description

This master thesis project builds on the student pre-project (a.k.a. "fall" porject)
“Study of Two-dimensional Deep Halo Exchange Using MPI blocking and non-
blocking communication” which studied computing a parallelized Finite Differ-
ence 5-point stencil using deeper halos to reduce communication overhead. This
concept was initially presented by Robin Holtet and Anne C. Elster, at SC as well
as in Mr. Holtet´s 2003 Master thesis "Communication-reducing Stencil-based Al-
gorithm and Methods".

In this thesis, we will investigate extending the student´s work to 3D. Stream-
ing techniques and/or higher degree stencils are also possible directions. The ben-
efits of deeper haloes will may also be investigated.

If time permits, the work may also applying the work to a real application in
collaboration with other partners at HPC-Lab. Which exact path to be taken de-
pends on a literature search of what was done previously and the intermediate
results achieved, but the goal is to produce work good enough for a conference
workshop paper.

Assignment given: 15. January 2021.
Advisor: Professor Anne C. Elster, IDI

iii

Abstract

The continued increase in multi-core and multi-node system performance makes
parallelization of algorithms necessary in order to get the best performance gains
by utilizing the available CPU resources. These increasingly complex systems al-
low for larger datasets to be handled in parallel in order to improve performance.
Stencil-based algorithms with halo exchange are typically a compute and commu-
nication heavy task benefitting from parallelization over multiple nodes. This is
achieved since compute can be done between bulk communications.

This thesis focuses on implementing a 3D stencil computation benchmark using
halo exchange for inter-node communication. The goal of the thesis is to bench-
mark and test different aspects of halo exchange-powered stencil computations.
We test various optimizations to improve the computational intensity of the algo-
rithm, observe how strong and weak scaling of the algorithm increases through-
put, how halo exchange is hidden by computation, and how running on a shared
cluster affects the exchange.

Our optimizations gave a total speed-up of 11.15, with stencil unrolling showing
an additional 1.40x speed-up potential. Scaling showed potential with a speed-up
of 9.46x from 1 to 12 nodes on the same problem size and 0.61 times performance
gain when scaling both problem and node size equally. Furthermore, only 7-91%
of the halo exchange was hidden with shared resources. However, node exclusiv-
ity resulted in 902% of the exchange hidden and 529% hidden for a large problem
domain.

Our results show that with exclusive node access, halo exchange can be com-
pletely hidden by computation when doing a triple loop that results in a 27-point
calculations. Scaling the node count will improve performance to some degree.
However, the speed-up is not proportional to the nodes added as the compute
loop is not a perfect parallel region.

In order to exploit the extra performance from multi-core clusters for stencil com-
putations, exclusive node access is needed to maximize performance. Increasing
the amount of resources will increase throughput, but strong and weak scaling
shows that the throughput increase is not proportional to the added resources.

v

vi A. Hammer: Analyzing Halo Computations on Multicore CPUs

A discussion of how to optimize the 27-point calculations and several ideas for
future work are also included.

Sammendrag

Den fortsettende ytelses økningen for flerkjerne- og flernode systemer, krever at al-
goritmer parallelliseres for å utnytte ytelsen til slike systemer. Beregninger på store
datasett gjøres raskere i slike systemer, da en kan raskere beregne flere verdier i
parallell. Parallellisert stensil beregninger er en både regne- og kommunikasjon-
stung metode. Parallelliseringen introduserer oppspaltning av datasettet, som ig-
jen krever kommunikasjon mellom nodene for at beregningene skal gi rett svar.
Fordelen er at mellom hver iterasjon i metoden kreves det synkronisering, men
under selve iterasjonen er det ingen kommunikasjon som hemmer beregningene,
noe som er fordelaktig for parallelliseringen. Dette prosjektet implementerer en
3D-stensil-beregnings algoritme som bruke halo exchange som kommunikasjons
mønster mellom nodene. Denne applikasjonen blir så brukt til å teste ulike aspek-
ter ved halo exchangen og stensil beregningene. Vi ser på hvordan ulike optimalis-
eringer påvirker kjøretiden, hvor godt halo exchange blir gjemt av kjøretiden,
hvordan algoritmen skalerer, samt hvordan kjøring på et ressursdelte maskiner
påvirker kommunikasjonen.

Vi observerte en ytelses forbedring på 11.15x ved endring av datastruktur og
kalkulering av minnehopp i forkant. Videre så vi at stensilutrulling ga en ytterligere
forbedring på 1.40x. Skaleringen viste en "strong scaling" på 9.46x forbedring fra
1 til 12 noder, samt en "weak scaling" på 0.61x ved proporsjonal økning av antall
noder og datasettets størrelse. I de fleste kjøringene ble kommunikasjonen kun
7% av kommunikasjonen gjemt under kjøring på disse delte ressursene, uten ek-
sklusiv tilgang til disse. Da vi introduserte eksklusiv tilgang til nodene så vi 902%
av kommunikasjonen gjemt, og 529% gjemt for det store datasettet fordi her må
betydelig mer kommuniseres mellom nodene.

Dette viser i all hovedsak at eksklusiv tilgang på ressursene er den største bidrags-
yteren for å skjule kommunikasjonen. Hvis en annen bruker blir tildelt de resterende
ressursene på samme maskin kan dette føre til kniving om kommunikasjonsres-
sursene og dermed øke ventetiden for hvert kommunikasjonssteg. Videre så vi
at oppskalering av antall noder og datasett størrelse økte mengden data pros-
essert per sekund, men ikke proporsjonalt med ressursøkningen som ble tildelt.
For å utnytte den økte ytelsen godt ser vi at eksklusiv tilgang på maskinene og
gode optimaliseringer vil redusere kjøretiden for 3D stensil beregninger. Oppska-

vii

viii A. Hammer: Analyzing Halo Computations on Multicore CPUs

lering av ressurstilgangen vil også positivt påvirke prosesseringstiden, dog ikke
proporsjonelt med økningen i ressurser som våre skaleringseksperimenter viste.

Acknowledgement

First and foremost, I would like to thank my supervisor, Professor Anne C. Elster,
for invaluable guidance and help throughout this thesis, giving me clear advice
when the road was rough, and guiding me steadily towards the goal of this project.

I would like to express my gratitude to my fellow HPC-lab members, Ivar An-
dreas Helgestad Sandvik, Lars Bjertnes and Maren Wessel-Berg, for their various
input and as discussion partners to help me complete this project.

I also would like to thank the HPC group at NTNU and the HPC-lab for providing
me with a workspace and hardware to create my application and a great work
environment with its facilities and great view. Furthermore, thanks to my depart-
ment (IDI) for providing priority access to the Idun compute cluster, without this
my benchmarking would not be possible.

Lastly, a special thanks to my family and friends for their supportive phone calls
motivating me throughout the project. I would also like to thank Oda Steingland
Skaug for her significant input in finalizing the thesis.

ix

Contents

Problem description . iii
Abstract . v
Sammendrag . vii
Acknowledgement . ix
Contents . xi
Figures . xiii
Tables . xv
Code Listings . xvii
1 Introduction . 1

1.1 Contributions . 1
1.2 Outline . 2

2 Background . 3
2.1 Parallel programming models . 3

2.1.1 Shared memory . 4
2.1.2 Message passing . 4

2.2 MPI . 5
2.2.1 MPI concepts . 5
2.2.2 MPI fuctions . 6

2.3 OpenMP . 7
2.4 POSIX threads (Pthreads) . 7
2.5 Laplacian operator . 7
2.6 Halo exchange . 8

2.6.1 Deep halo . 9
2.7 Performance scaling . 10

2.7.1 Ahmdal’s law . 12
2.7.2 Gustafson’s law . 12

3 Creating a 3D Benchmark with Halo Exhanges 13
3.1 Input parameters . 13
3.2 Global domain creation . 14
3.3 Subdomain lifecycle . 15
3.4 . 15

3.4.1 Compute split . 16
3.4.2 Using OpenMP for stencil computations 16

3.5 Implementing 3D Halo exchange . 17

xi

xii A. Hammer: Analyzing Halo Computations on Multicore CPUs

3.5.1 Our Pthread approach . 18
3.6 Benchmarking approach . 18
3.7 Optimizations . 20

3.7.1 1D underlying data structure 20
3.7.2 Memory access offset calculations 21
3.7.3 Stencil unrolling . 22

3.8 Pitfalls . 23
3.8.1 Visualization problem . 23
3.8.2 Halo cell data initialization . 23
3.8.3 2D to 3D halo exchange changes 23
3.8.4 Subdomain position calculations 24
3.8.5 Halo exchange data borders . 24

4 Results & Discussion . 27
4.1 Test Setup - Idun . 27

4.1.1 UCX disabled . 28
4.2 Test setup - other computers . 28
4.3 Benchmark run conditions . 28
4.4 Analysis of results . 29
4.5 Data structure and optimizations . 29
4.6 Scaling, strong and weak . 33
4.7 Halo exchange . 36
4.8 Domain distribution differences . 40
4.9 Stencil unrolling . 41
4.10 Profiling . 42

5 Conclusions and Future Work . 45
5.1 Future work . 47

5.1.1 Deep halos . 47
5.1.2 Hardware related task partitioning 47
5.1.3 AVX instructions in stencil computations 47
5.1.4 Stencil unrolling . 48

Bibliography . 49
A Benchmark code and optimizations . 51

A.1 Optimizations . 51
A.2 Benchmark implementation . 52

B Timing results . 75
C Poster . 77
D Fall project . 79

Figures

2.1 Multiple processes operating on the same address space. (Based on
Figure 1.1 [2]) . 4

2.2 Message passing model with seperate address spaces for each pro-
cess, interconnected through an arbitrary network. (Based on Fig-
ure 1.2 [2]) . 5

2.3 Copy diagonal values through ghost cell halo exchange. (Based on
Figure 9 [9]) . 9

2.4 Use of deep halos to exchange computation for communication.
Green cells represent chunk data, blue cells represent still valid halo
data and grey cells represent invalid halo data. 10

2.5 Relationship between Amdahl’s law and Gustafson’s law. Amdahl’s
law (green). Gustafson’s law (red). (Inspired by Figure 1 [10]). . . 11

3.1 Wrongfull visualization of 3D edge compute and halo exchange.
Colored regions thought as outer compute and exchange regions. . 24

3.2 Representation of what to exchange to ensure corret diagonal bor-
der exchange. Subdomain data (white) and surrounding halo data
(green). 25

4.1 Optimizations and data structure timings. Red is preparation and
finalization of domain gather and scatter. Blue is compute time with
halo exchange. 32

4.2 Strong scaling of benchmark implementation. Naive theoretical speed-
up based on the 1 node run (red) versus relative speed-up on the
different node configurations (blue). 35

4.3 Weak scaling of benchmark implementation based 1 node run. Naive
theoretical speed-up (red), actual speed-up (green). 36

4.4 Time used on exchange versus time inner compute thread waited
for exchange thread to finish. 37

4.5 Difference in time used on exchange and time waited for exchange
to finish. Positive value indicates exchange used more time then
compute thread waited for it to complete. 37

4.6 Compute time versus exchange-compute difference for the sub-optimal
implementation. 38

xiii

xiv A. Hammer: Analyzing Halo Computations on Multicore CPUs

4.7 Compute time versus exchange-compute difference using a 1024x1024x1024
problem domain. 38

4.8 Runtime on equal problem domaim with different domain distri-
bution. Left is 1D. Right is 3D. 40

4.9 Unrolled 7-point stencil computation time versus generic stencil
computation time. 42

4.10 Profiling of 1d-big run on slow node. 43
4.11 Profiling of 1d-big run on fast node. 43

Tables

3.1 Parameters used to specify how and what the benchmark computes. 14

4.1 Idun nodes [16] used in this thesis. 27
4.2 Other computers used in this thesis. 28
4.3 Software and arguments used to compile and run the benchmark. . 29
4.4 Parameters for all runs on Idun. Node name abriviations used are

i2=idun-02- and i3=idun-03-. 30
4.5 Shows all runs performed on selbu and the clab machines. All runs

performed on the selbu computer uses a s-prefix, the other clab com-
puters are noted with a c-prefix. 31

4.6 Timing results from optimized and sub-optimal runs. 31
4.7 Speed-up from sub-optimal run with same data structure, and the

sub-optimal run performance difference. 32
4.8 Speed-up with respect to 1-node variant. 34
4.9 Fraction of exchange hidden by compute. 39
4.10 Halo exchange performed outside of Idun with exclusive node access. 39
4.11 Domain distribution speed-up. 40
4.12 Speed-up with stencil unrolling. 42

B.1 All median results from all runs performed. 76

xv

Code Listings

3.1 Benchmark program structure. 13
3.2 The global domain stored in a 3D array, created to the specifications

from the input parameters. 14
3.3 Naive implementation of the subdomain value compute. 16
3.4 Basic layout of the iteration loop with offloaded halo exchange.

(see Chapter 3.5) . 16
3.5 Timing structure of the main part of the benchmark. 19
3.6 Timing structure of the individual halo exchanges. 19
3.7 Timing structure of the exchange and compute difference. 19
3.8 Subdomain compute loop for the 1D underlying data structure. . . 21
3.9 The pre-calculation of offset values within the subdomain based on

the subdomain dimensions and the stencil selected. 21
3.10 The optimized subdomain compute with both 1D data structure

and pre-calculated offsets. 22
3.11 The optimized subdomain compute with additional stencil unrolling. 22
A.1 3D inner compute variant with pre-calculated domain stride values. 51
A.2 main.c . 52
A.3 compute.c . 58
A.4 domain_lifecycle.c . 61
A.5 exchange.c . 66
A.6 utils.c . 73
A.7 Various defines and structs . 74

xvii

Chapter 1

Introduction

Over the last decades, there has been a shift from single-core to multi-core CPUs
due to hitting the limits of processor frequency scaling. In order to continue to
have performance gains, a shift towards parallel computation is needed. Com-
pute heavy problems, such as finite difference calculations on a large problem
domain, are time-consuming, and in some cases too large for a single system/-
core to handle efficiently. This prompts the use of parallelization that split the
problem domain among different cores and in order to reduce the compute time
and potentially keep the problem domain within the bounds of each node’s mem-
ory.

When the computational domain is decomposed and scattered throughout a com-
pute cluster, and each node individually computes each iteration for their given
subdomain. However, this process usually requires knowledge of the surrounding
values often specified in a stencil representing how all surrounding values should
affect the calculation. The edge values shared between each subdomain require
a method of how to make the values beyond the subdomain border available as
efficiently as possible. The most common technique is halo exchange.

This thesis analyzes 3D halo change performance through a 3D benchmarking
application which we created. The finite difference method was chosen as the
compute method with a stencil requiring data beyond the subdomain borders,
prompting the need for halo exchange.

1.1 Contributions

The main contributions of this thesis are that we describe in detail the process of
developing a benchmark application with 3D domains, and how it needs to handle
the halo exchange to ensure a correct result of the calculations. We also describe
some of the optimizations we did, how the performance benefits such optimiza-
tions. Further, we look at how the benchmarks scale, and how the distribution
of the problem domain affects performance. The thesis also touches upon some

1

2 A. Hammer: Analyzing Halo Computations on Multicore CPUs

considerations to consider when running halo exchange compute on a shared re-
source cluster.

1.2 Outline

The rest of the thesis is outlined as follows:

• Chapter 2: A description of the most relevant background and previous work
related to this thesis.

• Chapter 3: Detailed description of the benchmark implementation, both the
compute and halo exchange implementation, and various optimizations im-
plemented throughout the development process.

• Chapter 4: Present the results from the various tests performed with the
benchmark. These include improvement from optimizations, how the prob-
lem scales on multiple compute nodes, and how domain distribution affects
performance.

• Chapter 5: Summary and conclusion of the thesis project, including the find-
ings presented and laying out what future work could be done.

• Appendix A: Code for the benchmark application and middle steps in the
optimizations process.

• Appendix B: List of all median timing results extracted from the measure-
ments during the benchmark runs.

• Appendix C: Contains the thisis’ poster.

• Appendix D: Show the fall project done in preparation to this thesis.

Chapter 2

Background

This chapter provides the background and most relevant references related to the
main topic of this thesis. The following sections give a background on parallel pro-
gramming models, including shared memory and message passing, a summary of
MPI and its core functionalities, a section on OpenMP and Pthreads, as well as sec-
tions describing the basics behind the LaPlacian operator used in the calculations,
the core concept related to halo exchange as well as Amdahl’s and Gustafson’s law.

The OpenMP, Pthreads, and performance modeling are new for this thesis. The
section describing the Laplacian operator is based on the fall project (Appendix
D) but rewritten and extended to include a 3D operator. The rest is copied from
the fall project and modified to read better, correct some minor flaws and include
considerations for 3D problem domains.

2.1 Parallel programming models

There are several parallel programming models such as data parallelism, remote
memory access, shared-memory models, and message-passing models. A parallel
programming model is an abstract description of a parallel system’s operations,
such as communication between processes, how shared-memory is handled, and
how spawning tasks or processes occurs. It abstracts away from specific hardware
systems, making it theoretically possible to implement any parallel programming
model on any hardware system, tho with different performance results [1].

Data parallelism describes a Single Instruction Multiple Data (SIMD) system where
vectors of data are processed in parallel by applying the same computation/in-
struction on each element (e.g., Graphics Processing Units (GPUs)).

Remote memory access (RMA) is a model describing a shared memory message-
passing hybrid model. Here memory located outside the processes memory space
is made accessible through one-sided communication (e.g., using message-passing)
without the overhead of point-to-point communication.

3

4 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 2.1: Multiple processes operating on the same address space. (Based on
Figure 1.1 [2])

2.1.1 Shared memory

Control parallelism is a form of parallelism explicitly specified by the programmer
as opposed to implicit parallelism due to independent data. One simple form of
control parallelism is the shared memory programming model. This model uses
threads of execution that run asynchronously in parallel operating on the same
piece of memory. As the name entails, the entire parallel environment operates
within the same shared address space, as shown in Figure 2.1. Reading and writ-
ing to a shared memory simultaneously from multiple threads can cause conflicts
and race-conditions. This issue is usually handled by using a mutex or semaphore
to lock all threads accessing the resource to prevent conflicts [1], [2].

Shared-memory parallel programming may use libraries such as OpenMP or Pthreads
to facilitate thread life cycles. These functions in different ways. Pthreads use the
POSIX threads system calls to manage the lifecycle of threads. OpenMP uses pre-
processor directives within the compiler to inject structured blocks to control the
OpenMP runtime library’s parallelization [3].

2.1.2 Message passing

Message passing is a programming model consisting of independent processes,
all with their own local memory. The communication between the processes is
done using messages entailing both processes need to perform some operations
to achieve this goal. Through such messages, the data stored in other processes
can be shared with all system processes. Figure 2.2 shows such a system with
separate address spaces for each process, all connected through a network. This
network can be as simple as two computers connected via a switch to multiple
computational clusters with their high speed interconnects all connected through

Chapter 2: Background 5

Figure 2.2: Message passing model with seperate address spaces for each process,
interconnected through an arbitrary network. (Based on Figure 1.2 [2])

the internet with messages passed between the different clusters for large scale
parallelism [2].

2.2 MPI

Message-Passing Interface (MPI) [2], [4] is a library specification defined to pri-
marily address the message-passing parallel programming model, where data is
moved between processes through various operations on each process. The specifi-
cation defines the names, calling sequences, and results of cooperative operations,
meaning one process cannot force a message upon another without the recipient
actively listening. Programs utilizing an MPI implementation follow the model
SPMD (single-program multiple-data) with the same code executed in all the pro-
cesses. However, the data operated upon is different for each process. There are
multiple MPI implementations, where each parallel computer vendor offers an
implementation for their machines along with other free publicly available imple-
mentations like Open MPI and MPICH.

2.2.1 MPI concepts

Parallelization of algorithms that require communication between the different
processes during the program’s execution contains syncronization points. These
are specific points in the program where some or all processes synchronize their

6 A. Hammer: Analyzing Halo Computations on Multicore CPUs

progression, meaning waiting for the other processes to reach the same point be-
fore continuing. An example of this is a program taking an array of numbers and
scattering them to different processes where each subset of the array is summed.
The resulting sum is gathered at one process to be added together, producing the
total sum of the original array. The points where the process scatters the array val-
ues and gathers the resulting sums are synchronization points for this program.
All processes are required to reach this MPI call before any of them can continue
execution. Another example is when two processes communicate directly with
each other using a send and receive call synchronizing their progress at each call.

Barriers are one such global synchronization point where all processes in a given
communicator wait for every other process to reach the same point. This func-
tionality is also seen in other collective operations.

In MPI, execution context and group of processes are both represented by the
same concept, a communicator. This structure is often used as a parameter in
point-to-point operations as the destination/source rank specified is in the com-
municator’s context. In most MPI implementations, a MPI_COMM_WORLD is sup-
plied as the communicator for all spawned processes for the program. The size and
specific process’ rank within a communicator is found via the MPI_Comm_size and
MPI_Comm_rank calls. The resulting values from these calls in the MPI_COMM_WORLD
communicator are often referred to as world size and world rank.

2.2.2 MPI fuctions

The MPI functions we use in our 3D halo benchmark program includes the fol-
lowing MPI functions:

• MPI_Barrier halts the execution until all processes in the given communi-
cator have reached this point in the program.

• MPI_Scatterv distributes a non-uniform array of data to all processes in the
communicator. This enables the scattering of different amounts of data to
each process from a source process.

• MPI_Gatherv collects all data from all processes in the communicator, en-
abling different amounts of data from each process into one array at the
source process.

• MPI_Bcast sends data to all other processes in the given communicator,
finishing when all processes has received the data.

• MPI_Isend asynchronously sends data to another process.
• MPI_Irecv asynchronously receives data from another process.
• MPI_Waitall waits for all provided requests from asynchronous operations

to be finished.

Chapter 2: Background 7

2.3 OpenMP

OpenMP (Open Multi-processing) API consists of various subroutines and com-
piler directives to parallelize different program regions. These are specified in the
OpenMP API document, which defines the specification of OpenMP for C, C++,
and Fortran programs. Compilers supporting OpenMP read these directives and
use them as instructions on parallelizing a region of code over multiple threads.
OpenMP extends the languages with various constructs to parallelize the work-
load and uses the fork-join parallel model of execution to parallelize over multi-
ple threads. These include SPMD (Single Program Multiple Data), tasking, device,
work sharing, and synchronization constructs with managing different access lev-
els of memory within the parallel region such as private variables from outside
the region and handling the sharing of variables between the thread [3], [5].

Pragmas are often used to specify instructions to the compiler on how to par-
allelize a code block over multiple threads. This can be done by using the pragma
omp parallel over a region to parallelize it, or one can add the for keyword to
the end to allow parallelization of for-loops. These pragmas can be used to spec-
ify how e.g. the for-loops iterations are divided among the threads or how the
scheduling of the different loop chunks should function. This can be done by us-
ing the schedule parameter supplying a schedule mode and a custom chunk size
if needed to better balance the workload. One could also use the collapse param-
eter to parallelize nested-loops also for better load balance in the case of unequal
computational load for different loop iterations.

2.4 POSIX threads (Pthreads)

POSIX [6] is a standard specifying a variety of facilities for Unix-like operating sys-
tems, including a multithreaded API often referred to as Pthreads (POSIX threads).
Pthreads is a library only available on POSIX systems for programming multi-
threaded applications. It includes control of the entire thread lifecycle, as well
as features to ensure data dependent tasks execute correctly (e.g., mutexes and
semaphores) [7].

2.5 Laplacian operator

The Laplacian of a problem domain highlights the regions with rapid change in
intensity, making it good for detecting abrupt changes in a domain. In 2D, this can
be used on image data to detect edges in the image, like the outline of a person
or object. One drawback with the Laplacian operator is its sensitivity to noise.
Due to this, one often chooses to smooth the data, prior to using the operator, to
eliminate most noise and only leave the abrupt value changes. The operator in 3D
is derived twice from the Laplacian Equation 2.1 both with respect to x, y and z

8 A. Hammer: Analyzing Halo Computations on Multicore CPUs

[8].
∆̂2 f (n1, n2, n3) = f (n1, n2, n3) ∗ h(n1, n2, n3) (2.1)

The double derived with regards to x, y and z are then combined and cal-
culated for the surrounding values to achieve an operator as shown in Equation
2.2.

fx x(n1, n2, n3) + f y y(n1, n2, n3) + fzz(n1, n2, n3)

= f (n1 + 1, n2, n3) + f (n1 − 1, n2, n3) + f (n1, n2 + 1, n3)

+ f (n1, n2 − 1, n3) + f (n1, n2, n3 − 1) + f (n1, n2, n3 + 1)− 6 f (n1, n2, n3) =

f irstplane =

0 0 0
0 1 0
0 0 0

secondplane =

0 1 0
1 −6 1
0 1 0

thirdplane =

0 0 0
0 1 0
0 0 0

(2.2)

2.6 Halo exchange

Halo exchanges (a.k.a, border exchanges) are used when parallelizing the algo-
rithms where the domain is distributed across several processes/processors. Typi-
cal applications include iterative algorithms where the next iteration’s calculation
depends on multiple values from the previous iteration. Parallelization of stencil-
based calculations require each subdomain to know what resides in the surround-
ing subdomains making halo exchange a viable solution to this issue.

In halo exchange, the halo is defined as the surrounding rows, columns and planes
outside the current subdomain, storing data from other subdomains making this
data available during the computations. The exchange of these values often hap-
pens between each iteration, or series of iterations, where all processes synchro-
nize to share their outermost layer(s) with their neighboring subdomains.

Kjølstad and Snir [9] names this pattern of communication "Ghost cell pattern"
where data is exchanged between neighboring subdomains and stored in ghost
cells. The idea of storing neighbor values in ghost cells surrounding the subdo-
main allows improved performance instead of communicating when needed the
halo data. An implementation asking for the halo values as they are needed in the
computation results in huge accumulated latency from the message passing re-
quired, as well as immense complexity in the developed code to send and receive
the data in between computation.

Chapter 2: Background 9

Figure 2.3: Copy diagonal values through ghost cell halo exchange. (Based on
Figure 9 [9])

Another problem arises with ghost cells and the proposed communication pattern
when the domain is divided into multiple dimensions (e.g., two-dimension, three-
dimension). The resulting chunk to chunk communication when the computation
requires diagonal data could increase the complexity. However, when synchroniz-
ing the ghost cells, they, and others, have proposed to extend the synchronized
data to include the ghost cells at the ends of the rows and columns. The inclusion
of the extra ghost cells will allow the passing of data between diagonal neighbors
if synchronizing the processes between each exchange. The values to be copied
diagonally have already been placed in the ghost cells included in another ex-
change direction after the synchronization is complete. As shown in Figure 2.3,
this allows diagonal data transfer without any diagonal-specific communication
needed.

2.6.1 Deep halo

In order to lower the cost of communications, several iterations can be com-
puted before exchanges are needed, Holter and Elster, Kjølstad and Snir, as others
"deepen" the halo size beyond the first row or column. I.e., for a halo of size 4, 4
iterations could be done before exchanges are needed. One would then have to
exchange 4-deep halos, which would require larger messages, but only 1/4th the
number of messages compared to exchanging between each iteration.

Extending the halo size are also beneficial in systems where the latency per mes-
sage is high or the total delay of synchronization is high. As mentioned, the ex-

10 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 2.4: Use of deep halos to exchange computation for communication.
Green cells represent chunk data, blue cells represent still valid halo data and
grey cells represent invalid halo data.

tended halos provide extra layers of ghost cells the algorithm can use to compute
the next iteration of ghost cell values locally and perform multiple iterations be-
fore needing to synchronize the ghost values. As shown in Figure 2.4 a 3x3 grid
with two layers of halo data allocated, and after a halo exchange, the halo cells
are populated and the next iteration computed. After this compute is finished,
the second halo layer is still valid due to the use of a 3x3 stencil only requiring
one halo layer. The second layer can be correctly calculated using the outermost
halo layer, making it possible to calculate another iteration before another halo
exchange is required.

2.7 Performance scaling

When talking about performance scaling, often strong and weak scaling are men-
tioned. Strong scaling is when the problem size is fixed, and only the processing
power is scaled and is governed by Amdahl’s law. On the other hand, weak scaling
is governed by Gustafson’s law and mentions the scaling of both the problem size
and the processing power. Figure 2.5 shows the relationship between these two
laws in a P = 80 processors scenario, with the serial fraction of the program on
the x-axis and the speed-up on the y-axis. The curves are modeled using Equation
2.3 and Equation 2.4 as Amdahl’s law and Gustafson’s law respectively.

Chapter 2: Background 11

Figure 2.5: Relationship between Amdahl’s law and Gustafson’s law. Amdahl’s
law (green). Gustafson’s law (red). (Inspired by Figure 1 [10]).

12 A. Hammer: Analyzing Halo Computations on Multicore CPUs

2.7.1 Ahmdal’s law

Put forth by Gene Amdahl [11] in a session of the 1967 American Federation of
Information Processing Societies meeting. He argued that the speed-up of an al-
gorithm in parallel is dependent on its sequential parts, with an estimation that
an algorithm is always about 10% sequential, and the memory accesses would
impose another 25% of serial overhead. He stated that with these limitations,
probably about 65% of an algorithm were parallel regions benefitting from paral-
lelization directly. The other parts would not be affected by the increased compute
resources. Equation 2.3 shows the formula used in Amdahl’s chart of speed up
based on computing resources and the sequential fraction of the algorithm based
on fixed problem size. f is the serial fraction, and P is the number of processors
for the parallel region [12].

1

f + 1− f
P

(2.3)

2.7.2 Gustafson’s law

John Gustafson [13] in the 1980s, after earlier research showing performance ex-
ceeding Amdahl’s predictions, argued that the performance was a function of both
problem size and the number of processors. Since a larger problem size would, in
time, decrease the size of the serial fraction resulting in Gustafson’s law shown in
Equation 2.4. Same as for Amdahl’s law (Equation 2.3) f if the serial fraction of
the algorithm, and P is the number of processors used [14].

f + P(1− f) = P − f (P − 1) (2.4)

Chapter 3

Creating a 3D Benchmark with
Halo Exhanges

This chapter outlines the different aspects of implementing a 3D stencil-based
benchmarking application. It can be used to benchmark computer clusters to find
the current bottleneck for 3D stencil computation and how the algorithm scales
for the given cluster. The benchmark is structured as shown in Listing 3.1.

int main() {
process_parameters();
generate_global_domain();
decompose_to_subdomains();
compute_and_exhange();
recompose_from_subdomains();
print_timings();

}

Code listing 3.1: Benchmark program structure.

This chapter thus contains a description of the input parameters 3.1, the global do-
main creation 3.2, the subdomain lifecycle 3.3, how the stencil computation takes
place 3.4, a description of the halo exchange 3.5, how the benchmarks timings
are positioned, structured, and handled 3.6, various optimizations implemented
throughout the project 3.7, how we handled the difficulty of visualizing the 3D
subdomains 3.8.1 was handled, and pitfalls to avoid if implementing a similar
application 3.8.

3.1 Input parameters

For a benchmarking application to be versatile and to provide ease of testing dif-
ferent problems and cluster specifications, we added many parameters to affect
the benchmarking process. As seen in Table 3.1 the benchmark provides a level of
versatility for testing on different cluster sizes, stencils, and problem sizes. Width,
height, and depth represent the size of the global domain, with the stencil param-

13

14 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Table 3.1: Parameters used to specify how and what the benchmark computes.

Parameter Description
Width Problem domain width
Height Problem domain height
Depth Problem domain depth

Iterations Number of iterations to compute on the domain
Stencil Which stencil to use in the computations

X-axis domain distribution Number of subdomains in x-direction
Y-axis domain distribution Number of subdomains in y-direction
Z-axis domain distribution Number of subdomains in z-direction

Minimal output Necessary/Comprehensive output (0/1)
Halo depth Number of deep halo layers

eter allowing to select from the stencils available with the benchmark. As for now,
this list only contains a 3x3x3 stencil but could easily be extended if one wanted
to look into computation with different stencils. The domain distribution param-
eters specify how the global domain should be separated into subdomains. E.g., a
4x2x1 domain would mean a domain split along 4 times along the width, 2 times
along the height, and keep the global depth for each subdomain. In conjunction
with different domain sizes, the domain distribution parameter allows for testing
if a non-cubic domain would perform better if divided into cubed subdomains or
some other domain division performs better.

3.2 Global domain creation

The global domain containing all values to be computed upon is for this bench-
mark generated with all values set to 1 as shown in Listing 3.2. We create a three-
dimensional array storing each value on an (z, y , x) coordinate within the array.
The selected data structure is the z-plane pointers in the outermost array. Stored
at each element in the plane are the y-column pointers, which in turn have ele-
ments that point to the x-row array storing the actual values.

float ***domain = malloc(domain_depth * sizeof(float **));
for (int z = 0; z < domain_depth; z++) {
domain[z] = malloc(domain_height * sizeof(float *));
for (int y = 0; y < domain_height; y++) {
domain[z][y] = malloc(domain_width * sizeof(float));
for (int x = 0; x < domain_width; x++) {
domain[z][y][x] = 1;

}
}

}

Code listing 3.2: The global domain stored in a 3D array, created to the specifi-
cations from the input parameters.

Chapter 3: Creating a 3D Benchmark with Halo Exhanges 15

3.3 Subdomain lifecycle

After creating the global domain, its lifecycle consists of 2 distinct steps sepa-
rated by the computation on each process’s subdomain. Firstly the domain is de-
composed into smaller subdomains scattered one to each available node, and af-
ter the computations are finished, all subdomains are gathered into a resulting
global domain. Provided the domain distribution, the global domain size is di-
vided into subdomains where the MPI rank determines each subdomains position
in the global subdomain space. Suppose the global domain size is not divisible
by the number of subdomains in the respective direction. The last domain for
the given direction is responsible for the remaining domain values, which may be
more than the other subdomain’s sizes in that direction. However, this is how the
benchmark handles domain sizes not divisible by the distribution in every direc-
tion. Both the global domain and subdomains map the x-direction to the width of
the domain, the y-direction to the height, and the z-direction to the depth of the
domain. After calculating the size of each subdomain and displacements within
the send buffer, the domain data is converted to a one-dimensional send buffer
and scattered throughout the subdomains using MPI_Scatterv. Each process re-
ceives and stores the subdomain data in an array created to the calculated size of
its respective subdomain.

After the computations are finished, each process sends its subdomain data in an
MPI_Gatherv call to the root process. Here the individual subdomains are placed
back into their correct location in the global domain array based on the size of each
subdomain and the location in the global subdomain space. The reconstruction of
the global domain is a reverse of the previous splitting into the one-dimensional
send buffer in the lifecycle’s decomposition stage.

3.4

The benchmark performs stencil computations in each iteration to calculate the
next iteration’s input or the result of the entire computation. The computation is
done by iterating over the subdomain applying the stencil to calculate the next
value using the neighboring values. These values are multiplied with the value
in the stencil according to their relative position from the value currently com-
puted. A basic approach is shown in Listing 3.3 where the input subdomain is used
with the stencil to compute the next iteration’s values stored in the temp_buffer.
The benchmark supports any n3 stencil, where n is an odd number. The resulting
value is saved in a temporary buffer since overwriting the values directly in the
subdomain would influence other calculations and give the wrong result. After
all the computations are done, and one moves on to the next iteration or contin-
ues towards completion of the benchmark, the subdomain and temporary buffers
are swapped. They are swapped to ensure the subdomain buffer reference always
contains the correct values into either the next iteration or the recomposition of

16 A. Hammer: Analyzing Halo Computations on Multicore CPUs

the global domain.

int halo_size = floor(stencil_size / 2);
for (int z = 0; z < subdomain_depth; z++) {
for (int y = 0; y < subdomain_height; y++) {
for (int x = 0; x < subdomain_width; x++) {
float result = 0;
for (int i = 0; i < stencil_size * stencil_size * stencil_size; i++) {
int dx = (i % stencil_size) - halo_size;
int dy = ((i / stencil_size) % stencil_size) - halo_size;
int dz = ((i / (stencil_size * stencil_size)) % stencil_size) - halo_size;
result += subdomain[z + dz][y + dy][x + dx] * stencil[i];

}
temp_buffer[z][y][x] = result;

}
}

}

Code listing 3.3: Naive implementation of the subdomain value compute.

3.4.1 Compute split

The computation is split into two steps in order to hide some of the halo exchange
latency as shown in Listing 3.4. While exchanging the border values, the inner
parts of each subdomain are computed as these are not affected by the halo data
and therefore can be computed without the halo exchange completed. After the
halo exchange is completed and the inner parts of the subdomain are computed,
the calculations on the edge values are performed. This is done in 6 sub-steps cal-
culating the different faces of the three-dimensional subdomain separately. These
computations use the halo values fetched from the surrounding processes through
the halo exchange to calculate the values of the next iteration for the subdomain’s
border values. The depth into the subdomain these steps compute is dependent
on both the stencil size and halo depth (see Chapter 3.5 for more information).
The implemented stencil is a 3x3x3 stencil resulting in 27 values calculated.

for (int i = 0; i < iterations; i++) {
start_halo_exchange_thread();
inner_compute();
join_halo_exchange_thread();
outer_compute();
swap_buffers(subdomain, temp_buffer);

}

Code listing 3.4: Basic layout of the iteration loop with offloaded halo exchange.
(see Chapter 3.5)

3.4.2 Using OpenMP for stencil computations

Parallelization of stencil computations can be done using multiple MPI processes
either locally or between nodes in a computing cluster. If running multiple MPI

Chapter 3: Creating a 3D Benchmark with Halo Exhanges 17

processes locally, the need for inter-process halo exchange and storing of halo
data within the same memory results in unnecessary amounts of used storage and
complexity following the halo exchange. Although one could use shared mem-
ory within and between different nodes, this benchmark has chosen not to use
an inter-node shared memory approach. However, instead of using multiple MPI
processes within the same node, we use OpenMP to parallelize the compute us-
ing all available cores and reaping the benefit of fewer subdomains resulting in
fewer total halo exchanges. OpenMP provides a set of pre-processor directives to
parallelize a program, and in this benchmark, it was used to parallelize the three-
dimensional for loop in the compute functions. The parallelization was achieved
by using the #pragma omp parallel for collapse(3) clause on the line above the
outermost loop. The clause mentioned above parallelizes the region covered by
the for loops and tells OpenMP to parallelize 3 layers of for-loops to distribute the
computations over all cores equally.

3.5 Implementing 3D Halo exchange

Parallelization of stencil computations requires each subdomain to know what
lies beyond its border values as the stencil requires the surrounding data to cal-
culate correctly. These bordering values reside in other subdomains making the
algorithm require data beyond its borders. The benchmark uses a n3 where n is
an odd number also requiring an exchange of diagonal values meaning that one
subdomain relies on up to six neighboring subdomains and the 20 subdomains
neighboring diagonally. To streamline the exchange of this diagonal data to avoid
unnecessary exchanges, we chose to restrict the ordering of the halo exchange
directions by only performing one direction of exchanges at a time. Only after a
node has sent and received all data from its two neighbors in the respective direc-
tion will it exchange in the next exchange direction, resulting in three such steps
(north-south, east-west, and front-back).

First, we performed a north-south halo exchange sending data between potential
subdomains above and below. Such subdomains and their respective rank were
given by calculating each rank’s position in the global domain distribution (x , y ,
z). This position was then used to check if a subdomain existed above (y - 1)
or below (y + 1) and then calculating the neighbor’s rank based on the current
process’s rank and the domain distribution. The neighbor’s rank, along with the
data residing in the layers facing the neighbor, was used in MPI_Isend, and the
received halo data from MPI_Irecv were stored in the halo layers facing the same
neighbor. After registering the receive buffer and call with MPI_Irecv and the data
was sent, the process waits to complete both the send and receive requests before
inserting the data into the subdomain data structure and continuing onto the next
halo exchange direction. After the north-south direction is completed, the program
continues onto the east-west direction followed by the front-back direction to com-
plete the halo exchange of all six faces of the subdomain cube. When performing

18 A. Hammer: Analyzing Halo Computations on Multicore CPUs

these exchanges in order, including a synchronization step before continuing onto
the next exchange direction, the diagonal data is also exchanged correctly. As Fig-
ure 2.3 shows, for a two-dimensional plane, correct ordering and synchronization
ensure that the corner values are also transferred indirectly without the need for
specific exchanges of the corner values.

3.5.1 Our Pthread approach

To optimize the computation, we chose to hide the latency of the halo exchange
with computation. The latency hiding was enabled by splitting the different com-
pute functions, with one operating on the non-halo dependent data and the other
computing the values dependent on the halo data. Instead of computing the inner
data and performing the halo exchange in series, we introduced a separate thread
to handle the halo exchange. The main thread computes the inner subdomain
data in parallel with the exchange, allowing the processor’s cores to exchange the
haloes and use all downtime from both the wait associated with the exchanges
and the other cores not used in the exchange to maximize CPU utilization and
minimize compute time. The introduction of Pthreads allowed us to launch a com-
munication thread before calling the inner compute function and joining it with
the main thread after the inner compute and halo exchange had finished.

3.6 Benchmarking approach

The benchmark performs stencil computations with halo exchange to allow scal-
ing over multiple CPUs and nodes. Multiple aspects of the computations need to be
timed to identify how well a cluster performs. The performance can be measured
in raw compute power, inter-node communication, and how the implementation
scales. Further, locating the bottleneck regarding a specific type of problem on
the given system is another reason different extensive timing of the application
is essential. These results enlighten if the communication or raw compute power
is the bottleneck or if another domain distribution can increase performance by
testing multiple parameters to minimize the time needed.

The different regions timed are the entire problem solution, the compute time,
the individual halo exchanges, and the difference in the time the inner compute
on a node uses and the exchange with its neighbors. Here the entire problem is
defined as from before decomposition occurs to the final result is recomposed in
the main process. Listing 3.5 shows the location of both compute and problem
timings, and when it comes to the halo exchange timings, these are performed by
each thread taking the time of all three functions for north-south, east-west, and
front-back exchange as shown in Listing 3.6.

Chapter 3: Creating a 3D Benchmark with Halo Exhanges 19

int main() {
process_parameters();
generate_global_domain();

start_problem_time();
decompose_to_subdomains();

start_compute_time();
compute_and_exhange();

end_compute_time();
recompose_from_subdomains();

end_problem_time();
print_timings();

}

Code listing 3.5: Timing structure of the main part of the benchmark.

void halo_exchange() {
start_timing();
north_south_exchange();
east_west_exchange();
front_back_exchange();

end_timing_and_store_timing();
join_main_thread();

}

Code listing 3.6: Timing structure of the individual halo exchanges.

Each iteration stores the time reference for completion of the inner compute
within the compute loop, and the halo exchange thread stores the time reference
for completing the exchange. These two times are used to calculate the difference
in compute and exchange time (di f f = exchange_t ime−inner_compute_t ime)
to allow a per-node view of where the bottleneck for each iteration is, as shown
in Listing 3.7. A positive difference show that the inner compute finished before
the exchange, and with a negative difference, the halo exchange finished before
the inner compute.

for (int i = 0; i < iterations; i++) {
start_halo_exchange_thread();
inner_compute();

end_time_inner_comput();
join_halo_exchange_thread();

calculate_inner_compute_vs_communication_end();
outer_compute();
swap_buffers(subdomain, temp_buffer);

}

Code listing 3.7: Timing structure of the exchange and compute difference.

Since printing is writing to I/O and would significantly slow down the program
and provide incorrect results, each timing of the halo exchange and difference in
communication and computation is saved to a pre-allocated array on every pro-
cess. These arrays are printed systematically by allowing each process to print
both their exchange times and difference calculations after all timing are done.
This results in an easy-to-read and, most importantly, error-free printing of all re-
sults as all processes printing at once can result in data being overwritten in the

20 A. Hammer: Analyzing Halo Computations on Multicore CPUs

output stream.

3.7 Optimizations

Throughout creating the final benchmark version, different optimizations were
identified to increase the stencil computation’s performance. Firstly a switch to
a one-dimensional underlying data structure with stride calculations was imple-
mented to avoid multiple memory lookups to access one value. This change added
an additional offset calculation to the pre-existing calculations of relative positions
when performing the stencil computation. The additional stride calculation added
to the total amount of operations needed to complete the calculations. The next
optimization was identified as the offset calculations. These were not directly de-
pendant on the position within the array, so they were removed from the compute
loop to be pre-calculated. These optimizations are further explained in Section
3.7.1 and 3.7.2. Lastly, we identified that the implemented stencil required fewer
calculations, as all stencil values, including the zero-values, were calculated. Sec-
tion 3.7.3 shows a simple implementation of stencil unrolling to further optimize
the computations by only calculating the needed values.

3.7.1 1D underlying data structure

The most intuitive solution when working with a three-dimensional data struc-
ture would be using a three-dimensional array as described in Chapter 3.2. Stor-
ing the data in a three-dimensional array is done by mapping each row, column,
and plane to a three-dimensional coordinate within the array. However, dealing
with this data structure requires multiple lookups per point accessed. The stencil
computations (Listing 3.3) show this approach has some potential performance
challenges, with each value accessed requiring 3 memory lookups. Firstly, one
would have a memory lookup on z + dz to retrieve the wanted plane. Then use
this value to locate the row y + d y and lastly, with this value x + d x find the
actual value for the coordinate in question. This requirement of multiple lookups
and calculations per value accessed could be sub-optimal.

To combat this multiple lookup time that comes with using a three-dimensional
array, one could change the underlying data structure to a one-dimensional array.
The position of each value is then given by using Equation 3.1 to calculate the
stride s relative to the start of the array. This change would reduce both memory
lookups and stride calculations within the lookup to 1 of each. The main change
would be to calculate the domain position before the stencil iteration and calcu-
late an offset to the domain position based on the position in the stencil as shown
in Listing 3.8.

Chapter 3: Creating a 3D Benchmark with Halo Exhanges 21

s = (z ∗ subdomain_wid th ∗ subdomain_height)

+(y ∗ subdomain_wid th) + x

= (z ∗ subdomain_height + y) ∗ subdomain_wid th+ x

(3.1)

float result = 0;
int domain_pos = (z * subdomain_height + y) * subdomain_width + x;
for (int i = 0; i < stencil_size * stencil_size * stencil_size; i++) {
int dx = (i % stencil_size) - halo_size;
int dy = ((i / stencil_size) % stencil_size) - halo_size;
int dz = ((i / (stencil_size * stencil_size)) % stencil_size) - halo_size;
int offset = (dz * subdomain_height + dy) * subdomain_width + dx;
result += subdomain[domain_pos + offset] * stencil[i];

}
temp_buffer[domain_pos] = result;

Code listing 3.8: Subdomain compute loop for the 1D underlying data structure.

3.7.2 Memory access offset calculations

The stencil computation is the part of the code responsible for each domain point’s
next value calculations. As shown in Listings 3.3 and 3.8 it iterates over the inner
parts of the loop subdomain_depth ∗ subdomain_height ∗ subdomain_wid th ∗
stencil_size3 times causing the d x , d y and dz calculations to be performed stencil_size3

times per value. As seen in these listings, the offset values calculated depend on the
stencil size and the subdomain dimensions in the one-dimensional case. These val-
ues are never changing while undergoing the compute and can be pre-computed
to remove the unnecessary calculations from the loop to increase performance.
The loop from Listing 3.9 was moved to outside the compute loop after the do-
main decomposition, storing all offset values for the process-specific subdomain.
These were then used in the compute function as seen in Listing 3.10 where the
relative position was given by the current position added in the offset for the given
stencil value. Here the OpenMP clause has to be changed to use a collapse(2) due
to the calculation of domain_pos_out prior to the iteration along the width. This
move was also done to reduce the operations within the last loop, as an increment
to the position is sufficient.

int offset[stencil_size * stencil_size * stencil_size];
for (int i = 0; i < stencil_size * stencil_size * stencil_size; i++) {
int dx = (i % stencil_size) - halo_size;
int dy = ((i / stencil_size) % stencil_size) - halo_size;
int dz = ((i / (stencil_size * stencil_size)) % stencil_size) - halo_size;
offset[i] = (dz * subdomain_height + dy) * subdomain_width + dx;

}

Code listing 3.9: The pre-calculation of offset values within the subdomain based
on the subdomain dimensions and the stencil selected.

22 A. Hammer: Analyzing Halo Computations on Multicore CPUs

for (int z = 0; z < subdomain_depth; z++) {
for (int y = 0; y < subdomain_height; y++) {
int domain_pos_out = (z * subdomain_height + y) * subdomain_width;
for (int x = 0; x < subdomain_width; x++) {
float result = 0;
for (int i = 0; i < stencil_size * stencil_size * stencil_size; i++) {
result += subdomain[domain_pos_out + offset[i]] * stencil[i];

}
temp_buffer[domain_pos_out++] = result;

}
}

}

Code listing 3.10: The optimized subdomain compute with both 1D data struc-
ture and pre-calculated offsets.

3.7.3 Stencil unrolling

One flaw with the current compute loop is the iteration over the stencil values.
If the stencil contains all non-zero values, the approach is sound, but if one opts
to use a 7-point stencil or any other non n3-point stencil, additional calculations
resulting in zero values are performed. This is due to the stencil[i] = 0 in the mul-
tiplication for some of the values resulting in wasted operations. One approach
is to explicitly state all stencil values in the compute loop and only include those
non-zero values to combat the zero value multiplications. However, this is not an
approach with ease of stencil change, but the given stencil might perform better.
Listing 3.11 shows the compute loop with stencil unrolling to further optimize
the compute performance of the benchmark. Here we used the same offset cal-
culations for the stencil to access the values but multiplied the values with the
corresponding stencil value. E.g., for the used 3x3x3 stencil, instead of 27 itera-
tions where 20 of these would result in a zero value, we slimmed this down to
only the 7 values actually used in the stencil.

for (int z = 0; z < subdomain_depth; z++) {
for (int y = 0; y < subdomain_height; y++) {
int domain_pos_out = (z * subdomain_height + y) * subdomain_width;
for (int x = 0; x < subdomain_width; x++) {
temp_buffer[domain_pos_out++] =
subdomain[domain_pos_out + offset[4]] +
subdomain[domain_pos_out + offset[10]] +
subdomain[domain_pos_out + offset[12]] +
(-6 * in[domain_pos_out + offset[13]]) +
subdomain[domain_pos_out + offset[14]] +
subdomain[domain_pos_out + offset[16]] +
subdomain[domain_pos_out + offset[22]];

}
}

}

Code listing 3.11: The optimized subdomain compute with additional stencil
unrolling.

Chapter 3: Creating a 3D Benchmark with Halo Exhanges 23

3.8 Pitfalls

During the development of the benchmark, we had some struggles with mental
visualization of the 3D subdomains in relation to each other. We also had some
minor issues resulting in huge result deviations. We have briefly discussed these
pitfalls to ease future implementations of this benchmark or other applications
based on similar principles and structures.

3.8.1 Visualization problem

Working with a three-dimensional domain, trying to visualize and see which parts
of the subdomain represent the halo data and faces affected by the halo data was
difficult. To solve this, as drawing the matrices on paper was no option since a
piece of paper is two-dimensional, we opted to use Minecraft to create the subdo-
mains in three dimensions. This gave the benefit of traversing between the points
in the matrix to better visualize and figure out what needed to be computed sep-
arately and what was supposed to be communicated in the halo exchange.

3.8.2 Halo cell data initialization

One bug resulting in random numbers affecting the calculations was using the
malloc function to allocate the subdomain memory. This only allocates the mem-
ory with no regard to the allocated memory space’s content. If not manually clean-
ing the halo cell data, the halo exchange did not alter those data regions not facing
another subdomain. This allowed the random data to persist and ruin the calcu-
lations. This can easily be combatted by using the calloc function to set the entire
allocated memory region to all zero before populating it or manually cleaning the
regions if other boundary conditions are to be used.

3.8.3 2D to 3D halo exchange changes

When moving from developing a 2D halo exchange to 3D, one more obvious pitfall
is how to think about what should be exchanged between each subdomain. Our
initial thought was strongly influenced by how one does this in two dimensions
with borders surrounding the 2D grid. Using this thought, treating each subdo-
main’s face as a 2D plane with a surrounding border, we were led to believe it
very complicated. We thought that both the border compute and regions of the
subdomain affected by the exchange were located on each edge of each face. This
is a lot more complicatedly placed and complex than it actually should be. As
shown in Figure 3.1 only the edges of each face were thought to be both affected
by the halo exchange, as well as exchanged, resulting in a very complex imple-
mentation to deal with each face’s edge. This interpretation would have resulted
in wrong calculations as all face values are affected by the exchange, not just the
face edges. The figure shows the colored cells as the ones considered halo-affected

24 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 3.1: Wrongfull visualization of 3D edge compute and halo exchange. Col-
ored regions thought as outer compute and exchange regions.

regions and the white cells as the unaffected subdomain data. This is incorrect as
the entire face is affected by the halo data, not just the edges of each face.

3.8.4 Subdomain position calculations

If an approach requires knowledge of the subdomain’s position in the global sub-
domain distribution given an MPI rank, one should be careful when calculating
this. If assigning these positions using modulo and division calculation rather than
a simple counter, one needs to be careful not to make a small mistake affecting
the entire program. Here we had an issue with the calculations of the y-coordinate
as it was divided by the wrong distribution dimension. This resulted in a segmen-
tation fault when performing the border exchanges as the application rightfully
assumed it had an exchange in the y-direction but did not invoke it as it found no
subdomain above or below. It presented an array of MPI_Requests that contained
no requests, but the pre-calculated request count said there were some requests is-
sued. Due to the calculation of the request count only checking the one dimension
the exchange would take place in, the actual check for the subdomain to exchange
information also checked the other dimensions of the coordinate, resulting in no
neighbor found.

3.8.5 Halo exchange data borders

Implementing the halo exchange logic regarding which parts of each subdomain
to exchange, one must remember to transfer the entire plane, including the halo
data, to the bordering subdomains. This does not include the haloes where the
received data from said domain will be placed, but the halo data on the edges of
planes to send. E.g., sending the data on the top of the domain, one should have
included the entire x-z-plane while limiting the y-axis to skip the halo layer above
and start on the y-coordinate that the actual subdomain data resides. This will

Chapter 3: Creating a 3D Benchmark with Halo Exhanges 25

Figure 3.2: Representation of what to exchange to ensure corret diagonal border
exchange. Subdomain data (white) and surrounding halo data (green).

include the halo data in x and z directions, but not the halo data outside the plane
in the y-direction as this is where the subdomain residing above in 3D space’s halo
data will be places when received. In Figure 3.2 one can see a 2D representation
of the issue and what halo data needs to be sent. The figure presents the cells
labeled with 1 and 2 show where they are located in the original subdomain and
where they are placed after the exchange. The vital point is the inclusion of the
green halo cells above and below the subdomain data to correctly transfer the
diagonal data in a 2x2 subdomain grid as shown in Figure 2.3. Extending this to
three dimensions, including the halo data as shown, will ensure the diagonal data
transfer also in a 2x2x2 subdomain grid.

Chapter 4

Results & Discussion

In this chapter, we present some experimental results we got from using some clus-
tered local workstations and Idun, the central compute cluster at NTNU, where
most of our tests were done.

4.1 Test Setup - Idun

The Idun cluster is a collaboration between different faculties and departments
on NTNU to share their combined compute power. Each shareholder gets a pro-
portional share of the compute time based on their contribution to the cluster. The
cluster consists of 1936 cores and 92 GPUs with some different CPU and memory
configurations throughout the nodes. Each node holds 2 processors who share
the node’s memory equally between them. Topologically each CPU and its share
of memory is one NUMA node, resulting in each compute node consisting of 2
NUMA nodes. The general non-GPU parts of the cluster use 3 Mellanox passive
FDR switches as interconnects between the nodes with a 56 Gb/s bandwidth. The
used nodes in this thesis with their respective CPU specifications are shown in
Table 4.1 [15].

Table 4.1: Idun nodes [16] used in this thesis.

Node(s) CPU C/T Cache Clock Memory
(all Intel Xeon) (MB) (GHz) (GB)

idun-02-[01-26] 2x E5-2630 v4 10/20 25 2.20 128
idun-02-27 2x Gold 6132 14/28 19.25 2.60 192

idun-03-[01-12] 2x Gold 6132 14/28 19.25 2.60 192
idun-03-[13-20] 2x Gold 6242 16/32 22 2.80 192
idun-03-[23-26] 2x Gold 6252 24/48 35.75 2.10 192

27

28 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Table 4.2: Other computers used in this thesis.

Name(s) CPU C/T Cache Clock Memory
(all Intel) (MB) (GHz) (GB)

clab[02,04, Core i7-7700K 4/8 8 4.20 32
09,12,15]

clab[06,21,23] Core i7-8700 6/12 12 3.20 32
selbu 2x Xeon Gold 6230 20/40 19.25 2.10 383

4.1.1 UCX disabled

During the initial runs on Idun with moderate data size, e.g., 128∗128∗128, would
fail and report an error from the initial MPI_Scatterv call in the decomposition
step. This was prompted by a bug [17] in the OpenMPI version available on Idun
where some data would be corrupted when using the Unified Communication X
(UCX) point-to-point message layer (PML). To circumvent this issue, we disabled
the UCX PML by supplying mpirun with the parameter –mca pml ’^ucx’ telling
OpenMPI not to use a UCX PML. This could have negatively affected the optimal
performance of the benchmark, but since we disabled it for all runs and cannot
check the difference with it enabled and disabled can not say if this is the case.
However, as mentioned, with all runs performed with UCX disabled, comparing
the performance of the runs is reasonable.

4.2 Test setup - other computers

Some tests were conducted outside the Idun cluster to see how the benchmark
performed on consumer-grade CPUs, and slower interconnects. We also tested on
a many-core single node with 2 CPUs to see how such a scenario would affect the
benchmark. In Table 4.2 we list all the computers used for these tests, with the
clab computers using the consumer CPUs, and the dual-socket configuration sitting
in selbu. Between these computers sits a 100Mbit ethernet switch functioning as
the interconnect as these are workstations set up in a SLURM cluster and not a
compute cluster like Idun.

4.3 Benchmark run conditions

When performing the runs on Idun, we could not maintain the same node selec-
tion and configuration between each run. Due to this, our results are not directly
comparable, as some runs use a different configuration than others. Table 4.4
and 4.5 shows all runs performed both on Idun and the other computers. The list
shows a short description of the parameters used in the run, which nodes were
used and the name the runs are referred to as later in this chapter. All runs were
performed by calculating 100 iterations with a compute load of a 27-point sten-

Chapter 4: Results & Discussion 29

Table 4.3: Software and arguments used to compile and run the benchmark.

Compiler GCC v10.2.0 (Idun) GCC v7.5.0 (other)
Compiler arguemnts -O3

OpenMPI v4.0.5 (Idun) OpenMPI v2.1.1
LMod modules foss/2020b & CMake/3.18.4-GCCcore-10.2.0

cil, except for the c-1d-unroll run calculating using a 7-point stencil. We ran each
benchmark 100 times on all runs when gathering the results<, with an exception
for the 1d-sub, 3d-sub, 1d-big and 1d-big-e runs where 20 runs was performed.
All runs performed on the Idun cluster used 10 cores with an equal number of
OpenMP threads per node, the selbu computer used 20 OpenMP threads per CPU,
and runs on the clab named computers used 4 OpenMP threads per node. All Idun
cluster runs were done without exclusive access to the node, meaning the unused
resources in the node could be allocated to other users. However, 1d-big-e and all
c and s prefixed runs had exclusive access to all of it’s nodes. To compile and run
the application, we used the software and arguments listen in Table 4.3 with Idun
to load different software bundles using the LMod environment module system.

4.4 Analysis of results

All results gathered were saved in individual files for each of the 20-100 runs.
These contained the total compute time for the iterations performed, timing the
stencil computations and halo exchanges, and the total problem time, including
global domain gather and scatter. Lastly, the files also contained the individual
halo exchange times and the difference in inner compute and halo exchange time.
When analyzing these results, we used the median time to avoid a single large
deviating time to drastically affect the result, as it could have done using the av-
erage. With the halo exchange times and differences, the sheer number of data
points was massive. We chose to reduce them to find the most representative me-
dian value for each run. The data was grouped first by run number, then each
iteration’s value was grouped by MPI rank. The resulting three-dimensional data
structure of timings contained in the first dimension data per run. The second di-
mension was the MPI rank grouped, and the third dimension, each timing value.
Firstly, we found the median value for each MPI rank group of values as the most
representative value for the given rank. Then we combined these values across
all runs and found the median value for all runs to represent the exchange and
difference results for the given run.

4.5 Data structure and optimizations

During the development of this benchmark application, we implemented multiple
optimizations to increase the compute performance of the application (see Section

30 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Table 4.4: Parameters for all runs on Idun. Node name abriviations used are
i2=idun-02- and i3=idun-03-.

Name Data Domain Domain Node(s)
structure distribution size

1d 1D 8x1x1 1024x128x128 i2[12,27]
i3[06,18,20,

24-26]
1d-big 1D 2x2x1 1024x1024x1024 i3[06,12-13,26]

1d-big-e 1D 2x2x1 1024x1024x1024 i2[03-04,27]
i3[04]

1d-1x1x8 1D 1x1x8 1024x128x128 i2[08,12,16-17]
i3[14-15,17-18]

1d-2x2x2 1D 2x2x2 1024x128x128 i2[08,12,16-17]
i3[14-15,17-18]

1d-1s 1D 1x1x1 1024x128x128 i3[20]
1d-4s 1D 4x1x1 1024x128x128 i2[16-17,27]

i3[03]
1d-12s 1D 12x1x1 1024x128x128 i2[01,03,10-11,

16-17,21,23]
i3[01,03,13-14]

1d-1w 1D 1x1x1 128x128x128 i3[20]
1d-4w 1D 4x1x1 512x128x128 i2[16-17,27]

i3[03]
1d-12w 1D 12x1x1 1536x128x128 i2[01,03,10-11,

16-17,21-23]
i3[01,13-14]

1d-sub 1D 8x1x1 1024x128x128 i2[08,12,
16-17,27]

i3[15,18,20]
3d 3D 8x1x1 1024x128x128 i2[08,12,

16-17,27]
i3[15,18,20]

3d-1x1x8 3D 8x1x1 1024x128x128 i2[08,12,16-17]
i3[14-15,17-18]

3d-2x2x2 3D 2x2x2 1024x128x128 i2[08,12,16-17]
i3[14-15,17-18]

3d-sub 3D 8x1x1 1024x128x128 i2[08,12,
16-17,27]

i3[15,17-18]

Chapter 4: Results & Discussion 31

Table 4.5: Shows all runs performed on selbu and the clab machines. All runs
performed on the selbu computer uses a s-prefix, the other clab computers are
noted with a c-prefix.

Name Data Domain Domain Node(s)
structure distribution size

c-1d 1D 2x1x1 1024x128x128 clab[02,04,06,
09,12,15,

21,23]
c-1d-big 1D 2x1x1 1024x1024x1024 clab[02,04,06,

09,12,15,
21,23]

c-1d-unroll 1D 2x1x1 1024x128x128 clab[02,04,06,
09,12,15,

21,23]
s-1d-big 1D 2x1x1 1024x1024x1024 selbu

Table 4.6: Timing results from optimized and sub-optimal runs.

Run Compute time Problem time Compute
(seconds) (seconds) fraction

1d 7.291 7.619 95.70%
1d-sub 81.305 82.860 98.12%

3d 10.598 11.017 96.19%
3d-sub 75.917 76.878 98.75%

3.7). The results of these optimizations can be viewed in Figure 4.1 showing the
difference between the 1D and 3D variants, and the 1d-sub and 3d-sub showing
the results for each core data structure variant with the stride calculations within
the compute loop. Each column represents the total runtime to solve the given
problem, with the blue part representing the compute time, including the halo
exchanges. The red tops represent the preparation and finalization phases of the
run, where the global domain is scattered to the nodes and gathered to recreate
the resulting global domain. The specific values and results from the run can be
seen in Table 4.6 with each speed-up relative to the data structures sub-optimal
version (1d-sub and 3d-sub).

Firstly, the major difference in performance between the sub-optimal versions and
the optimized versions is noticeable. The use of pre-calculated strides sped up the
1D variant 11.15x and 7.16x on the 3D variant as shown in Table 4.7. Further,
the optimized 1D data structure variant outperforms the 3D data structure with
a 1.45x speed-up. To find a clue why a 1D data structure, in this case, performs
better, we can compare the implementations of the two variants. Looking at List-
ing 3.10 and A.1 the most significant difference is the access pattern for the in/-

32 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 4.1: Optimizations and data structure timings. Red is preparation and fi-
nalization of domain gather and scatter. Blue is compute time with halo exchange.

Table 4.7: Speed-up from sub-optimal run with same data structure, and the sub-
optimal run performance difference.

Compared runs Speed-up
1d-sub→ 1d 11.15x
3d-sub→ 3d 7.16x

1d-sub→ 3d-sub 1.07x

Chapter 4: Results & Discussion 33

subdomain and out/temp_buffer arrays. Both use a pre-calculated stride array, so
accessing the different stride values is equal. However, the 3D array requires 3
memory accesses for each value while the other requires only 1. This is where the
significant difference in the performance is lost for the 3D array.

Taking the optimized 1D variants performance gain from its 3D counterpart, the
situation for the sub-optimal variants at a glance looks abnormal. We see the 1D
version performing worse than the 3D version with a 1.07x speed-up for the 3D
version. However, comparing the compute loops from Listing 3.3 and 3.8 reveal
a key reason for this performance difference. We see an additional calculation
needed for the 1D calculations as the initial naive approach calculated the delta x,
y and z values. When changing the data structure, we opted for as few as possible
changes outside the data structure to see how this change would affect the perfor-
mance. This resulted in the calculation of the 1D offset based on the dx, dy and dz
values as shown in Equation 3.1. The additional calculation in the compute loop
was performed for each stencil value, contributing to the observed performance
difference when only changing the data structure.

This large speed-up between the optimized and sub-optimal versions shows the
effectiveness of pre-calculating the strides. This performance gain was no surprise
since most of the calculations within the compute loops before the optimizations
were the stride calculations. Comparing the compute loops in Listing 3.8 and 3.10,
we see all the calculations removed from the compute loop’ contributing to the
gain in performance. With these calculations performed once before the computa-
tions take place, we can replace them with a single memory access to an offset ar-
ray. This drastically reduces the time spent calculating each point. Since the stride
calculations were within the subdomain iterations and the stencil iterations over
each subdomain point, the strides were calculated 27 times for the 3x3x3 sten-
cil. A 128x128x128 subdomain would calculate the strides over 56 million times
instead of the mere 27 times required for any domain size with pre-calculation.

4.6 Scaling, strong and weak

Stencil computations on a larger problem domain that might also require many
iterations performed is a time-consuming feat. One can choose to use more com-
puting power to reduce the time taken to solve the problem. If it is a memory
issue where the problem is too large for a single node to handle efficiently, one
could also benefit from the additional nodes to make the subdomains fit within
memory and cache constraints. Due to this, we tested our benchmark’s both strong
and weak scaling capabilities on the shared Idun resources with both 4, 8, and 12
nodes. We used the 1d-1s and 1d-1w 1 node runs as baseline readings to compare
the other runs against. The theoretical performance speed-up was calculated from
these one node runs and is represented by the red line in both Figure 4.2 and 4.3.
The blue line is the relative performance gain from the one node run. These fig-

34 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Table 4.8: Speed-up with respect to 1-node variant.

Run Compute Theoretical
speed-up Comparison

1d-1s 1x 1
1d-4s 3.07x 0.77
1d-8s 5.29x 0.67
1d-12s 9.47x 0.79
1d-1s 1x
1d-4s 0.74x 0.74
1d-8s 0.64x 0.64
1d-12s 0.61x 0.61

ures show the strong and weak scaling of the benchmark with increased compute
resources. The weak scaling saw an adjustment to the global domain size pro-
portional to the compute resources as seen in Table 4.4. All results were obtained
from only timing the compute loop containing the halo exchange and stencil com-
putations. This was done to see the speed-up of the actual parallel region of the
benchmark, with the constraints of the halo exchange. Applying Amdahl’s law for
the strong scaling and Gustafson’s law for the weak scaling, we have estimated
that the compute loop solely benefits from the parallelization. Therefore, we set
the serial fraction of the compute to 0 and get an assumed speed-up as shown in
Equation 4.1 and 4.2.

The Equation 4.1 and 4.2 shows a theoretical performance as shown in Figure
4.2 and 4.3. The latter shows a flat theoretical speed-up which at a glance is
different from what Equation 4.2 shows. This is because the equation calculates
the throughput of data, and the speed-ups measured in the figures are speed-up
in compute time. The second line of both Equation 4.1 and 4.2 shows how the
speed-up is factored in problem size N . Comparing the different strong scaling
approaches, the N is equal, and the theoretical performance scales solely with P.
However, the weak scaling scales both with P and N equally, resulting in an equal
theoretical compute time overall, but with higher throughput.

1

f + 1− f
P

=
1
1
P

= P

1
f + 1− f

P

N
=

P
N

(4.1)

P − f (P − 1) = P

P − f (P − 1)
N

=
P
N

(4.2)

Scaling the node count for the same problem size gave no surprising results. As

Chapter 4: Results & Discussion 35

Figure 4.2: Strong scaling of benchmark implementation. Naive theoretical
speed-up based on the 1 node run (red) versus relative speed-up on the different
node configurations (blue).

we only timed the near parallel only region of the computation, we saw a speed-
up when adding more nodes as calculated in Equation 4.1. These speed-ups are
listed in the upper part of Table 4.8, with a speed-up varying from 3-9x. Looking
at Figure 4.2 we see a near-perfect match of the curves, however at a lower perfor-
mance rate. When comparing the theoretical speed-up to the observed speed-up,
we see they miss the target by about 30%. This difference is mostly due to the
halo exchange slowing down the compute as the different nodes used in these
runs had different clock speeds and would finish each iteration at different times.
Furthermore, since all runs were conducted without exclusive access to the nodes,
this negatively affected performance due to other users using the same node and
interconnect. This is addressed in more detail in Section 4.7.

Weak scaling was done with the same parameters as for the strong scaling, and
the results are shown in Figure 4.3. The figure shows a declining performance rela-
tive to the problem size and node count, with performance dropping to 0.66-0.78x
the theoretical performance. We see the same tendency in performance degrada-
tion, as with the strong scaling, with an approximate 25-30% degradation. Like
the strong scaling case, this is affected by the halo exchange as nodes wait for
each other to finish, and the bandwidth is shared with other users.

These results show that our compute loop, which was thought to be a perfect par-
allel region, is more dependent on the halo exchange than initially realized. Since
a shared resource cluster with multiple applications running on the same nodes,
the latency and bandwidth between the nodes are affected. This results in perfor-
mance degradation for weak and strong scaling compared to an optimal run. It is
not conclusive evidence that our benchmark scales poorly regarding strong and
weak scaling. However, it requires more testing on exclusively accessed nodes to
ensure no interference from other applications.

36 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 4.3: Weak scaling of benchmark implementation based 1 node run. Naive
theoretical speed-up (red), actual speed-up (green).

4.7 Halo exchange

Halo exchange is a vital part of the stencil computations as it enables the sepa-
ration of subdomains that depend upon each other with minimal communication
overhead. The exchange is performed in one or more steps, each synchronizing
with the current nodes exchanging. If splitting a global domain only in one di-
rection, like with the 1d run as many others, the nodes only depend on their
neighbor along that one axis resulting in only one synchronization point. For an-
other distribution like the 1d-2x2x2 run, each node requires exchange in all three
directions between iterations. Figure 4.4, 4.6 and 4.7 show the time used on halo
exchange in blue, and the red column is the difference between inner compute
and exchange finishing. A negative difference value would suggest the exchange
finished before the compute, and a positive the opposite. Since the difference be-
tween these columns is so small, Figure 4.5 shows the actual difference between
the two columns to see the difference better. Here a positive value means the halo
exchange time is longer than the compute time and vice versa.

Figure 4.4 show a tendency that all halo exchanges use the same amount of time
as the compute threads need to wait on the exchange. Looking at Figure 4.5 we
see the same trend with minimal difference in the timings except in the 1d-4s run.
Here the exchange and computation overlapped to some degree showing some
communication hiding. Even though the exchange runs in a separate thread to
the compute, the incomplete communication hiding is due to multiple factors.
Firstly, different CPUs for different nodes prompt some nodes to wait longer than
others within a run, causing the attempt at hiding the communication to fail the
more they need to wait. Secondly, non-exclusive nodes could affect the perfor-
mance with less cache available as the benchmark, and the other user both use
the shared L3 cache. This other user might also use the interconnect in their exper-

Chapter 4: Results & Discussion 37

Figure 4.4: Time used on exchange versus time inner compute thread waited for
exchange thread to finish.

Figure 4.5: Difference in time used on exchange and time waited for exchange
to finish. Positive value indicates exchange used more time then compute thread
waited for it to complete.

38 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 4.6: Compute time versus exchange-compute difference for the sub-
optimal implementation.

Figure 4.7: Compute time versus exchange-compute difference using a
1024x1024x1024 problem domain.

iment, making the latency between nodes increase as both users fight over access
to the same resource. A third effect that for some runs could have affected the
performance negatively is that the inner compute on smaller domains executes
fast. Hence the halo exchange thread is not scheduled until after the compute is
finished. This is possibly what happened for those runs showing a negative dif-
ference in Figure 4.5 as in these cases the exchange started after the compute
finished.

How can we ensure that our implementation trying to hide the exchange with
computation works? We tested both a slower compute with a less optimal imple-
mentation and an increased problem size without scaling the processing power.
The sub-optimal implementation and increased problem size were used to ensure
each node would use a lot more time in computation. The sub-optimal variants
showed that a large amount of the exchange is performed in parallel with the

Chapter 4: Results & Discussion 39

Table 4.9: Fraction of exchange hidden by compute.

Run Hidden fraction
1d-4s 7%
1d-sub 80%
3d-sub 89%
1d-big 91%

1d-big-e 529%

Table 4.10: Halo exchange performed outside of Idun with exclusive node access.

Run Compute time Exchange/compute difference Hidden fraction
c-1d 0.007 -0.057 902%

c-1d-big 0.857 -4.242 595%
c-1d-unroll 0.007 0.008 -17%

computation. A considerable slow down of the compute performance resulted in
an 80-89% hide of the exchange as seen in Table 4.9. This was a massive im-
provement from the best of the base cases, with the 1d-4s run successfully hiding
7% of the exchange. However, the entire exchange was not hidden, which led us
to drastically increase the problem size with 1d-big to ensure that the compute
slowed more than the 11x from using the sub-optimal version. This contributed
to slightly increasing the hidden fraction to 91%, but in increasing the problem
size by 64x, we also increase the amount of data to be transmitted drastically.

One phenomenon mentioned but not tested is exclusive access on nodes in com-
pute and exchange. This allows us to use all node resources without any other user
occupying the other cores or using the interconnect on the node simultaneously.
We did this in the 1d-big-e run using 4 exclusive nodes to run the benchmark. We
still kept the large domain from 1d-big, so only the exclusivity and nodes were
changed between the runs. As one can both see in Figure 4.4 and Table 4.9 the
difference just by using exclusive nodes was massive. Instead of hiding 91% of the
exchange, we managed to hide the entire exchange and could have fitted another
4 exchanges. This shows just how much exclusive node access affects the overall
performance of the halo exchange on a shared cluster. We also tested on some
other computers with the c-1d, c-1d-big and c-1d-unroll all with exclusive node
access. As Table 4.10 shows, exclusive node access completely hides exchange in
these cases as well, with 902% and 595% hidden even on a 100Mbit ethernet con-
nection. However, the c-1d-unroll run did not hide any exchange, probably due to
the speed-up of the compute itself by only calculating the 7-points in the stencil.
Removing 20 of the 27 points of the other runs resulted in the exchange being
scheduled after the compute was finished.

40 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 4.8: Runtime on equal problem domaim with different domain distribu-
tion. Left is 1D. Right is 3D.

Table 4.11: Domain distribution speed-up.

Run Speed-up
1d-8x1x1→ 1d-2x2x2 0.89x
1d-8x1x1→ 1d-1x1x8 1.04x
3d-8x1x1→ 3d-2x2x2 1.02x
3d-8x1x1→ 3d-1x1x8 1.01x

4.8 Domain distribution differences

When one parallelizes an algorithm working on a global domain, the paralleliza-
tion sees the domain split into multiple subdomains for which one process or node
is responsible. The way one chooses to split the global domain into subdomains
varies from the number of nodes available and the shape of the global domain.
Here we tested 3 different domain distributions for both the 3D and 1D underly-
ing data structure. As Figure 4.8 shows, the major difference previously observed
where the optimized 1D version outperforms the 3D version still holds. The left 3
columns are from the 1D version and the right 3 columns are the 3D version. Table
4.11 shows the speed-up from the 8x1x1 domain distribution. This was chosen to
split the global domain into equal 128x128x128 subdomains, with its counter-
parts splitting it into a 512x64x64 subdomain and 1024x128x16 subdomain.

The results from Figure 4.8 show that for the 1D version, a 1x1x8 domain distri-
bution with subdomain sizes of 1024x128x16 performed best. On the other hand,
for the 3D version, subdomain sizes of 512x64x64 in a 2x2x2 domain distribution
performed best. These results are heavily affected by the difference in nodes and
the non-exclusivity when tested on Idun, leading them to show a wrong picture
of the reality in ideal conditions. The distrust of the results beyond the node dif-
ference and the difference in communication load from other users is the math
behind the data transmitted. In Equation 4.3, 4.4 and 4.5 we sum the total amount
of values sent per halo exchange for the different distribution. Hwxhxd is the halo
data for the given distribution, the global domain size given by w, h and d, and

Chapter 4: Results & Discussion 41

s is the padding of halo data surrounding the subdomain. The calculations were
done by using the same global domain as used in the runs 1024x128x128. The
8x1x1 variant transmits less data per exchange with about 17k values, with the
2x2x2 sends over 4 times the data and 1x1x8 even more. Furthermore, the 2x2x2
distribution will send the data in three different exchanges in all three directions
with a synchronization point between each exchange direction. This should fur-
thermore add to the total exchange time when compared to ideal conditions. Our
tests show a different picture, leading us to conclude that our results for this com-
parison are too affected by unexpected circumstances outside of our control and
analysis capability. Because of this, new tests have to be performed to find a more
conclusive result on what domain distribution performs best.

H8x1x1 = (h+ 2s) ∗ (d + 2s)

= 130 ∗ 130= 16900
(4.3)

H2x2x2 = (
h
2
+ 2s) ∗ (d

2
+ 2s) + (

w
2
+ 2s) ∗ (h

2
+ 2s) + (

w
2
+ 2s) ∗ (d

2
+ 2s)

= 66 ∗ 66+ 514 ∗ 66+ 514 ∗ 66= 72204
(4.4)

H1x1x8 = (w+ 2s) ∗ (h+ 2s)

= 1026 ∗ 130= 133380
(4.5)

4.9 Stencil unrolling

As mentioned in Section 3.7.3 the compute loop calculates many values that are
unnecessary as the stencil values are mostly 0s in the used stencil for this bench-
mark. However, with the implementation naively iterating through all n3 stencil
values, the potential speed-up is huge. We used the aforementioned 7-point Lapla-
cian stencil, expressed in 27 values, where only seven are non-zero. Because of
this, we chose to test a simple case with a hardcoded 7-point stencil to remove
all unnecessary calculations. Figure 4.9 shows the compute time for a regular 27-
point calculation and a 7-point calculation on 8 nodes, and Table 4.12 shows the
speed-up with the unrolled stencil.

As shown in Figure 4.9 there is a considerable gain in performance going from
a 27-point naively used stencil to a 7-point stencil. We observed a speed-up of
1.40x from the regular calculations, which are unsurprising as the sheer amount
of calculations necessary are drastically reduced. As we only tested the one con-
figuration and stencil, we can only guess how this would affect larger stencils, like
a 5x5x5 or 9x9x9 stencil not occupying the entire stencil grid. E.g., a 9x9x9 25-
point stencil would with stencil unrolling require 25 values calculated. However,
if expressed in the 9x9x9 grid naively used in the calculations, it would require
729 value calculations resulting in a massive performance degredation.

42 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Figure 4.9: Unrolled 7-point stencil computation time versus generic stencil com-
putation time.

Table 4.12: Speed-up with stencil unrolling.

Run Speed-up
c-1d→ c-1d-unroll 1.40x

4.10 Profiling

To find what parts of the benchmark does the heaviest lifting, we used a profiling
tool called perf to profile our application as it ran on multiple nodes. We used the
1d-big run configuration to profile, not interfering with its results, but as a separate
run. As seen in Figure 4.10 the inner compute function by far did the most work
running 96% of the entire run time. However, looking at another node’s profiling
output, we see a completely different balance between the compute and halo ex-
change functions. It can be seen in Figure 4.11 with still the inner compute as the
most time-consuming function. However, the pthread_spin_lock used by MPI for
busy waiting on exchange takes a considerable amount of the total run time. This
is not surprising as a fast node would complete its computations before its slower
counterparts and then need to wait between each iteration for the others to finish.

Outside of showing the computations to be the most time-consuming portions
of the application, we see that the potential loss in waiting for slower nodes is
considerable with an unbalanced run. This could be used to compute on a larger
subdomain or other tasks if using a shared cluster. The latter would probably in-
troduce overhead with context switches, but the point stands, these faster nodes
waists computing resources in such scenarios. One could choose to implement
CPU-based task partitioning to balance the compute load relative to each node’s
performance to reduce the need for waiting. This is mentioned in more detail in
Section 5.1.2.

Chapter 4: Results & Discussion 43

Figure 4.10: Profiling of 1d-big run on slow node.

Figure 4.11: Profiling of 1d-big run on fast node.

After profiling our benchmark, we see that the compute load on different nodes
with an equal distribution causes some nodes to wait excessively, which could be
used more wisely to reduce total compute time with unequal subdomains. How-
ever, the most important thing to note is that unsurprisingly the compute functions
are the most time-consuming, and where optimizations would benefit the bench-
mark the most. One could use AVX or SSE instructions to calculate multiple values
at once to speed up the computations further.

Chapter 5

Conclusions and Future Work

Dwindled single-core performance gain due to frequency scaling prompt the need
for parallelization techniques that take advantage of multi-core and multi-node
system performance. Finite difference computation using stencils are known to
be compute-heavy, and for larger iterative problems, require multiple runs. In ad-
dition, larger problems that do not fit in one processor´s memory, can still be
accommodated for in-core (in RAM) computations by utilizing memories across
multiple nodes.

This thesis focused on implementing and analyzing a 3D stencil-based benchmark-
ing application using halo exchanges between nodes on a shared resource cluster.
Analysis of the change of data structure, pre-calculation of memory strides, stencil
unrolling optimizations, and how these affect compute time were included. Lastly,
we benchmarked and analyzed how running stencil computations with inter-node
communication on a shared resource cluster affected the exchange performance
and what considerations are necessary for such run conditions.

Implementing 3D computations with halo exchange showed to be challenging
regarding which subdomain parts were to be transmitted in a given exchange,
and how the computations should be efficiently and correctly split to allow ex-
change hiding. Firstly, the implemented exchange had many road bumps with
visualization of the domains to better see what part to transmit. This was done
using Minecraft to build the 3D domain, which turned out to be a nice way to visu-
alize the issues with our initial approach. We fixed these issues to enable a correct
exchange implementation. This also helped with splitting the compute loops into
inner and outer compute to facilitate the hiding of the exchange.

Our implementation was not optimized during the initial development, and as
the profiling of the runs showed, we used almost all the time of the run in the
computational loops. This is why optimizing these loops was the highest priority,
resulting the following 3 attempts at optimization: Firstly, we changed the under-
lying data structure to a 1D array to remove many memory lookups to find one

45

46 A. Hammer: Analyzing Halo Computations on Multicore CPUs

value. This performed worse than the 3D data structure due to the added calcu-
lation to find the 1D stride from the 3D delta values. Secondly, we looked into
pre-calculation of the strides to reduce the compute time, which it did drastically.
With this change, the 70-80 seconds compute time was dropped to 7-12 seconds
with a performance improvement of 7-11x for our test cases. This pre-calculation
also presented the advantage of a 1D data structure with a 1.07x speed-up from
the 3D data structure. Lastly, we tried stencil unrolling to reduce the number of
useless stencil calculations as the used 7-point stencil only required seven calcu-
lations instead of the 27 calculations done with the generic approach first used.
Stencil unrolling saw a further speed-up of 1.40x, concluding that the 1D data
structure with pre-calculated strides and stencil unrolling had the fastest com-
pute time.

Benchmarking on shared computing resources had its challenges as other users’
workload affect performance. When all initial runs were performed on our central
Idun cluster [15], we saw none of them hiding the exchange more than 7% at best.
We tried to extend the compute time, as the computation was too fast for the com-
munication to finish. Both the sub-optimal version and a huge problem domain did
not hide the exchange completely, managing at best to hide 91% of the exchange.
We then tried using exclusive node access and got a massive improvement. We
saw that more than 5 exchanges could be hidden for each computational triple-
loop (529% hidden) when using a large problem domain (1024x1024x1024).
We also did some tests on a smaller dedicated cluster. This resulted in a similar
performance, hiding 902% of the exchange for our most common domain size
(1024x128x128), and 595% for the large domain size. This led us to conclude
that exclusive access is essential when using a shared cluster with halo exchanges
as other users’ work will otherwise impact communication time and overall per-
formance.

We also scaled the node count and problem sizes, and tried different distributions
of the problem domain over the nodes. First, we tested the strong scaling and com-
pared it with a theoretical performance according to Amdahl’s law. Here we saw
performance increase when scaling, but the estimated theoretical speed-up of the
compute loop was wrong. We observed that it had a 25-35% serial fraction due to
the serial nature of the halo exchange. We did not test how it scaled with hidden
haloes, something that should be looked at further. Furthermore, the distribution
of the problem domain did not give us any conclusive results since the difference
in node performances of our heterogenous cluster, and non-exclusive node access,
gave inconclusive results. These results compared with the amount of transmitted
data shows that in some cases, the one with the most data sent outperformed the
one with the least data. With the node exclusivity impacting the halo exchange,
we concluded that the effect of the distribution needs to be tested further with
exclusive node access and equal nodes to ensure more reliable results.

Chapter 5: Conclusions and Future Work 47

5.1 Future work

Theis work can be extended in many directions. Following are some of our ideas
for future work.

5.1.1 Deep halos

Using a larger halo depth to compute multiple iterations between each halo ex-
change is not tested in this benchmark. However, extending the benchmark to
include this is interesting when dealing with a global domain distributed over
many compute nodes with high inter-node latency or low bandwidth. If either
the subdomains are small due to a high node count or a small node count with
large subdomains and low bandwidth, the halo exchange is more time-consuming
than the compute itself. In these cases, to trade some compute time with halo
exchanges, one can compute multiple iterations between each exchange instead
of exchanging between each iteration. In such a case, one can use deep halos.
When computing these inter-exchange iterations, one skips the bad data layers
to compute those subdomain regions necessary to ensure a correct calculation.
This should be investigated as this could result in less computation on each iter-
ation before resetting the amount after a halo exchange to further increase the
performance gain with deep halos.

5.1.2 Hardware related task partitioning

Using a large shared compute cluster, the different nodes have different compute
and interconnect loads based on other users using the same nodes. The differ-
ent nodes one gets access to might also have different specifications like different
CPUs or memory, which creates an unbalance between the nodes with some nodes
require waiting for the others to finish the compute before exchanging. One pos-
sible solution is task partitioning based on the difference in CPU and memory
between nodes. If this information is used to partition the subdomains unevenly
to match the time a node is finished with the compute with all nodes in the run.
This could increase the overall performance of the application as well as the uti-
lization of each node. All runs conducted in this thesis used the smallest number
of cores available as a bottleneck for all CPUs. Some CPUs matched the core count
requested, but in some cases, other nodes only used 10 out of 24 available cores.
Such a partitioning would require an asymmetric global domain distribution, with
subdomain sizes scaled to each node’s core count, available memory, and CPU
clock speed.

5.1.3 AVX instructions in stencil computations

The compute loop is the most time-consuming, as seen in Figure 4.10, and if ap-
plying a deep halo technique, this would increase the time spent on the stencil
computations. To increase the efficiency of these stencil calculations, one could

48 A. Hammer: Analyzing Halo Computations on Multicore CPUs

employ AVX or SSE instructions to reduce the required compute drastically by
computing multiple values within the same clock cycle. This would require an
extensive restructuring of the compute loop to load into the AVX registres and
compute on these as efficiently as possible. One might also need to restructure
the underlying data structure based on how values are located in relation to each
other. However, an AVX/SSE approach is worth checking out to increase perfor-
mance drastically.

5.1.4 Stencil unrolling

The used stencil is expressed in an n3 array and the generic implementation of the
computation will always loop through every stencil value. For stencils containing
zero-values, this is very sub-optimal, with many calculations taking place before
multiplying with a 0. One could restructure either the compute loop to directly
use the stencils value hardcoded into the loop, which we did briefly try in Section
3.7.3. This was only tested for a single run configuration as a spur-of-the-moment
idea. It should be looked further into how this affects performance under differ-
ent conditions and how one can support different stencils without rewriting the
compute loop.

One approach for a generic stencil implementation would be to iterate through
the stencil and saving the non-zero values to a separate stencil array. Then use this
and the different value’s position to pre-calculate the strides for each value. In the
compute loop, instead of iterating over every value in the stencil, one iterate over
the reduced stencil array and the stride array calculated from the reduce variant
to only calculate the non-zero stencil values.

Bibliography

[1] C. Kessler and J. Keller, “Models for parallel computing: Review and per-
spectives,” Mitteilungen-Gesellschaft für Informatik eV, Parallel-Algorithmen
und Rechnerstrukturen, vol. 24, pp. 13–29, 2007.

[2] G. William, L. Ewing, and S. Anthony, Using MPI : Portable Parallel Pro-
gramming with the Message-Passing Interface. Ser. Scientific and Engineer-
ing Computation. The MIT Press, 2014, vol. Third edition, ISBN: 978-0-
262-52739-2.

[3] O. A. R. Board, OpenMP Application Programming Interface, English, Nov.
2020. [Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-1.pdf (visited on 12/17/2020).

[4] “MPI: A Message-Passing Interface Standard,” en, Tech. Rep., p. 868. [On-
line]. Available: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-
report.pdf (visited on 09/11/2020).

[5] R. Chandra, Ed., Parallel programming in OpenMP. San Francisco, CA: Mor-
gan Kaufmann Publishers, 2001, ISBN: 978-1-55860-671-5.

[6] “IEEE Standard for Information Technology—Portable Operating System
Interface (POSIX(TM)) Base Specifications, Issue 7,” IEEE Std 1003.1, 2016
Edition (incorporates IEEE Std 1003.1-2008, IEEE Std 1003.1-2008/Cor 1-
2013, and IEEE Std 1003.1-2008/Cor 2-2016), pp. 1–3957, Sep. 2016,
Conference Name: IEEE Std 1003.1, 2016 Edition (incorporates IEEE Std
1003.1-2008, IEEE Std 1003.1-2008/Cor 1-2013, and IEEE Std 1003.1-
2008/Cor 2-2016). DOI: 10.1109/IEEESTD.2016.7582338.

[7] P. S. Pacheco, An introduction to parallel programming. Amsterdam : Boston:
Morgan Kaufmann, 2011, ISBN: 978-0-12-374260-5.

[8] P. A. Mlsna and J. J. Rodríguez, “Gradient and Laplacian Edge Detection,” in
Handbook of Image and Video Processing (Second Edition), ser. Communica-
tions, Networking and Multimedia, A. BOVIK, Ed., Second Edition, Burling-
ton: Academic Press, 2005, pp. 535–553, ISBN: 978-0-12-119792-6. DOI:
10.1016/B978-012119792-6/50095-4.

49

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-1.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1109/IEEESTD.2016.7582338
https://doi.org/10.1016/B978-012119792-6/50095-4

50 A. Hammer: Analyzing Halo Computations on Multicore CPUs

[9] F. B. Kjolstad and M. Snir, “Ghost Cell Pattern,” en, in Proceedings of the
2010 Workshop on Parallel Programming Patterns - ParaPLoP ’10, Carefree,
Arizona: ACM Press, 2010, pp. 1–9, ISBN: 978-1-4503-0127-5. DOI: 10.
1145/1953611.1953615.

[10] J. L. Gustafson, G. R. Montry, and R. E. Benner, “Development of Parallel
Methods for a 1024-Processor Hypercube,” en, SIAM Journal on Scientific
and Statistical Computing, vol. 9, no. 4, pp. 609–638, Jul. 1988, ISSN: 0196-
5204, 2168-3417. DOI: 10.1137/0909041.

[11] G. M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” en, in Proceedings of the April 18-20, 1967,
spring joint computer conference on - AFIPS ’67 (Spring), Atlantic City, New
Jersey: ACM Press, 1967, p. 483. DOI: 10.1145/1465482.1465560.

[12] R. K. Karmani, G. Agha, M. S. Squillante, J. Seiferas, M. Brezina, J. Hu, R.
Tuminaro, P. Sanders, J. L. Träffe, R. A. Geijn, J. L. Träff, R. A. Geijn, M. B.
Sander, J. L. Gustafson, R. O. Dror, C. Young, D. E. Shaw, C. Lin, J.-K. Lee,
R.-G. Chang, C.-B. Kuan, G. Kollias, A. Y. Grama, Z. Li, R. C. Whaley, and
R. W. Vuduc, “Amdahl’s Law,” en, in Encyclopedia of Parallel Computing, D.
Padua, Ed., Boston, MA: Springer US, 2011, pp. 53–60, ISBN: 978-0-387-
09765-7 978-0-387-09766-4. DOI: 10.1007/978-0-387-09766-4_77.

[13] J. L. Gustafson, “Reevaluating Amdahl’s law,” en, Communications of the
ACM, vol. 31, no. 5, pp. 532–533, May 1988, ISSN: 0001-0782, 1557-7317.
DOI: 10.1145/42411.42415.

[14] A. Kalyanaraman, K. Hammond, J. Nieplocha, M. Krishnan, B. Palmer, V.
Tipparaju, R. Harrison, D. Chavarrıa-Miranda, J. Makino, D. Bader, G. Cong,
B. Hendrickson, J. Shalf, D. Donofrio, C. Rowen, L. Oliker, M. Wehner,
and J. L. Gustafson, “Gustafson–Barsis Law,” en, in Encyclopedia of Parallel
Computing, D. Padua, Ed., Boston, MA: Springer US, 2011, pp. 825–825,
ISBN: 978-0-387-09765-7 978-0-387-09766-4. DOI: 10.1007/978-0-387-
09766-4_2187. (visited on 05/30/2021).

[15] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “EPIC: An Energy-
Efficient, High-Performance GPGPU Computing Research Infrastructure,”
arXiv:1912.05848 [cs], Dec. 2020, arXiv: 1912.05848. [Online]. Available:
http://arxiv.org/abs/1912.05848 (visited on 05/06/2021).

[16] Idun Hardware – High Performance Computing Group, en-US. [Online]. Avail-
able: https://www.hpc.ntnu.no/idun/hardware (visited on 05/06/2021).

[17] Data corruption with OpenMPI 4.0.4 and UCX 1.9.0, en, Issue board, Apr.
2021. [Online]. Available: https://github.com/open-mpi/ompi/issues/
8442 (visited on 05/25/2021).

https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1145/1953611.1953615
https://doi.org/10.1137/0909041
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1007/978-0-387-09766-4_77
https://doi.org/10.1145/42411.42415
https://doi.org/10.1007/978-0-387-09766-4_2187
https://doi.org/10.1007/978-0-387-09766-4_2187
http://arxiv.org/abs/1912.05848
https://www.hpc.ntnu.no/idun/hardware
https://github.com/open-mpi/ompi/issues/8442
https://github.com/open-mpi/ompi/issues/8442

Appendix A

Benchmark code and
optimizations

A.1 Optimizations

void inner_compute(DATA_TYPE ***in, DATA_TYPE ***out, int width, int height,
int depth, DATA_TYPE *kernel, int kernel_size, int halo_size, int halo_depth,
point_offset_t *point_offset)

{
int k3 = kernel_size * kernel_size * kernel_size;
int upper_z = depth - (halo_size * (halo_depth + 1));
int upper_y = height - (halo_size * (halo_depth + 1));
int upper_x = width - (halo_size * (halo_depth + 1));
int lower = halo_size * (halo_depth + 1);

#pragma omp parallel for collapse(3)
for (int z = lower; z < upper_z; z++)
{
for (int y = lower; y < upper_y; y++)
{
for (int x = lower; x < upper_x; x++)
{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
point_offset_t offset = point_offset[i];
value += in[z + offset.dz][y + offset.dy][x + offset.dx] * kernel[i];

}
out[z][y][x] = value;

}
}

}
}

Code listing A.1: 3D inner compute variant with pre-calculated domain stride
values.

51

52 A. Hammer: Analyzing Halo Computations on Multicore CPUs

A.2 Benchmark implementation

#include "compute.h"
#include "constants.h"
#include "domain_lifecycle.h"
#include "exchange.h"
#if __has_include(<openmpi/mpi.h>)
#include <openmpi/mpi.h>
#else
#include <mpi.h>
#endif
#include <omp.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

DATA_TYPE laplace_7_kernel[] = {
0, 0, 0,
0, 1, 0,
0, 0, 0,
0, 1, 0,
1, -6, 1,
0, 1, 0,
0, 0, 0,
0, 1, 0,
0, 0, 0

};

DATA_TYPE *kernels[] = {laplace_7_kernel};
int kernel_sizes[] = {3};
char *kernel_names[] = {"7-point␣laplce␣kernel"};
int kernel_count = 1;

void swap_buffers(DATA_TYPE **a, DATA_TYPE **b)
{
DATA_TYPE *tmp = *a;
*a = *b;
*b = tmp;

}

void print_data(DATA_TYPE *data, int width, int height, int depth)
{
for (int z = 0; z < depth; z++) {
printf("----------------------------------\n");
for (int y = 0; y < height; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
printf("%.2f\t", data[domain_pos++]);

}
printf("\n");

}
}
printf("----------------------------------\n");

}

void error(char *message, int world_rank, void (*cleanup)(void *data), void *data)
{

Chapter A: Benchmark code and optimizations 53

if (world_rank == 0)
{
printf("%s", message);

}
if (cleanup != NULL && data != NULL)
{
(*cleanup)(data);

}
MPI_Finalize();
exit(0);

}

int main(int argc, char **argv)
{
// Number of MPI nodes
int world_size;

// ID of the current MPI node
int world_rank;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
MPI_Comm_size(MPI_COMM_WORLD, &world_size);

if (argc < 11) {
error("Usage␣main␣<width>␣<height>␣<depth>␣<iterations>␣<kernel-selection>

␣␣␣␣␣␣<domain-distribution-x>␣<domain-distribution-y>␣<domain-distribution-z>
␣␣␣␣␣␣<minimal-output>␣<halo-depth>\n", world_rank, NULL, NULL);
}

// Global domain with, height, depth
int width = atoi(argv[1]);
int height = atoi(argv[2]);
int depth = atoi(argv[3]);

// Number of compute iterations
int iterations = atoi(argv[4]);

// Selected kernel for compute
int kernel = atoi(argv[5]);

// Number of subdomains in all three dimension (X,Y,Z)
int domain_distribution[3] = {atoi(argv[6]), atoi(argv[7]), atoi(argv[8])};

// True/false - mute most output from processing
int minimal_output = atoi(argv[9]);

// Halo size is the size of each layer of halo required for computing the kernel
// (kernel half size/nth order stencil)
int halo_size = kernel_sizes[kernel] / 2;

// Halo depth is number of deep halos to use in compute
int halo_depth = atoi(argv[10]);

if (minimal_output == 0 && world_rank == 0)
{
int num_threads_available;

#pragma omp parallel
{
num_threads_available = omp_get_num_threads();

}

54 A. Hammer: Analyzing Halo Computations on Multicore CPUs

printf("|----------------------------------\n");
printf("|␣Run␣configuration\n");
printf("|----------------------------------\n");
printf("|␣Domain␣width:␣%d\n", width);
printf("|␣Domain␣height:␣%d\n", height);
printf("|␣Domain␣depth:␣%d\n", depth);
printf("|␣Iteration␣count:␣%d\n", iterations);
printf("|␣Halo␣size:␣%d\n", halo_size);
printf("|␣Halo␣depth:␣%d\n", halo_depth);
printf("|␣Kernel:␣%s\n", kernel_names[kernel]);
printf("|␣Domain␣distribution:␣%dx%dx%d\n", domain_distribution[0],
domain_distribution[1], domain_distribution[2]);

printf("|␣Compute␣threads␣available:␣%d\n", num_threads_available);
printf("|----------------------------------\n");

}

if (width <= 0 || height <= 0 || depth <= 0)
{
error("Width,␣height␣and␣depth␣need␣a␣non-zero␣positive␣value\n", world_rank,
NULL, NULL);

}
if (kernel < 0 || kernel >= kernel_count)
{
error("Kernel␣selected␣not␣valid\n", world_rank, NULL, NULL);

}
if (iterations <= 0)
{
error("A␣non-zero␣positive␣number␣of␣iterations␣is␣required\n", world_rank,
NULL, NULL);

}
if (domain_distribution[0] <= 0 || domain_distribution[1] <= 0 ||
domain_distribution[2] <= 0)

{
error("A␣non-zero␣positive␣distribution␣of␣chunks␣in␣all␣3␣axis␣is␣required\n",
world_rank, NULL, NULL);

}
if (domain_distribution[0] * domain_distribution[1] * domain_distribution[2] !=
world_size)

{
error("Requested␣domain␣decomposition␣dimensions␣is␣not␣possible␣with␣the

␣␣␣␣␣␣available␣nodes\n", world_rank, NULL, NULL);
}

// Global domain data
DATA_TYPE *domain = NULL;
if (world_rank == 0)
{
domain = malloc(depth * height * width * sizeof(DATA_TYPE));
for (int i = 0; i < depth * height * width; i++)
{
domain[i] = 1;

}
}

double *timing_data = malloc(iterations * sizeof(double));
double *timing_diff = malloc(iterations * sizeof(double));

// Subdomain data
DATA_TYPE *subdomain = NULL;

Chapter A: Benchmark code and optimizations 55

// Width, height, depth of every subdomain
domain_size_t *subdomain_sizes = NULL;

double totalBegin, totalEnd;
double computeBegin, computeEnd;
double comm_end, comp_end;
if (world_rank == 0)
{
totalBegin = MPI_Wtime();

}

domain_decompose(domain, &subdomain, width, height, depth, world_size, world_rank,
domain_distribution, &subdomain_sizes, halo_size, halo_depth);

domain_size_t subdomain_size = subdomain_sizes[world_rank];
int *point_offset = malloc(kernel_sizes[kernel] * kernel_sizes[kernel] *
kernel_sizes[kernel] * sizeof(int));

for (int i = 0;
i < kernel_sizes[kernel] * kernel_sizes[kernel] * kernel_sizes[kernel]; i++)

{
int dx = (i % kernel_sizes[kernel]) - halo_size;
int dy = ((i / kernel_sizes[kernel]) % kernel_sizes[kernel]) - halo_size;
int dz = ((i / (kernel_sizes[kernel] * kernel_sizes[kernel])) %
kernel_sizes[kernel]) - halo_size;

point_offset[i] = (dz * subdomain_size.width * subdomain_size.height) +
(dy * subdomain_size.width) + dx;

}
subdomain_size.depth = (subdomain_size.depth + (2 * halo_size * halo_depth));
subdomain_size.height = (subdomain_size.height + (2 * halo_size * halo_depth));
subdomain_size.width = (subdomain_size.width + (2 * halo_size * halo_depth));

DATA_TYPE *tmp_buffer = calloc(subdomain_size.depth * subdomain_size.height *
subdomain_size.width, sizeof(DATA_TYPE));

pthread_t comm_thread;
int i = 0;
border_exchange_args_t comm_args;
comm_args.domain_distribution = domain_distribution;
comm_args.rank = world_rank;
comm_args.world_size = world_size;
comm_args.subdomain_data = subdomain;
comm_args.subdomain_size = &subdomain_size;
comm_args.halo_size = halo_size;
comm_args.halo_depth = halo_depth;
comm_args.timings = timing_data;
comm_args.iteration = &i;
comm_args.comm_end = &comm_end;

if (world_rank == 0)
{
computeBegin = MPI_Wtime();

}
// Halo iteration given from (i % halo_depth) + 1
for (i = 0; i < iterations; i++)
{
comm_args.subdomain_data = subdomain;
pthread_create(&comm_thread, NULL, border_exchange, &comm_args);
inner_compute(subdomain, tmp_buffer, subdomain_size.width,
subdomain_size.height, subdomain_size.depth, kernels[kernel],

56 A. Hammer: Analyzing Halo Computations on Multicore CPUs

kernel_sizes[kernel], halo_size, halo_depth, point_offset);

// Handle exchange result, and place into subdomain
// Wait pthread is finished :P
comp_end = MPI_Wtime();
pthread_join(comm_thread, NULL);
timing_diff[i] = comm_end - comp_end;

outer_compute(subdomain, tmp_buffer, subdomain_size.width,
subdomain_size.height, subdomain_size.depth, kernels[kernel],
kernel_sizes[kernel], halo_size, halo_depth, (i % halo_depth) + 1,
point_offset);

swap_buffers(&subdomain, &tmp_buffer);
}
if (world_rank == 0) {
computeEnd = MPI_Wtime();

}

domain_recompose(domain, subdomain, width, height, depth, world_size, world_rank,
domain_distribution, subdomain_sizes, halo_size, halo_depth);

if (world_rank == 0)
{
totalEnd = MPI_Wtime();
double time = totalEnd - totalBegin;
printf("Total␣problem␣time:␣%.20f␣sec\n", time);

}
if (world_rank == 0)
{
double time = computeEnd - computeBegin;
printf("Total␣compute␣time:␣%.20f␣sec\n", time);

}
int cur_rank = 0;
while (cur_rank < world_size)
{
int new_rank = cur_rank;
if (world_rank == cur_rank)
{
for (int i = 0; i < iterations; i++)
{
printf("(%d,%d):␣%.20f␣sec\n", world_rank, i, timing_data[i]);

}
for (int i = 0; i < iterations; i++)
{
printf("(%d,%d):␣%.20f␣sec␣diff\n", world_rank, i, timing_diff[i]);

}
new_rank++;

}
MPI_Bcast(&new_rank, 1, MPI_INT, cur_rank, MPI_COMM_WORLD);
cur_rank = new_rank;

}

free(tmp_buffer);
free(subdomain);
if (world_rank == 0)
{
free(domain);

}
free(subdomain_sizes);
free(timing_data);

Chapter A: Benchmark code and optimizations 57

free(timing_diff);
free(point_offset);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();

return 0;
}

Code listing A.2: main.c

58 A. Hammer: Analyzing Halo Computations on Multicore CPUs

#include "compute.h"
#include <omp.h>

void outer_compute(DATA_TYPE *in, DATA_TYPE *out, int width, int height, int depth,
DATA_TYPE *kernel, int kernel_size, int halo_size, int halo_depth,
int halo_iteration, int *point_offset)

{
int k3 = kernel_size * kernel_size * kernel_size;
// Front face

#pragma omp parallel for collapse(2)
for (int z = halo_size * halo_iteration; z < halo_size * (halo_depth + 1); z++)
{
for (int y = halo_size * halo_iteration;
y < height - (halo_size * halo_iteration); y++)

{
int domain_pos_out = POSZYX(z, y, halo_size * halo_iteration);
for (int x = halo_size * halo_iteration;
x < width - (halo_size * halo_iteration); x++)

{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
value += in[domain_pos_out + point_offset[i]] * kernel[i];

}
out[domain_pos_out++] = value;

}
}

}

// Back face
#pragma omp parallel for collapse(2)
for (int z = depth - (halo_size * (halo_depth + 1));
z < depth - (halo_size * halo_iteration); z++)

{
for (int y = halo_size * halo_iteration;
y < height - (halo_size * halo_iteration); y++)

{
int domain_pos_out = POSZYX(z, y, halo_size * halo_iteration);
for (int x = halo_size * halo_iteration;
x < width - (halo_size * halo_iteration); x++)

{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
value += in[domain_pos_out + point_offset[i]] * kernel[i];

}
out[domain_pos_out++] = value;

}
}

}

// Left face
#pragma omp parallel for collapse(2)
for (int z = halo_size * (halo_depth + 1);
z < depth - (halo_size * (halo_depth + 1)); z++)

{
for (int y = halo_size * halo_iteration;
y < height - (halo_size * halo_iteration); y++)

{

Chapter A: Benchmark code and optimizations 59

int domain_pos_out = POSZYX(z, y, halo_size * halo_iteration);
for (int x = halo_size * halo_iteration;
x < halo_size * (halo_depth + 1); x++)

{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
value += in[domain_pos_out + point_offset[i]] * kernel[i];

}
out[domain_pos_out++] = value;

}
}

}

// Right face
#pragma omp parallel for collapse(2)
for (int z = halo_size * (halo_depth + 1);
z < depth - (halo_size * (halo_depth + 1)); z++)

{
for (int y = halo_size * halo_iteration;
y < height - (halo_size * halo_iteration); y++)

{
int domain_pos_out = POSZYX(z, y, width - (halo_size * (halo_depth + 1)));
for (int x = width - (halo_size * (halo_depth + 1));
x < width - (halo_size * halo_iteration); x++)

{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
value += in[domain_pos_out + point_offset[i]] * kernel[i];

}
out[domain_pos_out++] = value;

}
}

}

// Top face
#pragma omp parallel for collapse(2)
for (int z = halo_size * (halo_depth + 1);
z < depth - (halo_size * (halo_depth + 1)); z++)

{
for (int y = halo_size * halo_iteration;
y < halo_size * (halo_depth + 1); y++)

{
int domain_pos_out = POSZYX(z, y, halo_size * (halo_depth + 1));
for (int x = halo_size * (halo_depth + 1);
x < width - (halo_size * halo_iteration); x++)

{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
value += in[domain_pos_out + point_offset[i]] * kernel[i];

}
out[domain_pos_out++] = value;

}
}

}

// Bottom face
#pragma omp parallel for collapse(2)

60 A. Hammer: Analyzing Halo Computations on Multicore CPUs

for (int z = halo_size * (halo_depth + 1);
z < depth - (halo_size * (halo_depth + 1)); z++)

{
for (int y = height - (halo_size * (halo_depth + 1));
y < height - (halo_size * halo_iteration); y++)

{
int domain_pos_out = POSZYX(z, y, halo_size * (halo_depth + 1));
for (int x = halo_size * (halo_depth + 1);
x < width - (halo_size * halo_iteration); x++)

{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
value += in[domain_pos_out + point_offset[i]] * kernel[i];

}
out[domain_pos_out++] = value;

}
}

}
}

void inner_compute(DATA_TYPE *in, DATA_TYPE *out, int width, int height, int depth,
DATA_TYPE *kernel, int kernel_size, int halo_size, int halo_depth,
int *point_offset)

{
int k3 = kernel_size * kernel_size * kernel_size;
int upper_z = depth - (halo_size * (halo_depth + 1));
int upper_y = height - (halo_size * (halo_depth + 1));
int upper_x = width - (halo_size * (halo_depth + 1));
int lower = halo_size * (halo_depth + 1);

#pragma omp parallel for collapse(2)
for (int z = lower; z < upper_z; z++)
{
for (int y = lower; y < upper_y; y++)
{
int domain_pos_out = POSZYX(z, y, halo_size * (halo_depth + 1));
for (int x = lower; x < upper_x; x++)
{
DATA_TYPE value = 0;
for (int i = 0; i < k3; i++)
{
value += in[domain_pos_out + point_offset[i]] * kernel[i];

}
out[domain_pos_out++] = value;

}
}

}
}

Code listing A.3: compute.c

Chapter A: Benchmark code and optimizations 61

#include "domain_lifecycle.h"
#include "utils.h"
#if __has_include(<openmpi/mpi.h>)
#include <openmpi/mpi.h>
#else
#include <mpi.h>
#endif
#include <stdio.h>
#include <stdlib.h>

void domain_decompose(DATA_TYPE *domain, DATA_TYPE **subdomain, int width,
int height, int depth, int world_size, int world_rank, int *domain_distribution,
domain_size_t **subdomain_sizes, int halo_size, int halo_depth)

{
calculate_subdomain_sizes(width, height, depth, world_size, domain_distribution,
subdomain_sizes);

int depth_with_halo =
((*subdomain_sizes)[world_rank].depth + (2 * halo_size * halo_depth));

int height_with_halo =
((*subdomain_sizes)[world_rank].height + (2 * halo_size * halo_depth));

int width_with_halo =
((*subdomain_sizes)[world_rank].width + (2 * halo_size * halo_depth));

*subdomain = calloc(depth_with_halo * height_with_halo * width_with_halo,
sizeof(DATA_TYPE));

int *subdomain_counts = NULL;
int *subdomain_displacement = NULL;
int **subdomain_positions = NULL;

calculate_subdomain_counts(&subdomain_counts, world_size, *subdomain_sizes);
calculate_subdomain_displacements(&subdomain_displacement, world_size,
subdomain_counts);

calculate_subdomain_positions(&subdomain_positions, world_size,
domain_distribution);

DATA_TYPE *send_buffer = NULL;
DATA_TYPE *recv_buffer = malloc(subdomain_counts[world_rank] * sizeof(DATA_TYPE));
if (world_rank == 0)
{
send_buffer = malloc(width * height * depth * sizeof(DATA_TYPE));
int pos = 0;
for (int i = 0; i < world_size; i++)
{
int *subdomain_position = subdomain_positions[i];
domain_size_t subdomain_size = (*subdomain_sizes)[i];
for (int z = subdomain_position[2] * subdomain_size.depth;
z < min((subdomain_position[2] + 1) * subdomain_size.depth, depth); z++)

{
for (int y = subdomain_position[1] * subdomain_size.height;
y < min((subdomain_position[1] + 1) * subdomain_size.height, height); y++)

{
int domain_pos = POSZYX(z, y,
(subdomain_position[0] * subdomain_size.width));

for (int x = subdomain_position[0] * subdomain_size.width;
x < min((subdomain_position[0] + 1) * subdomain_size.width, width); x++)

{
send_buffer[pos++] = domain[domain_pos++];

}
}

62 A. Hammer: Analyzing Halo Computations on Multicore CPUs

}
}

}

MPI_Scatterv(send_buffer, subdomain_counts, subdomain_displacement, MPI_DATA_TYPE,
recv_buffer, subdomain_counts[world_rank], MPI_DATA_TYPE, 0, MPI_COMM_WORLD);

domain_size_t subdomain_size = (*subdomain_sizes)[world_rank];
for (int z = 0; z < subdomain_size.depth; z++)
{
for (int y = 0; y < subdomain_size.height; y++)
{
int pos = (z * subdomain_size.width * subdomain_size.height) +
(y * subdomain_size.width);

int subdomain_pos = POSZYXW(z + (halo_size * halo_depth),
y + (halo_size * halo_depth), halo_size * halo_depth,
width_with_halo, height_with_halo);

for (int x = 0; x < subdomain_size.width; x++)
{
(*subdomain)[subdomain_pos++] = recv_buffer[pos++];

}
}

}

if (world_rank == 0)
{
free(send_buffer);

}

free(subdomain_counts);
free(subdomain_displacement);
free_subdomain_positions(subdomain_positions, world_size);
free(recv_buffer);

}

void domain_recompose(DATA_TYPE *domain, DATA_TYPE *subdomain, int width,
int height, int depth, int world_size, int world_rank, int *domain_distribution,
domain_size_t *subdomain_sizes, int halo_size, int halo_depth)

{
int *subdomain_counts = NULL;
int *subdomain_displacement = NULL;
int **subdomain_positions = NULL;
domain_size_t subdomain_size = subdomain_sizes[world_rank];
int depth_with_halo = subdomain_size.depth + (2 * halo_size * halo_depth);
int height_with_halo = subdomain_size.height + (2 * halo_size * halo_depth);
int width_with_halo = subdomain_size.width + (2 * halo_size * halo_depth);

calculate_subdomain_counts(&subdomain_counts, world_size, subdomain_sizes);
calculate_subdomain_displacements(&subdomain_displacement, world_size,
subdomain_counts);

calculate_subdomain_positions(&subdomain_positions, world_size,
domain_distribution);

DATA_TYPE *send_buffer = malloc(subdomain_counts[world_rank] * sizeof(DATA_TYPE));
DATA_TYPE *recv_buffer = NULL;

if (world_rank == 0)
{
recv_buffer = malloc(width * height * depth * sizeof(DATA_TYPE));

}

Chapter A: Benchmark code and optimizations 63

for (int z = 0; z < subdomain_size.depth; z++)
{
for (int y = 0; y < subdomain_size.height; y++)
{
int pos = POSZYW(z, y, subdomain_size.width, subdomain_size.height);
int subdomain_pos = POSZYXW(z + (halo_size * halo_depth),
y + (halo_size * halo_depth), halo_size * halo_depth,
width_with_halo, height_with_halo);

for (int x = 0; x < subdomain_size.width; x++)
{
send_buffer[pos++] = subdomain[subdomain_pos++];

}
}

}

MPI_Gatherv(send_buffer, subdomain_counts[world_rank], MPI_DATA_TYPE, recv_buffer,
subdomain_counts, subdomain_displacement, MPI_DATA_TYPE, 0, MPI_COMM_WORLD);

if (world_rank == 0)
{
int pos = 0;
for (int i = 0; i < world_size; i++)
{
int *subdomain_position = subdomain_positions[i];
domain_size_t subdomain_size = subdomain_sizes[i];
for (int z = subdomain_position[2] * subdomain_size.depth;
z < min((subdomain_position[2] + 1) * subdomain_size.depth, depth); z++)

{
for (int y = subdomain_position[1] * subdomain_size.height;
y < min((subdomain_position[1] + 1) * subdomain_size.height, height); y++)

{
int domain_pos = POSZYX(z, y,
(subdomain_position[0] * subdomain_size.width));

for (int x = subdomain_position[0] * subdomain_size.width;
x < min((subdomain_position[0] + 1) * subdomain_size.width, width); x++)

{
domain[domain_pos++] = recv_buffer[pos++];

}
}

}
}
free(recv_buffer);

}
free(subdomain_counts);
free(subdomain_displacement);
free_subdomain_positions(subdomain_positions, world_size);
free(send_buffer);

}

void calculate_subdomain_sizes(int width, int height, int depth, int world_size,
int *domain_distribution, domain_size_t **subdomain_sizes)

{
*subdomain_sizes = malloc(world_size * sizeof(domain_size_t));
int i = 0;
for (int z = 0; z < domain_distribution[2]; z++)
{
for (int y = 0; y < domain_distribution[1]; y++)
{
for (int x = 0; x < domain_distribution[0]; x++)

64 A. Hammer: Analyzing Halo Computations on Multicore CPUs

{
// Determining subdomain width
if (x + 1 == domain_distribution[0])
{
int rest = width;
for (int j = 0; j < domain_distribution[0] - 1; j++)
{
rest -= width / domain_distribution[0];

}
(*subdomain_sizes)[i].width = rest;

} else {
(*subdomain_sizes)[i].width = width / domain_distribution[0];

}

// Determining subdomain height
if (y + 1 == domain_distribution[1])
{
int rest = height;
for (int j = 0; j < domain_distribution[1] - 1; j++)
{
rest -= height / domain_distribution[1];

}
(*subdomain_sizes)[i].height = rest;

} else {
(*subdomain_sizes)[i].height = height / domain_distribution[1];

}

// Determining subdomain depth
if (z + 1 == domain_distribution[2])
{
int rest = depth;
for (int j = 0; j < domain_distribution[2] - 1; j++)
{
rest -= depth / domain_distribution[2];

}
(*subdomain_sizes)[i].depth = rest;

} else {
(*subdomain_sizes)[i].depth = depth / domain_distribution[2];

}

i++;
}

}
}

while (i < world_size)
{
(*subdomain_sizes)[i].width = 0;
(*subdomain_sizes)[i].height = 0;
(*subdomain_sizes)[i].depth = 0;
i++;

}
}

void calculate_subdomain_counts(int **subdomain_counts, int world_size,
domain_size_t *subdomain_sizes)

{
*subdomain_counts = malloc(world_size * sizeof(int));

for (int i = 0; i < world_size; i++) {

Chapter A: Benchmark code and optimizations 65

(*subdomain_counts)[i] = subdomain_sizes[i].width * subdomain_sizes[i].height *
subdomain_sizes[i].depth;

}
}

void calculate_subdomain_displacements(int **subdomain_displacements,
int world_size, int *subdomain_counts)

{
*subdomain_displacements = malloc(world_size * sizeof(int));

int sum = 0;
for (int i = 0; i < world_size; i++)
{
(*subdomain_displacements)[i] = sum;
sum += subdomain_counts[i];

}
}

void calculate_subdomain_positions(int ***subdomain_positions, int world_size,
int *domain_distribution)

{
*(subdomain_positions) = malloc(world_size * sizeof(int *));

for (int i = 0; i < world_size; i++)
{
(*subdomain_positions)[i] = malloc(3 * sizeof(int));
(*subdomain_positions)[i][0] = i % domain_distribution[0];
(*subdomain_positions)[i][1] =
(i % (domain_distribution[0] * domain_distribution[1])) /
domain_distribution[0];

(*subdomain_positions)[i][2] =
i / (domain_distribution[0] * domain_distribution[1]);

}
}

void free_subdomain_positions(int **subdomain_positions, int world_size)
{
for (int i = 0; i < world_size; i++)
{
free(subdomain_positions[i]);

}
free(subdomain_positions);

}

Code listing A.4: domain_lifecycle.c

66 A. Hammer: Analyzing Halo Computations on Multicore CPUs

#include "exchange.h"
#include "utils.h"
#if __has_include(<openmpi/mpi.h>)
#include <openmpi/mpi.h>
#else
#include <mpi.h>
#endif
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

// HaloThickness
#define HT (halo_size * halo_depth)

void *border_exchange(void *arguments)
{
border_exchange_args_t *args = arguments;
int world_rank = args->rank;
int world_size = args->world_size;
int halo_size = args->halo_size;
int halo_depth = args->halo_depth;
int *domain_distribution = args->domain_distribution;
DATA_TYPE *subdomain = args->subdomain_data;
domain_size_t *domain_size = args->subdomain_size;
int **subdomain_positions = NULL;
calculate_subdomain_positions(&subdomain_positions, world_size,
domain_distribution);

double commBegin, commEnd;
commBegin = MPI_Wtime();
north_south_exchange(subdomain, domain_size->width, domain_size->height,
domain_size->depth, world_rank, world_size, halo_size, halo_depth,
subdomain_positions, domain_distribution);

east_west_exchange(subdomain, domain_size->width, domain_size->height,
domain_size->depth, world_rank, world_size, halo_size, halo_depth,
subdomain_positions, domain_distribution);

front_back_exchange(subdomain, domain_size->width, domain_size->height,
domain_size->depth, world_rank, world_size, halo_size, halo_depth,
subdomain_positions, domain_distribution);

commEnd = MPI_Wtime();
double time = commEnd - commBegin;
args->timings[*(args->iteration)] = time;

free_subdomain_positions(subdomain_positions, world_size);
*args->comm_end = MPI_Wtime();
pthread_exit(NULL);

}

void north_south_exchange(DATA_TYPE *domain, int width, int height, int depth,
int world_rank, int world_size, int halo_size, int halo_depth,
int **subdomain_positions, int *domain_distribution)

{
int request_count = (subdomain_positions[world_rank][1] > 0) +
(subdomain_positions[world_rank][1] < domain_distribution[1] - 1);

if (request_count == 0)
{
return;

}

Chapter A: Benchmark code and optimizations 67

MPI_Request *requests = malloc(2 * request_count * sizeof(MPI_Request));
MPI_Status *statuses = malloc(2 * request_count * sizeof(MPI_Status));
int neighbor_rank = -1;
int cursor = 0;
DATA_TYPE **send_buffer = malloc(request_count * sizeof(DATA_TYPE *));
DATA_TYPE **recv_buffer = malloc(request_count * sizeof(DATA_TYPE *));

// true if a neighbor is present above
if (find_rank_at(subdomain_positions[world_rank][0],
subdomain_positions[world_rank][1] - 1, subdomain_positions[world_rank][2],
world_size, &neighbor_rank, subdomain_positions))

{
int buffer_size = width * HT * depth;
send_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
recv_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = HT; y < 2 * HT; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
send_buffer[cursor][i++] = domain[domain_pos++];

}
}

}
MPI_Irecv(recv_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[2 * cursor]);

MPI_Isend(send_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[(2 * cursor) + 1]);

cursor++;
}

// true if a neighbor is present bellow
if (find_rank_at(subdomain_positions[world_rank][0],
subdomain_positions[world_rank][1] + 1, subdomain_positions[world_rank][2],
world_size, &neighbor_rank, subdomain_positions))

{
int buffer_size = width * HT * depth;
send_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
recv_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = height - (2 * HT); y < height - HT; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
send_buffer[cursor][i++] = domain[domain_pos++];

}
}

}
MPI_Irecv(recv_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[2 * cursor]);

MPI_Isend(send_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[(2 * cursor) + 1]);

cursor++;
}

MPI_Waitall(2 * request_count, requests, statuses);
cursor = 0;

// true if a neighbor is present above
if (find_rank_at(subdomain_positions[world_rank][0],

68 A. Hammer: Analyzing Halo Computations on Multicore CPUs

subdomain_positions[world_rank][1] - 1, subdomain_positions[world_rank][2],
world_size, &neighbor_rank, subdomain_positions))

{
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = 0; y < HT; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
domain[domain_pos++] = recv_buffer[cursor][i++];

}
}

}
free(send_buffer[cursor]);
free(recv_buffer[cursor]);
cursor++;

}

// true if a neighbor is present bellow
if (find_rank_at(subdomain_positions[world_rank][0],
subdomain_positions[world_rank][1] + 1, subdomain_positions[world_rank][2],
world_size, &neighbor_rank, subdomain_positions))

{
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = height - HT; y < height; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
domain[domain_pos++] = recv_buffer[cursor][i++];

}
}

}
free(send_buffer[cursor]);
free(recv_buffer[cursor]);

}
free(send_buffer);
free(recv_buffer);
free(requests);
free(statuses);

}

void east_west_exchange(DATA_TYPE *domain, int width, int height, int depth,
int world_rank, int world_size, int halo_size, int halo_depth,
int **subdomain_positions, int *domain_distribution)

{
int request_count = (subdomain_positions[world_rank][0] > 0) +
(subdomain_positions[world_rank][0] < domain_distribution[0] - 1);

if (request_count == 0)
{
return;

}
MPI_Request *requests = malloc(2 * request_count * sizeof(MPI_Request));
MPI_Status *statuses = malloc(2 * request_count * sizeof(MPI_Status));
int neighbor_rank = -1;
int cursor = 0;
DATA_TYPE **send_buffer = malloc(request_count * sizeof(DATA_TYPE *));
DATA_TYPE **recv_buffer = malloc(request_count * sizeof(DATA_TYPE *));

// true if a neighbor is present to the left
if (find_rank_at(subdomain_positions[world_rank][0] - 1,
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2],

Chapter A: Benchmark code and optimizations 69

world_size, &neighbor_rank, subdomain_positions))
{
int buffer_size = HT * height * depth;
send_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
recv_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZYX(z, y, HT);
for (int x = HT; x < 2 * HT; x++) {
send_buffer[cursor][i++] = domain[domain_pos++];

}
}

}
MPI_Irecv(recv_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[2 * cursor]);

MPI_Isend(send_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[(2 * cursor) + 1]);

cursor++;
}

// true if a neighbor is present to the right
if (find_rank_at(subdomain_positions[world_rank][0] + 1,
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2],
world_size, &neighbor_rank, subdomain_positions))

{
int buffer_size = HT * height * depth;
send_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
recv_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZYX(z, y, width - (2 * HT));
for (int x = width - (2 * HT); x < width - HT; x++) {
send_buffer[cursor][i++] = domain[domain_pos++];

}
}

}
MPI_Irecv(recv_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[2 * cursor]);

MPI_Isend(send_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[(2 * cursor) + 1]);

cursor++;
}

MPI_Waitall(2 * request_count, requests, statuses);
cursor = 0;

// true if a neighbor is present to the left
if (find_rank_at(subdomain_positions[world_rank][0] - 1,
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2],
world_size, &neighbor_rank, subdomain_positions))

{
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < HT; x++) {
domain[domain_pos++] = recv_buffer[cursor][i++];

}

70 A. Hammer: Analyzing Halo Computations on Multicore CPUs

}
}
free(send_buffer[cursor]);
free(recv_buffer[cursor]);
cursor++;

}

// true if a neighbor is present to the right
if (find_rank_at(subdomain_positions[world_rank][0] + 1,
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2],
world_size, &neighbor_rank, subdomain_positions))

{
int i = 0;
for (int z = 0; z < depth; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZYX(z, y, width - HT);
for (int x = width - HT; x < width; x++) {
domain[domain_pos++] = recv_buffer[cursor][i++];

}
}

}
free(send_buffer[cursor]);
free(recv_buffer[cursor]);

}
free(send_buffer);
free(recv_buffer);
free(requests);
free(statuses);

}

void front_back_exchange(DATA_TYPE *domain, int width, int height, int depth,
int world_rank, int world_size, int halo_size, int halo_depth,
int **subdomain_positions, int *domain_distribution)

{
int request_count = (subdomain_positions[world_rank][2] > 0) +
(subdomain_positions[world_rank][2] < domain_distribution[2] - 1);

if (request_count == 0)
{
return;

}
MPI_Request *requests = malloc(2 * request_count * sizeof(MPI_Request));
MPI_Status *statuses = malloc(2 * request_count * sizeof(MPI_Status));
int neighbor_rank = -1;
int cursor = 0;
DATA_TYPE **send_buffer = malloc(request_count * sizeof(DATA_TYPE *));
DATA_TYPE **recv_buffer = malloc(request_count * sizeof(DATA_TYPE *));

// true if a neighbor is present in front
if (find_rank_at(subdomain_positions[world_rank][0],
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2] - 1,
world_size, &neighbor_rank, subdomain_positions))

{
int buffer_size = width * height * HT;
send_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
recv_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
int i = 0;
for (int z = HT; z < 2 * HT; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {

Chapter A: Benchmark code and optimizations 71

send_buffer[cursor][i++] = domain[domain_pos++];
}

}
}
MPI_Irecv(recv_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[2 * cursor]);

MPI_Isend(send_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[(2 * cursor) + 1]);

cursor++;
}

// true if a neighbor is present behind
if (find_rank_at(subdomain_positions[world_rank][0],
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2] + 1,
world_size, &neighbor_rank, subdomain_positions))

{
int buffer_size = width * height * HT;
send_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
recv_buffer[cursor] = malloc(buffer_size * sizeof(DATA_TYPE));
int i = 0;
for (int z = depth - (2 * HT); z < depth - HT; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
send_buffer[cursor][i++] = domain[domain_pos++];

}
}

}
MPI_Irecv(recv_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[2 * cursor]);

MPI_Isend(send_buffer[cursor], buffer_size, MPI_DATA_TYPE, neighbor_rank, 0,
MPI_COMM_WORLD, &requests[(2 * cursor) + 1]);

cursor++;
}

MPI_Waitall(2 * request_count, requests, statuses);
cursor = 0;

// true if a neighbor is present in front
if (find_rank_at(subdomain_positions[world_rank][0],
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2] - 1,
world_size, &neighbor_rank, subdomain_positions))

{
int i = 0;
for (int z = 0; z < HT; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
domain[domain_pos++] = recv_buffer[cursor][i++];

}
}

}
free(send_buffer[cursor]);
free(recv_buffer[cursor]);
cursor++;

}

// true if a neighbor is present behind
if (find_rank_at(subdomain_positions[world_rank][0],
subdomain_positions[world_rank][1], subdomain_positions[world_rank][2] + 1,

72 A. Hammer: Analyzing Halo Computations on Multicore CPUs

world_size, &neighbor_rank, subdomain_positions))
{
int i = 0;
for (int z = depth - HT; z < depth; z++) {
for (int y = 0; y < height; y++) {
int domain_pos = POSZY(z, y);
for (int x = 0; x < width; x++) {
domain[domain_pos++] = recv_buffer[cursor][i++];

}
}

}
free(send_buffer[cursor]);
free(recv_buffer[cursor]);

}
free(send_buffer);
free(recv_buffer);
free(requests);
free(statuses);

}

Code listing A.5: exchange.c

Chapter A: Benchmark code and optimizations 73

#include "utils.h"
#include <stdio.h>

int min(int a, int b) {
return (a < b) ? a : b;

}

int ceil_div(int a, int b) {
double _a = a, _b = b;
double d = _a / _b;
int r = (int)d;
if (d > r) {
return r + 1;

}
return r;

}

int find_rank_at(int x, int y, int z, int world_size, int *neighbor_rank,
int **subdomain_positions)

{
for (int i = 0; i < world_size; i++)
{
if (subdomain_positions[i][0] == x && subdomain_positions[i][1] == y &&
subdomain_positions[i][2] == z)

{
*neighbor_rank = i;
return 1;

}
}
*neighbor_rank = -1;
return 0;

}

Code listing A.6: utils.c

74 A. Hammer: Analyzing Halo Computations on Multicore CPUs

// utils.h
#define POSZ(Z) (width * height * (Z))
#define POSZW(Z, W, H) (W * H * (Z))
#define POSZY(Z, Y) ((width * height * (Z)) + (width * (Y)))
#define POSZYW(Z, Y, W, H) ((W * H * (Z)) + (W * (Y)))
#define POSZYX(Z, Y, X) ((width * height * (Z)) + (width * (Y)) + (X))
#define POSZYXW(Z, Y, X, W, H) ((W * H * (Z)) + (W * (Y)) + (X))

// constants.h
#define DATA_TYPE float
#define MPI_DATA_TYPE MPI_FLOAT

// domain_lifecycle.h
typedef struct domain_size_t
{
int width;
int height;
int depth;

} domain_size_t;

// exchange.h
typedef struct
{
int world_size;
int rank;
DATA_TYPE *subdomain_data;
domain_size_t *subdomain_size;
int *domain_distribution;
int halo_size;
int halo_depth;
double *timings;
int *iteration;
double *comm_end;

} border_exchange_args_t;

Code listing A.7: Various defines and structs

Appendix B

Timing results

75

76 A. Hammer: Analyzing Halo Computations on Multicore CPUs

Table B.1: All median results from all runs performed.

Run Compute Problem Exchange Exchange/compute
time time time difference

1d-118 8.203 8.548 0.011 0.010
1d-12s 4.074 4.681 0.005 0.005
1d-12w 7.645 8.293 0.009 0.009
1d-1s 38.597 38.729 0.000 -0.127
1d-1w 4.654 4.672 0.000 0.000
1d-222 7.021 7.383 0.024 0.024
1d-4s 12.552 12.809 0.010 0.009
1d-4w 6.309 6.497 0.008 0.008

1d-big-e 803.652 812.974 1.685 -7.226
1d-big 714.938 728.532 6.934 0.637

1d 7.291 7.619 0.027 0.027
1d-sub 81.305 82.86 0.567 0.115
3d-118 10.415 10.788 0.013 0.013
3d-222 10.472 10.85 0.019 0.019

3d 10.598 11.017 0.013 0.013
3d-sub 75.917 76.878 0.506 0.055
s-1d-big 190.251 203.575 0.248 -1.421

c-1d 3.499 13.589 0.017 0.000
c-1d-big 163.657 807.652 1.503 -0.627

c-1d-unroll 2.505 12.608 0.028 0.027

Appendix C

Poster

77

Analyzing Halo Computations
on Multicore CPUs

Synchronization between exchange directions and inclusion of halo
data in transfers ensures diagonal data transfers without additional

exchanges needed [1].

- Change from 3D to 1D data structure (c-1d, 1d-sub, 1d).
- Pre-calculate memory strides (c-1d, 1d, 3d).
- Stencil unrolling 27 to 7 points calculated (c-1d-unroll).
- 11.15x speed-up with pre-calculation and data structure change.
- 1.40x further speed-up with stencil unrolling.

- 7% hidden with shared nodes.
- 91% hidden w/big domain on shared nodes.
- 529% hidden w/big domain & exclusive nodes.

We implemented 3D stencil computation with halo exchange.
Our implementation was optimized by changing the underlying
data structure from a 3D array to a 1D array. We also pre-
calculated the memory strides and tested stencil unrolling. The
tests were performed on a shared resource cluster and some
local workstations to see how the halo exchange performed and
how our optimizations affected the compute time.

The optimizations show an 11.15x speed-up with 1D data
structure and pre-calculated strides. Our quick test of stencil
unrolling shows an additional speed-up of 1.40x.

The halo exchange on a shared cluster, where other users use
the other available resources, shows 7-91% of the exchange
time hidden by computation. When testing with exclusive node
access, we observe 529%-902% of the exchange hidden.

[1] F. B. Kjolstad and M. Snir, “Ghost Cell Pattern,” in Proceedings of the
2010 Workshop on Parallel Programming Patterns - ParaPLoP ’10, Carefree,
Arizona, 2010, pp. 1–9. doi: 10.1145/1953611.1953615.
[2] A. Hammer, "Study of two-dimensional deep halo exchange using MPI
blocking and non-blocking communication,". Fall project 2020.

Master thesis by Andreas Hammer.
Advisor: Professor Anne C. Elster

Optimization resultsHidden halo exchange results

- Test how deep halos can affect performance of total exchange latency and
compute time.
- Implement hardware based task partitioning to reduce node wait time since
different hardware compute faster (clock speed, memory speed, etc.).
- Use AVX instructions in stencil computations to improve compute time by
calculating multiple values at once.
- Further test stencil unrolling, how it

References

Halo exchange considerations

Future work

Compute heavy problems, like finite difference calculations on a large
problem domain, are time-consuming and might not fit in a single
system/node's memory. This prompts parallelization as it can spread
the memory load onto multiple nodes and perform the compute on
each node using all available cores to minimize compute time. The
imposed stencil computations can be parallelized on multiple nodes
using halo exchange to communicate the neighboring values to
ensure a correct result, with as little performance degradation as
possible. This thesis looks into 3D stencil computation with halo
exchange on a shared resource cluster.

Appendix D

Fall project

79

Study of two-dimensional deep halo
exchange using MPI blocking and

non-blocking communication

Author
Andreas Hammer

Specialization Project in Computer Science
Department of Computer Science

Norwegian University of Science and Technology,

June 9, 2021

Supervisor Professor Anne C. Elster

Abstract

Iterative stencil-based computing on large datasets is a time-consuming endeavor and with
the lack of gain in single-core performance over the last years solving such problems in par-
allel is a way to minimize the time for a solution. This paper looks into the use of deep
halos in edge detection compute to figure out what halo size is beneficial to achieve the best
performance. Further, we look at the difference using blocking and non-blocking MPI calls
during the halo exchange to see what performance increase this can have. Given the differ-
ent halo sizes on the 10k by 10k image, we found a halo size of 2 was most beneficial. We
also found that given the same communication pattern between blocking and non-blocking
communication performs about the same.

i

Contents

Abstract . i

Contents . ii

List of Figures . iii

List of Tables . iv

Listings . v

1 Introduction . 1

2 Background . 2

2.1 Computation cluster . 2

2.2 Integer factorization . 2

2.3 Closest pair probleam . 2

2.4 Geometric decomposition problem . 2

2.5 Parallel programming models . 3

2.5.1 Shared memory . 3

2.5.2 Message passing . 4

2.6 MPI . 4

2.6.1 MPI consepts . 5

2.6.2 MPI operations . 5

2.7 Edge detection . 5

2.7.1 Laplace operator . 6

2.8 Halo exchange . 6

2.8.1 Deep halo . 7

3 Implementation . 9

3.1 Setup . 11

3.2 Computations . 11

3.2.1 Border exchange . 11

3.3 Gathering of data . 13

4 Results and discussion . 14

4.1 Experimental setup, timing and error sources . 14

4.2 Asynchonous deep halos . 15

4.3 Asynchronous vs. synchronous message passing 16

4.4 Optimizations . 18

5 Conclusion . 19

5.1 Future Work . 19

Bibliography . 21

ii

List of Figures

1 Multiple processes operating on the same address space. (Based on figure 1.1[1]) 3

2 Message passing model with seperate address spaces for each process, inter-
connected through an arbitrary network. (Based on figure 1.2[1]) 4

3 Copy diagonal values through ghost cell halo exchange. (Based on figure 9 [2]) 7

4 Use of deep halos to exchange computation for communication. Green cells
represent chunk data, blue cells represent still valid halo data and grey cells
represent invalid halo data. 8

5 Rank position in the decomposed problem domain with a chunk distribution
of 2 ∗ 3. 10

6 First step of halo exchange in the north-south direction, with halos shown as
dotted blocks. 12

7 Final step of halo exchange in the east-west direction, with halos shown as
dotted blocks. 12

8 Median time difference for asynchronous halo exchange with deep halos. . . . 15

9 Median time difference for edge detection using synchronous vs. asynchronous
halo exchange. 17

10 Median total time for halo exchange at both asynchrnonous and synchronous
exchange patterns. Series prefix a is asynchronous, prefix s is synchronous and
numbering is the halo size. 17

iii

List of Tables

1 Hardware specification for the clusters machines. 14

2 For the 10k by 10k image processed, the amount of deep halo pixels needed
to be processed given the different halo sizes. 16

iv

Listings

3.1 Trial division integer factorization. 9

3.2 Trial division integer factorization with closest pair search. 10

v

1 Introduction

Iterative computing on large datasets is a time-consuming endeavor and with the lack of gain
in single-core performance over the last years solving such problems in parallel is a way to
minimize the time for a solution. Parallelizing iterative workloads with large datasets like
stencil-based edge detection often require information about the surrounding cells to calcu-
late the next iteration in the algorithm. Parallelization of such algorithms usually decompose
the problem domain (e.g., pixel data in an image) and spread the computation throughout
the compute resources available.

Solving problems using iterative algorithms in a timely manner can be a difficult feat, and
in this paper we will test out some different approaches to halo exchange between different
compute nodes to ensure both a correct result and a time-efficient solution. What speedups
can be achieved by using deep halos to exchange communication for computations when
performing a stencil-based edge detection algorithm? Is there a difference in performance
when using blocking versus non-blocking message-passing for stencil-based edge detection?

First following this introduction is the chapter 2 giving a theoretical basis of the techniques
used to illuminate where halo exchange performs best. Chapter 3 presents the implemented
solution used for the tests and how the halo exchange and computations are performed.
Chapter 4 talks about the results from the experiment and put them in the context of this
paper’s goal, talking about possible error sources and how the experimental results were ob-
tained using the implemented solution. Chapter 5 summarises the results and concludes the
questions posited, and looking into the next step in researching this topic.

1

2 Background

2.1 Computation cluster

A computation cluster is a collection of nodes or computers, interconnected for fast com-
munication between each other. A node usually consists of its own local memory and one
or more CPUs or GPUs, which are accessible for use when performing computations on the
cluster. From a programmer’s perspective, a cluster can be viewed as one machine with a lot
of processing power capable of massive parallelism of one or more workloads. The cluster’s
scheduling software usually distributes the workload throughout the available nodes and the
number of nodes requested. The type of hardware may differ when running on different
nodes dependent on the cluster being homogenous with all equal nodes or heterogeneous
with different hardware configurations throughout the cluster.

2.2 Integer factorization

Integer factorization is the process of calculating a composite number’s smaller integer com-
ponents. A branch of factorization is prime factorization, where the integer components only
consist of prime numbers. [3] The easiest factorization algorithm to implement is using trial
division. For small numbers, the performance will not differ too much, but this is a slow al-
gorithm when computing for larger numbers. More performant algorithms are the Fermat
factorization, Pillord rho, brent factorization and Pillord 1-p algorithms. The last three men-
tioned performs about the same, with the Fermat factorization performing about the same
with numbers smaller than four digits.[4]

2.3 Closest pair probleam

The closest pair problem in computation geometry is how to figure which pair of points in
space are closest together. Solving this naively can be done with a brute-force approach testing
the distance between all points, with the resulting points being closest. When calculating the
points distance subtracting the location of point b from point a with the absolute value being
the distance between them. The pair with the shortest distance results in the closest pair. [5]
This distance comparison calculation can be used not just to find which two points in space
are closest together but also to find which predefined pairs are closest together.

2.4 Geometric decomposition problem

When working on one- or multi-dimensional arrays of data in parallel, the decomposition of
such data into smaller subdomains or chunks is beneficial. This decomposition or splitting a
region into smaller subregions based on geometry (e.g., an image into smaller subimages or
an array of numbers into smaller arrays of numbers) is called geometric decomposition. The
optimal granularity of the decomposition is dependent on the architecture of the runtime
system. In a distributed memory system, matching the chunk sizes to fit within one package
or the exchange data needed fits one such package can increase efficiency when using the
interconnects before or during the computations. For shared-memory systems where the cost

2

MPI deep halo exchange: Blocking or non-blocking communication

of synchronization is fairly low, matching chunk sizes to the system’s memory access patterns
is beneficial to get the best performance.[6]

2.5 Parallel programming models

There are several parallel programming models such as data parallelism, remote memory ac-
cess, shared-memory models, and message-passing models. A parallel programming model
is an abstract description of a parallel system’s operations, such as communication between
processes, how shared-memory is handled, and how spawning of tasks or processes occurs. It
abstracts away from specific hardware systems, making it theoretically possible to implement
any parallel programming model on any hardware system, tho with different performance
results.[7]

Data parallelism describes a Single Instruction Multiple Data (SIMD) system where vectors
of data are processed in parallel by applying the same computation/instruction on each ele-
ment (e.g., Graphics Processing Units (GPUs)).

Remote memory access is a model describing a shared memory message-passing hybrid model
where memory located outside the processes memory space is made accessible through one-
sided communication (e.g., using message-passing) without the overhead of point-to-point
communication.

2.5.1 Shared memory

Control parallelism is a form of parallelism that is explicitly specified by the programmer as
opposed to implicit parallelism due to independent data. One simple form of control paral-
lelism is the shared memory programming model. This model uses threads of execution that
run asynchronously in parallel operating on the same piece of memory. Like the name entails,
the entire parallel environment operates within the same shared address space, as shown in
figure ??. Reading and writing to a shared memory simultaneously from multiple threads
can cause conflicts and race-conditions. This issue is usually handled by using a mutex or
semaphore to lock all threads accessing the resource to prevent conflicts.[1][7]

Figure 1: Multiple processes operating on the same address space. (Based on figure 1.1[1])

3

MPI deep halo exchange: Blocking or non-blocking communication

Programming shared-memory parallel programs, one may use libraries such as OpenMP or
Pthreads to facilitate thread life cycles. These functions in different ways. Pthreads use the
POSIX threads system calls to manage the lifecycle of threads. OpenMP uses preproccessor
directives within the compiler to inject structured blocks to control the OpenMP runtime
library’s parallelization. [8]

2.5.2 Message passing

Message passing is a programming model consisting of independent processes, all with their
own local memory. The communication between the processes is done using messages en-
tailing both processes need to perform some operations to achieve this goal. Through such
messages, the data stored in other processes can be shared with all system processes. Figure
?? shows such a system with separate address spaces for each process all connected through
a network. This network can be as simple as two computers connected via a switch to mul-
tiple computational clusters with their high speed interconnects all connected through the
internet with messages passed between the different clusters for large scale parallelism.[1]

Figure 2: Message passing model with seperate address spaces for each process, interconnected through

an arbitrary network. (Based on figure 1.2[1])

2.6 MPI

Message-Passing Interface (MPI)[1][9] is a library specification defined to primarily address
the message-passing parallel programming model, where data is moved between processes
through various operations on each process. The specification defines the names, calling se-
quences, and results of cooperative operations, meaning one process cannot force a message
upon another without the recipient actively listening. Programs utilizing an MPI implemen-
tation follows the model SPMD (single-program multiple-data) with the same code executed
in all the processes, but the data operated upon is different for each process. There are mul-

4

MPI deep halo exchange: Blocking or non-blocking communication

tiple implementations of the MPI specification, where each parallel computer vendor offers
an implementation for their machines and other free publicly available implementations like
Open MPI and MPICH.

2.6.1 MPI consepts

Parallelization of algorithms that require communication between the different processes
during the program’s execution contains syncronization points. These are specific points in
the program where some or all processes synchronize their progression, meaning waiting for
the other processes to reach the points before continuing. An example of this is a program
taking an array of numbers and scattering them to different processes where each subset of
the array is summed, and the resulting sum gathered at one process to be added together,
producing the total sum of the original array. The points where the process scatters the array
values and gathers the resulting sums are synchronization points for this program as all pro-
cesses are required to reach this instruction before any of them can continue the program’s
execution. Another example is when two processes communicate directly with each other
using a send and recieve call synchronizing their progress.

Barriers are one such global synchronization point where all processes in a given commu-
nicator wait for every other process to reach the same point. This functionality is also seen
in other collective operations.

In MPI execution context and group of processes are both represented by the same consept, a
communicator. This structure is often used as a parameter in point-to-point operations as the
destination/source rank specified is in the communicator’s context. In most MPI implemen-
tations, a MPI_COMM_WORLD is supplied as the communicator for all spawned processes for
the program. Both the size and the specific process’ rank within a communicator is found via
the MPI_Comm_size and MPI_Comm_rank calls. The resulting values from these calls in the
MPI_COMM_WORLD communicator are often referred to as world size and world rank.

2.6.2 MPI operations

• MPI_Barrier halts the execution untill all processes in the given communicator has
reached this point in the program.
• MPI_Scatterv distributes a non-uniform array of data to all processes in the communi-

cator. This enables the scattering of different amounts of data to each process from a
source process.
• MPI_Gatherv collects all data from all processes in the communicator, enabling differ-

ent amounts of data from each process into one array at the source process.
• MPI_Sendrecv sends and receives data between two processes, removing the fear of a

deadlock where both are either sending or receiving at once.
• MPI_Isend asynchronously sends data to another process.
• MPI_Irecv asynchronously receives data from another process.
• MPI_Waitall waits for all provided requests from asynchronous operations are finished.

2.7 Edge detection

In image analysis, one of the more fundamental operations is edge detection, and it is the
detection of boundaries separating different image regions based on different features, often

5

MPI deep halo exchange: Blocking or non-blocking communication

gray level or luminance.[10] There are different approaches to find edges in images, gradient
edge detectors, zero crossing, Laplacian of Gaussian, gaussian detectors, and colored edge
detectors. These vary in noise sensitivity, what area is used to decide if there is an edge with
Gaussian methods using a larger area than more classic methods like gradient detectors and
zero crossing detectors. When deciding what algorithm to use, the data and type of edges
need to be taken into account as some edge detectors are faster but more prone to noise
and inaccuracies. More accurate algorithms are more time-consuming, like colored detectors
and the gaussian detector without Laplace both are time-consuming compared to the other
algorithms. [11]

2.7.1 Laplace operator

The laplacian of an image highlights the regions with rapid change in intensity making it good
for edge detection. One drawback with laplace edge detection is the sensitivity to noise, due
to this one often choose to smooth the image to get rid of most noise. The operator it self is
derived twice from the laplacian equation (2.1) both with respect to x and y.[10]

∆̂2 f (n1, n2) = f (n1, n2) ∗ h(n1, n2) (2.1)

The double derived with regards to x and y are then combined and calculated for the
surrounding values to achieve an operator 2.2.

fx x(n1, n2) + f y y(n1, n2)

= f (n1 + 1, n2) + f (n1 − 1, n2) + f (n1, n2 + 1) + f (n1, n2 − 1)− 4 f (n1, n2)

=

0 1 0
1 −4 1
0 1 0

(2.2)

Dependent on the chosen size of the applied noise reduction filter, derivative approximator
and the kernel size, other 3x3 filters possible includes the two filters in equation 2.3.

1 1 1
1 −8 1
1 1 1

−1 2 −1
2 −4 2
−1 2 −2

 (2.3)

To use these edge detection filters one apply them during convolutions over the image for
multiple iterations to get the resulting edges from the image.

2.8 Halo exchange

For iterative algorithms where the next iterations calculation depends on multiple values
from the previous iteration, like a stencil-based edge detection algorithm, halo exchange is
often used when parallelizing the algorithm. In halo exchange, the halo is defined as the
surrounding rows and columns outside the current chunk, storing data from other chunks
making this data available during computation. The exchange of these values often happens
between each iteration where all processes synchronize to share the outermost layer(s) of
the current processing chunk.

Kjolstad and Snir names this pattern of communication "Ghost cell pattern" where data is
exchanged between neighboring chunks. [2] The idea of having ghost cells surrounding the

6

MPI deep halo exchange: Blocking or non-blocking communication

chunk storing values from the neighbor chunks to improve performance, as an implementa-
tion asking for the boundary values as they are needed in the computation results in huge
accumulated latency from the message passing required.

Figure 3: Copy diagonal values through ghost cell halo exchange. (Based on figure 9 [2])

Another problem that ghost cells and the proposed communication pattern are when dividing
the domain into multiple dimensions (e.g., two-dimension, three-dimension). The resulting
chunk to chunk communication when the computation requires diagonal data increases the
complexity and number of communications. However, when synchronizing the ghost cells,
they proposed extending the data being synchronized to include the ghost cells at the ends of
the row or column. Inclusion of the extra ghost cells is because when synchronizing the values
first horizontally then vertically, the values to be copied diagonally have already been copied
in the usual synchronization, and no extra diagonal specific communication is necessary as
shown in figure 3.

2.8.1 Deep halo

Kjolstad and Snir extended upon this idea of ghost cells surrounding the processing chunks
and talked about extending the halo size beyond the first row or column. This approach
would be required if using larger stencils or implementing algorithms using values beyond
the closest neighbors.

Extending the halo size can also be beneficial in systems where the total delay of synchro-
nization is high. The extended halos provide extra layers of ghost cells the algorithm can use
to compute the next iteration of ghost cells locally and perform multiple iterations before
needing to synchronize the values. As shown in figure 4 a 3x3 grid with two layers of halo
data allocated and after a halo exchange, the cells are populated, and the next iteration com-
puted. After this compute is finished, the second layer is still valid due to the use of a 3x3
stencil as it is calculated using the outer most layers data. This makes it possible to calculate
another iteration before all halo data is invalid, and another halo exchange is required.

7

MPI deep halo exchange: Blocking or non-blocking communication

Figure 4: Use of deep halos to exchange computation for communication. Green cells represent chunk

data, blue cells represent still valid halo data and grey cells represent invalid halo data.

8

3 Implementation

In the process of parallelizing a two-dimensional edge detection algorithm with halo ex-
change, a prototype or proof of concept was implemented. This only divided the image data
into a one-dimensional chunk array where the halo exchange direction never changed (i.e.,
always north-south or east-west exchanges). The reason to build a prototype illustrating the
final result is to both have a working implementation to compare the result from the final
implementation to for correctness. To figure out in a more simple environment how the com-
mon building blocks of the application should fit together before introducing more complex
functionality to avoid shuffling bugs in the upgraded parts of the application with simpler
common-ground sections of code.

The prototype one-dimensional halo exchange application paved the way for a two-dimensional
implementation, but some considerations and improvements had to be made to facilitate the
two-dimensional approach. When handling two-dimensional domain decomposition as op-
posed to the prototype’s one-dimensional decomposition, the chunk distribution and size
calculations and data deconstruction and reconstruction have to be carefully modified to dis-
tribute the domain throughout the processes available correctly.

void trial_division(
int world_size ,
int *width ,
int *height

) {
for (b = 1; b < world_size; b++) {

if (world_size % b == 0) {
*width = world_size / b;
*height = b;
break;

}
}

}
Listing 3.1: Trial division integer factorization.

Chunk distribution was previously, with the one-dimensional approach, structured as a 1 ∗ n
where n is the number of processes available. To transform this into a variable two-dimensional
grid w ∗ h without predefined grid dimensions, we chose to apply a simple integer factoriza-
tion algorithm to calculate the different integer pairs whose product is equal to the world
size as shown in listing 3.1. This trial division will always return 1 ∗ world_size, which is
correct, but not an equal distribution of chunks in both dimensions. For prime numbers, this
distribution of 1∗world_size will be correct, but for other numbers, a width and height value
as close to each other as possible is the goal.

9

MPI deep halo exchange: Blocking or non-blocking communication

void trial_division_closest_pair(
int world_size ,
int *width ,
int *height

) {
int min_score = 2 * world_size;
for (b = 1; b < world_size; b++) {

if (world_size % b != 0) continue;
int a = world_size / b;
if (abs(a + b) < min_score) {

*width = world_size / b;
*height = b;
min_score = abs(a + b);

}
}

}
Listing 3.2: Trial division integer factorization with closest pair search.

To achieve the best distribution of two factors, the trial division shown in listing 3.1 need to
be modified to find not only a solution but the most equally distributed solution. The goal is
to get the difference between the width and height as low as possible for the valid factorized
pairs. The solution was inspired by the closest pair of points brute-force algorithm [5] com-
paring the next pair from the trial division to the previously closest pair of factors selecting
the closest factors in the end as shown in listing 3.2. The resulting width and height are used
to describe the different world ranks position in the global domain, with each rank moving
through the width and then wrapping to the first column and next line as shown in figure 5.

Figure 5: Rank position in the decomposed problem domain with a chunk distribution of 2 ∗ 3.

Size calculations for each chunk are taking the f loor(image_wid th/chunk_dist r ibution_wid th),
and for each chunk at the end of a row, the potential extra columns of data are appended,
giving the end chunk possibly a wider domain. The same approach is used for the chunk
height, and for the bottom row of chunks, any extra rows are appended to their domain.

Deconstruction and reconstruction of the image data are handled in the same conceptual
way, but reconstruction is performed in reverse from deconstruction. The deconstruction it-
erates over each pixel calculating which chunk the pixels position is contained within, then
appending the pixel data to the chunks respective array segment to be sent to the correspond-

10

MPI deep halo exchange: Blocking or non-blocking communication

ing process. Reconstruction takes all the different chunks’ resulting pixel data. Through the
same iteration, it calculates the corresponding chunk and position within the chunk pixel
array to the position in the global pixel domain using the size of the chunks as guidance to
reconstruct the final image after the computations.

3.1 Setup

After setting up the MPI environment and fetching the rank and world size, the various pa-
rameters providable include the number of iterations to calculate, halo size, the input and
output image to use, and an optional width and height parameter. Loading the data on which
to compute is done in two different approaches. If the width and height parameters are both
supplied and non-zero, these are used to generate an image of the specified size with ran-
dom RGB data for ease of testing different sizes of image data. If the width and height are
not supplied or has a zero value, the specified input image BMP file will be loaded from disk
and used in the following computations.

As mentioned above, the chunk distribution is calculated using a basic integer factorization
algorithm with a validation on the optimal equal distribution as listing 3.2 shows. The en-
tailing chunk sizes calculated from the data width and height are used to prepare the data
scattering to the system’s various ranks. Firstly calculating the number of pixels each chunk
represents and calculating the displacements in the global pixel domain for the data. These
values were applied in the scattering along with the data array containing the pixel data ex-
trapolated and flattened from the two-dimensional image data array into a one-dimensional
array sequentially containing each chunk’s pixel data with the displacements specifying at
what point the different chunks’ data starts. This data is after the scattering pieced together
in a smaller image structure adhering to the chunks domain’s size adding room for the spec-
ified halo size.

3.2 Computations

The edge detection is done through a series of iterations where the previous iteration is the
input data to the next. Each chunk iterates over its pixel subdomain calculating the resulting
values based on a selected kernel/stencil matrix, a laplacian stencil as shown in figure ??.
Every iteration computes the chunks subdomain’s values and the halo data stored in each
chunk. When using deep halos, it provides multiple iterations worth of data stored in each
chunk after a halo exchange. This data needs to be calculated for the next iterations and
extending the calculations beyond the chunks specific subdomain into the halo data.

3.2.1 Border exchange

To ensure a correct result in a neighbour dependent algorithm as the implemented edge
detection algorithm, data needs to be exchanged between the different processes. This can
be done in multiple ways, in this implementation we used a simple synchronous and asyn-
chronous approach, differing how many blocking calls are used, and how the messages prop-
agate throughout the chunks. Furthermore, the use of deep halos to exchange communication
for computation is handled with the halo depth controlling before which iterations the halo
exchange should take place.

11

MPI deep halo exchange: Blocking or non-blocking communication

Figure 6: First step of halo exchange in the north-south direction, with halos shown as dotted blocks.

Synchronous halo exchange

The halo exchange takes place in two directions, including the halo data in the exchange.
This is to ensure the diagonal values are transferred correctly without any specific logic for
the diagonal values. The exchange first takes place in a north-south direction, as shown in
figure 7. With the layout matching that of figure 5, halo exchange occurs between ranks 0 and
2, ranks 2 and 4, and ranks 1 and 3, and ranks 3 and 5. These are in a sense independent, but
with the synchronous approach, firstly all chunks having a chunk above itself, will exchange
with that chunk using the blocking MPI_Sendrecv call, making so that exchanges between
ranks 2 and 4 are dependent on the completion of the exchange between ranks 0 and 2. This
halo exchange dependence will then propagate throughout the entire chunk space, making
the last row of chunks wait for all previous rows to complete before continuing execution.
After a chunk has finished all north-south exchange, it progresses to the east-west exchange.
Even though rank 0 can start its east-west exchange before the other chunks are finished
with the north-south exchange, it will still stay consistent as no process will progress into the
next exchange direction before all data sent and received in the previous exchange. As the
entire process uses blocking message passing calls, it stays consistent as all data is done in
one direction before continuing in the next direction.

Figure 7: Final step of halo exchange in the east-west direction, with halos shown as dotted blocks.

12

MPI deep halo exchange: Blocking or non-blocking communication

Asynchronous halo exchange

Asynchronous halo exchange is implemented similarly as the synchronous, but using some
other message passing calls reduces the number of synchronization points. This is done us-
ing the MPI_Isend and MPI_Irecv calls and waiting for all calls for the given process to finish
before continuing execution. Instead of having each call block execution as the synchronous
version does, all calls are either sent or set up to receive before having one blocking call to
await all calls at once. After this blocking call, the received data is placed into the correct halo
for the chunk. Using asynchronous send and receive calls utilizes the available bandwidth on
the network more efficiently, as the message in this program both in size and amount never
will cause any network congestion. This plays a role in the total theoretical delay for the
halo exchange. Each direction delay only depends on the slowest communication, with the
synchronous approach and the message delay propagation will accumulate the total commu-
nication delay for each direction.

3.3 Gathering of data

The gathering process uses the same previously calculated chunk sizes and displacements
within the one-dimensional data stream combined through the gathering call. Each chunk
strips all halo data from the data being sent back to the main process, as this data is mostly
outdated and more importantly another chunk’s subdomain. The main process then using the
chunk distribution and sizes, puts all the individual chunk data back into place in the result
image structure before this is saved to disk.

13

4 Results and discussion

4.1 Experimental setup, timing and error sources

The experiments were run on four machines running in a slurm cluster connected with a
100Mbit Ethernet interconnection. All machines were located within the same subnet mak-
ing the packages routed through the same router, and only that one router. The four machines
all consist of the same hardware as shown in table 1 and reading data from local storage,
and all metric output was written to local storage on machine 0. The metrics were printed
from the process after all computation was finished to not interfere with the computations
and timing. The run environment was done with exclusive access to all four nodes, running
Ubuntu 10.04.5 LTS with OpenMPI version 2.1.1 installed.

The experiments conducted tested asynchronous non-blocking messages’ performance with
different halo sizes and synchronous blocking messages versus asynchronous non-blocking
messages’ performance with the same halo size variations. All experiments were run 10 times
for each configuration, selecting each run’s median value as the representative value for the
run. The timing was done at two different places in the program. One timing of the entire
computation process from just before the scattering of data all the way to the data was gath-
ered after the computations. The other timing was done on each halo exchange individually
stored in memory and gathered after the computations were finished to not interfere with
the computations. MPI_Wtime was in the end used to time the different parts of the experi-
ment. Each process timed every halo exchange and stored each time delta seperatly during
the computations. This array of time data was gathered after the computations and each pro-
cess’s total time and separate iterations times was printed.

Each node executed 2 MPI processes each so as not to strain the cache excessively, reduc-
ing performance with it able to store more instructions and data reducing potential cache
misses. The data computed on each run of the program was randomly generated prior to the
scattering for each run, with a supplied image size of 10k by 10k pixels and computed 5000
iterations in total. Random data was used to get a suppliable image size and test easily with
different sizes. As the computations, regardless of the data performed the same operations,
the fact that the data was random would not affect the performance of the algorithm.

When performing experiments, the consideration of error sources is important, and in this

CPU Intel i7-7700k @ 4.20GHz
4C/8T

Min. clock 800MHz
Memory 32GB DDR4

Interconnect 100Mbit Ethernet

Table 1: Hardware specification for the clusters machines.

14

MPI deep halo exchange: Blocking or non-blocking communication

experiment there are some possible sources of errors/incorrect timing that could occur. One
could argue that some combinations of numbers in multiplication/addition could be calcu-
lated faster by the CPU than others, but this is not investigated and only mentioned as a small
possible error source. Furthermore, the cluster used for the computations could not have
clock-locked CPUs, and could vary their CPU clock between 800MHz and the rated 4.2GHz.
This could affect the performance as there might occur some waiting before the other pro-
cess is ready to synchronize with each iteration. This could make the CPU slow down the
clock and introduce a slightly lower performance in the instant it starts after the wait, and
with many iterations this could accumulate to a possible noticeable performance reduction.
Lastly, the ethernet interconnect between the nodes uses the internal network in the lab, but
is not exclusive to interconnect packages between the nodes, and if some other nodes/com-
puters used the network while running the experiments, this could affect the message passing
latency.

4.2 Asynchonous deep halos

The first experiment was looking into the exchange of communication for synchronisation
to speed up the algorithm’s solution time. Figure 8 presents the median difference in total
running time with 0 being the fastest solution, which turned out to be with a halo size of
2, meaning every other iteration a halo exchange would occur. The actual measured median
running time of the algorithm with a halo size of 2 was 1306369.801 seconds.

Figure 8: Median time difference for asynchronous halo exchange with deep halos.

When analyzing the results, we can see that a halo size of four is the next best with halo size
one following and any higher than four looks to be inefficient. In this implementation, each
point in the halo exchange consisted of 3 bytes of color data, and for an algorithm requiring
a larger amount of data transferred with necessarily an unequal increase in computation, a
larger halo size would be preferable as the halo exchange needed to exchange more data. As
this implementation for every exchange calculates the entire halo, also the parts of the halo
that are not to be used, an increased halo size above eight would probably continue the same
trend as seen from halo size 8 to 32 in the chart. If one were to limit the number of halos
calculated each iteration, going from 32 halos in the first iteration after an exchange all the
way not to calculate any halo data on the last iteration before an exchange would decrease

15

MPI deep halo exchange: Blocking or non-blocking communication

Halo size Halo pixel count
1 15008
2 32016
4 64128
8 120512
16 242048
32 488192

Table 2: For the 10k by 10k image processed, the amount of deep halo pixels needed to be processed

given the different halo sizes.

the amount of computation and possibly provide a better running time for the larger halo
sizes.

The basis of these results is when performing the edge detection on a 10k by 10k image and
each chunk governs a 5k by 2.5k sub image. The total size of the all surrounding halo data is
as shown in table 2. The comparatively small differences in the total time for halo sizes eight
and smaller a smaller subdomain resulting from a smaller image or more processes could
affect what halo size performs the best. This is due to the total number of halo pixels would
drastically be reduced, and given the latency of message passing at some point probably
catching up with the time used for the extra computation, it could result in better performance
for larger halo sizes.

4.3 Asynchronous vs. synchronous message passing

MPI supplies multiple ways to perform message passing, and we have looked into both syn-
chronous and asynchronous message passing calls to measure if there is a difference when
using either of them for this edge detection algorithm. The difference being that the syn-
chronous calls block the execution and multiple such calls are needed for the border ex-
change. On the other hand, asynchronous calls execute them awaiting the completion of
these only after all are started. This makes the order of completion the optimal order, with
them finishing any call as soon as possible without the need to wait for the order it was per-
formed. This removes the accumulative delay with blocking calls, and only the slowest delay
is the maximum delay for the entire exchange.

As mentioned, the accumulated delay for an exchange is theoretically better with the non-
blocking approach. Figure 9 shows the median time difference between the different tested
halo sizes and the use of blocking and non-blocking message passing. With a halo size of one,
the blocking approach performed 79ms better than the non-blocking approach. As this chart
shows, the difference in total running time for the different schemes and this total varies from
1302.658 seconds to 1347.517 seconds for the different halo sizes, and improvement of 3-
4 seconds is minuscule at best. These variations can easily be due to randomness in using a
semi-public network for the interconnect or the processors not locking their clock. This would
suggest that the implementation of the MPI standard used has optimized the communication
calls to such an extent, at least for relatively small messages, that the advantage of using
non-blocking calls without any other optimizations is minimal to none. The results presented
for the increasing halo size might have more variations between each run as the amount of
computation each process has to do increases, and with the amount of cache misses poten-

16

MPI deep halo exchange: Blocking or non-blocking communication

Figure 9: Median time difference for edge detection using synchronous vs. asynchronous halo exchange.

tially increased between each iteration, it might introduce more accumulative waiting for the
bordering processes to finish execution.

Figure 10: Median total time for halo exchange at both asynchrnonous and synchronous exchange

patterns. Series prefix a is asynchronous, prefix s is synchronous and numbering is the halo size.

Since OpenMPI distributes the same ranks equally for every run on the tested execution en-
vironment, comparing each rank’s total time spent in halo exchange with the different halo
sizes both for blocking and non-blocking messages is possible and shows how the halo ex-
change time evolves with different execution parameters. Figure 10 shows for the eight ranks
used the median total time spent in halo exchange. This is calculated by measuring and sum-
ming the total time spent on each halo exchange. The chart shows that the difference is small
for the different halo sizes and communication scheme, but with the larger halos, one can
see a consistent reduction in halo exchange, but not proportional to the data transmitted or
halo size. This is expected as the total number of exchanges is greatly reduced and the total
delay between the different processes is reduced. Due to the fact, more data is transmitted
by each exchange the time consumed is not drastically improved. The difference between the

17

MPI deep halo exchange: Blocking or non-blocking communication

blocking and non-blocking for the different ranks and halo sizes is not consistent in closer
examination. In som ranks like rank one, non-blocking outperforms blocking calls, but when
examining other ranks, this is reversed or no notable difference supporting the finds from
figure 9 with minimal to no difference between the different schemes.

4.4 Optimizations

The running time could be optimized in a variety of ways. For the total running time, the use
of a hybrid programming model would be beneficial. This entails that each individual node
has one message passing process handling the node-to-node communication. Each node is
divided its chunk of the global problem domain, and each subdomain is processed on the
different nodes. However, the difference from this paper’s approach is that internally on each
node, the use of shared memory parallel programming to utilize all resources without the
message passing overhead and potentially more worker threads on the same CPU. This ex-
periment used half of the available cores, as each process has its memory and to avoid issues
like cache misses the four cores available were not used, but with a shared memory model
one could use the entire four cores, or even the eight threads available on the CPU.

Another optimization is hiding the message passing delay by using inner computation while
the exchange is taking place. This entails computing the outer values right after the exchange
is finished, then exchanging the already computed borders and computing all the chunk’s in-
ner values not dependent on any halo data or any part of outgoing halo data as well. This
would overlap the time used for the inner computations with the delay of performing asyn-
chronous message passing. One could not perform this using synchronous blocking message
passing since the blocking aspect would not allow the computations to take place parallel
to the communication and would only be an option for the asynchronous non-blocking ap-
proach.

18

5 Conclusion

Halo exchange is used when parallelizing workloads where calculations require data from
other problem subdomains like stencil-based algorithms. This paper looked into two differ-
ent approaches to deal with halo exchange with a message passing programming model. First,
we investigated the use of deep halos to exchange communication for computation on the
implemented stencil-based edge detection. This resulted in the best performance achieved
with a halo size of 2 on a 10k by 10k image. With the more naive implementation tested,
not optimizing the halo data compute and the few processes used in testing coupled with
the relatively low latency message passing deep halos will not provide a huge performance
gain. Looking into the performance difference when using blocking or non-blocking message
passing, we found that the total time difference was so small and with a halo size of 1 where
the most communications would happen, the potential gain from asynchronous did not show.
This results in the find that non-blocking message passing used with the same communication
pattern as a blocking message passing results in no performance increase. Still, non-blocking
message passing provides the flexibility to hide parts of the latency by combining the ex-
change with inner computation, making the potential performance increase present, but not
tested in this work.

5.1 Future Work

To improve the results found in this paper, the use of inner execution to mask the halo ex-
change delay would be beneficial. Instead of computing the halos, border values and all other
chunk data and only between the iterations perform the halo exchange. One could optimize
this by computing the border values first, and during the computation of the inner chunk
data perform asynchronous halo exchange to use the wait during the exchange to compute
other data and see if this would outperform a synchronous message passing approach.

Another optimization that would be interesting to look into is the speedup potential when
dealing with deep halos. Instead of computing the entire halo data each iteration, one could
use the knowledge that for each iteration, another layer of halo data is rendered obsolete
and skip computing that part of the halo to save on compute time. Also, extending this idea
into smaller subdomains with either a smaller global problem domain or more processes to
see if the halo data compute is significantly reduced to provide a larger halo size better total
time results.

Often when parallelizing on multi-core nodes in a larger cluster, a hybrid programming model
is usually used as this eliminates the overhead of message passing between cores on the same
node by using a shared memory model within the node. Taking this approach and testing how
much speedup and at what halo size this approach would make sense would be interesting to
see as an all message passing based approach might introduce a large accumulated overhead
and with the shared memory approach, a larger number of cores can process the halo data
and utilize the data better when using deep halos.

19

MPI deep halo exchange: Blocking or non-blocking communication

In a paper by Holems, Laoide-Kemp and Parsons [12] they use a stream based approach
instead of halos to process data with minimal message passing delay on one-dimensional
circular data. The processes’ subdomain revolves over the data as the iterations continue,
and given the right buffer sizes and values combination when sending the buffer data to the
neighboring process, the compute could continue with very little delay given that the differ-
ent processes are continuing in an equal pace and not lagging behind. Taking this approach
and looking into the possibility of using this in both non-circular data as an image and ex-
tending it to multi-dimensional data could improve the performance and memory overhead
on each process.

20

Bibliography

[1] G. William, L. Ewing, and S. Anthony, Using MPI : Portable Parallel Programming
with the Message-Passing Interface., ser. Scientific and Engineering Computation. The
MIT Press, 2014, vol. Third edition. [Online]. Available: http://search.ebscohost.com/
login.aspx?direct=true&db=e000xww&AN=906701&site=ehost-live

[2] F. B. Kjolstad and M. Snir, “Ghost Cell Pattern,” in Proceedings of the 2010 Workshop on
Parallel Programming Patterns - ParaPLoP ’10. Carefree, Arizona: ACM Press, 2010, pp.
1–9. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1953611.1953615

[3] “Integer factorization,” Nov. 2020, page Version ID: 989285688. [Online].
Available: https://en.wikipedia.org/w/index.php?title=Integer_factorization&oldid=
989285688

[4] W. A. Borders, A. Z. Pervaiz, S. Fukami, K. Y. Camsari, H. Ohno, and S. Datta,
“Integer factorization using stochastic magnetic tunnel junctions,” Nature, vol. 573, no.
7774, pp. 390–393, Sep. 2019. [Online]. Available: http://www.nature.com/articles/
s41586-019-1557-9

[5] “Closest pair of points problem,” Jul. 2020, page Version ID: 966956388. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Closest_pair_of_points_
problem&oldid=966956388

[6] T. Mattson and M. Murphy, “Geometric Decomposition | Our Pattern Language,” Nov.
2020. [Online]. Available: https://patterns.eecs.berkeley.edu/?page_id=213

[7] C. Kessler and J. Keller, “Models for parallel computing: Review and perspectives,”
Mitteilungen-Gesellschaft für Informatik eV, Parallel-Algorithmen und Rechnerstrukturen,
vol. 24, pp. 13–29, 2007.

[8] O. A. R. Board, “OpenMP Application Programming Interface,”
Nov. 2020. [Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-1.pdf

[9] “MPI: A Message-Passing Interface Standard,” Tech. Rep. [Online]. Available:
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[10] P. A. Mlsna and J. J. Rodríguez, “Gradient and laplacian edge detection,” in Handbook of
Image and Video Processing (Second Edition), second edition ed., ser. Communications,
Networking and Multimedia, A. BOVIK, Ed. Burlington: Academic Press, 2005, pp.
535 – 553. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
B9780121197926500954

[11] M. Sharifi, M. Fathy, and M. T. Mahmoudi, “A classified and comparative study of edge
detection algorithms,” in Proceedings. International Conference on Information Technol-
ogy: Coding and Computing, Apr. 2002, pp. 117–120.

21

MPI deep halo exchange: Blocking or non-blocking communication

[12] D. J. Holmes, C. Laoide-Kemp, and M. Parsons, “Streams as an alternative to halo ex-
change,” in Parallel Computing: On the Road to Exascale. IOS Press, Apr. 2016, pp.
305–316, google-Books-ID: PKotDAAAQBAJ.

22

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Andreas H
am

m
er

Analyzing H
alo Com

putations on M
ulticore CPU

s

Andreas Hammer

Analyzing Halo Computations on
Multicore CPUs

Master’s thesis in Computer Science
Supervisor: Professor Anne C. Elster

June 2021

M
as

te
r’s

 th
es

is

	Problem description
	Abstract
	Sammendrag
	Acknowledgement
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Contributions
	Outline

	Background
	Parallel programming models
	Shared memory
	Message passing

	MPI
	MPI concepts
	MPI fuctions

	OpenMP
	POSIX threads (Pthreads)
	Laplacian operator
	Halo exchange
	Deep halo

	Performance scaling
	Ahmdal's law
	Gustafson's law

	Creating a 3D Benchmark with Halo Exhanges
	Input parameters
	Global domain creation
	Subdomain lifecycle
	
	Compute split
	Using OpenMP for stencil computations

	Implementing 3D Halo exchange
	Our Pthread approach

	Benchmarking approach
	Optimizations
	1D underlying data structure
	Memory access offset calculations
	Stencil unrolling

	Pitfalls
	Visualization problem
	Halo cell data initialization
	2D to 3D halo exchange changes
	Subdomain position calculations
	Halo exchange data borders

	Results & Discussion
	Test Setup - Idun
	UCX disabled

	Test setup - other computers
	Benchmark run conditions
	Analysis of results
	Data structure and optimizations
	Scaling, strong and weak
	Halo exchange
	Domain distribution differences
	Stencil unrolling
	Profiling

	Conclusions and Future Work
	Future work
	Deep halos
	Hardware related task partitioning
	AVX instructions in stencil computations
	Stencil unrolling

	Bibliography
	Benchmark code and optimizations
	Optimizations
	Benchmark implementation

	Timing results
	Poster
	Fall project

