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ABSTRACT

Minimization of the environmental impact of the incineration process and to produce energy efficiently are the
most important considerations in obtaining efficient operation of waste-to-energy (WtE) plants. WtE operation
can obtain significant improvements by predicting combustion properties of municipal solid waste (MSW) prior
to incineration. Combustion properties of MSW can be assessed by estimating the weighted waste fractions
such as paper and cardboard, plastic or inert and fines. Waste materials and fractions can be recognized using
imaging techniques and image classification methods based on deep convolution neural networks (CNN). We have
tested a new sensor system for image classification based on using multispectral (MS) images and deep CNN
pretrained on the ImageNet database to recognize MSW categories. MS camera was used for sampling images
above the walking floor of a WtE plant (StatKraft Varme Tiller, Trondheim). The waste load was automatically
registered as industrial or household waste at the time of delivery. The MS images from 49 waste loads were used
to perform transfer-learning on EfficientNetB0 model weighted with ImageNet-NoisyStudent parameters. Using
the predefined classes, a test and training set were generated from the 49 waste loads delivered between June
and September (2020). The training set consisted of 35 waste loads while the remaining 14 waste loads were
used as test. The weights for the image feature extraction was constant during training while the fully connected
layer (top-layer) was updated for each epoch. The model performance on the test set was assessed by making
predictions on the household or industrial waste images. With a fixed threshold value at 0.5, the model showed
85% accuracy, 92% precision, 89% recall and 90% F-measure for industrial class, while for household class the
model showed 80% accuracy, 94% precision, 81% recall and 87% F-measure. For all threshold values, the area
under curve estimated from the receiver operating characteristic plot showed that the model has 87% confidence
in distinguishing household waste images from industrial waste images and 90% confidence in distinguishing
industrial waste images from household waste images.
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1. INTRODUCTION

Municipal solid waste (MSW) materials that are highly crude and decrepit are difficult to be reused, refurbished
and recycled. Last option for handling such type of materials are landfilling or incineration on a waste-to-
energy plant (WtE). The efficiency of WtE plant operation is paramount to both produce energy efficiently
and to minimize the environmental impact of the incineration process. The efficiency of the operation is highly
dependent on moisture in MSW materials as well as waste fraction categories such as plastic, paper and cardboard
or inserts and fines.!™ The waste mixtures and moisture content are difficult to characterize and are changing
continuously. For off-line characterization bomb calorimeters or waste fraction quantification are used but are
not usable for on-line monitoring."»>%5 New on-line monitoring methods are required to provide real time
information on combustion properties of MSW for improving the WtE performance. Imaging methods are
often used for recognizing material components in various classification tasks and should be evaluated for on-
line waste monitoring considering that the operation of the WtE plant is highly dependent on waste fraction
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categories.® Of particular interest are deep convolution neural network (CNN) methods for image classification
that have proved to outperform traditional machine-learning techniques such as logistic regression or support
vector machines.® 11

Image classification with deep CNN is a supervised machine learning method and is based on applying
image convolutions with learnable filters to extract features relevant for image categories.'> ' The feature maps
obtained from using learnable filters represents the convolution layer with weight parameters to be updated
during the training. The convolution layers are applied in series combined with rectified linear unit (ReLu)
activation functions to contain non-linearity and with pooling functions to reduce the dimensionality. The image
features extracted using architectures of convolution layers, ReL.u, and pooling functions are further passed to the
fully connected layers for mapping features to corresponding image categories. During training, the weights of
the image feature extraction is updated as well as the weights for mapping extracted features to categories. The
training of feature extraction and classification weights requires large amounts of categorized data and significant
amounts of computational power to obtain acceptable training times with acceptable model performance.'? 15
Model training can be achieved with less training data, less computational power and smaller training times
by performing transfer-learning on a model that have been trained for a similar classification task.!®>'7 For
transfer-learning, the image feature extraction can be performed with fixed weights on a new image data-set
while the weights used for mapping features to classes are updated. A vast amount of pretrained models for
image classification tasks can be found on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
that is arranged annually.'® Deep CNN architectures are submitted to ILSVRC to compete on classifying images
on the ImageNet database correctly. The ImageNet database contain more than 14 million images and 20000
categories and the 20 most accurate models submitted have achieved more than 85% accuracy.'® 19

In this paper, we have developed a sensor system for characterizing MSW based on image classification
using multispectral (MS) camera and EfficientNetBO CNN pretrained on the ImageNet database to recognize
MSW categories.?% 2! The images were sampled using MS camera above the walking floor of a WtE plant
(StatKraft Varme Tiller, Norway). At the time of delivery, waste loads are automatically registered as household
or industrial waste. MS images with 16 wavelength channels of 49 waste loads were used to perform transfer-
learning on a pretrained EfficientNetB0 model weighted with ImageNet-NoisyStudent parameters.?%:2223 A test
and training-set were generated from the 49 waste loads delivered between June and September (2020). Images
from 35 waste loads were used for training and the remaining 14 waste loads (7 loads of each industrial and
household waste) were used for testing. Using the training set, the image features were extracted by the model
and the outputs were used for training the fully connected layer (top-layer) to map features to either household or
industrial class. Next, the model performance was assessed by making predictions on the predefined household
or industrial categorized MS images of the test-set. The threshold value (TV) can be tuned to optimize the
decision making such as for controlling the rate of true or false alarms as well as the sensitivity for activating
alarms relevant for improving the MSW incineration process. By estimating the area under curve (AUC) for
the receiver operating characteristic (ROC) plot the model performance was assessed for all TVs. From AUC
estimations the model showed 87% confidence in distinguishing household waste images from industrial waste
images and 90% confidence in distinguishing industrial waste images from household waste images for all TVs.

2. MATERIALS AND METHODS
2.1 Data sampling

The MS imaging system and light sources were installed on a WtE plant (Statkraft Varme in Tiller, Trondheim)
to sample images above the walking floor in the waste bunker. The imaging of waste materials were performed as
shown in the top of Figure 1. The waste is delivered by a truck that can tilt the load sideways onto the walking
floor and the walking floor transports the waste into the waste bunker. The waste delivered are categorized as
either household or industrial waste. The time-log for waste loads corresponding to either household or industrial
category are used for labeling images and to generate training and test-set for the CNN image recognition. For
optimal monitoring the camera and light sources were placed on a support bridge that crosses the walking floor
shown in the bottom of Figure 1.
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Figure 1. Top figure: Illustration of waste load delivered from a side-tipping truck onto the walking floor of waste bunker.
Bottom figure: Illustration of imaging system and light source installed on support bridge used for sampling MS images
above the walking floor.

To protect the MS camera it was placed inside a water and dust-proof housing (TVAC70200, IP68, Abus).
The camera (Snapshot Mosaic Imager, IMEC) used is based on CMOSIS CMV2000 image sensor (Ximea xiQ
camera) with a color filter of 16 wavelength channels in range 590-860 nm.®2% The total image resolution is
2048x1088 pixels and the 16 wavelength channels are encoded as mosaic patterns in the pixels similar to a Bayer
masks with an image resolution of 512x272 pixels per band. A 16 mm lens (16mm VIS-NIR, TECHSPEC,
Edmund Optics) was used with VIS-NIR anti-reflective coating and aperture at F /2.8 to satisfy optimal spectral
imaging conditions as well as to obtain imaging with a field of view equal to the width of walking floor. The light
sources used consist of a water and dust-proof xenon lamp (S XENON, IP68, 4500K, 35W, Vignal Group) and
metal-halide lamp (ART. 8001-RAY/SM, IP65, 4200K,150W, TEC-MAR). As illustrated in Figure 2 the MS
imaging was controlled with Raspberry Pi 4 (RPi 4, Okdo, RS Components AS) and the images were transferred
to PC NTNU Database using a 4G router (RUT240, Teltonika). The RPi 4 and 4G router were protected inside
a dust and water proof housing (Bocube, B 273612 PC-V0-G 7035, IP66, BOPLA).
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Figure 2. Schematic of image sampling above the walking floor.

With RPi 4, open source packages in python (ximea, xiapi, cv2) were used for handling the camera settings
and the image sampling. The gain used for the imaging was constant while exposure time was automatically
optimized internally by the camera. The imaging acquisition was set to free run while the interval for image
sampling was set to 20 seconds. The folder destination with sampled images on the RPi 4 was synchronized with
a folder destination on PC NTNU Database using the open source software Syncthing to optimize the usage of
the varying network speeds provided by the 4G router. From the data sampling, 3173 images were further used
to perform transfer-learning and model performance assessment of the deep CNN. From the 3173 images, 1307
images was categorized as household waste and 1866 images were categorized as industrial waste.

2.2 Transfer-learning on deep CNN

The time registered for each waste load delivered was used for mapping multispectral images to household or
industrial waste categories. The label encoded MS images were further used to perform transfer-learning on
an image recognition model EfficientNetB0. The EfficientNetB0O model is pretrained on the ImageNet database
consisting of more than 14 million images and 20000 categories. The classification task of the pretrained model
on ImageNet is assumed to be similar to the task of classifying images of waste materials. The transfer-learning
require less training data, less computational power and smaller training times to obtain an image classifier with
sufficient performance.'®

First, demosaicing was performed on the MS images to retrieve the 16 wavelength channels as 16 monochrome
images (information on mosaic structure received from IMEC upon request). The 16 images containing one
wavelength channel each had to be adapted for the EfficientNetB0 model pretrained on images with 3 channels. To
obtain 3 channel images, MS image were reconstructed to several RGB images, where 16 channels were combined
into 3 channels as (1,2,3), (2,3,4), (3,4,5), ...(14,15,16). The reconstruction of a single MS image resulted in 14
sub-images (RGB channels). Python was used for the demosaicing and the sub-image reconstruction. Next, a
training and test-set were generated from the MS images of the 49 waste loads delivered. 71% (35 waste loads)
were used for training and 29% (14 waste loads) were used for test. During the model training, a validation-set
composed of 50% of the test-set (7 waste loads) was also used. The training of the EfficientNetB0 model was
performed as illustrated in Figure 3 based on using Keras and TensorFlow packages in python.2 26
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Figure 3. Schematic of the CNN training procedure where training is stopped when validation loss it at minimum (early
stopping).



MS images and sub-images encoded in the industrial or household class were passed to EfficientNetB0 model
weighted with ImageNet-NoisyStudent (available on the official repository of the EfficientNet-GitHub) produced
from the pre-training on the ImageNet database.?! 23 For our procedure the weights used for the image feature
extraction were not changed and only the fully connected layer (top-layer) were trained to map image features
to either a household or industrial waste category. For each epoch the validation loss was estimated during
model training. The validation loss was used for early stopping to optimally balance the under and over-
fitting of the model.?”-?® In early stopping the training continues up to the next epoch where the validation
loss is at minimum.? Before the validation loss is at minimum the model is considered to be under-fitting
whereas with validation loss reaching minimum and after increasing the model is considered to be over-fitting.
The following parameters were used for the early stop training; image size: 512x512 (sub-images resized using
bilinear interpolation method), batch size: 64, data augmentation: (random rotation +15%, translation +10%,
flip and contrast £10%), drop-out: 0.4, activation function: softmax, adam learning rate: 0.01, loss function:
categorical cross-entropy. Hence, data augmentation is performed for the training set but not for the validation
or test-set. After the early-stopping the trained model exhibited a training loss of 0.49 and accuracy of 0.77 with
validation loss of 0.42 and accuracy of 0.81.

For the model performance evaluation the prediction scores on the test-set were collected as illustrated in
Figure 4.
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Figure 4. Schematic of the collection of prediction scores of the MS images and sub-images in the test-set.

The MS images and sub-images of the 14 waste loads were passed to the trained model. The model produces
a prediction score on each sub-image as a vector [h, i| where, h, is the fraction of image predicted to be household
and, 7, is the fraction of image predicted to be industrial waste. Next, the distribution of predictions scores, the
confusion matrix, and the ROC curve were estimated.

2.2.1 Model performance assessment

For the model performance assessment, the confusion matrix and the ROC curve were used. The confusion
matrix can be illustrated as in Figure 5 containing different amounts of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN).3°

Figure 5. Illustration of the confusion matrix with different amounts of true positives, true negatives, false positives, and

false negatives.
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TP, TN, FP and FN can further be used for producing model performance parameters as accuracy, precision,
recall and F-measure for a fixed TV.3!

TP+ TN

A = 1
Y = TP Y TN+ FP+ FN (1)
TP
Precision — — ~ 4
recision = s (2)
TP
Recall = m (3)
Precision - 11
Fomeasure — 2 - recision - Reca (@)

Precision + Recall

To assess the model performance for all TVs, T, the receiver operating characteristic (ROC) curve can be
estimated where true positive rate (TPR) is plotted as a function of false positive rate (FPR). The TPR and

FPR can be expressed as,
TP(T)
TPR(T) =
R(T) TP(T)+ FN(T) (5)

FP(T)
FPR(T) = 6
(T) FP(T)+TN(T) (6)
The ROC curve can be used for observing the trade-of between TPR and FPR for all TVs between zero and
one. The ability of a model to distinguish between classes for all TVs can be performed by estimating the AUC
of the ROC curve.?? The AUC can be expressed using the trapezoid rule as,

AUC = zn: TPR(Ti1) + TPRTY) \ pp iy (7)

- 2
=1
where T; is a TV in a vector, T, with length n. For the model performance assessment, ROC curve and AUC
were estimated with T'Vs between zero and one and with incremental steps of 0.001.

3. RESULTS AND DISCUSSION

The predicting accuracy of the model can be shown by observing the distribution of prediction scores and the
confusion matrix as a function of TV. The distribution of positive prediction scores for industrial waste (PPI) and
negative predictions scores for household waste (NPH) were estimated of test-set as shown in left side of Figure
6. Using histogram with bin-width at 0.05 the counts of prediction scores were normalized between zero and
one. The distribution for PPI is rapidly increasing and NPH is rapidly decreasing with increasing predictions.
The exponential-like distribution of prediction scores are expected since a softmax activation function is used
for normalizing the neural network output between zero and one. A TV can be used to visualize the confusion
matrix as shown in right side of Figure 6.
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Figure 6. Left side: Distribution of positive and negative predicted score of industrial and household waste, respectively.
Right side: Threshold value applied discriminating the distribution of positive and negative prediction scores of industrial
and household waste, respectively. True positive colored as blue, false negative colored as violet, true negative colored as
red, and false positives colored as green.

Using a TV of 0.5 the PPI and NPH prediction scores can be discriminated where TP, FP, TN and FN are
shaded as blue, green, red, and violet, respectively. By observing the color shaded areas, the model accuracy can
be represented as the red and blue ratio to the total color shaded area, precision can be represented as the blue
ratio to the blue and green shaded area, and recall can be represented as the blue ratio to the blue and violet
shaded area.

To assess model performance for each waste load, mean predicted can be estimated for the positive scores
for industrial and household waste load as shown in Figure 7. The mean predicted score is estimated for each
waste load and the load number is chronologically arranged (test-set from 49 waste loads). The mean predicted
for industrial waste load 2, 9, 15, 20, 42 and 47 varies between 0.88 and 0.71 while waste load 25 has a mean
predicted at 0.48. The mean predicted for household waste load 26, 31, 32, 35, 36, 40 are varying between 0.82
and 0.67 while waste load 18 has a mean predicted at 0.52. The drop in mean predicted score for waste load 25
and 18 could be due to image features shared between the industrial and household class.
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Figure 7. Mean predicted is estimated for positive scores for industrial and household waste loads with chronologically

arrangement (test-set from 49 waste loads). Accuracy, precision, recall, and F-measure are estimated for the MS images
and sub-images with threshold value at 0.5.

With a TV at 0.5 the model outputs one false negative for the industrial class and zero false negative for
household class. Considering that there are only 14 waste loads available for the assessment the use of confusion
matrix will not be sufficient for assessing the model performance in classifying waste loads. Using confusion
matrix for assessing model performance in classifying images will be sufficient since there are 920 MS images
in the test-set (29% of total 3173 MS images). As noted in Figure 7, for industrial waste class with TV at
0.5, the accuracy, precision, recall and F-measure were found to be 0.85, 0.92, 0.89 and 0.90, respectively. For
household waste class with TV at 0.5, the accuracy, precision, recall and F-measure were found to be 0.8, 0.94,
0.81 and 0.87, respectively. The accuracy, precision, recall and F-measure values can be interpreted as follows.
Accuracy; true positives and negatives are correctly predicted with a higher certainty for the industrial than for
the household class. Precision; for positive predictions of industrial or household class, true positives are correctly
predicted with a higher certainty for the household than for the industrial class. Recall: all classes are correctly
predicted with a higher certainty for the industrial than for the household class. F-measure; the model has
a higher confidence in distinguishing industrial waste images from household waste images than distinguishing
household waste images from industrial waste images.

The threshold parameter set for the classification task is dependent on the decision making performed. To
evaluate the model performance for different TVs it is possible to plot the ROC curve to observe the trade-off
between TPR and FPR. The ROC curve for the industrial and household class are presented in Figure 8 and
shows the TPR as a function of FPR for TVs between 0 and 1 with incremental steps of 0.001.
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Figure 8. True positive rate as a function of false positive rate for threshold values between 0 and 1 with incremental
steps of 0.001

For comparison, the ROC curve for a model without any discrimination capacity (equal to coin-flipping) is
included as a linear plot. For the industrial class, the increase in TV more than 0.5 (TPR=0.86, FPR=0.21)
reduces FPR with small cost of a decrease in TPR up to the point where the slope of the curve is high (TPR=0.81,
FPR=0.05). For the household class, the change in TV lower or higher than 0.5 (TPR=0.7, FPR=0.04) will
result in substantial changes both in FPR and TPR. The tuning of TV to optimize the trade-off between TPR
and FPR depends on the decision making that is performed. If a high FPR (with many false alarms) have
substantial negative impact on the waste combustion process performance, the increase in TV could be used to
reduce false alarms. In view of the ROC curve results, with a low FPR preferred over small TPR to improve the
process, the increase in TV with respect to the industrial class is feasible.

Similarly, if a low TPR, (with low sensitivity for producing an alarm) have substantial negative impact on the
waste combustion performance, the decrease in TV could be used. Concerning the ROC curve results, with a
high TPR preferred over a small FPR to improve the process, the decrease in TV with respect to the household
class is feasible, however with the cost of producing more false alarms due to the substantial increase in FPR.

The AUC of the ROC curve for industrial and household class are presented in Figure 8 and are compared
with the AUC for a model without any discrimination capacity (coin-flipping). The AUC for the model is 0.90
for industrial class and 0.87 for the household class. The AUC values are equal to the F-measure values but are
used differently for assessing the model. F-measure is estimated for a fixed TV whereas the AUC estimation is a
result of using all TVs. Hence, the AUC shows that for all TVs the model has 90% confidence in distinguishing
between industrial wast images from household images and 87% confidence in distinguishing household waste
images from industrial waste images.

4. CONCLUSION

The WtE operation efficiency is dependent on the MSW weighted fractions of plastic, paper and cardboard or
inerts and fines. Imaging methods can be used for recognizing material components in MSW and provide waste
fractions estimations to improve the WtE performance. The waste material recognition was performed by using



a sensor system based on multispectral imaging and a pretrained (ImageNet-NoisyStudent weights) CNN model
(EfficientNetBO0) to discriminate between household and industrial waste categories. The prelimenary results on
image classification for MSW characterization were assessed from observing the prediction scores for fixed and
variable TVs. With fixed TV at 0.5, the prediction performance on the test-set for MS images of industrial and
household waste were found as follows. Industrial class: accuracy at 85%, precision at 92%, recall at 89%, and
F-measure at 90%. Household class: accuracy at 80%, precision at 94%, recall at 81%, and F-measure at 87%.
The model has a higher accuracy, recall, and F-measure for the industrial class than for the household class, while
the household class has a higher precision than the industrial class. In addition, the F-measure obtained using
fixed TV shows that the model has a higher confidence in distinguishing industrial waste images from household
images than from distinguishing household waste images from industrial waste images. For variable TVs the
model performance was assessed based on ROC estimations. From the ROC curve, the AUC was estimated to
be 0.90 and 0.87 for the industrial class and the household class, respectively. Thus, for all TVs the model shows
to have 90% confidence in distinguish industrial waste images from household waste images and 87% confidence
in distinguishing household waste images from industrial waste images. The main advantage of using this model
for image classification is that the feature representation learned from waste images is not limited by the human
visual perception due to the spectral imaging performed in the visible and near-infrared wavelengths. The higher
order image features are extracted for the 16 spectral domains (in the range 590-860 nm) by the model and may
contain a holistic information on the waste images that is not recognizable by human perception due the spectral
information used. Thus, using MS images to train a deep learning model may be used for predicting waste classes
related to MSW combustion properties even if the waste appears highly heterogeneous by the human vision.

Future work will consist of performing waste categorization and multi-class labeling of the images from the
waste loads to recognize MSW fractions relevant for the WtE performance. The labeling strategy will be based
on human vision of images of the waste loads assembled as videos to efficiently categorize images into waste
fraction classes. Concerning model development, the tensor containing the (pretrained) weights will be extended
so that the 16 channel spectral image can be passed to the deep neural network instead using sub-images with 3
channels. This will increase efficiency of the model training and a higher model regularization can be obtained
on the spectral information in the images.
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