
Peter Cook Bulukin

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Classifying H
ateful and O

ffensive Language Across D
atasets and D

om
ains

M
as

te
r’s

 th
es

is

Peter Cook Bulukin

Classifying Hateful and Offensive
Language Across Datasets and
Domains

A Comparison of Various Transformer-Based
Models

Master’s thesis in Computer Science
Supervisor: Björn Gambäck

January 2021





Peter Cook Bulukin

Classifying Hateful and Offensive
Language Across Datasets and
Domains

A Comparison of Various Transformer-Based Models

Master’s thesis in Computer Science
Supervisor: Björn Gambäck
January 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





Abstract
This thesis explores the compatibility of popular offensive language datasets while utilizing
models pre-trained on large textual corpora. Training on different datasets iteratively is
found to be very difficult due to models forgetting previous knowledge, while merging
and shuffling datasets yield results comparable with normal in-domain training. It is
difficult to tell if good performance on the merged dataset is due to models learning to
identify different datasets, or if the definitions of hateful and offensive language used
in the individual annotation methodologies are actually compatible. Recent models’
abilities to separate hateful from offensive language using in- and cross-domain data
were investigated in two phases. A preliminary study was conducted, where a system
based on A Lite BERT (ALBERT) was implemented to separate offensive and normal
language in order to test the effects of reducing memory consumption from the lately
popular Bidirectional Encoder Representations from Transformers (BERT). This was
followed by experiments utilizing five implemented systems, of which two were based on a
model that retains factual knowledge called Enhanced Representation through kNowledge
IntEgration (ERNIE), and the remaining three were based on ALBERT. Experiments
were conducted using three datasets, where all annotation schemes were mapped to
‘Hateful’, ‘Offensive’, or ‘Neither’ in order to facilitate for cross-dataset training and
evaluation. The results suggest that the knowledge-integrating models perform better
than the relatively light model on both in- and cross-domain experiments. An extensive
discussion of the compatibility between the various annotation schemes was carried out
with respect to definitions presented in the research papers published in conjunction with
the datasets.
Automatic hate speech detection using machine learning is important to keep social

media healthy. It is problematic that no common definition of hate speech and offensive
language exists, and the subjective nature of the topic makes it hard to create coherent
datasets. Different data compilation methodologies for different datasets and changing
trends on social media introduce topical differences between datasets. If the goal is
to consistently have a good model for practical use, a combination of datasets may be
needed for models to obtain knowledge about the subtle characteristics that turn a social
media post hateful.
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Sammendrag
Denne oppgaven utforsker kompatibiliteten mellom populære datamengder som inneholder
støtende språk ved bruk av språkmodeller forhåndstrente på store skriftsamlinger. Å trene
iterativt på forskjellige datamengder viser seg å være vanskelig på grunn av at modeller
glemmer tidligere kunnskap, mens sammenslåing og stokking av datamengder gir resultater
som kan sammenlignes med trening og testing av modeller på data fra kun ett domene.
Det er vanskelig å si om den gode ytelsen på de sammenslåtte datamengdene kommer av at
modellene lærer å identifisere forskjellige datamengder, eller om definisjonene på hatefullt
og støtende språk som blir brukt i de individuelle annoteringsmetodikkene faktisk er
kompatible. Nylige modellers evne til å se forskjell på hatefullt og støtende språk i data
fra både ett og flere domener ble utforsket i to faser. Et fordypningsprosjekt ble først
utført, hvor et system basert på A Lite BERT (ALBERT) ble implementert til å skille
støtende og normalt språk for å teste effektene av å redusere minnebruken fra en nylig
populær modell kalt Bidirectional Encoder Representations from Transformers (BERT).
Deretter ble fem systemer implementert, hvor to var basert på en modell som kan “huske”
faktakunnskap. Denne modellen kalles Enhanced Representation through kNowledge
IntEgration (ERNIE). De resterende tre var basert på ALBERT. Eksperimenter ble
utført på tre datamengder, hvor alle annoteringsstrukturene ble synkronisert til tre
kategorier: “Hateful”, “Offensive”, eller “Neither” for å gjøre kryssevaluering av modeller
på forskjellige datamengder mulig. Resultatene antyder at de faktaintegrerende modellene
yter bedre enn modellene med relativt lavt minneforbruk på data fra både ett og flere
domener. De forskjellige annoteringsstrukturenes kompatibilitet ble diskutert inngående
med utgangspunkt i definisjonene som ble brukt i datamengdenes respektive artikler.
Automatisk oppdagelse av hatefullt språk ved bruk av maskinlæring er et viktig

virkemiddel for å ha et sunt miljø på sosiale medier. Det er problematisk at det ikke finnes
noe felles definisjon på hatefullt og støtende språk, og temaets subjektive natur gjør det
vanskelig å lage datamengder uten logiske brister mellom annoteringer og definisjoner.
Varierende metodikker i bruk når datamengder settes sammen og trender på sosiale
medier i konstant endring introduserer tematiske forskjeller mellom datamengder. Hvis
målet er å kontinuerlig ha en god modell for praktisk bruk, så kan det være at en
kombinasjon av flere datamengder er nødvendig for å få nok kunnskap om subtile trekk
som gjør et innlegg på sosiale medier hatefullt.
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1. Introduction
A significant proportion of the world’s population is frequently active on social media.
Facebook reported having 2.5 billion monthly active users in 2020, a 9% increase over the
previous year. Twitter (2020c) at the same time reported 152 million daily active users.
From estimates done by Solutions (2018), the number of tweets has been relatively stable
since it hit a ceiling of 500 million tweets per day in 2014 (Twitter, 2014). Increasing
legal demands from several countries are driving companies like Twitter to increase their
focus on moderating their content. Because of the vast amount of data, Twitter is already
resorting to technologies in addition to human editorial moderating. In 2019, 50% of
the tweets removed for being abusive surfaced through technologies rather than human
editors or users. In total, 584,429 individual accounts were reviewed because of hateful
conduct in 2019 (Twitter, 2019). Machine learning methods have shown promise on
Natural Language Processing (NLP) tasks and have been a part of the recent development
of Twitter (Twitter, 2018). The recent inclusion of transfer learning methods in NLP is
pushing hate speech detection in social media even further and provides better separability
between different levels of offensive language. A considerable amount of research has
been conducted in this field, with a recurring theme being the incompatibility of different
datasets and their annotations. This thesis will focus on the recent models’ abilities to
distinguish between hate speech, offensive, and neutral language whilst being trained
using several datasets. This combination of datasets will not be done in order to improve
the results from using specific datasets, but to explore to what extent these datasets are
compatible, and in what areas they differ and have similarities.

1.1. Background and Motivation

Social media platforms are generally perceived to be tools for creating and sharing
ideas and information. Unfortunately, not all these ideas are constructive, but rather
derogatory and meant to humiliate or in other ways cause harm to individuals or groups.
In order to allow everyone to share their opinions and beliefs freely, it is essential to
moderate the discussion so that everyone can feel safe to participate.

Locating the exact line between hate speech and acceptable free speech can be difficult
due to the lack of a universal definition of hate speech. Davidson et al. (2017) define it as
language that expresses hate towards a targeted group, or language intended to derogate,
humiliate, or insult members of the group. Twitter has their own definition of hateful
conduct, focusing on violence, threats, and direct attacks against people based on race,
ethnicity, national origin, sexual orientation, gender, gender identity, religious affiliation,
age, disability, or serious disease (Twitter, 2020b). With growing pressure and focus on

1



1. Introduction

moderation of content on social media, it becomes increasingly important for platforms
to show that they put serious effort into solving the issue.

Hateful conduct online does not just result in restricted expression but can also motivate
hate crimes in the physical world. Müller and Schwarz (2019) suggest that US President
Donald Trump’s tweets were highly correlated with anti-Muslim hate crimes. They argue
that Trump’s tweets caused the number of racist hate crimes to increase, more anti-Muslim
activity amongst his followers, and a higher focus on Muslim-related topics in cable news,
such as Fox News. They include an extensive analysis of causality and establish that
Trump’s tweets were the real cause of these effects. This highlights the importance of
moderating hate speech on Twitter, not just as a means to maintain a healthy discussion
but also to prevent a rise in real-world crimes. On the other hand, Müller and Schwarz
(2019) caution against using their findings as grounds for implementing policies that
restrict online communication, referring to the trade-off between moderating and free
speech.

Traditionally, social media platforms have used people to detect and remove unwanted
content. They have relied on users to report undesirable posts and then go manually
through the reported content. Because users are not necessarily aware of the terms and
conditions of different platforms, some cases can be unnecessarily reported, and some
cases can fail to be reported at all. This can result in large workloads for moderators and
difficulties in keeping up with the rapid increase in content on social media platforms.
The task of going through vast amounts of negative and hateful content can also be
mentally damaging for the moderators (Roberts, 2019; Newton, 2019; Koebler and Cox,
2018).

“She began to put in more time than her contract called for, and her mental
energy was eaten up by worry and upset caused by what she experienced in
the the forums she moderated."

- Roberts (2019, p. 158)

Automatic detection of hate speech can thus help remove unwanted content, even before it
is discovered by the people it is supposed to harm, creating a healthier online community.

1.2. Goals and Research Questions
Goal Investigate the effects of training models using combined datasets with overlapping

labels, where the datasets separate between several categories of offensive language.

This goal aims to answer how training models using multiple datasets affects perform-
ance. This can be done by fine-tuning a model on one dataset and evaluating this model
on multiple datasets, before continuing to train on another dataset and evaluating again.
It can also be achieved by training a combination of several datasets by shuffling the
data. The goal is to achieve this using the best possible models, and will thus be aided
by a literature review, preliminary study, and experiments aimed at finding a model that
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performs well. The pursuit of the goal will further be driven by the research questions
below.

Research question 1 How much do irreconcilable properties of different offensive lan-
guage datasets impact performance of deep learning models?

When different annotators, methodologies, and definitions are used in compiling
datasets in offensive language detection, there are bound to be incompatible differences
in annotations. Some of the labels have to be very well defined, and they require a great
deal of attention to be consistent. This research question aims to answer how large these
differences are, and whether all the differences lie in the annotations, or a part of the
problem is that different datasets have data from different topics, such as politics and
racism. To answer this and find good candidate models for further exploration, a review
of related work and different datasets will be conducted. The datasets will then be used
in experiments, where they are trained using different permutations of the datasets to see
how this impacts performance when the models are being tested using their respective
test sets.

Research question 2 Which models and parameters can best capture the structures of
combined offensive language datasets?

While there might be properties of different datasets that are incompatible, this research
question aims to answer which models and which parameters of these models are best
able to capture the patterns of several datasets simultaneously, and thus lead to higher
performance in general and less deterioration from continued training. To answer this
research question, a literature review of models used in offensive language detection and
general natural language processing will be conducted to gain further insights on the best
performing models. The highest-scoring models in workshops like OffensEval (Zampieri
et al., 2019a, 2020) will be a guide for which models are eligible. There will be a focus on
transformer-based models, especially BERT and its variations, since they have achieved
state-of-the-art on important NLP benchmarks.

Research question 3 Can the use of knowledge-training objectives during pre-training
of a transformer improve on the performance of hate speech and offensive language
identification?

Transfer learning strategies in machine learning models intended for textual represent-
ations were first aimed at syntax and then semantics. This research question aims to
answer whether the incorporation of factual knowledge in these models can be helpful in
predicting hate speech and offensive language.

1.3. Research Method
Research question 1 was answered experimentally using datasets that had their labels
mapped to a common annotation scheme. Since this research question references proper-
ties of datasets that are difficult to measure, several experiments were designed in an
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incremental manner in order to systematically gain insight on the underlying reasons of
the results. In order to answer research question 1, a thorough review and discussion
on how different datasets define different types of offensive language was also conducted.
Answering research question 2 was aided by surveying existing research in the field of
offensive language identification. Additionally, research on state-of-the-art language
models used in other NLP tasks was reviewed in order to find suitable alternatives for
further experimentation. Little previous work has been conducted on using three labels
when conducting cross- and combined-domain experiments with hateful tweets, and the
second research question was therefore answered experimentally. Research question 3
was answered by looking at the recent use of ERNIE in the OffensEval 2020 workshop
and by further using the model in experiments. The experiments were conducted using
three popular offensive language datasets, and the results were compared to experiments
done with ALBERT in this thesis and with other related research on the same datasets.

1.4. Contributions

C1 A concise but thorough description of variations on the BERT language model.

C2 A proposed label mapping for synchronizing several annotation schemes including
the hierarchical scheme of OLID.

C3 In- and cross-domain experiments using ALBERT and ERNIE based language models.

C4 Experiments on the the possibility of combining datasets for optimal performance in
real-world scenarios.

1.5. Thesis Structure

Chapter 2 introduces background theory needed to understand the concepts used in the
work done in this thesis and in related work.

Chapter 3 describes the datasets used in this thesis and other interesting datasets that
are relevant.

Chapter 4 presents work related to the models used in this thesis, both in general NLP
and with focus on hateful and offensive language identification.

Chapter 5 presents the preliminary study that was conducted leading up to this thesis.
It includes descriptions of the data used, models, experiments, and results.

Chapter 6 describes the architectures that were utilized. It includes how the data was
obtained and processed, and the model architectures used in the experiments.

Chapter 7 presents details on the experiments conducted and the results of these. The
chapter includes the experimental plan, setup, and results.
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Chapter 8 evaluates the methodology and decisions that were made, and discusses the
results found in the experiments.

Chapter 9 presents a conclusion to the thesis, what contributions it brings to the field
of hate speech detection, and propositions for future work.
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2. Background Theory
This chapter will present some of the techniques, tools, and methods mentioned in this
report. First, an introduction to classical machine learning models will be given, then
different techniques and models that are categorized as deep learning. Common to a lot
of deep learning models is that they all need some optimizer to train them. Different
optimization techniques have been introduced with the growing size of machine learning
models. Some of them will be described here along with some of their advantages and
disadvantages. This chapter will also describe techniques for dealing with issues in
machine learning data, such as unbalanced data. An introduction to the different tools
and libraries used in the project will also be covered. Finally, a description of different
metrics for evaluating the model performance will be given. Section 2.1 with minor
additions and parts of section 2.2 are taken from the preliminary project leading up to
this thesis.

2.1. Classical Machine Learning Models

When a computer system has the task of classifying data, two different approaches
exist, as well as a combination of the two. The first type of system is rule-based, and
the second is machine learning-based, where hybrid systems are the combination of
the mentioned systems. Rule-based systems require a lot of manual work, need high
levels of expert knowledge, and have to be crafted with great care. To overcome these
restrictions, machine learning-based systems can learn directly from data. This can
be done by learning associations between input data and corresponding labels on each
example, also known as supervised learning. The goal is to capture structures hidden in
the data. The problem is thus transformed into crafting models with architectures that
are able to learn these structures. Not all machine learning models are labeled. Some
models try to capture structures in data without specifically mapping it to some label,
known as unsupervised learning. Hate speech detection is mostly issued as a supervised
learning problem due to the use of labeled data, but unsupervised techniques are also
utilised. The following sections will introduce some of the models successfully used for
text classification.

2.1.1. Naïve Bayes

Naïve Bayes (NB) Classifier is a popular method based on basic probability theory. It is
a very simple approach but has proven very powerful, especially with limited data. It has
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been used for Natural Language Processing (NLP) classification tasks with great success.
It builds upon Bayes’ Theorem on conditional probability.

P (A|B) = P (B|A)P (A)
P (B) (2.1)

Here we are able to compare the probabilities of all classes given a document. The
approach is said to be naïve because it assumes that all features are conditionally
independent. This is a very strong assumption and is not likely to be true in real-world
scenarios. However, it simplifies the problem significantly, making it possible to calculate
the probabilities, and has shown to work well in practice.

Bayesian optimization is not limited to classification tasks and can be used in several
domains of artificial intelligence and optimization. Bayesian optimization can for example
be used as a technique when searching for optimal hyperparameters. These are parameters
of machine learning algorithms that have to be set manually, often just by a combination
of knowledge of what usually performs well, and trial and error. Grid search is a normal
method for testing how different parameters perform together. This searches through
all the combinations of parameters, which can rapidly multiply because of the curse of
dimensionality. Bayesian optimization makes it possible to search within the same space
of hyperparameters for a combination that optimizes a chosen metric.

2.1.2. Support Vector Machine

Support Vector Machines (SVMs; Cortes and Vapnik, 1995) are non-probabilistic models
which in its simplest form are able to do linear classification, and in that case also known
as Support Vector Classifiers (SVCs). An SVC works by fitting a threshold based on
training data by maximizing the margin, which is the distance from the threshold to the
closest points from either class. To allow for outliers, Cortes and Vapnik implemented
the use of soft margins, so that the model is less sensitive to wrongly annotated data.
This increases the bias a little but lowers the variance, which is beneficial for generalizing.
One-dimensional data would be separated by a point, 2-dimensional data by a line, and
general data would be separated by a hyperplane.

Data cannot always be classified directly due to complex data structures. To alleviate
this, Support Vector Machines use kernels to map data into a relatively higher-dimensional
space, where the data might be better separable by a hyperplane using an SVC. Trans-
forming data into higher dimensions can be very computationally expensive, and with
some kernels, such as the Radial Basis Function (RBD), it is practically impossible.
SVMs use the kernel trick to solve this, which calculates the relationships between data
points in the higher dimensional space without actually mapping the values to a higher
dimension.

2.1.3. Logistic Regression

Logistic Regression (LR) is a technique for statistical modeling that can also be used in
machine learning. It is closely related to linear regression but is more directed towards
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discrete outputs. This makes it useful for fitting machine learning models for classification.
Instead of using the least squares method as is done in linear regression, logistic regression
tries to find the best model by changing parameters so that the log(likelihood) of the data
given the mode is maximized. The model is optimized using parametric optimization
techniques, such as Stochastic Gradient Descent (SGD).

2.2. Deep Learning
As data has become more available and computing power is increasing, deep learning
has grown in popularity. Artificial Neural Networks (ANNs) are basic structures in deep
learning, and they can take many forms depending on the task they are designed for.
This section is going to focus on the most common techniques used for NLP. ANNs build
on concepts from the biological brain at a very abstract level. Inputs are propagated
through a weighted graph, where each node, often called a Perceptron (Rosenblatt, 1958),
sends out a signal if the input becomes big enough. More advanced node structures have
also been used, providing more functionality to a single node. An example of this is in
Long Short Term Memory (LSTM; Hochreiter and Schmidhuber, 1997) cells, which will
be elaborated below.

2.2.1. Convolutional Neural Network

Convolutional Neural Networks (CNNs) were originally designed to work on images and
the structure is abstractly inspired by how neurons are structured in the visual cortex
(LeCun et al., 1999). They are able to encode spatial and shape related concepts from raw
image data. This spacial awareness has also shown to be useful in language processing
tasks (Collobert and Weston, 2008), but the reasoning behind the structure is best
explained with visual processing as reference task. CNNs extract local information from
an image by mapping a local area with pixel values through an operation convolution.
Each convolutional node in the network can be interpreted as a filter, where filter weights
are learned from data. This enables the CNN to learn local features like shapes and edges.
In addition to the convolutional layer, there is also pooling layers. These layers reduce
the dimensionality of the data, which makes it possible to reduce the computational
complexity. When using a CNN for text processing, one-dimensional filters are used
instead of two-dimensional.

2.2.2. Recurrent Neural Network

When using techniques such as bag-of-words or inputting a sequence of words into a
neural network, we lose relationships given by the order of the words. Recurrent Neural
Networks (RNNs) use recurrence to capture these relationships. The success of the
original version of these networks was limited, and they tend to be hard to train as well
as having other issues, such as the vanishing gradient problem which can happen if many
activation functions are used on top of each other due to low values being multiplied
together. The problems of the RNNs are dealt with in the Long Short Term Memory
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networks. The LSTM is a version of RNNs that uses a forget gate and cell state, enabling
the network to learn what to remember and what to discard of information. This makes
it possible to learn relationships between words in sequences, and to learn dependencies
that span several iterations of recurrent loops.

2.2.3. Encoder-Decoder Attention

The attention mechanism was first proposed by Bahdanau et al. (2015) and was first
applied to a RNN sequence-to-sequence model. When translating a sentence from one
language to another, a human translator would probably not read the whole sentence,
memorize it, and then read it out again in another language. He would probably pay
attention to different words and translate little by little. This is the concept utilized in
the attention mechanism. It is a structure that learns how to associate parts of the input
sequence with parts of the output sequence.
An encoder-decoder network encodes an input sequence to a fixed size vector, before

decoding it into the output sequence. This structure was very popular in neural machine
translation. Decoding a sequence correctly from this latent vector can be a difficult
task, so with the attention mechanism the input sequence is encoded to a sequence
of annotations or hidden states. The weighted sum of these annotations is then used
as input to each step of the decoder RNN, where the weights are based on both the
annotations and the previous state of the decoder RNN. In this way, each output can
selectively choose which annotations to pay attention to.

2.2.4. Transformer

The transformer was introduced by Vaswani et al. (2017) in “Attention is all you need”.
At the time of this paper, attention mechanisms had become quite popular for use in
NLP tasks. A problem with the sequential structure of the encoder-decoder attention
mechanisms built on RNNs is that they are very hard to parallelize and therefore hard
to scale. Vaswani et al. argued that the attention mechanism was enough to capture
relationships between tokens and that the underlying recurring structure was not needed.
By removing this, the order of words and sequential structure are lost, which is resolved
by adding a positional encoding to the input sequence. The transformer is built from
several multi-headed self-attention layers which will be elaborated in section 2.2.5, and
feed-forward blocks organized in an encoder and a decoder. Multi-head in this context
means to project input to the self-attention h times, apply self-attention to all these
projections, before concatenating the outputs. Around all self-attention and feed-forward
layers are residual connections, enabling the signals early in the model to be preserved
throughout the deep model structure. Tokens at each position in the attention blocks of
the decoder stack are not allowed to attend to subsequent positions, allowing the model
to only depend on “seen” tokens when decoding, making language modeling possible by
shifting the outputs one step to the right.
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2.2.5. Self-Attention

Self-attention was introduced by Vaswani et al. (2017) as a part of the Transformer. It
avoids the sequential properties that original encoder-decoder attention employs. It splits
the input into three parts through weight matrices that are learned: queries, keys, and
values. For a specific token in the input sequence, the query of this token is multiplied
with keys of all tokens in the sequence including itself. The outputs of all these equations
are divided by the square root of the length of the keys to stabilize the gradients, before
a softmax is applied for the values to be positive and sum up to 1. The output matrices
of the softmax can be interpreted as compatibility scores between the specific token and
all the tokens of the sequence. Each score is then multiplied with its corresponding value
matrix before all matrices are added together to form the output of the specific token.
These operations are done for all tokens. The formula for self-attention is given by:

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V (2.2)

Self-attention comes with the cost of reducing the effective resolution of the data,
which is counteracted by applying Multi-Head Attention by projecting the queries, keys
and values h times to different representation subspaces where attention is applied in
parallel. The outputs of all the attention-heads are concatenated and projected back to
the dimensionality of a single output.

2.3. Optimization

Neural networks are parametric functions. It is practically impossible to search through
all parameters the model can have, and a guided search for these parameters must
therefore be conducted. This section will cover some relevant optimization algorithms
that are used to solve this. Section 2.3.1 is from the preliminary project.

2.3.1. Stochastic Gradient Descent

A problem a lot of classical machine learning models have is that they are not able to
train on some data, stop, and then train on some more data, at least not in regular
implementations. Stochastic Gradient Descent (SGD) is a method to optimize a para-
metric function through following the gradient of the parameter space from a randomly
initialized point. The basic method is Gradient Descent, which uses the gradient of a
parameter space, combined with a learning rate, to take steps in a direction improving a
loss function based on all parameters and examples. In SGD, this is approximated, by
calculating the gradients for one example or a subset of examples every training step, to
be able to train on large amounts of data. In practice a subset of examples, also known as
mini batches, are commonly used. By using this method, it is possible to train numerous
classical machine learning models on batches of data. SGD can be used to optimise both
classical machine learning methods and neural networks.
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2.3.2. Adam and AdamW

SGD takes a step towards larger models in terms of dealing with higher computational
complexity. The Adam (Kingma and Ba, 2015) optimizer utilizes adaptive learning
rates based on moments of the individual gradients. The moments are exponential
running averages of the gradients, making the learning rate for a particular parameter
dependent on the recent magnitude of its gradients. By doing this, Adam improves the
convergence rate because parameters with little change will move sooner into a space
where more rapid learning is possible. The step sizes of Adam are approximately bound
by a hyperparameter to avoid too large step sizes that might lead to divergence. Adam
requires four hyperparameters:

1. β1: used to decay the running average of the gradient.

2. β2: used to decay the running average of the square of the gradient.

3. α: step size parameter.

4. ε: used to prevent division by zero.

Adam improves the convergence rate of the models, but with the sacrifice of not general-
izing as well as SGD with momentum, (Wilson et al., 2017). For this reason SGD has
still been preferred in academic research, where the training time is not an issue.

A reason for the better performance by SGD might be the use of L2 regularization to
force the weights to be smaller, and thus generalizing better. L2 regularization has been
applied to Adam as well, but Loshchilov and Hutter (2019) noted that it was applied on
the cost function of Adam in a manner that affected the moving averages of the moments.
They proposed a corrected version of Adam with weight decay called AdamW, which
has shown to generalize better than Adam and be competitive with SGD. For SGD, L2
regularization and weight decay is logically the same thing.

2.3.3. LAMB

You et al. (2020) proposed LAMB, a new optimization algorithm tackling the long
training time of BERT, which originally utilized Adam. LAMB was later used to pre-
train ALBERT. It tackles the problem of larger batch sizes leading to less generalization
by adding layerwise adaptive learning rates to Adam and normalizing each update to
unit L2-norm. While SGD in many cases are preferred over adaptive algorithms, Adam
has been show to outperform SGD in certain situations, for example in attention models
such as BERT and ALBERT (Zhang et al., 2019a). While You et al. (2020) focus on
improving training time with the possibility of using large batch sizes without losing
accuracy, they note that LAMB is a general optimizer that works well on smaller batch
sizes. They do not actually refer to any experiments regarding this, where the lowest
batch size in the paper is 512. They also write that the normalization of each layer to
unit L2-norm leads to a biased gradient update, but that this bias is small with larger
batch sizes. This indicates that the bias might be larger with smaller batch sizes.
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2.4. Training techniques

2.4.1. Overfitting

Machine learning models try to fit a model so that it predicts well on unseen data. This
is the reason why test sets are kept away from the training process. Overfitting happens
if the model performs well on data it has already seen, but fails to generalise well and
perform well on new unseen data. Models are often so big that they can, if trained long
enough, learn the exact mapping from examples to predictions. This is not good since
the model will then utilise features that do not work well in general. Early stopping and
dropout are often used to counteract this, and often the best way of tackling overfitting
is by getting more data.

2.4.2. Over- and Undersampling

Imbalanced datasets pose some difficulties when training machine learning models. The
issue is prevalent in classical machine learning (Guo et al., 2008) and deep learning (Buda
et al., 2018). Several approaches have been explored to deal with class imbalance, but
the most prevalent is oversampling. This method naïvely samples an increased number
of samples from minority classes, that is classes with relatively fewer examples than the
majority class. More advanced heuristic methods have also been explored, where for
example SMOTE (Chawla et al., 2002) uses interpolation techniques to infer examples
that lay in between the samples in the dataset. This is done to reduce overfitting caused
by resampling the exact examples over and over again. According to Buda et al. (2018),
resampling causes less overfitting in convulutional neural networks than classical machine
learning methods, which might mean that other deep learning models are less prone to
overfit due to oversampling as well.

2.5. Metrics

Choosing a good metric is crucial to evaluate the desired performance of models. Choosing
the wrong metric can give seemingly good results even when a model is not performing
well. Some commonly used metrics are covered in this section. Metrics are also integral
for evaluation of inter-annotator agreement in datasets which will be used in chapter
3. The Fleiss’ Kappa will therefore be covered in this section, together with accuracy,
precision, recall, and F1.
Fleiss’ Kappa is a statistical measure of inter-annotator agreement. The measure is

is closely related to Cohen’s Kappa which deals with a maximum of two annotators,
while Fleiss’ Kappa can have an unlimited fixed number of annotators. The measure
compensates for agreement that is due to chance, and thus shows agreement on a scale
from 0 to 1. It is given by

κ = P̄ − P̄e
1− P̄e

(2.3)
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The denominator represents the agreement that is possible to achieve above chance, and
the numerator represents the agreement that is actually achieved above chance. P̄ is the
mean of label-wise annotator agreements, while P̄e is the mean expected agreement.
Accuracy is one of the simplest methods to evaluate performance of models and is

given by CorrectPredictions
AllPredictions . It works well when datasets are balanced, but can give the

impression of a model being better than it actually is when dealing with unbalanced
datasets. If a large proportion of data in a binary dataset belongs to label A, a model
which only predicts label A would achieve good accuracy. This does not necessarily mean
that the model is good, because the model would perform worse if tested on data where
a larger percentage of examples had label B.

There exists smarter strategies of evaluating datasets that handle unbalanced datasets
and can be tuned to favor bias towards specific labels. The basis for some of these metrics
are true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). Precision is a metric that, as the name implies, measures how many predictions for
a specific label are correct. It is given by

TP

TP + FP
(2.4)

Another metric that is often used in relation to precision is recall. This metric measures
how many labels a model was able to predict correctly in relation to the total number of
times the label appears in the dataset. This metric is given by

TP

TP + FN
(2.5)

These two metrics are valuable to measure two aspects of performance of a model. They
are usually used side-by-side, and the harmonic mean of them is called the F1-score. A
more general score is the Fβ −Score. The F1-score is most commonly used, since usually
no preference of recall versus precision is present. The F1-score is given by

2× precision× recall
precision+ recall

(2.6)

Metrics based on positives and negatives are originally meant for binary evaluation. For
multi-class datasets, equation 2.5 is modified to TP

NP
, where NP is the number of examples

of the positive class.
The metrics are used from the reference point of a “positive” class. It is often interesting

to evaluate an average of all , but this can be done in several ways. Three common
averages are: macro average, micro average, and weighted average. Macro average works
by calculating a metric for one label at the time and then averaging the scores for all
labels. This is a good strategy when a dataset is unbalanced, but all labels have the same
importance regardless of how many times they appear. Micro and weighted averages are
sensitive to the label distribution, where micro average aggregates the contributions of
all labels before calculating the final metric. By summing the positives and negatives,
a minority label will be given less importance. A weighted average infuses the label
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distribution in the metric by averaging the score of each label, weighted by the number
of times each label occurs in the dataset. Weighted and micro averages are usually very
close to each other, while macro average can differ more from the two other metrics
depending on the label distribution. Weighted and micro average are suitable if more
importance should be given to the majority class. A weighted average can also be used
to weight each label to preference.

There exists several other metrics, but these are the metrics most often used in offensive
language prediction, and the ones that are most often used in the work referenced in this
thesis.
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Progressing in research on methods for detecting and categorizing offensive language
has been suffering the lack of consensus on definitions and annotation practices. Most
datasets that are published on the topic have their own definitions on the classes they
use in their dataset. Several categorization schemes are present, with offensive language,
abusive language, cyberbullying, hate speech, sexism, and racism being some of them.
The task of annotating a dataset requires considerable attention to how the dataset is
annotated. Whether using experts, crowdsourcing, or experienced annotators, making
sure the annotations are stable and coherent is crucial to make a good dataset. A problem
arises when trying to compare work done on different datasets, where the practices usually
differ, leading to difficulties in generalizing between several datasets. Gröndahl et al.
(2018) showed that system performance decreases dramatically when testing systems
across datasets, using train- and test-sets from different publications. Swamy et al. (2019)
did a study on evaluating systems on different datasets than what they were trained
on, using state-of-the-art models. Their results indicate the same as Gröndahl et al.
(2018), with decreasing performance on cross dataset evaluation. It is probable that this
is due to differing annotation practices, and it might be reasonable to assume that the
inter-dataset performance would increase if the different datasets were annotated by the
same people. In the same way the performance using a single dataset would decrease if
different annotators were used on different sections of the data without the utmost care.

Especially thin is the line between offensive speech and hate speech, where the former
is not to be moderated, while the latter is regarded as a criminal offense in some countries
(Khan, 2013). Due to the lack of agreement between different datasets, care must be taken
when approaching different datasets and the interactions between them. This chapter
will give an overview of some popular datasets on the topic of offensive language, where
some of them are used in this thesis, and comment on their data collection practices and
annotation methods. The parts of sections 3.1, 3.3, and 3.4 relating to the structures of
these datasets are mostly taken from the preliminary project, while the discussions and
comments on the coherency and quality of the datasets are novel to this thesis.

3.1. Davidson et al. (2017)

The first dataset to be reviewed is from Davidson et al. (2017). They addressed the
issue of separating between offensive and hate speech by compiling a dataset through
the Twitter API. Davidson et al. (2017) have their own definition of hate speech based
on the policies of Twitter and Facebook, and definitions found in the laws of different
countries regarding hate speech:
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Total Not hateful Hate speech Offensive
24,783 4,163 (17%) 1,430 (6%) 19,160 (77%)

Table 3.1.: Distribution of labels in Davidson et al. (2017).

language that is used to expresses hatred towards a targeted group or is intended to be
derogatory, to humiliate, or to insult the members of the group.

So in addition to targeting speech, Davidson et al. (2017) include the authors’ intention
to incite harm as a qualifier for hate speech. While giving a clear definition of hate
speech, they do not give a similar definition of offensive language. It can be understood
though, that offensive language are phrases containing offensive words, where the phrase
in total does not classify as hate speech. The dataset was compiled by searching terms
from Hatebase.org, giving a sample of tweets from 33,458 Twitter users. All tweets by
these users were then gathered in a set with a total of 85.4 million tweets, from which
they randomly sampled 25k tweets, given that they contained words in the lexicon from
Hatebase.org. The tweets were then manually coded by CrowdFlower workers. It is no
surprise that the dataset consists of mostly offensive language, due to the fact that the
data was compiled by searching offensive terms. Under the definition of a tweet being
offensive if it contains an offensive word, all tweets in the dataset should be offensive
due to the way the data was collected. Either extra tweets without offensive words were
added, the CrowdFlower workers did not regard the all words in the Hatebase lexicon
as offensive, or the definition of offensive is not that it contains an offensive word. The
latter makes a lot of sense, due to the fact that offensive words can be present in very
positive sentences. This is problematic though, because it leaves no clear definition of
offensive speech, at least not presented by Davidson et al. (2017).

In the final dataset are 24,783 total tweets, with 19,190 being offensive, 1,430 labeled
as hate speech, and 4,163 being neither. Hate speech only makes up 5% of the tweets,
probably due to Davidson et al. (2017)’s strict hate speech criteria, but also that hate
speech might not be as prevalent as expected. The low percentage of hate speech is
challenging, but can be solved through for example over- and undersampling. A matter
of more concern is that only 1.3% of tweets were unanimously labeled as hate speech.
The intercoder-agreement given by CrowdFlower is presented as being 92%, which may
seem good. The low percentage of tweets unanimously labeled as hate speech indicate
that this agreement is dominated by the large amount of offensive tweets. This makes it
hard to conclude whether the hate speech label is coherently labeled or not. Tweets were
labelled by a minimum of 3 workers, while only a small number were labelled by more
than 3. This makes the 1.3% of unanimously hate speech labeled tweets indicate that
the agreement on hate speech labels were very low.
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3.2. Founta et al. (2018)

Several difficulties with compiling a quality dataset on hate speech is addressed by Founta
et al. (2018). They apply a three-step methodology in order to find the sweet spot when
balancing economic resources and quality of annotations. How to conduct sampling
of tweets in order to combat the issue of abusive tweets being sparse, the number of
annotators to use, and how much to pay crowdsourcing workers are parameters Founta
et al. (2018) tries to optimise in the face of limited economic resources.

• Step 1: The first step is to collect a sufficiently large amount of data and to combat
the issue of abusive tweets being sparse in the ocean of total Twitter traffic. Founta
et al. (2018) estimate the percentage of abusive tweets to be between 0.1% and
3%. To raise the number of offensive and hateful tweets in the dataset, a section
was collected with sampling techniques aimed at raising the probability of tweets
being offensive. In terms of training machine learning models, it is convenient to
have a balanced relationship between labels. Models are not supposed to learn
what appears most of the different labels, but how to distinguish them, since the
distribution of tweets could always be changed through i.e. a filter.

The collection of tweets was done through the Twitter Stream API, where a total
of 32 million tweets were collected. Metadata was extracted from all tweets and
tweets that should not be annotated, like spam and tweets without text, were
removed. When sampling tweets from the full collected set, 12.5% were sampled
using boosted sampling (BS), while the rest were sampled using random sampling.
The BS utilised metadata, sentiment analysis, and counts of offensive words found
in two dictionaries of hateful or offensive language1 to bias the sampling towards
more offensive tweets. The random sampled tweets were then mixed with the
boosted tweets, and 80k tweets were set aside for use in the final dataset, while 300
were sampled to be used for analysis in subsequent annotation iterations.

• Step 2: The second step is to explore the impact of choices like wage and number
of annotators, type and number of labels, trust in users, etc. The 300 tweets set
aside in the previous step were used to fine-tune these parameters, in addition
to the filters and boosting techniques used to increase the number of examples
in the minority classes. The tweets were first categorized into spam, normal,
and inappropriate. The inappropriate tweets were then sent to another panel on
CrowdFlower for further annotation into more specific categories. The tweets were
annotated in three rounds, where the two first rounds were used to gain insights
into correlation between labels. They applied Pearson, Spearman, and Kendall Tau
Correlation Coefficients to assess which labels to keep and which to discard. Their
initial set of labels L was:

L = {Offensive,Abusive,Hateful, Aggressive, Cyberbullying, Spam,Normal}
1https://www.hatebase.org and https://www.noswearing.com/dictionary
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Label Hateful Abusive Normal Spam Total
# Tweets 4,948 (5%) 27,037 (27%) 53,790 (54%) 14,024 (14%) 99,799

Table 3.2.: Label distribution of Founta et al. (2018)

This set was then reduced to

L′ = {Abusive,Hateful,Normal, Spam}

by merging ‘Abusive’, ‘Offensive’, and ‘Aggressive’ into ‘Abusive’, and eliminating
‘Cyberbullying’ which is scarcely used.

• Step 3: The third step is to annotate the 80k tweets for the final dataset. They
created profiles on all annotators, showing that most of them were from Venezuela
(48%). Many of them had a Bachelor Degree (48.4%), and 57% had an income level
below AC10k a year. A high percentage of tweets were labeled as spam in the large
annotation round due to a higher percentage of tweets being randomly sampled
than in the exploratory rounds.

The original dataset had a total of 80k tweets, where abusive tweets accounted for 11%,
hateful 7.5%, normal 59%, and spam 22.5%. This yields around 8,800 abusive tweets,
6,000 hateful tweets, 47,200 normal tweets, and 18,000 tweets labeled as spam. The
paper has later been extended, where Founta et al. said they would add more boosted
data, since that seemed to be the most valuable. The total number of examples in the
dataset can be seen in table 3.2.
During the validation round of step 2, almost 70% of tweets were annotated with

an overwhelming agreement, which is defined as more than 80% agreement. For the
validation round this means that 4 or 5 out of 5 workers annotated the same for almost
70% of tweets. Almost 30% of the tweets had a strong agreement, meaning more than
50% agreement. There is thus a simple majority only on a small percentage of the total
tweets. On the full dataset they reached an overwhelming agreement on ∼ 55.9% of the
tweets, ∼ 36.6% reach strong agreement, while ∼ 7.5% had a simple majority with two
annotators. Founta et al. provide a large, high-quality dataset for distinguishing between
offensive/abusive and hateful language. Their methodology is clearly explained, and their
iterations gives important insights into how to compile the dataset. The explanation of
the methodology makes it possible for others to continue their work and create more
quality annotations in the future.

3.3. Waseem and Hovy (2016)
Another widely used dataset is by Waseem and Hovy (2016). In contrast to other datasets,
this only categorises racist or sexist remarks, separating the two. Similarly to Davidson
et al. (2017), they used a bootstrapping approach, starting with a manual search on
hate speech related terms. They also targeted specific hashtags and user accounts from
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Total None Hate speech
Racism Sexism

Original 16,914 11,559 (68%) 1,972 (12%) 3,383 (20%)
Available 11,112 8,185 (74%) 17 (0%) 2,910 (26%)

Table 3.3.: Distributions of labels in Waseem and Hovy (2016) as given by Swamy et al.
(2019)

the search results. They made sure that their methodology resulted in the dataset
containing non-offensive use of potentially offensive words. Waseem and Hovy (2016)
annotated the dataset manually themselves with the help of expert knowledge in each
label. The dataset is provided as tweet IDs, making other feature information on the
author available, such as gender and location, even though a lot of tweets could not have
their extra features identified. Out of 136,052 tweets, 16,914 tweets were annotated, with
5,455 being regarded as hate speech through being labeled as sexist or racist, and 11,559
tweets not being regarded as hate speech. When comparing datasets later, Swamy et al.
(2019) reported that several tweets, especially those labeled as racism were removed
from the dataset, yielding a total of 2,927 tweets being hate speech by being labeled as
either sexist or racist, and 8,185 being labeled as not hate speech. The inter-annotator
agreement on the original data was κ = 0.84, and 85% of all disagreements appeared in
annotations of sexism. Most of the cases where the expert review disagreed with the
original annotations resulted in the tweet being labeled as neither sexist or racist. In
contrast to Davidson et al. (2017), Waseem and Hovy (2016) note that a lot of hate
speech do not contain any hateful slurs. To be able to detect hate speech consistently,
they used a list of conditions for a phrase to be labeled as hate speech, writing that a
tweet is offensive if it inhabits one of the points on the list.

3.4. Zampieri et al. (2019b)

Zampieri et al. (2019b) build on ideas of former papers suggesting that we need a better
typology for offensive language, in the dataset Offensive Language Identification Dataset
(OLID). They therefore introduced a novel hierarchical labeling scheme for annotating
offensive language datasets. The hierarchy is based on three levels: A, B, and C, and is
visually represented in figure 3.1. OLID contains 14,100 total tweets, where 9,460 of
them are labeled as ‘NOT’ (Not offensive), and 4,640 are labeled as ‘OFF’ (Offensive).
Of the offensive tweets, 4,089 are labeled as ‘TIN’ (Targeted Insult) and 551 are labeled
as ‘UNT’ (Untargeted). The targeted insults are again categorised into ‘IND’ (Individual)
with 2,507 tweets, ‘GRP’ with 1,152 tweets, and ‘OTH’ (Other) with 430 tweets. The
details of the label distribution can be seen in table 3.4.

Level A categorizes the data into:

• Not Offensive (NOT): Tweets that are not offensive.
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     Level C

     Level B

     Level A NOT

UNT TIN

OTHGRPIND

OFF

Figure 3.1.: The hierarchical annotation scheme of OLID

• Offensive (OFF): Tweets that contain any form of offensive language, i.e. swear
words.

Level B then categorizes the tweets that were classified as offensive into:

• Targeted Insult (TIN): Tweets where the offensive comment is targeting a group,
individual, or others.

• Untargeted (UNT): Tweets that go within category A but are not targeted.

Level C then categorizes the tweets that were categorized as TIN, as:

• Individual (IND): Tweets that fall into TIN and are targeting an individual.
This could be regarded as cyberbullying.

• Group (GRP): Tweets that fall into TIN and that are targeting a group. This
could be regarded as hate speech.

• Other (OTH): Tweets that fall into TIN but does not fall into neither IND nor
GRP.

Through this hierarchy it could be possible to classify hate speech into several different
categories matching other datasets. More precisely, the hierarchy labels the data into
non-offensive, offensive, hate speech, and cyberbullying. Zampieri et al. (2019b) argue
that the combination of ‘OFF’, ‘TIN’, and ‘GRP’ corresponds to what is usually regarded
as hate speech, and ‘OFF’, ‘TIN’, and ‘IND’ as cyberbullying. This matches partly
with other datasets, but a tweet that is offensive and targeting an individual based on

22



3.4. Zampieri et al. (2019b)

Task A Task B Task C

OFF 4,640 (33%) TIN 4,089
(88%)

IND 2,507 (61%)
GRP 1,152 (28%)
OTH 430 (11%)

UNT 551(12%)
NOT 9,460 (67%)

Table 3.4.: Label distribution of OLID

some quality they possess, for example their ethnicity or sexual orientation, would be
regarded as both hate speech and cyberbullying, so the typology has some drawbacks.
The insult being based on ethnicity or sexual orientation might make the tweet being
labeled as targeted towards a group, even though the insult was regarding an individual.
This distinction is not explicitly stated by Zampieri et al. (2019b). Swamy et al. (2019)
therefore choose to report the number of hate speech examples as not applicable.
To test out their hierarchy and create a gold standard with test questions for later

annotators, Zampieri et al. (2019b) created a trial dataset of 300 tweets that was annotated
by 6 experts. They report the Fleiss’ kappa agreement on task A to be κ = 0.83 on
21 tweets pulled from the trial dataset, which they say was annotated by “the five
annotators”. There is no mention of why only five of the six annotators were included in
the agreement evaluation, and why the Fleiss’ kappa agreement was only calculated on 21
of the 300 tweets. There is also no mention of the Fleiss’ kappa agreement on task B and
C, so the agreement on these might be small. This trial dataset was only a starting point
for what would become the final dataset. This was annotated by crowdsourcing, using
workers from what was then called Figure Eight, formerly known as CrowdFlower, and
now called Appen2. They only used experienced annotators and test questions to discard
annotations from annotators that did not meet certain standards. For task A, if the 21
tweets used to calculate the Fleiss’ kappa agreement was used, or the agreement of these
tweets reflects the full trial dataset, the gold standard questions can be assumed to be of
a good quality. There is however no certainty that the gold standard questions given to
the Figure Eight workers were of sufficient quality, due to no details on the agreement
for task B and C being given.

When manually inspecting the official dataset, several incoherencies surface. Examples
of tweets about gun control can be seen in table 3.5. Here, the tweets either attack gun
control or show support for gun control. Perhaps someone would be offended because they
disagree with the views of the author of the tweet, but a tweet should not be classified as
an insult just because it supports or opposes certain political views. Without extended
context it is unclear whether or not some of the tweets are sarcastic, but the target of
the tweets is still gun control. It can be argued that the people opposing gun control is
a group, but with this logic all political statements would offend some group, namely
the people with the opposite standpoint. This would imply that all political statements
are offensive, which would be detrimental to the consideration of free speech. The first

2https://appen.com/
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Tweet A B C
It’s not my fault you support gun control NOT - -
Gonna suck with all that gun control OFF UNT -
I mean it worked for gun control right? URL OFF TIN GRP
Perfect example of a country with gun control. OFF TIN GRPI bet those guys were happy the criminals didn’t have guns.
Gun control kills 3 more people. OFF TIN GRP
This is why we need gun control OFF TIN OTH

Table 3.5.: Examples of tweets from Zampieri et al. (2019b) on gun control. @USER tags
in the beginning of tweets have been removed.

Tweet A B C
Liberals are all Kookoo !!! OFF TIN OTH
liberals got to crap all over everything. OFF TIN GRP

Table 3.6.: Examples of tweets from Zampieri et al. (2019b) on liberals. @USER tags in
the beginning of tweets have been removed.

example in table 3.5 shows gun control not being labeled as offensive, while in the last
example the support of gun control is labeled as offensive. This shows the incoherency in
the annotations. Another example of this can be seen in table 3.6, where liberals are
regarded as both ‘GRP’ and ‘OTH’. With the word “liberals” appearing over 1000 times
and being one of the ten keywords used to compile the dataset, one would expect that
an annotator would be able to keep to one categorisation, which puts the quality control
of the dataset under scrutiny. Regardless of these observations, as it will be elaborated
on in chapter 4 on Related Work, machine learning models have been able to get good
results on the dataset, indicating that some coherency must be present between examples
with similar labels.

3.5. Rosenthal et al. (2020)

The dataset by Rosenthal et al. (2020) follows the same hierarchical structure as OLID,
and is called Semi-Supervised Offensive Language Identification Dataset (SOLID). It
was distributed by the organizer of OffensEval 2020 (Zampieri et al., 2020). It is called
semi-supervised because it is not manually annotated, but created with democratic co-
training of an ensemble of models, including PMI (Turney and Littman, 2003), FastText
(Joulin et al., 2017), LSTM (Hochreiter and Schmidhuber, 1997), and BERT (Devlin
et al., 2019).The tweets in the dataset was collected by querying common English stop
words and filtering all but English tweets. The ensamble was trained on OLID, and then
used to label the new dataset with originally over 12 million tweets, where around 9
million were published and 3 million kept private for further future analysis. One of the
reasons for collecting such a big dataset is to handle the issue of labels further down
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in the hierarchy having very low representation. Of the published dataset of 9 million
tweets, only around 7,000 is labeled as OTH and around 22,000 labeled as ‘GRP’. A
detailed overview of the label distribution in SOLID can be seen in table 3.7. Since the
dataset is annotated through an ensamble, the labels are given as confidence scores with
standard deviation instead of hard labels. This makes it possible to make decisions on
the use of the tweets based on these values. The next paragraph mentions how Rosenthal
et al. (2020) used these scores to create several evaluation sets, separating hard from
easy examples. When using SOLID in this thesis all examples were used, and the highest
scoring label was chosen.
To test their new dataset, Rosenthal et al. used both an analysis set from the semi-

supervised collected data, and a manually annotated set. For the latter, all co-authors
firstly annotated 48 tweets that were predicted ‘OFF’ by the models, reaching an inter-
annotator agreement (IAA) of 0.988 for task A, 0.818 for task B, and 0.630 for task C,
using

P0 = agreement_per_annotation
total_annotations · num_annotators

for the IAA. After seeing the IAA being sufficiently high, they annotated 1,397 tweets
for task A, and 1,927 tweets for task B and C. Due to the dataset being intended for use
in OffensEval 2020 (Zampieri et al., 2020), the tweets for task A, and task B and C were
different. They also split tweets into HARD and EASY, where EASY was more explicit
offensive speech, while HARD more implicit, but used the ensamble models’ confidences
to categorise this. Since they manually annotated offensive tweets into ‘OFF’ and NOT,
they added extra ‘NOT’ labeled tweets randomly sampled. From their experiments with
the effects of using SOLID in addition to OLID, they found that especially the weaker
models gained a boost by being trained on SOLID. BERT were in all cases the best
performing model. The use of SOLID did not improve the performance on task A for
BERT, indicating that the amount of data for task A in OLID is enough. The use of
SOLID in task B and C resulted in improvements, where OLID was suffering from a
lack of training data. For task A, initial training with SOLID before fine-tuning with
OLID gave the best result, while the opposite was the case for task B and C. Rosenthal
et al. explain this by OLID being sufficient for task A, therefore giving worse results by
fine-tuning on SOLID which is just an approximation. For task B and C though, the
data in OLID is not sufficient, leading the model to overfit if using OLID during the final
fine-tuning. They therefore got better results by initially setting the path by pre-training
on OLID, before fine-tuning on SOLID which has more examples.

3.6. Caselli et al. (2020)

The dataset by Caselli et al. (2020) is not on new data, but a new layer of annotations on
top of OLID (Zampieri et al., 2019b). They are targeting the issue of implicit and explicit
offensive language, that few other datasets regard in their annotations. Rosenthal et al.
(2020) did some work on the topic through their easy and hard labels on the analysis set
of SOLID, but this set is mostly meant to be used as a test or analysis set more than a
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Task A Task B Task C

OFF 1,448,861
(16%)

TIN 149,550
(79%)

IND 120,330 (80%)
GRP 22,176 (15%)
OTH 7,043 (5%)

UNT 39,424 (21%)
NOT 7,640,279 (84%)

Table 3.7.: Label distribution of SOLID

training set. Caselli et al. (2020) comment, as many have previously, on the contradictory
guidelines and changing definitions in various works, leading to incoherent annotations.
To combat this they propose newly adopted annotation guidelines for the hierarchy in
OLID. Their main contribution is still the added annotation layer. They name this novel
resource AbuseEval v1.0. Here they also look into which tweets need more context to
reliably be annotated, and their explicitness.
They include an in depth analysis of OLID task A, the prediction of offensive or

non-offensive language, containing statistics on words in the dataset, message lengths,
and offensive prior which is calculated based on a weighted offensive dictionary (Wiegand
et al., 2018). By ranking words per class by a TF-IDF approach, they found that several
of the words appear in both offensive and non-offensive sentences, even though they
are more apparent in the offensive ones. They found that dictionary approaches were
competitive against the other solutions of OLID, showing that a high degree of the
data in OLID is explicit. They also annotated OLID as explicit and implicit offensive
language, using Urban Dictionary3 as a guide on unknown words, as none of the authors
are native English speakers. Their annotation rule was annotating a tweet as explicit if
it contained one or more profanities or slurs. Only tweets labeled as offensive in OLID
were considered. Their annotations resulted in around 66% of tweets in the training set
of OLID being explicit. They also found that a perfect dictionary with all slurs, with all
possible spellings would result in a F1 score on the offensive label of 0.783, which is 3.17
points above the best scoring model.

They comment on the distinctions between abusive and offensive language, the connec-
tion between targeted and untargeted insults used in OLID, and abusive language. They
find through definitions that abusive language is more concerned with the intention of
inciting harm, while offensive language is concerned with the feelings of the receiver, or
general profanities in the tweets. They connect this to the targeted and untargeted insults
of OLID, noting that targeting can be a form of intention. They interpret through these
definitions that abusive language should be labeled as targeted insults, and non-abusive,
but offensive language should be labeled as untargeted. In their dataset they define
abusive language as

“hurtful language that a speaker uses to insult or offend another individual or a group
of individuals based on their personal qualities, appearance, social status, opinions,

3https://www.urbandictionary.com/
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OFF TIN UNT NOT TOTAL

Train
EXP 2,023 1,887 136 0 4,046
IMP 726 668 58 0 1,452
NOTABU 1,651 1,321 330 8,840 12,142

Test
EXP 106 103 3 0 212
IMP 72 70 2 0 144
NOTABU 62 40 22 620 744

Table 3.8.: Label distribution of AbuseEval v1.0

statements, or actions.“

They label the data as ‘EXP’ (explicit abuse), ‘IMP’ (implicit abuse), or ‘NOTABU’ (not
abusive). Their ‘NOTABU’ label distinguishes itself from other datasets by including
all tweets that are not interpretable without additional information or context. They
were also sure to exclude tweets that were not real utterances, and therefore not fully
interpretable, and made sure that abusive quotes in a sentence does not automatically
make the sentence abusive, depending on the support or opposition to the quote. If a
message is inside a quote and no additional information is given, the tweet was labeled as
not abusive. This might have detrimental effects on learning, since the quotes are such a
small part of the sentence. Further, the full tweet in itself seems to be abusive when seen
without quotes, and could have been interpreted as such. To distinguish explicit abusive
content from implicit, profanities were used as markers.
Their inter-annotator agreement was calculated by annotating 100 random tweets

from OLID, reaching a Fleiss’ kappa of κ = 0.61 after the first round of annotation.
Discussions revealed that a considerable number of the disagreements came from the
inherently subjective notion of what is offensive and not. Another issue was the distinction
between negative stance on a topic versus implicit abuse. Furthermore, disagreements
arose through what is regarded as profanity, where certain words are around the threshold
between profanity and not, will by some be placed on the offensive side, and by some
on the other. After discussions and a new evaluation they reached a Fleiss’ Kappa of
κ = 0.86. The label distribution of AbuseEval v1.0 can be seen in table 3.8. They note
that there are a substantial number of tweets labeled as ‘UNT’ in OLID, that are labeled
as ’NOTABU’ in the new dataset. By their definition, all abusive language is always
targeted. This points to a probable mismatch between what is regarded as targeted or
not between the two datasets.
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4. Related Work
In this chapter, a review of earlier work done on Natural Language Processing (NLP)
with special regard to hate speech detection will be presented. First, some techniques for
transfer learning in general language processing will be addressed, before getting into
more specific work done on hate speech detection, offensive language, and other related
topics. This includes workshops and shared tasks that have become very popular in
recent years and the models and techniques used in them. Transfer learning in the form
of transformers have seen a surge in recent hate speech detection, so an elaboration on
the models successfully used in later workshops will also be given prior to information
on the workshops themselves. Section 4.1.1 and 4.1.2, describing traditional forms of
transfer learning in NLP, and section 4.2, describing models used in hate speech detection
before the introduction of transformers, are mostly taken from the preliminary project.
While this section presents the architectures used in hate speech detection, related work
regarding cross-dataset evaluation will be discussed in chapter 8.

4.1. Transfer Learning in Natural Language Processing

The advantages of transfer learning have been utilised in image processing for a long
time. The use of pixels has allowed the mapping of almost all input to the same format.
This issue has been more problematic for text data, where each value is not a pixel with
one or three brightness levels, but one of several tokens in a vocabulary defined from task
to task. Clever techniques have been put in use to solve this. This section will present
some of these techniques, and how they have been utilised to improve Natural Language
Processing. Transfer learning has become unavoidable in language processing tasks, and
many of the high-ranking models are based on the Transformer (Vaswani et al., 2017).

4.1.1. Word Embeddings

In neural networks and other machine learning methods, words were originally represented
as integers in the order they were discovered when creating the vocabulary. Word
embeddings are more advanced methods of representing words as dense context vectors.
These incorporate both the syntactic and semantic meaning of each word. They are
often trained from large amounts of unlabeled data, both on highly general data or more
domain specific data. A novel neural approach for representing words as distributed vector
representations was proposed by Bengio et al. (2003) in the Neural Network Language
Model (NNLM). Later, Mikolov et al. (2013a) introduced another model that has gained
huge popularity, and is usually mentioned by the name word2vec. This model comes in

29



4. Related Work

two formats, Skip-Gram and Continuous Bag of Words (CBOW). Both of the formats
build on the concept of creating a dense vector of continuous values from the context of
each word. They differ in the way they are trained, where CBOW intend to predict each
word given its context, while skip-gram intends to predict the context given the word.
Another popular model called Glove was introduced by Pennington et al. (2014). Since
these vector representations capture the context of each word, two words that appear in
similar contexts will also have similar vectors. Because of this, word embeddings can be
pre-trained on large corpora of general purpose text data, and thus capture the syntactic
and semantic relationships between words before continuing to train on downstream tasks.
Word embeddings therefore represent an early version of transfer learning in NLP, and
has been very popular in conjunction with neural models like Recurrent Neural Networks.
These new architectures received a lot of hype in the beginning, and proved to live up
to their reputation when tested against the more traditional counting methodology of
Distributional Semantic Models (DSMs; Baroni et al., 2014), and have also proved to
be extendable from words to longer structures such as sentences (Mikolov et al., 2013b).
Cer et al. (2018) also created general sentence embeddings with the Universal Sentence
Encoder. Because of the complexity of language incorporated in sentence embeddings,
they will be further addressed in section 4.1.2 on Language Models.

An issue with word embeddings is that words that are not contained in the vocabulary
of the pre-trained vectors will be counted as out-of-vocabulary. To address this problem,
Bojanowski et al. (2017) created fastText that represents each word as the sum of character
n-grams in the word. This incorporates sub-word information, and does therefore aid
performance on metrics such as cosine similarities between similar words, especially the
words that are complex, technical and infrequent. Another issue with word embeddings
are that they do not differentiate between ambiguous words with different semantic
meanings such as (river)bank and a (financial) bank. This problem is addressed by Peters
et al. (2018), where word embeddings are not created as fixed vectors, but as functions of
the word with the context surrounding it, this will also be elaborated on in section 4.1.2.

4.1.2. Language Models

The concept of transfer learning found in word embeddings has similarities to the use of
Language Models (LMs) and some of the techniques, especially the ones that work on
sentences, might actually be categorized as pre-trained LMs. They both share the goal of
enhancing word processing tasks by learning structures and semantics of natural language.
In NLP, all types of models could be said to be some sort of LM due to their common
property of having to incorporate an understanding of natural language to process the
data. The type of LMs issued here are pre-trained LMs that can further aid other
tasks such as classification. Venugopalan et al. (2016) improved an LSTM-based Video
Description system by incorporating an LM trained on unlabeled data from Gigaword,
BNC, UkWaC, and Wikipedia, inspired by Gülçehre et al. (2015) that used an LM trained
on Gigaword to improve Neural Machine Translation. Both Venugopalan et al. (2016)
and Gülçehre et al. (2015) pre-trained their own LMs and did not use an already available
one. This makes their technique similar to other two-step approaches, but the concept is
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inherently the same as if the LM was already pre-trained. Gülçehre et al. (2015) used
the LM proposed by Mikolov et al. (2011) as a tool for improving language modeling
tasks. These tasks use the LM to aid in generating proper output sentences. This differs
from the task of using pre-trained models as input to aid in classification. It shows,
nevertheless, the advantage of separating models into language modelling and the main
task of the network, and how LMs can incorporate large monolingual, unlabeled datasets
when data sparsity is present in the main task.

While the above models have aimed at improving text output in sequence-to-sequence
models using transfer learning in decoding, there are models that aim to improve other
NLP tasks such as text classification in sentiment analysis, author profiling, next sentence
prediction, hate speech detection, and more. One of them is Embeddings from Language
Models (ELMo; Peters et al., 2018). This model could be classified as word embeddings,
but can also be classified as an LM. ELMo addresses the problem that a word might
have different meanings in different contexts, and should therefore have the possibility to
be represented with different vectors given the context. To obtain this they represent
each word as a function of the whole input sentence instead of saving fixed word vectors.
They use a bidirectional Language Model (biLM) as basis for ELMo. The biLM is a
bidirectional version of a standard LM predicting the next token tk given the preceding
ones (t1, . . . , tk−1). This is a way of capturing the context of the word. In addition
to the LMs, the biLM also incorporates a context-independent embedding obtained
through a form of token embedding or as a CNN over the characters in the token. ELMo
embeddings are then created by collapsing the biLM, computing a weighted sum of all
layers. Peters et al. reported great improvements in NLP benchmark tests, especially
noticing the model’s abilities in Word Sense Disambiguation.

4.1.3. Transformer based models

After the Transformer was introduced by Vaswani et al. (2017), many models have been
proposed based on the concepts it introduced. The use of only the encoder has deemed
very popular, and several models have achieved state-of-the-art results on popular NLP
benchmarks. Some of the most popular models will be presented in this section.

Universal sentence encoder

While ELMo balances between word embeddings and LM, other methods have worked
purely on sentences. The Universal Sentence Encoder (Cer et al., 2018) tries to encode
sentences into embedding vectors. They note that this is especially for transfer learning
purposes, and compare their model with both word embedding transfer learning models
and baselines without any transfer learning at all. They develop two versions of their
model, one based on the transformer (Vaswani et al., 2017), and the other on Deep
Averaging Network (DAN; Iyyer et al., 2015). The transformer computes a representation
for each word incorporating context information such as order, and a sentence embedding
can thus be regarded as an element-wise sum of the tokens in the sequence divided by the
length so that sentence length is taken out of the picture. The model is trained on several
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down stream tasks from the start, using multi-task learning to train the embeddings. The
DAN model is used primarily as a trade-off between model complexity and performance,
having a compute time linear to the input sequence length, averaging input embeddings
and using a feed forward network to train the embeddings. The transformer model
obtains the best results on all benchmark tests from Word Embeddings Association Tests
(WEAT; Caliskan et al., 2017), with the DAN model also beating the baseline CNNs and
DANs that use pre-trained and randomly initialized word embeddings.

BERT

Another model that is based on the Transformer architecture (Vaswani et al., 2017) and
has gained massive popularity is Bidirectional Encoder Representations from Transformers
(BERT; Devlin et al., 2019). Vaswani et al. (2017) proposed the Transformer as an
architecture to be used for Neural Machine Translation (NMT) specifically, while BERT
does similarly to General Pre-Training (GPT; Radford et al., 2018) and trains on large
amounts of unlabeled data in order to publish the model weights for further fine-tuning on
downstream tasks. While GPT uses a stack of transformer decoder layers, the architecture
of BERT is a stack of transformer encoder layers. One of the contributions of BERT is
its novel strategy for language modeling, namely Masked Language Model (MLM). They
argue that the standard way of computing LMs, by predicting the next word, lacks the
deep bi-directional properties needed to fully represent the context at a specific token,
even when using a bi-directional LM. According to Devlin et al., the strategy of using
two unidirectional LMs on top of each other can be regarded as a shallow bidirectional
model, and does not capture the total context in a deep manner. The MLM therefore
masks random words during training for the model to predict them. This removes the
uni-directional properties often seen in traditional LMs. In a sense, this is quite similar
to the CBOW method of word embeddings.

In addition to MLM, BERT is also pre-trained on the Next Sentence Prediction (NSP)
task to learn long term dependencies and connections between sentences. The model
is fed with two sequences during pre-training, and the goal is to predict whether the
two sequences are subsequent. Devlin et al. (2019) argue that the use of this training
objective allows BERT to score better on tasks like question answering.
When using transformers, the order of tokens does not get encoded as in other LMs.

BERT therefore uses positional embeddings that they add together with the token
embeddings obtained from WordPiece (Wu et al., 2016) which solves the issue of out-of-
vocabulary tokens. BERT achieves state-of-the-art performance on several benchmark
tasks in The General Language Understanding Evaluation (GLUE) framework (Wang
et al., 2018). More details on BERT will be given in section 6.4.1.

ALBERT

A problem with BERT has been its huge architecture, which can easily lead to memory
issues. Both ALBERT and BERT come in several sizes, where the model size is dependent
on the size and number of layers. BERTlarge seemed to have better performance in
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the experiments of Devlin et al. (2019) when compared to BERTbase, even on smaller
datasets. Lan et al. (2020) utilise the large architecture of BERT, while scaling down
the memory consumption by reducing the total number of parameters. They do this by
factorized embedding parametrization and sharing weights between the different layers
of the model. The factorized embedding parameterization is based on decoupling the
embedding size E and the hidden size H into two matrices instead of one. In BERT, H is
tied with E, such that increase in H results in large increase of the embedding matrix size,
due to the vocabulary size V of NLP tasks usually being quite big (around 30k in the case
of BERT). The number of parameters in the passage from vocabulary to the hidden layer
is thus reduced from O(V ×H) to O(V × E + E ×H). The reduction in the number of
parameters due to this can be significant when H >> E. The number of parameters are
thus reduced from around 23M in BERTbase to around 4M in ALBERTbase. The second
way ALBERT manages to reduce the memory consumption is to share parameters across
layers. Different modes of sharing parameters are possible, such as sharing all weights, or
sharing only the weights of the attention layers. Lan et al. (2020) found that sharing
all parameters hurt performance, and that most of this performance drop comes from
the sharing of feed-forward layers. Lan et al. (2020) still use the mode of all-shared as
default to keep the memory consumption low, and the performance drop is compensated
by faster computations times, lower memory requirements, and thus the possibility to
train on larger structures. Lan et al. (2020) noticed that when no parameters are shared,
using the embedding size of E = 768 leads to best performance. This no-shared mode
can be regarded as the same setting BERT uses. When using the all-shared mode applied
in the final distribution of ALBERT, the smaller embedding size of E = 128 gave the
best results.

RoBERTa

When trying to replicate and evaluate BERT, Liu et al. (2019b) found that the model
was significantly undertrained and proposed an improved method for pre-training BERT.
This included training longer, on bigger batches, with more data, and modifying the
training objective. The new model is published under the name RoBERTa. The training
objective was modified by removing the next sentence prediction (NSP) task and replacing
it by training on the other objectives with blocks of text spanning several sentences
and documents. This made the model learn longer dependencies without having to
use more training objectives. Using sentences inside a single document yielded slightly
better results, but required dynamically altering the batch size, so the approach packing
sentences from multiple documents was selected. They also noted that training BERT
is very sensitive to the epsilon term of the Adam optimizer, showcasing BERT’s, and
probably its descendants’ sensitivity towards optimizer choice. They thus achieved better
results by tuning this parameter. They also used larger batch sizes than BERT by
utilizing gradient accumulation, training with batches up to 8,000. The WordPiece
(Wu et al., 2016) approach used for encoding text in BERT was exchanged with a
byte-level approach. When these changes were applied independently, they yielded either
comparable results, or marginal improvements. The full effect was seen when combining
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all the new design choices into RoBERTa, where large improvements could be observed. A
large improvement was also achieved through using additional training data and training
longer. RoBERTa achieved state-of-the-art results on GLUE, RACE, and SQUAD.

ERNIE

While pre-training of language models have been crucial for the latest improvements in
NLP, most of the training have been with the goal of modeling generic language, without
much focus on the goal of retaining knowledge. Sun et al. (2019) approached this problem
with new training objectives through the model ERNIE (Enhanced Representation
through kNowledge IntEgration), aimed at making the model retain some of the knowledge
it comes over in pre-training. They use Harry Potter as an example, where in former
pre-trained models, a relationship like J. K. Rowling being the author of the novel Harry
Potter would not be retained. They argue that even though language models are to be
used for specific downstream tasks, retaining general knowledge like this is advantageous
for accurate language modelling. While it is arguable if these goals are still within the
scope of language modelling, the addition of knowledge into pre-training could clearly be
advantageous in downstream NLP tasks.
To retain knowledge, Sun et al. changed the masking scheme proposed by Devlin

et al. (2019), used for pre-training of the transformer (Vaswani et al., 2017) encoder
model. They introduced entity masking, where all the words of entities consisting of
multiple words are masked, and phrase-level masking, where a conceptual unit of words
is masked as a whole. The first publication of ERNIE is more aimed at Chinese NLP
tasks, but the ideas can be extended to the English domain. This is done in ERNIE 2.0
presented in the last paragraph of this section. ERNIE achieved state-of-the-art results
on Chinese NLP tasks. A lot of standard NLP benchmark tests do not really require
prior knowledge, and it is thus possible that the model has advantages in downstream
tasks that are not visible in the benchmarks. The different masking schemes are used
in multiple stages, where a basic masking strategy, similar to the one used in BERT, is
used in the first stage. Lexical analysis tools are used in the second stage to find phrases,
selecting a few phrases in each example, where the words in the phrase were masked
out. The third stage consists of masking out entities, which includes people, locations,
organizations, products, etc. By masking these entities, the model is forced to remember
what relationships exist between entities. As an important part of the pre-training, both
encyclopedic data, news, and informal discussion forum data are included. To model
the relationships between sentences, a Query-Response structure similar to the one of
BERT’s next sentence prediction is incorporated, but with the added possibility of several
turns of queries and responses, resulting in longer dialogues. Masks are still applied to
words, similar to the Masked Language Model (MLM) of BERT, and the model is made
to predict whether any of the queries or responses are exchanged with random ones that
are out of context.
By coincidence, just about one month before ERNIE from Sun et al. (2019) was

submitted, Enhanced LanguageRepresentatioN with Informative Entities was submitted
by Zhang et al. (2019b), yielding the same acronym. It is noted that these do no not have
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any connection, even though they both deal with knowledge integration in transformer
based models. Sun et al. (2019) are all from the Chinese technology company Baidu,
while Zhang et al. (2019b) are from Tsinghua University of Beijing. While Sun et al.
(2019) only use modified training objectives on a BERT architecture, Zhang et al. (2019b)
use knowledge graphs to incorporate knowledge into training. They use BERT as a
textual encoder and add a knowledge encoder on top of the token outputs of BERT,
aligning entities extracted through knowledge embedding algorithms. They use the same
training objectives as BERT, but add a new training objective masking token-entity
relations and also switching out the entity with a random one, making the model predict
whether a wrong entity has been used. The last step is to correct for possible errors in
the knowledge embedding extraction phase, making the model be aware that the entity
inputs might be faulty. Their version of ERNIE performs better than BERT on two
relational datasets, FewRel (Han et al., 2018) and TACRED (Zhang et al., 2017), while
still being comparable with BERT on traditional NLP benchmarks like GLUE. This
indicates that the model is able to incorporate knowledge information while still retaining
the general language understanding of BERT, which might aid in downstream tasks that
can gain from utilizing relational knowledge outside of what is possible to extract from
only training on heterogeneous text data.

Sun et al. (2020) extends upon the work of Sun et al. (2019), incorporating continual
multi-task learning. They add several pre-training tasks, categorized in word-, structure-,
and semantic-aware. By using big data and weakly-supervised datasets, they are able
to train on large amounts of data in a incremental manner. To enable the model to
differentiate between different tasks, they add a task embedding to the inputs, similar
to the sequence embeddings of BERT, denoting which task is being performed. They
note that the textual encoder of their model can be both a transformer and a type of
recursive neural network, even though they use BERT with the exact same parameters
for accurate comparison. Their system beats BERT on all tasks in GLUE. This might be
due to the pre-training issue noted by Liu et al. (2019b), and that they have trained on
much more data, but by the time of writing this thesis, ERNIE is still number 5 on the
GLUE leaderboard, only surpassed by ensembles containing i.e. ALBERT (Lan et al.,
2020) and StructBERT (Wang et al., 2020b).

4.2. Models in Hate-Speech Detection
Gaydhani et al. (2018) used n-grams and TF-IDF to detect hate speech on Twitter,
following the popular path of differentiating between levels of toxic language, using three
classes, hatefull, offensive, and clean. They trained models based on Logistic Regression,
Naïve Bayes, and Support Vector Machines and found that LR had the best results.
They also used their own definition of offensive language, based on a review of definitions
from other papers, related work, or sources:
“any speech that attacks a person or group on the basis of attributes such as race,

religion ethnic origin, national origin, gender, disability, sexual orientation, or
gender identity.”
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They defined offensive language as

“the text which uses abusive slurs or derogatory terms.”

Even though they had their own definitions, they used the dataset of Davidson et al.
(2017), so these definitions did not have any actual effect on annotations. The definition
of offensive language is heavily based on the use of specific terms, and might therefore be
easily captured by n-gram features. They tuned the feature parameters, n in n-grams,
and the use of L1 and L2 regularization through grid-search with SVM, NB, and LR.
For the n-grams they used ranges of n, with n ∈ {1}, n ∈ {1, 2} or n ∈ {1..3}. After
tuning on feature parameters, NB performed best, closely followed by LR. All models
performed best with L2 regularization and n ∈ {1..3}. They further tuned LR and NB
on hyperparameters relevant to the two models. The best final model was LR, with F1
scores on all categories higher than 95%. These are remarkable results, but Isaksen (2019)
have noted that the results have been hard to reproduce, even with their distributed
code, and that 74% of the test data is either duplicate or already present in the training
data.

Instead of experimenting with n-grams on different models, Nobata et al. (2016) used
n-grams and other features and feature extractors like word2vec which were all inputs
to an SVM. Of single features, character n-grams had the best performance, with token
n-grams following closely behind. The best performance was obtained by using all
features. They only used the features as input to an SVM, but note that the model
outperforms deep learning models. They do not explicitly show any comparisons with
deep learning models though, and the datasets used are extracted by themselves, so this
has to be taken with a grain of salt. Additionally, their data is split into financial data
and news data from Yahoo, which implies that the data has a limited domain. They
also experimented with how data changes over time, testing whether the performance
declined with temporal change of commenting trends. They found that recent data is
more important than the amount of data.
When data becomes more available, deep learning models become more relevant.

LSTMs gained a lot of traction in NLP when its ability to learn long-term-dependencies
was discovered. The same cannot be said about its application in hate speech detection.
It can be found in several papers as a feature extractor for i.e. SVMs or other shallow
learners, but as the main model it is mostly used in papers of lesser importance, though
there are some exceptions. When used in comparative studies, it rarely comes out as the
best performing model. Badjatiya et al. (2017) had great success with a combination
of an LSTM and Gradient Boosting Decision Tree (GBDT), but the results have been
hard to reproduce and Mishra et al. (2018) comment that it might have to do with the
fact that the model was trained on the full dataset including the test set with no early
stopping, which might have led to overfitting. Meyer and Gambäck (2019) is one of few
that use LSTMs successfully, using a combination of inputs through word embeddings in
a word component and character inputs through a character component. The word input
component utilised an LSTM and word2vec (Mikolov et al., 2013a) as well as GloVe
(Pennington et al., 2014) embeddings. They tested several different system configurations,
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having the most success with 64 convolutional filters, 100 LSTM cells in the character
component, and 150 LSTM cells in the word component. On the configurations of the
convolutional components, two layers with 64 filters and length 4 and 3 respectively
gave the best F1 score. The F1 score also improved with the use of GloVe embeddings
compared to word2vec. The authors attribute this to the removal of stop words in
word2vec, which might have been detrimental to the short average sequence length of the
dataset. The system outperformed several state-of-the-art systems in terms of macro-,
weighted-, and micro average score on the dataset from Waseem and Hovy (2016). Gao
et al. (2017) also used an LSTM based system, combining it with a system detecting
slurs. They annotated their own Twitter based dataset using the definition of hate speech
from Waseem and Hovy (2016), which makes it hard to compare with other results.
Their performance is much lower than other papers, but this might have to do with their
dataset. Gao et al. also published Gao and Huang (2017) at the same time as Gao
et al. (2017), based on a self annotated dataset from Fox News. There they provide an
example of hate speech, which is an attack on religion. An attack on religion is by many
definitions not considered as hate speech, because the comment has to be targeted at
people at the base of a religion, not at the religion itself to be regarded as hate speech
(Fortuna and Nunes, 2018). This means that Gao et al. (2017) might differ in annotations
from other datasets.

The LSTMs younger brother Gated Recurrent Unit (GRU; Cho et al., 2014) has seen a
little more appliance with good results. Pavlopoulos et al. (2017) employ an RNN system
with the use of GRU cells on English Wikipedia comments and a Greek news portal. They
report obtaining state-of-the-art results on the Wikipedia dataset (Wulczyn et al., 2017),
while the Greek dataset is novel to their paper. Zhang et al. (2018) and Founta et al.
(2019) both used GRU-based RNNs, where Zhang et al. (2018) used a combination of a
CNN and GRU, while Founta et al. (2019) concatenated a GRU component working on
text data and a Deep Feed Forward component with 6 dense layers working on metadata
input, before feeding this into a classifying layer. Both papers report results using text
only for the Waseem and Hovy (2016) dataset, which at the time of writing outperformed
state-of-the-art, but were both later surpassed by Meyer and Gambäck (2019) using a
combination of CNN and LSTM.
Some of the papers already mentioned use CNNs in conjunction with other model

architectures. Meyer and Gambäck (2019) combined a character based CNN with a word
based LSTM, but also experimented with disabling the word based LSTM. The system
still performed fairly well without the LSTM, beating the baseline. The highest precision
was found with this configuration. Gambäck and Sikdar (2017) used a CNN-only network
trained on the dataset by Waseem (2016), experimenting with the use of word vectors,
both randomly initialized, with word2vec, character 4-grams, and a combination of these.
They report that character n-grams result in higher precision, but word2vec gives the
highest F1 score. This corresponds with the findings done later by Meyer and Gambäck,
where character features seem to increase precision.

Isaksen (2019) did a deep review of the available datasets for hate speech, and ex-
perimented with how well a transfer learning model is able to separate hate speech,
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offensive language, and normal speech. BERTbase and BERTlarge (Devlin et al., 2019)
were used to conduct the experiments on the datasets of Davidson et al. (2017) and
Founta et al. (2018), due to those being the only available datasets that separated hate
speech and offensive language. The results were also compared to classical forms of
machine learning like Logistic Regression, SVM, and Naïve Bayes. In OffensEval 2019
(Zampieri et al., 2019a) the top scoring models used BERT with differing pre-processing
steps. Isaksen applied basic preprocessing using a tokenizer specialized for Twitter, called
TweetTokenizer, to remove Twitter specific tokens. He then used the BertTokenizer,
specially targeted to create inputs to BERT, by utilising WordPiece tokenization (Wu
et al., 2016). This is less pre-processing than the top scoring models in OffensEval 2019,
but keeping the preprocessing simple might be an advantage for research purposes. In
the evaluation section, there is a table of predicted and annotated examples (Isaksen,
2019, p. 76), where the first tweet is an example of the difficulty of annotating correctly.
The tweet is: “the guy in the White House had an entire election campaign selling fear.
But I digress...”. This is annotated as hateful. From the other tweets in the dataset,
this could be interpreted as being a comment on President Trump’s polarizing election
campaign. As Isaksen comments, it is hard to see why this tweet was annotated as
hateful, when a comment on the campaign of an upcoming or currently sitting president
can hardly be categorized as hateful, and is an important example of free speech. Isaksen
therefore also comments on the challenges of annotating such a large dataset, and how
it is prone to mislabeling. As for the results, the BERT system performs a lot better
than the traditional machine learning systems, and Isaksen also argues that the system
outperforms others on the dataset of Founta et al. (2018), by comparing to the baselines
set by Lee et al. (2018), and also being comparable with state-of-the-art by Davidson
et al. (2017). The most difficult task for the system seems to be predicting hateful speech,
which mostly is predicted as normal or offensive. The poor performance on hateful speech
might come from the low percentage of hateful tweets in the training data, only 6%
and 5% in Davidson et al. (2017) and Founta et al. (2018) respectively, and Isaksen not
using any techniques like over- or undersampling, or weighted loss to combat this issue,
resulting in a bias towards offensive and normal speech.

Using BERT as a standalone model have resulted in many good results. Zahiri
and Ahmadvand (2020) tried to improve on the task of abuse detection by using class
representations in an architecture called Class Representation Attentive BERT (CRAB).
They used BERT to create contextualized input embeddings, but extended this with
another layer of logic to incorporate class representations. They used a concatenation
of all token-level outputs of BERT as input to a token-wise class representation layer,
which computes multi-headed matching scores between input embeddings and class
representations. The classes are represented as A = (A0, . . . , Am), Ai ∈ Rc×|k|, where m
is the number of class representation heads, c is the number of classes, and |k| is the
embedding dimension. The matching scores are obtained by taking the dot product of A
and the concatenated output of BERT, before aggregating the output of the dot product
through a series of fully connected layers, both before and after the class representation
heads are concatenated. Sentence-wise class representation matching scores are calculated
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in the same manner but without the aggregation. The token- and sentence-wise matching
scores are then normalized, added, and the final label probabilities are obtained using a
softmax activation layer. They hypothesize that minority classes gained most from the
architecture. Their best performing architecture beat their BERT baseline model, and a
comparison with other systems will be presented in chapter 8.

4.3. Workhops

This section will present two popular workshops on offensive language detection. Work-
shops allow several participants to submit models, and are therefore excellent platforms
for comparing solutions where the terms are equal for all participants. The two workshops
included here are yearly iterations of the same workshop, which can provide insight on
how popular models have evolved the latest years.

4.3.1. OffensEval 2019

Due to its increasing popularity, the challenge of automatic hate speech detection has in
recent years found its way into highly popular workshops and shared tasks. One of them
is the 6th task of SemEval 2019, also know as OffensEval (Zampieri et al., 2019a), where
800 teams signed up and 115 teams submitted reports. The shared task was based on the
newly created dataset Offensive Language Identification Dataset (OLID; Zampieri et al.,
2019b), compiled by the same author. This uses a new hierarchical annotation schema
with three levels, intended to capture different granularities of offensive language. The
three levels each represented a separate task in the competition, where task A is offensive
language detection, task B is categorizing targeted and untargeted offensive speech, and
task C is categorizing of the target. Baselines on OLID were set by Zampieri et al.
(2019b), where they experimented with SVMs, BiLSTMs, and CNNs. The CNN had the
best baseline for all tasks, except tying with the BiLSTM on task C. The CNN baseline
was beaten by 2.9 percentage points on the macro averaged F1 score by the top scoring
model on task A. BERT was used by all top 5 submissions on task A, with the sixth
submission using an ensemble of CNN, BiLSTM, BiGRU, and word2vec (Mikolov et al.,
2013a). The differences in the submissions using BERT were mostly in preprocessing
techniques and different BERT configurations. For task B, pure BERT systems did
not do as well as in task A, but several of the highly ranked results used ensembles
consisting of deep learning models such as BERT and other non-neural machine learning
algorithms. Seganti et al. (2019) had the best average macro F1 score on all tasks. They
used an ensemble including another pre-trained LM, also based on the Transformer
(Vaswani et al., 2017), called OpenAI GPT (Radford et al., 2018), as well as pre-trained
embeddings from ELMo (Peters et al., 2018), fastText (Bojanowski et al., 2017), and
Universal Sentence Encoder (Cer et al., 2018). The ensemble also included two classical
machine learning models: random forest and SVM. They experimented with different
combinations of the ensemble on development data and reported that GPT had best
results on unbalanced data, while the Transformer model performed best on over- and
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undersampled data.

4.3.2. OffensEval 2020

OffensEval 2020 (Zampieri et al., 2020) was still popular the year after with 528 parti-
cipants, 145 teams with official submissions, and 70 system papers. The workshop utilised
the newly compiled dataset called SOLID (Rosenthal et al., 2020) which is covered in
section 3.5. The best scoring model on task A scored very similarly to the other top
20 submissions and used a RoBERTa ensamble in the final submission (Wiedemann
et al., 2020). The team on second place on task A and first on task B and C was Galileo
(Wang et al., 2020a). They used XLM-R (Conneau et al., 2019) on task A and ensambles
of knowledge distillation networks based on ERNIE 2.0 (Sun et al., 2020) on task B
and C, but also experimented with ALBERT XXLarge. They beat second place with 1
percentage point on task B and 4 percentage points on task C. The last result is quite
large in terms of model comparison. Task B and especially C are more important in terms
of separating hate speech from offensive language, where the granularity is approximately
the same. Most top scoring teams used some pre-trained Transformer model.
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This chapter will describe the preliminary study leading up to this thesis. This work was
done parallel to OffensEval 2020 (Zampieri et al., 2020), and investigated how ALBERT
performed on task A of the workshop, namely differentiating offensive language from
normal language. Some classical machine learning models were also used to provide
baselines. The preliminary study gave a lot of insight into what techniques were popular
in state-of-the-art hate speech detection. The first part of this chapter will explain the
implementation of the system used, and the second part will present the experiments
and results.

5.1. Data

This section will describe the data used in the preliminary study. The details of the
datasets are given in chapter 3 since the same data sources were used in this thesis, and
this section will describe the difference between the data of the thesis and the preliminary
study. The training and testing data used was that of Rosenthal et al. (2020), while
Zampieri et al. (2019b) was used as development data. The dataset of Rosenthal et al.
will be denoted S and the one of Zampieri et al. O. The train and test sets of S will
be marked with subscripts on S. These datasets are also used in this thesis, and more
information about them can be found in section 3.4 and 3.5. While this thesis focuses on
a conversion of the data structure, utilising all three levels of the OLID hierarchy, the
preliminary study only included level A, namely differentiating offensive language from
non-offensive language. This task has much coarser granularity than differentiating hate
speech and offensive language. It is thus an easier task, and served as an introduction to
the field of automatic hate speech detection.

5.2. Implementation

This section will present how the project was implemented, from processing the data
to running the experiments. The project used both classical machine learning methods
and ALBERT, which have somewhat different requirements for preprocessing, and the
classical machine learning methods and their preprocessing will therefore be presented
before ALBERT.
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5.2.1. Classical Machine Learning Methods

The classical machine learning methods intended for the project was Naïve Bayes, Support
Vector Machine, and Logistic Regression. They were intended for use as baselines since
the results of the submissions of OffensEval 2020 were not published at the time of
writing the preliminary study. To implement these models, a machine learning library
called Scikit Learn (Buitinck et al., 2013) was used. The tweets were first tokenized
by the TweetTokenizer of the NLTK library, before being mapped to a vector space by
applying a TF-IDF approach. When going from a smaller dataset for developing the
code, to the full dataset Strain, the methods did not work due to their inability to work
on mini-batches. To solve this, Stochastic Gradient Descent was used in combination
with these methods. The Scikit Learn implementation of Naïve Bayes still had memory
issues, even when training on small mini-batches, and was therefore discarded.

5.2.2. ALBERT

Since ALBERT is used in this thesis, the architecture of the language model itself will
be given in chapter 6, while this section will focus more on the implementation and
architecture of the full classifier system in the preliminary project.

The input of ALBERT is restrained to be used with SentencePiece (Kudo and Richard-
son, 2018), a slight variation on WordPiece (Wu et al., 2016). These methods intend to
improve the problem of out-of-vocabulary words when the model is used for inference
on the test set or in practical use. They bridge the gap between word and character
representations, utilising the best of both, getting semantic and syntactic information
in the longer words, while still being able to form new words through word pieces or
characters. The “unknown” token can still appear though, in for example symbols that
are lacking in the vocabulary.
Before applying SentencePiece tokenization, some preprocessing was done using the

same TweetTokenizer as for the classical machine learning models. The processing of this
tokenizer was used in a limited manner, and its main use was to replace html entities
with their Unicode symbol. SentencePiece works on text strings when tokenizing, so the
TweetTokenizer was not actually used as a tokenizer, where the resulting tokens were
joined together into full strings again before feeding them through SentencePiece for final
tokenization. An elaboration on SentencePiece is given in section 6.3.
In addition to normal preprocessing, ALBERT also requires a specific input format,

starting every document with the “[CLS]” token and ending it with the “[SEP]” token.
This is also elaborated in section 6.3. Strain is a very big dataset, and it was therefore not
desirable to do tokenization every time an experiment was to be performed. TFRecords,
files that are specially made to hold data for use with TensorFlow, were therefore created
before training. The data in the TFrecords were then ready to load directly into the
model. The architecture of the full classifier can be seen in figure 5.1. The 12 transformer
blocks have shared parameters, and the first token of ALBERT’s output layer, named
“pooled output”, was used as input to a final linear classifier layer, mapping the latent
vector space into probability values for the two classes. No hidden layers were added

42



5.3. Experiments and Results

except this output layer.
The implementation of ALBERT was done based on the official distribution on GitHub1,

written in raw TensorFlow, without any abstraction layers such as Keras. The system
was built based on the classifier_utils file of the distribution, to add an output layer,
compute the loss and apply the training step with the given optimizer.

5.3. Experiments and Results

The experiments done in the preliminary work was done to get familiar with the area of
hate speech, but some research questions and hypothesises were also formulated to get a
direction for the experiments. These questions were directly linked to the performance
of ALBERT compared to the submissions of OffensEval 2020 (Zampieri et al., 2020),
which would then be the state-of-the-art on Stest. The project aimed to see how well a
model based on the Transformer (Vaswani et al., 2017), specifically ALBERT, compared
to the highest ranking systems. Zampieri et al. (2020) report that most of the highest
scoring models of OffensEval 2020 were Transformer based, and most used pre-training
techniques through models based on BERT, so the implementation of the preliminary
work was actually compared mostly to models of the same class.

5.3.1. Experimental Setup

The output layer was fixed to the same size as the first output token, which is 768 for
ALBERT Base and 1,024 for ALBERT Large. The training was run both with early
stopping and without. The final models reported were ALBERTb Hate, ALBERTb Hate*,
and ALBERTl Hate, where the subscripts b and l denote base and large respectively.
The asterisk denotes the model being trained with over- and under sampling and the use
of early-stopping. ALBERTl Hate used re-sampling but not early stopping. A grid search
on the hyperparameters were not conducted, and the parameters for ALBERTb Hate
were chosen to be similar to the ones used in Lan et al. (2020) when fine-tuning for the
SST-2 task in GLUE, due to this being a binary classification task and thus similar to the
task at hand. The chosen hyperparameters can be seen in table 5.1, while the parameters
that differ between the models can bee seen in table 5.2. The number of training steps
were chosen to approximate three epochs with the batch size of 128, the change of batch
size was done to speed up training on the large dataset, and the sequence length was set
to 128 to save memory. Early in the exploration phase the sequence length was set to
512, but this required the batch size to be set to 4, giving very unstable training that
did not converge. ALBERTb Hate was trained on Strain for 1 day and 10 hours on two
NVIDIA V100 GPUs with 32GB memory each, while ALBERTb Hate* was trained for 2
hours and 20 minutes, terminating from early stopping with comparable results.

1https://github.com/google-research/albert
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Figure 5.1.: Architecture of ALBERTbase used for Offensive language detection. The
difference between ALBERT and BERT is sharing of weights and different
pre-training techniques, therefore the architecture is visually the same.

44



5.3. Experiments and Results

Lan et al. SST-2 ALBERTb Hate
Learning Rate 1.00E-05 1.00E-05
Batch Size 32 128
ALBERT Dropout 0 0
Classifier Dropout 0.1 0.1
Training Steps 20,935 212,705
Warmup Steps 1,256 1,024
Max Sequence Length 512 128
Early Stopping Yes No

Table 5.1.: Hyperparameters of Lan et al. (2020) for fine-tuning on SST-2 and ALBERTb
Hate.

MS BSZ TS ES RS
ALBERTb Hate base 128 212,705 No No
ALBERTb Hate* base 128 14,420 Yes Yes
ALBERTl Hate large 32 19,292 Yes No

Table 5.2.: Differing parameters of the ALBERT based models. The abbreviations used
are MS for Model Size, BSZ is Batch Size, TS is Training Steps, ES is early
stopping, and RS is re-sampling2.

5.3.2. Results

This section will present the results of the experiments. Precision, recall, and F1 will
be used separately for the two classes, and a macro average of the classes will also be
presented. The results of the preliminary project are presented in table 5.3, and the
confusion matrix for the best performing model, ALBERTb Hate, is presented in table
5.4. While it is interesting to compare the results with the baselines of classical machine
learning methods, a comparison with state-of-the-art through the results of OffensEval
2020 (Zampieri et al., 2020) can be seen in table 5.5.

The results show that the different configurations are very close in terms of performance,
showing that the modifications done had little effect on ALBERT’s ability to learn. The
models using ALBERT performed considerably better than the classical machine learning
models. The best scoring model was ALBERTb Hate, with a macro F1 score of 0.911 as
seen in table 5.3. The confusion matrix for this model can be seen in table 5.4. This
was the only model that did not terminate training due to early stopping. The models
trained on ALBERTbase were more prone to classify non-offensive tweets as offensive,
yielding a high recall on offensive tweets by sacrificing some precision. The model trained
on ALBERTlarge was a bit more balanced, but did not achieve as good an F1 score. For
comparison, the ALBERTbase models had 3 and 5 false negatives respectively, while the
ALBERTlarge model had 84, yielding a high precision on the non-offensive label. All
models were trained with the same parameters, except batch size, total training steps,
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Model Offensive Not Offensive Macro avg.
Prec Rec F1 Prec Rec F1 Prec Rec F1

Logistic regression 0.8996 0.4648 0.6129 0.8264 0.9800 0.8967 0.8630 0.7224 0.7548
SVM 0.8427 0.6796 0.7524 0.8853 0.9512 0.9171 0.8640 0.8154 0.8347

ALBERTb Hate 0.7857 0.9954 0.8782 0.9980 0.8953 0.9439 0.8918 0.9453 0.9110
ALBERTb Hate* 0.7791 0.9972 0.8748 0.9988 0.8910 0.9418 0.8890 0.9441 0.9083
ALBERTl Hate 0.7960 0.9222 0.8544 0.9680 0.9089 0.9375 0.8820 0.9155 0.8960

Table 5.3.: Results of different model configurations. ALBERTl Hate was run using
ALBERTlarge and ALBERTb Hate(*) with ALBERTbase. Details of hyper-
parameters can be seen in table 5.2.

Predicted OFF Predicted NOT
Actual OFF 1,074 5
Actual NOT 293 2,505

Table 5.4.: Confusion matrix for ALBERTb Hate

the use of early stopping, and the use of re-sampling techniques. The parameters of
ALBERTb Hate can be seen in table 5.1 and an overview of the differences in parameters
between the models are given in table 5.2, where we can see that ALBERTb Hate had
a lot more training steps than the other models due to not using early stopping. The
number of training steps corresponds to 3 epochs of Strain. ALBERTb Hate has seen
27,226,240 examples in total, while ALBERTl Hate has seen only 617,344 examples in
comparison. For ALBERTl Hate, the total examples are fewer than the dataset, so not
even all examples were seen during training.
All versions of ALBERT scored better than the LR and SVM baseline models. A

comparison with the results of OffensEval 2020 can be seen in table 5.5. If ALBERTb
Hate would have been submitted to OffensEval 2020, it would have positioned itself on
19th place out of 81, only 0.94 percentage points behind the top scoring model.
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1 0.9204 6 0.9151 11 0.9134 16 0.9119
2 0.9198 7 0.9146 12 0.9132 17 0.9115
3 0.9187 8 0.9139 13 0.9129 18 0.9114
4 0.9166 9 0.9136 14 0.9129 19 0.9110
5 0.9162 10 0.9135 15 0.9128 20 0.9105

Table 5.5.: Macro F1 scores from the participants of OffensEval 2020 on task A. The
score of ALBERTb Hate, which were not actually submitted to the workshop,
is added to the list on place 19 based on the score. There were a total of 81
results on the English dataset for task A for OffensEval 2020.
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6. Architecture
Many experiments using Transformer-based models for classifying hateful language have
been carried out. This chapter will describe the full architectures chosen for this thesis.
BERT has been a very popular model, but the lighter ALBERT and knowledge-inducing
ERNIE have also shown promise in workshops like OffensEval described in section 4.3.2.
ALBERT was a natural continuation from the work in the preliminary work, and ERNIE
might be able to push hate speech even further with the help of its knowledge on facts
about the real world. The first sections will describe handling of data, while the last
sections will describe ALBERT and ERNIE models in more detail, extending upon what
has already been described in sections 4.1.3 and 4.1.3.

6.1. Data selection
The research goals of this thesis require the use of several datasets. Numerous experiments
have been done on OLID (Zampieri et al., 2019b) and SOLID (Rosenthal et al., 2020)
with recent state-of-the-art models. The full datasets will also be referenced as O and S
respectively, with subscripts marking subsets used for training, evaluation and testing.
The datasets being included in OffensEval 2019 and 2020 (Zampieri et al., 2019a, 2020)
gives them a wide platform for comparison with results of other teams participating
in the workshops. The hierarchical structure of the two datasets also provides a good
starting point for exploration of definitions on different categories of offensive language
in other datasets. Parts of the datasets were used in the preliminary study, making them
readily available. A third dataset outside of this hierarchical structure is Davidson et al.
(2017), which is denoted as D. The differentiation of offensive language and hate speech
makes it a good candidate for comparison with SOLID and OLID, where certain paths in
the hierarchy have suggested similarities with hate speech, and the top layer is offensive
itself. Founta et al. (2018) provides a large dataset for differentiating hateful, abusive
and normal language, as well as a spam label. This dataset will be denoted as F. They
describe abusive language as something very similar to offensive language, so this dataset
also has the potential of fitting into the three label annotation scheme of Davidson et al.
(2017), namely ‘Hateful’, ‘Offensive’ and ‘Neither’. More information on the datasets is
given in chapter 3.

6.2. Data collection
The development policy of Twitter has certain guidelines on how data from Twitter should
be handled. O and S were already available due to them being used in the preliminary
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Version Hateful Offensive Neither Spam Total
Original 4,948 (5%) 27,037 (27%) 53,790 (54%) 14,024 (14%) 99,799
Isaksen 2,941 (4%) 14,202 (21%) 41,784 (61%) 9,372 (14%) 68,299
Available 2,271 (4%) 10,460 (18%) 36,193 (63%) 8,090 (14%) 57,014

Table 6.1.: The number of available tweets at different times for the dataset of Founta
et al. (2018).

work. They were published as a part of OffensEval 2020 (Zampieri et al., 2020), and
the text of the tweets were published as part of the dataset. This makes the use of
the dataset very convenient without loss of any data if tweets are deleted, but it also
contradicts the Twitter policy for development (Twitter, 2020a), where only tweet ids
should be published. The labels in R are not given as discrete values, but as mean and
standard deviation of the probability values given by the models used to annotate the
dataset. The dataset has three levels: A, B and, C, where A and B are binary and come
with a single probability of being a positive value, while level C has three classes and a
probability distribution over the three classes are given for each example. All labels were
chosen to be the highest probability, without any bias towards any value. The standard
deviation values were ignored, and all examples were included in the dataset.
F is published as a file with comma separated values (CSV), with only tweet ids and

a majority label. The text of the tweets must therefore be retrieved using the Twitter
API. Due to the tweets being abusive and therefore prone to deletion, several tweets had
been removed and were thus not available to download. This was also a problem for
Isaksen (2019), where many of the hateful and offensive tweets were removed. At the
time of writing this thesis, even more tweets were removed, making it hard to compare
the results. F was therefore obtained by Isaksen providing the dataset he was able to
collect when writing his Master’s Thesis. Later it was discovered that Founta et al. had
been made aware of the problems regarding tweet retrieval, and therefore provide the
possibility of obtaining the dataset by request. This was discovered after all experiments
were conducted, so no attempt to obtain the full original dataset was made. Using data
utilised by Isaksen (2019) also give the possibility of comparing results with his BERT
based approach. The different label distributions of the tweets available at different times
can be seen in table 6.1.
Dataset D is published as a file with comma separated values (CSV). They provide

the class majority label for each example, the text of the tweets, and the votes from the
annotators for the different labels on each example. Only the text and the final majority
labels were used in this work.
S already comes with a test set, and the use of Strain as training set, O as development

set and Stest as test set is a natural split of the data. Dataset F and D come with all
examples in one document, requiring the data to be split into training, development,
and test sets. The data of both F and D were split into training, development, and test
sets with 60, 20, and 20 percent of the data respectively, using the split() function of
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NumPy1 after using the DataFrame.sample() function of Pandas2 with random seed 42
to shuffle the data.

6.3. Preprocessing

The text in tweets are often messy, filled with emojis, links, hashtags, user mentions, and
other details that make it different from standard written English. The models in use are
trained on natural language, and it is therefore desirable to process and clean the text.
Initial processing was done by the TweetTokenizer of NLTK, mainly to replace ‘http’
entities with their proper Unicode symbol. ‘&amp;’ were for example replaced with ‘&’.
The tokens were joined together to strings again, to continue preprocessing before using
model dependent tokenization in the end. DatasetD had some tweets beginning with long
series of exclamation marks. These were replaced with a single ‘!’. In datasets S and O
the user tags are anonymized to ‘@USER’. The number of trailing user tags were limited
to three. Several trailing space characters were replaced with a single space character.
URLs were replaced with ‘http’ in the case of full URLs in D and F, and in S and O
where URLs were already exchanged with the ‘URL’ token, this token was also replaced
with ‘http’. This was due to ‘url’ not being a part of the vocabularies of the pre-trained
models in use, while http existed as a token. Hashtags that consisted of several English
words were split into separate words by using the wordsegment3 library, inspired by the
two top scoring models in OffensEval 2019 (Zampieri et al., 2019a; Liu et al., 2019a;
Nikolov and Radivchev, 2019) on task A. Several tweets are actually retweets, and the
‘RT’ marker used to signify a retweet was also removed due to the assumption that the
meaning of a tweet does not change if retweeted and no additional comment is made on
the content of the tweet. The tweets were demojized using the emoji4 library, meaning
that emojis were replaced with English descriptions of the emojis, within colon delimiters.
This was done due to emojis not being part of the vocabularies of the pre-trained models,
and also the technique being used by Liu et al. (2019a) who reached the top score on
OffensEval 2019 task A. Words in the output are joined by underscores in the emoji
library, so these were replaced with spaces because the vocabulary of ALBERT does not
contain underscores. Another character that is not included in the ALBERT vocabulary
is ‘@’. Since this is regularly used in tweets as user tag, all ’@’s were replaced with ‘[at]’.
Data intended to be used with ERNIE was then exported to TSVs with text and labels as
columns. The framework used to run ERNIE, implemented by Sun et al., comes with the
class FullTokenizer, that first cleans the data and performs punctuation splitting and
lowercasing with the use of the BasicTokenzier, that also splits the text into tokens,
before a WordPiece (Wu et al., 2016) based tokenizer splits each token into sub tokens.

WordPiece mentioned in the last paragraph, and SentencePiece (Kudo and Richardson,
2018) mentioned in section 5.2.2 are two very similar algorithms for creating vocabularies

1https://numpy.org/
2https://pandas.pydata.org/
3https://pypi.org/project/wordsegment/
4https://pypi.org/project/emoji/
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with fixed length, that have a combination of characters, sub-word units, and full words
included. These techniques aim to tackle the problem of out-of-vocabulary words and
avoid having too large dictionaries that results in large memory consumption. WordPiece
and SentencePiece utilise a technique called Byte Pair Encoding (BPE; Gage, 1994) that
was used by Sennrich et al. (2016) to split words for use in Neural Machine Translation
(NMT). The algorithm is greedy, beginning with a set of characters before merging them
into longer sequences depending on their frequency. Normal words will therefore exist as
full tokens, while rare words will be split into sub-word units and eventually characters.
SentencePiece also supports the use of a unigram language model (Kudo, 2018), which is
more efficient by using a binary heap for merged symbols. These improvements allow
SentencePiece to work on full sentences, while WordPiece requires initial tokenization by
a basic tokenizer before being applied to each word individually. This is most important
for Asian languages that do not utilise any space at all, but it is convenient when working
with English as well. For ALBERT, the SentencePiece model was loaded with the 30k
token vocabulary it was pre-trained with, and for ERNIE the WordPiece model was
loaded with an English vocabulary containing around 30k tokens, where some are Chinese
characters but most are English tokens. The vocabulary of ERNIE also contains a lot of
symbols, including i.e. Sanskrit. This vocabulary also contains ‘@’, which the vocabulary
of ALBERT lacks.

The first dataset used was SOLID. Due to the dataset having around 9M examples, an
architecture where the dataset needed to be processed only once was utilised. The text
in the datasets were therefore processed and saved in the TFRecords format, specialised
for efficient data processing in TensorFlow. The data was stored in numeric form, ready
to be used in the model. This architecture was used for all datasets that were to be
used with ALBERT. An example of the preprocessing of data to be used in ALBERT
can be seen in 6.1. The implementation of ERNIE5 is written in PaddlePaddle, and
tokenization is built into the pipeline of this implementation. The data for ERNIE were
therefore preprocessed in advance, but not tokenized, and saved to a TSV file in the
format suitable for the run_classifier.py.

6.4. BERT and Transformer Based Architectures

Both ALBERT and ERNIE build upon the framework proposed by Devlin et al. (2019) in
BERT, which again builds on the Transformer model proposed by Vaswani et al. (2017)
and described in section 2.2.4. Due to ALBERT’s and ERNIE’s natural inheritance
of the basic structure of BERT, the first part of this section will describe the BERT
architecture, and thereafter describe the modifications and additions that lead to the
architectures found in ALBERT and ERNIE.

5https://github.com/PaddlePaddle/ERNIE/tree/release/r2.1.0
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ALBERT Based
Model

Raw data

Label Processing

Text Processing

Tokenization

TF Records

Label

RT @ashllyd: SICK OF BITCHES ON THE INTERNET 🐍🙅👉
https://t.co/BkyqCFx64G @UKBloggers1 @FemaleBloggerRT... Abusive

RT @ashllyd: SICK OF BITCHES ON THE INTERNET 🐍🙅👉
https://t.co/BkyqCFx64G @UKBloggers1 @FemaleBloggerRT... Offensive

[at]ashllyd : sick of bitches on the internet : snake : : person gesturing
NO : : backhand index pointing right : http [at]ukbloggers1... Offensive

[CLS] ▁[ at ] ash ll y d ▁ : ▁sick ▁of ▁bitch es ▁on ▁the ▁internet
▁ : ▁snake ▁ : ▁ : ▁person ▁gesturing ▁ no ▁ :... Offensive

2, 636, 721, 500, 6031, 211, 93, 43, 13, 45, ... 1

Figure 6.1.: Pre-processing architecture of ALBERT.
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6.4.1. Bidirectional Encoder Representations from Transformers
(BERT)

The architecture of BERT (Devlin et al., 2019) can be divided into the initial layers
that encode specific properties upon the input, the main model architecture, and the
training objectives that are used during pre-training to make the model learn the desired
representations. The training goals are covered in section 4.1.3. This section will therefore
describe the input structure of BERT and the transformer encoder structure that is
responsible for most of the parameters in the model.

The input structure of BERT is made to encode certain properties upon the input. To
enable the model to process several sequences and to clearly mark where the separation
between the sequences lie, BERT requires the use of a special ‘[SEP]’ token. This token
is also used in the end of the input, even when there is only one sequence. To mark
the start of a document, each document begins with a ‘[CLS]’ token. More importantly,
this also makes room for the corresponding pooled output index described below. After
special tokens have been added and the input tokens have been converted to numerical
form, an input mask is applied by multiplying some randomly selected input words with
0. The use of the input masks is only relevant when pre-training the model, and during
fine-tuning all values in the mask are set to 1. After the input mask is applied, segment
ids are added to the input. This is 0 and 1 for the first and second sequence respectively.
All segment ids are 0 if only one sequence is used. Because no recurrence is present in
Transformer based models, they need to apply positional embeddings to give the model
a sense of which words come first in the sequence. Vaswani et al. (2017) solved it by
adding positional encodings based on sinusoids, while BERT uses a randomly initialized
matrix that is learned during pre-training.

The output of the input section is then fed into the main part of the architecture. This
is built from a series of Transformer encoder blocks proposed by Vaswani et al. (2017).
BERT Base and Large use 12 and 24 of these encoder blocks respectively. Details of the
Transformer and self-attention is given in sections 2.2.4 and 2.2.5. The first output of
the last layer in BERT has an additional fully connected layer on top of it. The output
of this layer is referenced as the pooled output, and is intended for use in downstream
classification tasks. This pooled output corresponds to the [CLS] token in the input
described earlier. The rest of the output is used for MLM during pre-training, but
also other downstream tasks that require sequence output during fine-tuning. It is also
possible to project the sequence output down to a lower dimension through an additional
layer in order to do classification, but this is not the intended use of the model.

6.4.2. A Lite BERT (ALBERT)

The work in this thesis utilises the pre-trained model ALBERT (Lan et al., 2020) that
is closely related to BERT. The changes applied in terms of reducing the number of
parameters are described in section 4.1.3. The input of ALBERT, all Transformer
encoder blocks, and the output structure are identical to the ones in BERT described in
the previous section. The official implementation of ALBERT is almost an exact copy
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of the implementation for BERT, where only small changes are made to facilitate for
parameter sharing and the factorization of the embedding size. The embedding size E
is invariable between the different model sizes of ALBERT, E = 128, while the number
of Transformer blocks, the size of the hidden layers, and the size of the intermediate
layers all change between the different model sizes. The intermediate layer is one of two
fully connected layers inside of the feed-forward blocks, while the second fully connected
layer has dimensionality equal to the hidden size. The intermediate layer is in all cases 4
times the size of the hidden size. Both ALBERT Base, Large, and Xlarge were used in
this project, and the variable parameters for the different models can be seen in table
6.2. These parameters give ALBERT Base, Large, and Xlarge, 12M, 18M, and 60M
parameters respectively for the all-shared versions. BERT Base and Large have 108M
and 334M parameters for the Base and Large versions.

Experiments were conducted with using the pooled output directly, using more dense
layers on top, and projecting the sequence output down to a single layer for use in
classification. None of these techniques seemed to have much impact on the models’
abilities to learn, and only the single dense classification layer in the pooled output was
used. The architecture of the ALBERT based model can be seen in figure 6.2.

6.4.3. ERNIE

A second model that is closely related to BERT is ERNIE 2.0 (Sun et al., 2020) which is
an extension of ERNIE 1.0 (Sun et al., 2019). The changes introduced to both versions of
ERNIE are mainly different training goals and training methodologies, and these changes
are described in section 4.1.3. Since the model architecture in terms of model structure is
the same between the two versions, this section will refer to both ERNIE 2.0 and ERNIE
1.0 as ERNIE, unless the distinction between them is relevant. The model weights used
in this thesis are the ones from ERNIE 2.0. While ALBERT utilises a slight change in
model structure, ERNIE utilises the same internal architecture as BERT. ERNIE comes
in model sizes Base and Large, where both versions were utilised in this thesis. Their
parameters are the same as for the same model sizes of BERT and ALBERT, and can
be seen in table 6.2. Only the Base and Large columns are valid for ERNIE, where
only these two configurations are available. It must be noted that ALBERT has the

Base Large Xlarge
Hidden Size 768 1,024 2,048

Intermediate Size 3,072 4,096 8,192
Number of Attention Heads 12 16 32
Number of Hidden Layers 12 24 24

Table 6.2.: Variable model parameters for the different model sizes. The parameters for
the Base and Large versions are the same for BERT, ALBERT and ERNIE,
and the Xlarge values are only valid for ALBERT, because ALBERT is the
only mode which is available in that size.
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Figure 6.2.: High level architecture of both ALBERT and ERNIE based models. In
ALBERT, the N transformer blocks have shared variables.
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added embedding size parameter which BERT and ERNIE do not employ, but all the
parameters listed in table 6.2 are the same for ERNIE and ALBERT except the Xlarge
column.

While ALBERT and BERT add a randomly initialized variable, which then is learned
to be the position embeddings, ERNIE has an additional input of explicit position ids
that are input to the positional embedding layer. This difference does not really have an
impact on how the model works, just on how the input to the model has to be formatted.
While the range of 0 to sequence length has to be generated in ERNIE for use in an
embedding lookup, ALBERT just adds a variable on top of the input and let the indices
determine the position. The input structure of ERNIE is similar to the one of ALBERT
and BERT except for this difference. The same special tokens are used, and the output of
ERNIE can therefore either be the sequence output, or the pooled output corresponding
to the ‘[CLS]’ token in the input. Similarly to ALBERT, the pooled output has a fully
connected layer added on top of it to aid in classification tasks.

6.5. Optimization
During training the classification error is calculated as cross entropy loss. The model
is then optimized by minimizing this loss through an optimizer. Having an efficient
optimizer is an import part of training a deep learning model. SGD has often been
chosen by researchers due to a time-performance trade-off. In an academic setting, time
is usually not as pressing as in a production environment. Optimizers like Adam shortens
training time by taking bolder steps when gradients are gentle and shorter steps when
the gradients are steep. This lets the network reach an optimum faster, but might lead
to worse results than SGD. Adaptive optimizers such as Adam have shown to be better
suited for Transformer networks such as BERT and ALBERT, yielding better results.
ALBERT was optimized with LAMB and the official code on Github6 comes with

the AdamW and LAMB optimizers, which are both described in sections 2.3.2 and
2.3.3. Both AdamW and LAMB was used in the hyperparameter optimization, but the
LAMB optimizer that came with the official distribution of ALBERT had to be rewritten,
because it was not compatible with multi GPU training. Both optimizers were utilised,
LAMB being used with ALBERT Base and Large, while AdamW was used with ALBERT
Xlarge. These choices were made due to observations in the exploratory rounds. All
ERNIE models used AdamW with a scheduled decaying learning rate.

6https://github.com/google-research/albert/
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This chapter will present the experiments that were conducted and the results of these.
The goals and research questions of the thesis require several experiments to be conducted,
and the strategy used when performing experiments will be described in the first section
which is the experimental plan. Parameters used in the models and how the experiments
were set up will be presented in the experimental setup. Detailed results of in-domain
and cross-domain experiments will then be presented on a dataset-by-dataset basis in
the final sections.

7.1. Experimental Plan

Combining several datasets, hyperparameters and models of this thesis requires an
elaborate experimental plan. It will progress in complexity, with initial experiments
establishing performance on a single dataset at a time, while the second part will
experiment on different permutations and combinations of datasets. Light versions
of BERT: ALBERT Base, ALBERT Large, and ALBERT Xlarge and the knowledge
incorporating versions of BERT: ERNIE Base, and ERNIE Large will be used in all
experiments. The initial experiments are related to Research Question 3 in section
1.2. Here, both ALBERT and ERNIE models will be used to investigate their abilities
compared to each other and to former work on the selected datasets. These experiments
will also serve as baselines when moving on to the second part of the experiments. Here,
the models will be tested for cross-dataset performance and aim to answer Research
Questions 1 and 2. First, the performance of a model trained on a dataset will be tested
on all other datasets without further training. Datasets that will be used are SOLID
(Rosenthal et al., 2020) denoted as S, OLID (Zampieri et al., 2019b) denoted as O, Founta
et al. (2018) denoted as F, and Davidson et al. (2017) denoted as D. Inspired by Isaksen
(2019), initial experiments on F will be done with all annotations: ‘Hateful’, ‘Abusive’,
‘Normal’, and ‘Spam’, while the rest of the experiments will be done with ‘Spam’ removed.
The resulting dataset will be denoted F*. Both O and S utilise a hierarchical annotation
structure, separated in three levels: A, B, and C as described in 3.4. While introductory
experiments can be done on the three levels separately, matching the datasets with each
other requires mapping these levels into a single dataset. This mapping will be elaborated
later in this section. When only a certain level of O or S is used, it will be denoted
with a subscript marking the level, i.e. SA. To restrict the total number of experiments,
only permutations of F and D will be used. Since S is annotated by models using O as
seed, and that S has many more examples than the other datasets, Stest will be used as
test set, and Otrain will be used as training set. These will be regarded as coming from
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the same distribution. Stest will be used as representative for both S and O, due to the
possibility this provides of comparing with participants of OffensEval 2020 (Zampieri
et al., 2020), where this test set was used. Finally, experiments will be conducted on a
dataset combining O/S, D, and F. This dataset will be denoted C.
The different experiments can be summarized as such:

1. Baseline and high performance experiments on O/S, D, F and F*

2. Cross-dataset evaluation of all permutations of O/S, D, F and F*

3. Models trained on D will be further trained on F*, and models trained on F* will
be further trained on D

4. Models from step 3 will be tested on test sets of S, D and F*

5. Models will be trained and tested on a combined dataset C, and tested on S, D
and F*

The second part of the experiments deals with the merging and permuting of datasets.
This requires all datasets to use the same annotation structure. ‘Hateful’, ‘Offensive’, and
‘Neither’ form a convenient annotation schema used by dataset D. F*, with annotations
‘Hateful’, ‘Abusive’, and ‘Normal’ can simply be mapped to the other structure by
mapping ‘Abusive’ to ‘Offensive’ and ‘Normal’ to ‘Neither’. A mapping like this can be
justified with Founta et al. (2018) stating that abusive language is “Any strongly impolite,
rude or hurtful language using profanity, that can show a debasement of someone or
something, or show intense emotion.” This definition matches well with how Davidson
et al. (2017) describe offensive language as the prevalence of strong language of any kind,
while hate speech requires the speech to actually be intended as humiliating, degrading,
or similar. When mapping O and S to the same annotation space, the hierarchical
structure is exploited. Tweets marked as ‘NOT’ will be mapped to ‘Neither’, tweets
marked as ‘OFF-TIN-GRP’ will be mapped to ‘Hateful’, and all other combinations of
the different annotation levels will be mapped to ‘Offensive’. A clear representation of
the label mappings can be seen in table 7.1. This mapping will be chosen based on the
notion that an offensive tweet can be regarded as hateful if it is targeted towards a group
(Zampieri et al., 2019b). A tweet can be hateful and targeted towards an individual as
well, but this usually involves targeting the individual based on some group this person
belongs to, i.e. religion, gender, or sexual orientation. Some experiments will be done
during the exploration phase to assess whether offensive tweets targeted at individuals
should be included in the hateful category.

7.2. Experimental Setup
Experiments on both models were done using their official code distributions on Github.
Experiments with ALBERT were conducted first and in a familiar framework, resulting in
a much more extensive parameter search. Final hyperparameters and model configurations
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TaskA Task B Task C Resulting Label

OFF TIN
IND Offensive
GRP Hateful
OTH Offensive

UNT - Offensive
NOT - - Neither

Table 7.1.: Label mapping from the label scheme of SOLID to Davidson et al. (2017)

chosen for individual models will be presented in this section. To make the models more
comparable, ERNIE Base and ERNIE Large have the same model configuration as BERT,
yielding 110M and 340M parameters respectively. ALBERT Base, Large, and Xlarge have
reduced the number of parameters from BERT and have 12M, 18M, and 60M parameters
respectively. ERNIE was trained with the parameters from ERNIE 2.0, incorporating
several additional pre-training objectives in Sun et al. (2020)’s continual pre-training
framework described in section 4.1.3. Using the sequence output of ALBERT was tried
during the exploration phase, projecting the sequence dimension down to a single value
instead of just using the first output which is standard. Experiments were also conducted
using different numbers of linear layers on top of the transformer structure. None of these
techniques seemed to have much effect, so all final models were trained with the basic
models and a linear output layer on top of the language models, predicting the output.
The experiments were run on two 32GB NVIDIA V100 GPUs using a mirrored

distribution strategy. A copy of the model was therefore placed on each GPU, and the
variables were synchronized using an allreduce algorithm. ALBERT Base used batch
sizes between 100 and 128 with the LAMB optimizer (You et al., 2020), while nearly all
versions of ALBERT Large and Xlarge used batch sizes of 64 and 32 respectively because
of memory requirements of the larger model sizes. Due to You et al. (2020) stating that
LAMB introduces a biased gradient update, but that this bias is small at larger batch
sizes, AdamW was used as optimizer for ALBERT Xlarge. ALBERT Large used LAMB
in some cases, but AdamW was used later in the experiments due to instances where
running ALBERT Large with LAMB lead to the model predicting only a single label.

Some exceptions were made to the general settings, due to hyperparameter optimization
being done on some of the datasets. It is therefore hard to show a compressed view of
the hyperparameters, and they are therefore presented in detail in three tables: The
hyperparameters used for all model sizes of both ERNIE and ALBERT are presented
in table 7.2, the hyperparameters used for ERNIE but differed between datasets are
presented in table 7.3, and the ones used for ALBERT but differed between datasets
are presented in table 7.4. The hyperparameter optimization done for ERNIE was
much smaller than the one for ALBERT. The only parameter that was tested was the
learning rate, where ERNIE was better on smaller learning rates on the larger datasets.
Due to framework limitations with mostly Chinese documentation in PaddlePaddle, the
hyperparameter optimization was also just done with accuracy as metric. As can be seen
in table 7.3, ERNIE was trained with a learning rate of 1e-5 on the large datasets, while

61



7. Experiments and Results

2e-5 was used on the smaller ones. The warm-up steps are different between the datasets,
due to the parameter controlling them being set to 10% of the total steps. For continued
training the hyperparameters were the same as in the base-models.

TD BSZ EPOCHS OPT RS
ERNIE 0.1 32 4 Adam No
ALBERT 0 - 4 - Yes

Table 7.2.: Shared Hyperparameters
Hyperparameters for ERNIE and ALBERT that was shared by all model sizes. TD is
Transformer Dropout, BSZ is Batch Size, OPT is Optimizer, and RS is Resampling.

Davidson Founta Founta* Solid Combined
Learning Rate 2.0E-05 1.0E-05 1.0E-05 2.0E-05 1.0E-05
Warmup Steps 124 342 295 83 502

Table 7.3.: Hyperparameters ERNIE
Hyperparameters for ERNIE that was different between the datasets.

7.3. Experimental Results
This section will present the results of the experiments. In-domain experiments will
be presented first, where results on D, F, F*, and S will be presented separately. The
results will be presented as precision, recall, and F1 for all labels. Weighted and macro
average scores will also be presented to be able to compare with results from other
publications. Macro average is used by OffensEval and many other publications, and
the unbalanced datasets make macro average a more suitable metric. Some publications
use weighted average, so that will be included as well. The results on the combined
dataset C will then be presented, as well as the cross-dataset results. The results on C
will be presented similarly to the results on the other in-domain experiments, while the
cross-dataset experiments will be presented as one table for ERNIE Base and one for
ALBERT Base, where the macro F1 score for all permutations will be presented. Only
macro F1 is presented due to the large number of experiments, but the details of all
experiments can be seen in the appendix.

7.3.1. Results on dataset D

The first results to be presented are the ones of the Davidson et al. (2017) dataset. As can
be seen in table 7.5, the ‘Offensive’ and ‘Neither’ classes are very similar when comparing
the best ALBERT and ERNIE results with exactly the same F1 score at three decimal
points precision. That leaves ‘Hateful’ as the only class that differs between the model
frameworks. Here ERNIE achieves a F1 score around two percentage points above the
best scoring ALBERT based model. This naturally leads to ERNIE having the best
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Model Size LR BSZ OPT WS

Davidson
Base 3E-05 102 Lamb 324
Large 1E-05 32 AdamW 300
Xlarge 1E-05 32 AdamW 300

Founta
Base 4E-05 128 Lamb 300
Large 2E-05 64 AdamW 300
Xlarge 1E-05 32 AdamW 300

Founta*
Base 4E-05 128 Lamb 300
Large 1E-05 64 AdamW 300
Xlarge 1E-05 32 AdamW 300

Solid
Base 1E-05 32 AdamW 400
Large 1E-05 32 AdamW 400
Xlarge 1E-05 32 AdamW 300

Combined
Base 2E-05 128 Lamb 300
Large 1E-05 64 AdamW 300
Xlarge 1E-05 64 AdamW 300

Table 7.4.: Hyperparameters ALBERT
Hyperparameters for ALBERT that differ for the different size configurations and
datasets. LR is Learning Rate, BSZ is Batch Size, OPT is Optimizer, and WS is

Warmup Steps.

macro averaged F1 score, and as can be seen in table 7.5, also the best weighted average
F1. ERNIE has slightly lower variance for each metric, calculated from the two and three
variations of model size used for ERNIE and ALBERT respectively. The results of ERNIE
Base are in most cases better than the ones of ERNIE Large, but the different ALBERT
variations all score best on each their class, having Base, Large, and Xlarge score best
on ‘Hateful’, ‘Offensive’, and ‘Neither’ respectively. This means that comparing a single
ERNIE model with a single ALBERT model will increase the performance gap between
the two models on two of the classes. From the ALBERT based models, ALBERT Base
is the one yielding the best macro averaged F1 score, while ALBERT Large has the best
weighted average F1 score due to its better performance on the larger ‘Offensive’ and
‘Neither’ classes. For the ‘Hateful’ class, it can be observed that while the ERNIE based
models keep a balance between precision and recall, ALBERT seems to sacrifice one over
the other to a higher degree.

7.3.2. Results on dataset F

The next results to be presented are from experiments on the dataset of Founta et al.
(2018). Differing from the rest of the experiments, these results have four labels and
are not merged under the label scheme used by the other experiments. ERNIE Base
has the highest score on most of the metrics, the highest F1 score on the ‘Abusive’ and
‘Normal’ classes, while ERNIE Large and ALBERT Base have the best performance on
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Ernie Albert
Base Large Base Large Xlarge

Hateful
Prec 0.467 0.416 0.372 0.431 0.284
Rec 0.415 0.403 0.469 0.314 0.484
F1 0.439 0.409 0.415 0.363 0.358

Offensive
Prec 0.947 0.946 0.951 0.944 0.957
Rec 0.955 0.952 0.936 0.959 0.908
F1 0.951 0.949 0.944 0.951 0.932

Neither
Prec 0.906 0.911 0.889 0.883 0.893
Rec 0.901 0.894 0.883 0.891 0.913
F1 0.903 0.902 0.886 0.887 0.903

Weighted
Average

Prec 0.915 0.912 0.911 0.907 0.912
Rec 0.918 0.913 0.903 0.914 0.887
F1 0.917 0.913 0.907 0.910 0.897

Macro
Average

Prec 0.773 0.757 0.738 0.753 0.711
Rec 0.757 0.750 0.763 0.721 0.769
F1 0.765 0.753 0.748 0.734 0.731

Table 7.5.: Results on D given as precision, recall, and F1 for each label, and their
weighted and macro average.

the ‘Hateful’ and ‘Spam’ classes respectively. In terms of F1, the difference between
ERNIE and ALBERT is around one percentage point in the ‘Spam’ class where ALBERT
has the upper hand, while in all other classes the best ERNIE model has around two
percentage points better score than the best ALBERT based model. This leads to ERNIE
also being about two percentage points ahead in both weighted and macro average F1
scores. As with the results on D, the F1 scores on all metrics are around two percentage
points higher on the highest scoring ERNIE result, compared to the highest ALBERT
based result. In the end, ERNIE Base has the best F1 score on both weighted and macro
average F1. Here too, the variances of the different metrics on the different classes, as
well as the averages, are lower with ERNIE than for ALBERT. When inspecting the
recall and precision scores of the different labels, it can be observed that both ERNIE
Base and ERNIE Large always lean the same way in terms of favouring recall over
precision. Both ALBERT Large and Xlarge seem to lean the same way as ERNIE Base
and Large, while ALBERT Base consistently leans towards favouring the opposite of all
the other models. On the ‘Hateful’ class, both ERNIE and ALBERT have less balanced
relationships between precision and recall scores compared to the other classes, with
ERNIE favoring precision.

7.3.3. Results on dataset F*

The results on the dataset which is a subset of the one from Founta et al. (2018), with the
‘Spam’ class removed and ‘Abusive’ changed to ‘Offensive’ fall into the same tendencies
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as the former experiments. ERNIE Large has the best F1 score on the ‘Hateful’ class,
while ERNIE Base has the highest F1 scores on the two other classes. From the ALBERT
based models, ALBERT Base scores the highest F1 score on the ‘Hateful’ and ‘Offensive’
classes, while being closely behind ALBERT Large on the ‘Neither’ class. The ERNIE
and ALBERT based models are close in terms of performance, having only a slight
difference of about 2 percentage points difference on the ‘Offensive’ label. The variance
of the different models are also comparable, with some metrics favouring ALBERT while
others favour ERNIE. The F1 score on the ‘Hateful’ class has actually decreased when
going from dataset F to F*, even though the averaged scores have increased. Similarly
to the results on F, the relationship between recall and precision is less balanced on the
‘Hateful’ class than on the other classes, with ERNIE Base favoring precision similarly to
the experiments on D.

7.3.4. Results on dataset S

The results on on the dataset of Rosenthal et al. (2020) converted to the label scheme
of Davidson et al. (2017) can be seen in table 7.8. As with the other models, ERNIE
Base seems to have the best results on most of the metrics. ALBERT Xlarge performs
best on all metrics among the ALBERT based models. The F1 score of ‘Hateful’ is 1.8
percentage points better on the best scoring ERNIE model compared to the best scoring
ALBERT model, 0.7 percentage points better on ‘Offensive’, and ALBERT and ERNIE
scores similarly on the ‘Neither’ class. This results in the macro average of ERNIE being
0.8 percentage point better than for ALBERT. The variances of all metrics on both
ERNIE and ALBERT are similar and low.

7.3.5. Results on dataset C

This section presents the results on dataset C, which was obtained by merging D, F* and
O*. It can be observed that also these results favour ERNIE, and in most cases ERNIE
Base. ERNIE Large has the best F1 score on the ‘Hateful’ label, while ERNIE Base
has the best results on the two other labels, similarly to the results on dataset F*. The
differences between the best ERNIE model results and the best ALBERT model results
are 4, 3, and 1 percentage points for ‘Hateful’, ‘Offensive’, and ‘Neither’ respectively.
ERNIE Base scores the highest macro averaged F1 score, with a 2.5 percentage point
lead on the best ALBERT based model. Of the ALBERT based versions, ALBERT Large
has the best F1 score on all labels. ERNIE has low variance on all of the metrics, while
the variance of the ALBERT models is larger, with ALBERT Base and Xlarge lagging
behind ALBERT Large. The ERNIE based models have a more unbalanced relationship
between precision and recall compared to the other results, and the ALBERT based
models continue their trend of having the precision recall relationship be unbalanced.
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7.3.6. Cross-dataset results

This section presents results when testing models on other datasets than the ones they
were trained on, as well as training models on several datasets. The results can be seen
in table 7.10, where the dataset or datasets used for training are represented as rows,
and the test set is given in each column. The upper part of the table shows the results
when using ERNIE and the lower when using ALBERT. The base version was used for
both models. The scores are given as macro averaged F1. The diagonal in the top 3x3
part of each table will be the macro average scores in tables 7.5, 7.7, and 7.8, and are the
results from training and testing with train and test sets that were intended to be used
together. Training on several datasets will be represented by combining the symbols for
each dataset. The training on first F*, and then D will therefore be represented as F*D.
ERNIE has slightly better performance than ALBERT with all training sets when

testing on D and with all training sets except F*D when testing on S. When testing
on F*, the scores are more similar, with the highest difference between the two models’
scores being on the training set F*D, at 0.043 in favour of ALBERT.
When testing the models that were trained on only one dataset for cross-dataset

performance, it can be observed that F* and S have better cross dataset performance
between each other than when testing on D. The model trained on D performs similarly
on both F* and S, with a drop of around 12 percentage points from testing on D. Both
the model trained on F* and the model trained on S perform similarly on Dtest, with a
drop of 17 and 23 percentage points respectively from the baseline.

There are still drops in performance when training the models on several datasets but
not as big as the cross-dataset performance with single training sets. Training on F*
after training on D gives a slight improved performance when testing on F* compared
to the baseline. This improvement is very small though, but there is at least not a drop
in performance.
The performance drop is smaller when training with dataset C, or the performance

gain is similar, compared to training with F*D or DF*, and testing on all test sets.
The performance gain on F* when initially training with D can also be seen when the
datasets are combined. For dataset D the performance drop is small, around 1 percentage
point, the same as with initialising training with F*. The performance drop on the S
dataset is around 5 percentage points. The training on dataset C hurts the ERNIE model
less than the ALBERT model, while the performance drop with continued training has a
slightly smaller drop in performance for the ALBERT model.
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Ernie Albert
Base Large Base Large Xlarge

Abusive
Prec 0.855 0.863 0.874 0.852 0.838
Rec 0.911 0.898 0.836 0.880 0.870
F1 0.882 0.880 0.855 0.866 0.854

Hateful
Prec 0.500 0.471 0.320 0.452 0.448
Rec 0.353 0.372 0.510 0.307 0.318
F1 0.414 0.416 0.393 0.365 0.372

Normal
Prec 0.863 0.864 0.880 0.837 0.842
Rec 0.879 0.873 0.808 0.873 0.867
F1 0.871 0.868 0.843 0.854 0.854

Spam
Prec 0.592 0.575 0.523 0.527 0.531
Rec 0.542 0.556 0.641 0.460 0.483
F1 0.566 0.565 0.576 0.491 0.505

Weighted
Average

Prec 0.807 0.805 0.803 0.779 0.779
Rec 0.814 0.811 0.777 0.790 0.789
F1 0.810 0.808 0.787 0.783 0.783

Macro
Average

Prec 0.702 0.693 0.649 0.667 0.665
Rec 0.671 0.675 0.699 0.630 0.634
F1 0.683 0.682 0.667 0.644 0.646

Table 7.6.: Results on F given as precision, recall, and F1 for each label, and their
weighted and macro average.

Ernie Albert
Base Large Base Large Xlarge

Hateful
Prec 0.527 0.451 0.343 0.389 0.426
Rec 0.322 0.372 0.493 0.316 0.294
F1 0.400 0.408 0.404 0.349 0.348

Offensive
Prec 0.860 0.858 0.883 0.852 0.835
Rec 0.920 0.910 0.858 0.871 0.890
F1 0.889 0.883 0.870 0.861 0.862

Neither
Prec 0.960 0.962 0.963 0.952 0.953
Rec 0.965 0.955 0.942 0.958 0.954
F1 0.963 0.959 0.953 0.955 0.953

Weighted
Average

Prec 0.914 0.911 0.913 0.900 0.898
Rec 0.921 0.914 0.899 0.904 0.905
F1 0.916 0.912 0.905 0.902 0.901

Macro
Average

Prec 0.782 0.757 0.730 0.731 0.738
Rec 0.736 0.746 0.764 0.715 0.713
F1 0.751 0.750 0.743 0.722 0.721

Table 7.7.: Results on F* given as precision, recall, and F1 for each label, and their
weighted and macro average.
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Ernie Albert
Base Large Base Large Xlarge

Hate
Prec 0.608 0.470 0.342 0.423 0.509
Rec 0.564 0.475 0.380 0.676 0.642
F1 0.586 0.472 0.360 0.520 0.568

Off
Prec 0.782 0.837 0.769 0.789 0.788
Rec 0.941 0.809 0.881 0.870 0.915
F1 0.854 0.823 0.821 0.828 0.847

Neither
Prec 0.988 0.933 0.977 0.986 0.990
Rec 0.907 0.945 0.910 0.905 0.906
F1 0.946 0.939 0.942 0.944 0.946

Weighted
Average

Prec 0.913 0.886 0.891 0.906 0.912
Rec 0.902 0.886 0.879 0.885 0.897
F1 0.904 0.886 0.883 0.892 0.902

Macro
Average

Prec 0.793 0.747 0.696 0.733 0.762
Rec 0.804 0.743 0.724 0.817 0.821
F1 0.795 0.745 0.708 0.764 0.787

Table 7.8.: Results when training on O* and testing on Stest given as precision, recall,
and F1 for each label, and their weighted and macro average.

Ernie Albert
Base Large Base Large Xlarge

Hate
Prec 0.486 0.448 0.244 0.285 0.293
Rec 0.328 0.352 0.598 0.481 0.395
F1 0.392 0.394 0.347 0.358 0.337

Off
Prec 0.888 0.889 0.925 0.907 0.872
Rec 0.940 0.932 0.816 0.859 0.883
F1 0.913 0.910 0.867 0.882 0.877

Neither
Prec 0.962 0.960 0.961 0.958 0.961
Rec 0.953 0.947 0.914 0.934 0.924
F1 0.957 0.954 0.937 0.946 0.942

Weighted
Average

Prec 0.911 0.908 0.912 0.905 0.894
Rec 0.917 0.912 0.862 0.883 0.882
F1 0.913 0.910 0.881 0.893 0.887

Macro
Average

Prec 0.779 0.766 0.710 0.717 0.709
Rec 0.740 0.744 0.776 0.758 0.734
F1 0.754 0.753 0.717 0.729 0.719

Table 7.9.: Results on C given as precision, recall, and F1 for each label, and their
weighted and macro average.
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Test

Train

ERNIE Davidson Founta* SOLID
Davidson et al. 0.765 0.638 0.636
Founta et al.* 0.593 0.751 0.704

OLID* 0.520 0.658 0.795
Davidson et al. Founta et al.* 0.638 0.755 0.715
Founta et al.* Davidson et al. 0.750 0.660 0.652

Combined 0.751 0.756 0.739

Train

ALBERT Davidson Founta* SOLID
Davidson et al. 0.748 0.645 0.605
Founta et al.* 0.535 0.743 0.689

OLID* 0.489 0.666 0.787
Davidson et al. Founta* 0.599 0.752 0.694

Founta et al.* Davidson et al. 0.737 0.703 0.679
Combined 0.670 0.734 0.690

Table 7.10.: Cross-dataset results for D, F* and S with ERNIE Base and ALBERT Base
as models. The rows indicate which dataset the model was trained on, and
the columns show which dataset the model was tested on. The top table is
with ERNIE as model and the bottom one is with ALBERT as model.
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8. Evaluation and Discussion
The first part of this chapter evaluates the results and experiments of chapter 7, as well
as choices made leading up to and during these experiments. The label mappings used
when transforming O and S into the label space of D will be thoroughly discussed. A
comparison of the results with state-of-the-art systems and other literature will also
be given. The second part will discuss the findings up against the goals and research
questions in section 1.2.

8.1. Evaluation

The experiments of this thesis were conducted on two model architectures written in two
languages, where each architecture had two and three size modes each, resulting in a
total of five systems. The results on these experiments and the experiments themselves
will be evaluated in this section. Both in-domain, and cross-dataset experiments have
been conducted.

8.1.1. Choice of datasets

The different datasets used in this work are all described in detail in chapter 3, and some
reasons for selecting the ones used were further elaborated in section 6.1. The choice of
datasets were explained in terms of convenience in mapping the datasets into the same
label-space. The datasets used were Founta et al. (2018), Davidson et al. (2017), Zampieri
et al. (2019b), and Rosenthal et al. (2020), denoted as F, D, O, and S respectively. O
and S were regarded as closely linked datasets, where Strain is annotated by models
seeded with O. The biases of these models might therefore manifest themselves in the
annotations. Not all of the data was annotated by the models, Stest was the test set of
OffensEval 2020 (Zampieri et al., 2020), and therefore naturally had to be annotated by
people.

OffensEval 2020 can be regarded as a good test arena for Zampieri et al. to test whether
the use of the large generated dataset would be useful. Since S was used in the preliminary
work described in chapter 5, it naturally followed into the exploration phase of this thesis,
using the part of O originally used for training, Otrain as development set. Some of
the hyperparameters might therefore not have been optimal, but the close connection
between the two datasets makes it a reasonable assumption that the hyperparameters
might be similar. The top model in OffensEval 2020 did not use Strain on task A, while
many others did with scores very similar to that of the top scoring model. Strain was
used for task B and C, where there are fewer examples and thus the extended dataset
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had better use. The use of O as training data instead of S became reasonable when it
became apparent that the amount of training data was extremely large compared to the
limited potential benefit it yielded. The use of combined datasets later in the experiments
would also have completely overpowered the data of the other datasets, and the use of O
in all experiments was therefore a more manageable decision. A better solution would
have been to use the resulting ‘Hateful’ and maybe ‘Offensive’ labels from the converted
dataset. One could for example use SB and SC but not SA. This would have given much
more data for the models to train with, and still kept the number of labels reasonable.
This was the strategy of Galileo (Wang et al., 2020a), the top scoring team in OffensEval
2020 on task B and C.

When setting aside 20% of D and F for test data and using the test data of S,
the amount of training data is 19,826, 68,620, and 14,100 examples for D, F, and O
respectively. This results in F being much larger than the two other datasets, and could
introduce a bias. All datasets have around 5% hateful speech, while D has a surplus
of offensive language, and F and O have a surplus of normal data. This evens out the
skewed relationship between the ‘Offensive’ and ‘Neither’ labels, but keeps the ‘Hateful’
label as a minority.

8.1.2. Label Mapping

When trying to compare effects of training a model on one dataset and testing on another,
or to combine several datasets, the issue of synchronising the labels arise. This task
has to be made through analysing the similarity of definitions used for different labels.
In some cases such a mapping from one label-space to another does not really exist,
and one must resort to the use of sub-optimal label mappings. Swamy et al. (2019)
experiment with cross-dataset performance, but do so with binary labels, only separating
classes into positive and negative. The importance of separating between hateful and
offensive language, as stated by Isaksen (2019), thus disappears. This binary separation
is an easier task than separating hate speech from offensive language, but is a valuable
baseline that surfaces the lack of generalizability across datasets. Swamy et al. also did
experiments with annotating both D and F with labels from the hierarchical structure
of OLID described in 3.4, using a BERT based model trained on O to annotate. From
the tweets labeled as ‘Hateful’ in D, 63.22 percent were annotated as targeted towards
an individual, while only 24.61 percent were annotated as targeted towards a group. The
percentages were 75.56 and 10.42 for labels ‘IND’ and ‘GRP’ when tested on F. This
signals that mapping tweets labeled as ‘GRP’ in O and S to hate speech might not be
reconcilable with the data.

To be able to properly assess the compatibility of datasets, some of the definitions used
are given here. D and F have very clear and similar definitions. Here is the definition of
hate speech in Davidson et al. (2017):

“Language that is used to expresses hatred towards a targeted group or is intended to be
derogatory, to humiliate, or to insult the members of the group.”

The definition of Founta et al. (2018) is very similar:
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“Language used to express hatred towards a targeted individual or group, or is intended
to be derogatory, to humiliate, or to insult the members of the group, on the basis
of attributes such as race, religion, ethnic origin, sexual orientation, disability, or
gender.”

The difference between the two is that in F hatred can be expressed towards an individual,
not just a group, and the insults have to be based on specified attributes. Insults targeted
at an individual will therefore never be regarded as hate speech in D, while F can have
hate speech targeting an individual. Insults targeting a group will in D always be hateful,
while F only regard a subset of insults targeting groups to be hateful. Zampieri et al.
(2019b) do not include a formal definition of hate speech, but give an indication of what
is regarded as such. This is their definition of the ‘GRP’ class:

“Posts targeting a group of people considered as a unity due to the same ethnicity,
gender or sexual orientation, political affiliation, religious belief, or other common
characteristic. Many of the insults and threats targeted at a group correspond to
what is commonly understood as hate speech.”

This shows that Zampieri et al. approximate hate speech as a subset of insults against
a group. This corresponds to the last part of the definition given by Founta et al. but
without the first part about targeting an individual. From the definitions one would
therefore expect that both D and F are more biased towards the ‘Hateful’ class than S.
This contradicts the findings of Swamy et al., where several of the hateful tweets in D
were labeled as targeted towards an individual.

It may be that some bias was present in O, leaning towards the ‘IND’ label. A tweet
could conceivably be targeted towards an individual based on their group, and thus be
eligible for annotation into both ‘GRP’ and ‘IND’. There are also much more tweets
in the ‘IND’ class, further enabling a bias towards ‘IND’. All confusion matrices on
cross-domain experiments show a majority of hateful tweets being mislabeled. This
indicates that the bias towards ‘Offensive’ is due to the difficulty of predicting hateful
tweets. There are many factors in play, and it is probable that there is some skewed
overlap between targets, hate speech, and offensive language. The results on experiments
involving datasets with converted labels should therefore be analysed carefully and with
great caution, where different annotation methodologies, annotators, and definitions have
been used. Certain trends seem to be present, but the difficulty of clearly defining the
labels makes it necessary to do more tests and to explore the data more thoroughly.

Violation of the assumptions made when mapping the labels can make interpretation
of results difficult. The next paragraphs will try to shine some light on what effects
might be present due to such violations. As a reminder, the label scheme of OLID, used
in S and O, was mapped to the label scheme of Davidson et al. (2017). The details of
these mappings can be seen in section 7.1, but the most controversial mappings, and
therefore most important to evaluate, are ‘IND’ to ‘Offensive’ and ‘GRP’ to ‘Hateful’.
These mappings result in that all offensive speech targeted at individuals will be regarded
as just offensive, while all offensive tweets targeted at a group will be regarded as hateful.
The following evaluation will regard a scenario where a model has been trained on D,

73



8. Evaluation and Discussion

and will be tested on S. Both datasets are regarded as gold standards of the original label
scheme they employ, so a tweet annotated as ‘Hateful’ in D is regarded as being truly
hateful, and a tweet annotated as ‘IND’ in the original dataset SC is regarded as really
targeted towards an individual. A tweet annotated as ‘Hateful’ in the transformed dataset
S is not regarded as really hateful, but assumed hateful through the label mapping.
Another assumption is that these underlying probabilities are the same for both

datasets:

• P (Hate|Ind): The probability of a tweet being hateful given that it is targeted
towards an individual.

• P (Hate|Grp): The probability of a tweet being hateful given that it is targeted
towards a group.

The violation of this assumption is not part of this evaluation, and the assumption
is regarded as true. The distribution of hate speech conditioned on the target might
be different in different datasets, due to different boosted sampling methods used to
increase the amount of hate speech when collecting the datasets. These differences are
hypothesised to be small, and the probabilities will therefore be regarded as equal in this
analysis. The probabilities evaluated here, are these:

P (Hate|Ind) = 0.0
P (Hate|Grp) = 1.0

(8.1)

They describe the assumptions, that no fraction of offensive language targeted towards
individuals is hateful, and that all offensive language targeted at a group is hateful.
A plausible scenario that breaks these assumptions is tweets in D being hateful but
targeted towards individuals. This implies that S also contains some tweets that are
hateful and targeted towards individuals, and thus wrongly annotated as ‘Offensive’. If
the model then correctly predicts one of these tweets to be hateful, it would be regarded
as wrong by the test set. Violation of the assumptions contribute to a lower score when
testing on S in this case. A model can also misclassify. If the same tweet is wrongly
classified as offensive, it would be regarded as correctly predicted by the test set and
would thus aid in improving the performance for the model. A large proportion of hateful
labels being targeted at individuals combined with many poor classifications based on
i.e. misunderstanding of language would then lead to good performance but not for
the desired reason. On the contrary, if many hateful tweets are targeted at individuals
and the model is very good at predicting real hateful tweets, this would lead to low
performance. The consequence is thus that the model is rewarded for being good if the
assumptions are correct, and rewarded for being bad if the assumptions are violated.
The amount and direction of change in metrics are thus affected by the model’s ability
to correctly classify. The probabilities representing this ability is given by:

• P (Correct|Off): The probability of a model predicting correct on an offensive
tweet.
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• P (Correct|Hate): The probability of a model predicting correct on a hateful tweet.

The equation for macro average F1 score was tried analysed to see how these probabilities
affect the scores. The equations became pretty messy and were hard to interpret due to
many variables being involved. A widget with sliders was therefore implemented, where
the effects of changing the different probabilities were observed. The widget can be seen
in the appendix, section A.1, together with an in depth explanation of the calculations
and assumptions that were made. It was found that if

P (Correct|Off) + P (Correct|Hate)
2 > 0.5 (8.2)

any incline in P (Hate|Ind) and any decline in P (Hate|Grp) will lead to decrease in
macro averaged F1. This strengthens the evaluation that a better than average model
will be punished for violation of the assumptions. The ‘Hateful’ class can be pretty hard
to predict, but from the experiments on D and F* it seems probable that inequality 8.2
holds in most experiments if we exclude the neutral label due to good performance on
the ‘IND’ label. This suggests that the macro F1 scores of S, seen in the experimental
results, are lower boundaries. If one would correct for the wrongly mapped labels, one
would expect the macro F1 scores to increase.

The inclusion of the neutral ‘Neither’ label will impact the metrics. So will the fact
that OLID has a more complicated annotation scheme than utilised here. The rest of
the labels are assumed to be correctly mapped, so they would not affect this analysis.
These assumptions might also be violated, but through the definitions used for offensive
language and hate speech, these assumptions probably introduce little error. This analysis
has made quite a lot of assumptions, and a proper mathematical analysis of the full
label-mapping is suggested as future work, in order to properly assess whether OLID is
compatible with datasets such as D and F. A general analysis on how making wrong
assumptions when mapping fine-grained labels affects performance might exist, but is
not know to the author. The mapping from a hierarchical structure to a three label
annotation schema, such as done in this thesis, is a very specific scenario, and a useful
analysis might be easier to do by restricting the scope of the analysis.

8.1.3. Model Comparison on In-Domain Experiments

The results show ERNIE Base scoring consistently better on all datasets compared to
ERNIE Large and all ALBERT models. The different size configurations of ALBERT are
less stable in terms of F1 performance, where the base version scores best on D, F, and
F*, the xlarge version on S, and large on C. The differences in macro average F1 scores
between ERNIE Base and Large are 0.011 and 0.050 on D and S respectively. A margin
of 5 percentage points on these tasks are worth paying attention to. On D, F, and S
the differences between ALBERT and ERNIE are around 2 percentage points, while
the differences are around 1 percentage point for the remaining datasets. This is in line
with the results of Galileo (Wang et al., 2020a), who had the best results on OffensEval
2020, task B and C, using a knowledge distillation network based on ERNIE. They also
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experimented with a knowledge distillation network based on ALBERT, but used ERNIE
as the final model. Two of the team members of Galileo were also co-authors of Sun et al.
(2020), giving them an incentive to use ERNIE.

Lan et al. (2020) showed that ALBERT increased performance when increasing the
model size, even when the parameters were shared. This reflects the findings of Devlin
et al. (2019), where increased model size also lead to increased performance. The unclear
difference between different model configurations of the ALBERT based models used
in this thesis might be due to different parameters being used, such as batch size and
choice of optimizer. The use of a larger batch size in ALBERT Base might have lead to
increased performance, but with some loss of comparability with ALBERT Large and
Xlarge, that had to be used with smaller batch sizes due to limitations in memory. The
experiments using ERNIE do not match with the experiments of Sun et al. (2020), who
showed that ERNIE performed consistently better with larger model sizes.

With paired, two tailed student’s t-tests on the different models, the only models that
score significantly different on the macro F1 score, (with a significance level of 0.05),
are ERNIE Base and ALBERT Large, with ERNIE Base being better than ALBERT
Large. The average of ERNIE models versus the average of ALBERT models also yields
a significant difference between ERNIE and ALBERT. The hypothesis used for the tests
was:

• H0: There is no difference between the models.

• H1: There is a difference between the models.

The tests were run with paired training data from the different datasets. Dataset C and
F* were not used in the tests, because it would break the assumption of independence
of data between the samples. The significant tests suffer from a very small sample size
of only three. This yields very low statistical power for the tests and the probability of
type II error is therefore large, meaning that there is a low probability of rejecting H0
even when H1 is true. The in-domain experiments can therefore give an indication of
ERNIE being better than ALBERT, but one is not clearly better than the other in these
experiments. A larger sample size is needed to answer this, which can be done through
i.e. n-fold cross-validation.

For all experiments where the difference between the best ERNIE and ALBERT models
is over 1 percentage point, this is mainly due to the ‘Hateful’ class. For D and S almost all
differences are due to this class, while F and C have differences more evenly distributed
among the labels. The greatest display of difference between model size configurations
can be seen in table 7.8 on the ‘Hateful’ class. Here, ERNIE has a difference of 11
percentage points between the base and large versions, while ALBERT has a difference of
21 percentage points between the base and xlarge versions. While this might be because
the ‘Hateful’ class is hard to predict, this could also be due to the models being quite
unstable. This was also experienced by Devlin et al. (2019) for experiments with BERT
Large, who used an average of 5 random restarts when fine-tuning due to this issue.
The larger versions of ALBERT were also experienced to be quite unstable during the
exploratory phase, but no random restarts were conducted. This fits with the observations
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of Mosbach et al. (2020), who found that BERT, ALBERT, and RoBERTa suffer from
unstable training due to vanishing gradients. The experiments show that ERNIE always
favors better precision on the ‘Hateful’ class, while ALBERT is more split in-between the
different datasets. This might be due to oversampling being used with ALBERT, but
not ERNIE. The higher amount of ‘Hateful’ examples has probably given ALBERT an
incentive to predict more ‘Hateful’ labels. The only significant difference on the F1 score
of the ‘Hateful’ class is, as with the macro F1 score, between ERNIE Base and ALBERT
Large.

8.1.4. Model Comparison on Cross-Dataset Experiments

To make experiments easier and more credible to compare, all the presented cross-domain
experiments were done with the base version of either ERNIE or ALBERT, and the same
parameters were used, for example the learning rate was e−5 for all experiments. The
largest decline in score when doing the pure cross-domain experiments with single datasets
can be seen when training on O and testing on D. The lowest drop in performance is
seen when training with O and testing on F*, or when training with F* and testing
with S. This drop is still pretty substantial, with around 9 percentage points decline.
The similarity between Founta et al. and OLID was also noted by Swamy et al. (2019).
Their experiments were conducted on binary labels, mapping all offensive labels, both
hate speech and offensive language, to one positive label. They also found that a model
trained on Davidson et al. performed well on Founta et al. and mentioned that this
might have to do with Davidson et al. containing a majority of positive labels. This
thesis works with three labels and thus complicates the notion of a positive label. The
increased granularity shows that the generalization found when testing on Founta et al.
decreases greatly when introducing the ‘Hateful’ label.
Swamy et al. (2019) found that a model trained on Davidson et al. performed well

on Founta et al. with binary labels, with a small performance drop of two percentage
points. Introducing the ‘Hateful’ label in the experiments done in this thesis increases this
performance drop to around 11 percentage points, which is more than the performance
drop found between S and F*, which is around 9. This makes the assumption that the
‘GRP’ label in SOLID is similar to the ‘Hateful’ label plausible, but on the assumption
that the difference in dataset content is similar between all datasets, all performance loss
is due to incompatibilities in labels, and that the performance loss is similarly distributed
between the labels for both S and F*. Swamy et al. (2019) found OLID and Founta
et al. to be similar in content by searching terms used when compiling the datasets. If
OLID and SOLIDtest share this characteristic, S and F* would be similar in content,
which could be the explanation for how the bluntly generated ‘Hateful’ label of S can be
comparable with cross-dataset performance between F* and D.
Student’s t-tests were also done on the cross-validation experiments, showing a signi-

ficant difference between macro average F1 scores of ERNIE Base and ALBERT Large,
ERNIE Large and ALBERT Base, and ALBERT Large and ALBERT Xlarge, with
ERNIE models being better than ALBERT models, and ALBERT Xlarge being better
than ALBERT Large. This is in line with the findings of Lan et al. (2020), where the
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larger model configurations of ALBERT lead to better performance. The hypothesis
tests also show that ERNIE is significantly better at predicting the ‘Offensive’ class on
cross-dataset experiments, compared to ALBERT.

The performance of the models naturally increase when continuing to train the models
on multiple datasets. Adding the in-domain training sets has the potential to bring the
score back up to in-domain performance. Fine-tuning with DF*, and then testing on
F* results in a score slightly higher than when just training on F* for both ALBERT
and ERNIE. The differences are quite low, only 0.5 percentage points on ERNIE and
0.9 percentage points on ALBERT, and can thus only be regarded as being comparable
with the single dataset experiments. More interesting experiments are the ones where
the training data is DF*, and test data is D, or training data is F*D and test data is
F*. The experiments show that ERNIE loses less performance on the first combination,
while ALBERT loses less performance on the second. F* is clearly larger than D, and
it thus makes sense that the performance decreases more when training on F*. The
performance when testing on S declines when training on D after F*, showing the larger
incompatibility between S and D. The presence of an incompatibility between S and
other datasets is expected, due to the bold assumptions made when mapping the labels
into the same label-space.

8.1.5. Biases and misclassifications

As was identified by Malmasi and Zampieri (2017), Davidson et al. (2017), and Isaksen
(2019) when conducting experiments on D, the biggest challenge when it comes to hate
speech detection seems to be separating hateful and offensive language. In the confusion
matrices of ERNIE Base on the different datasets, in table 8.1, 8.2, 8.3, and 8.4, we see
that the only dataset having more true positives than false negatives on the hateful label
is S. This is also the only dataset without an original hateful class, but a label-mapping
that might have done the classification easier because the classification of offensive tweets
targeting a group is a simpler task than classifying hate speech. For both D and S, the
separation between ‘Neither’ and ‘Hateful’ seems to be clear, while for F and F* the
true hateful examples are distributed more equally between ‘Hateful’, ‘Offensive’, and
‘Neither’, with ‘Abusive’ and ‘Hateful’ regarded as the same class. When we look at S,
this clear distinction might come from the hierarchical annotation methodology of S,
allowing the annotators to easily separate offensive and normal language as a first step,
which is a less demanding task than keeping track of several labels at hand at all times.

Another option is that the separation of hateful and normal language should be easy,
where both S and D have very few misclassifications of true hate speech as normal, and
that the peculiarity lies in F. It is strange that the model is able to distinguish offensive
and normal language when the true label is offensive, but not when it is hateful, looking at
F and F*, even though it is natural to assume that hateful language is also offensive. This
indicates that F might contain more implicit hateful language than the other datasets.
This would make the misinterpretation of hateful language as normal language more
probable. This same misclassifications were also observed in the experiments of Isaksen
(2019), who upon closer inspection of the misclassified tweets saw that some hateful
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tweets might have been wrongly annotated as normal language.

Predicted label
Hateful Offensive Neither

Hateful 107 137 14
Offensive 111 3705 63True

label Neither 11 70 739

Table 8.1.: Confusion matrix for D using Ernie Base

Predicted label
Hateful Abusive Neither Spam

Hateful 220 190 205 8
Abusive 104 2573 128 18
Neither 110 201 7293 691

True
label

Spam 6 47 826 1040

Table 8.2.: Confusion matrix for F using Ernie Base

Predicted label
Hateful Offensive Neither

Hateful 195 212 198
Offensive 87 2569 136True

label Neither 88 207 8094

Table 8.3.: Confusion matrix for F* using Ernie Base

The first cross-dataset confusion matrices getting evaluated are the ones with Dtest as
test set. The original confusion matrix for the in-domain tests can bee seen in table 8.1,
while the matrix for the model trained on F*train can be seen in table 8.5 and Otrain in
table 8.6.
In the following section, a model trained on a dataset, i.e. F*train, will be denoted

as modelF* to make the language more understandable. The in-domain experiments
already had a tendency of annotating hateful tweets as offensive. The cross-domain
experiments continue to wrongly predict on hateful tweets, but modelF* mostly predicts
hateful tweets as offensive, while modelO predicts the majority of hateful tweets as neither.
One would expect that modelO had many hateful tweets annotated as offensive, but it
actually mislabel less hateful tweets as offensive than the in-domain experiment on D.
The ‘Neither’ class is not disputed in terms of any label conversions, and this indicates
that there exists some deep incompatibility between the two datasets. ModeO continues
this tendency on the ‘IND’ label. A possibility is that modelO has not been able to
capture implicit hateful or offensive speech. Caselli et al. (2020) found that a majority of
O is explicit. Since the ‘Hateful’ class of O is based on the ‘GRP’ class, the number of
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Predicted label
Hateful Abusive Neither

Hateful 101 76 2
Abusive 40 1118 30True

label Neither 25 236 2546

Table 8.4.: Confusion matrix for S using Ernie Base

Predicted label
Hateful Offensive Neither

Hateful 82 145 31
Offensive 311 3100 468

True
label

Neither 42 95 683

Table 8.5.: Confusion matrix for ERNIE Base, trained on F and tested on D.

implicit hate speech might be very small. If the model looks for explicit offense, more
implicit offensive or hateful tweets might be predicted as neutral. Both modelF* and
modelO predicts many offensive tweets to be neutral. This indicates that the annotators
of Davidson et al. (2017) were more easily offended than the ones of Founta et al. (2018)
and Zampieri et al. (2019b).
The second dataset evaluated is F*test. The tendency of predicting hateful tweets

as offensive continues here. The confusion matrices for training sets Ftrain, Dtrain, and
Otrain are given in tables 8.2, 8.7, 8.8 respectively. All the models predict many of the
offensive and hateful tweets as neutral. This might be due to a larger amount of implicit
offensive language in the test set, which Caselli et al. (2020) show is very hard to predict.
A possible reason for this might be that more explicit tweets have been easier to discover
on Twitter, and they have therefore been more prone to be removed.

ModelO is a little better than modelD at predicting hateful tweets, but this might be
due to a stronger bias towards hateful tweets, where lots of offensive tweets are wrongly
predicted as hateful. The precision of the ‘Hateful’ label is strongly influenced by the
relatively large amount of offensive test data. A small percentage of offensive tweets being
wrongly annotated as ‘Hateful’ will heavily impact the precision of the ‘Hateful’ class.
Likewise, any misclassifications of hateful tweets will probably not affect the precision of
the ‘IND’ class to a large extent due to the imbalance.
The last cross-domain confusion matrices to be evaluated are the ones on Stest. This

dataset is closely related to the former discussion on label mapping in section 8.1.2. As
with all other test sets, lots of hateful tweets are predicted as offensive, where modelD
has the hardest time on the ‘Hateful’ class. It is hard to say whether this is because
tweets have been annotated wrongly as hateful, or if this is due to the models being bad
at predicting. For modelF*, few offensive tweets are mislabeled as hateful relative to the
amount of total hateful tweets. This indicates that tweets annotated as offensive in Stest,
actually are offensive. If many of them were supposed to be annotated as hateful, one
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Predicted label
Hateful Offensive Neither

Hateful 33 95 130
Offensive 517 2137 1225

True
label

Neither 6 21 793

Table 8.6.: Confusion matrix for ERNIE Base, trained on O and tested on D.

Predicted labels
Hateful Offensive Neither

Hateful 29 308 268
Offensive 45 2482 265True

labels Neither 5 267 8117

Table 8.7.: Confusion matrix for ERNIE Base, trained on D and tested on F.

would expect to see more offensive tweets misclassified as hateful. Offensive and hateful
tweets are rarely classified as neutral, which might be due to the large proportion of
explicit offense in Stest.

8.1.6. Comparison with state-of-the-art

While it is valuable to compare the models between each other using the current experi-
ments, it is also valuable to compare with other work done on the same datasets. Some
datasets used are not comparable to previous work done on hate speech detection, due
to the converted label-space used. Luckily, dataset F and D have been used in several
experiments. The performance on the dataset is not necessarily the main focus of the
different publications, such as Swamy et al. (2019) where cross-domain performance is
central, and Liu et al. (2020) where the use of data augmentation techniques to improve
performance when down-sampling the dataset is the focus. Nevertheless, the results are
still up for comparison.
Different results obtained on dataset D can be seen in table 8.11. When presenting

results, some publications use weighted average F1, and some macro average F1 score.
Both are therefore presented here. The results from both ERNIE Base and ALBERT
Base are included in the comparison. Dataset D has the weakness that no clearly defined
test-set is given. This means that the different experiments have different test data. Some
have used cross-validation, which tackles this issue, but some have not. Nevertheless,
all the models score very similarly with all results around 0.90 on weighted average F1.
Kshirsagar et al. (2018) and ERNIE Base score equally on the weighted average, but
Kshirsagar et al. has 2 absolute percentage points improvement over the next best model
on macro averaged F1 score using a Transformed Word Embedding Model (TWEM).
This is due to an F1 score on the ‘Hateful’ class of 0.49. Isaksen and Gambäck (2020) and
ERNIE Base also report F1 on individual labels. They score 0.428 and 0.439 respectively.
In the original experiments of Davidson et al. (2017) they achieved an F1 score of 0.51
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Predicted labels
Hateful Offensive Neither

Hateful 82 225 298
Offensive 262 2116 414True

labels Neither 26 106 8257

Table 8.8.: Confusion matrix for ERNIE Base, trained on O and tested on F.

Predicted
Hateful Offensive Neither

Hateful 16 134 29
Offensive 66 970 152True

labels Neither 8 71 2728

Table 8.9.: Confusion matrix for ERNIE Base, trained on D and tested on S.

on the ‘Hateful’ class. All the different work show that the ‘Hateful’ label is the most
difficult label to get right, but the simpler models show better results. This counters the
notion that BERT based models can capture complex structures that simpler models are
not able to capture. It might also be that the BERT based models more easily introduce
bias when a class is hard to predict. This is again the opposite of what experiments of
Swamy et al. indicated, where the LSVM and LSTM were worse than BERT, though
not by a lot.

The issue of different test and training data is worse in dataset F than in D. Because
different amounts of tweets were available for the different publications, the available
tweets are presented next to the results for a fair comparison. The best results have
access to the whole dataset and were achieved with BERT based models. Liu et al. (2020)
have a suspiciously high score, considering that they only used vanilla BERT. There is
no apparent reason why this should be much better than i.e. Swamy et al. (2019). They
filtered out all tweets with more than 30 tokens but were still left with 99,603 tweets,
so this cannot have impacted the score much. They also tested with a CNN, Bi-LSTM
with attention, and a Transformer network, where all models were close to 10 absolute
percentage points better than the best score of the other publications reported. This
indicates that the results are not credible. The next highest macro average F1 score is
therefore also highlighted in table 8.12. From the other models, Lee et al. (2018) is the
only publication that did not use a BERT based model and has lowest macro average F1
score. They had access to less tweets than the top scoring models but had more than
Isaksen and Gambäck (2020), ERNIE Base, and ALBERT Base. Isaksen and Gambäck
(2020), Swamy et al. (2019), and Liu et al. (2020) all had baselines with recurrent and
classical machine learning methods that were outperformed by BERT based models.
The results on Founta et al. (2018) therefore point towards BERT based models being
better than the classical. The number of available tweets leaves BERT from Isaksen and
Gambäck (2020) and the GRU from Lee et al. (2018) as the models fit for comparison
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Predicted
Hateful Offensive Neither

Hateful 67 105 7
Offensive 112 1005 71True

labels Neither 63 100 2644

Table 8.10.: Confusion matrix for ERNIE Base, trained on F and tested on S.

Model Weighted Avg Macro avg
TWEM (Kshirsagar et al., 2018) 0.92 0.79
BERT (Swamy et al., 2019) - 0.77
GRU + Metadata (Founta et al., 2019) 0.89 -
BERT (Isaksen and Gambäck, 2020) 0.90 0.76
LR (Davidson et al., 2017) 0.90 -
ERNIE Base 0.92 0.77
ALBERT Base 0.91 0.75

Table 8.11.: Results of different publications on dataset D given as weighted and macro
average F1.

with ALBERT and ERNIE Base. Both ALBERT Base and ERNIE Base score similarly
to BERT and better than the GRU. Since ERNIE is technically the same model as BERT,
this is not very surprising. The comparable score of ALBERT indicate that the size
reduction does not limit ALBERT to a great extent. This is in line with the observations
of Lan et al. (2020), where ALBERT Base scored slightly worse than BERT.

The instability of BERT and ALBERT (Mosbach et al., 2020) also has to be taken into
account when evaluating these observations. Cross-validation was not used by Isaksen
and Gambäck (2020) or the experiments on ALBERT and ERNIE, and the results might
therefore be sensitive to statistical fluctuations.

Model Weighted avg. Macro avg. Tweets
GRU-LTC (Lee et al., 2018) 0.805 0.653 70,904
BERT (Swamy et al., 2019) - 0.696 99,996
BERT (Isaksen and Gambäck, 2020) 0.806 0.672 68,299
CRAB (Zahiri and Ahmadvand, 2020) - 0.702 99,996
BERT (Liu et al., 2020) - 0.814 99,603
ERNIE Base 0.810 0.683 68,299
ALBERT Base 0.787 0.667 68,299

Table 8.12.: Results of different publications on dataset F given as weighted and macro
average F1.
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8.2. Discussion

Section 8.1 discussed several topics related to the experiments but focused on one section
of the experiments at a time. This section will discuss the work of this thesis up against
other work in the field and will be guided by the research questions presented in section
1.2.

Research question 1 How much do irreconcilable properties of different offensive lan-
guage datasets impact performance of deep learning models?

Some properties of datasets that might affect how models train on them are definitions,
annotation, topics, language, and format. Some of the categories are closely related, such
as definitions with annotation, and language with format. The definitions and annotation
deal with how the dataset was annotated, how the different classes were defined, and
important steps in the methodology used to annotate the dataset. This also includes an
inherent impossibility of testing inter-annotator agreement on cross-domain annotations.
Topic is related to language, where topic is closely related to the words used in the
dataset.

Zampieri et al. (2019b) used a list of terms to search for offensive language, and this list
is biased towards political terms. Swamy et al. (2019) found that O gets 12,200 hits when
searching with these terms, while F gets 6,600. Searching the datasets used in this thesis,
results in O, F, and D having 11,450, 1,470, and 290 hits respectively on these terms. If
only the political terms “gun control”, “conservatives”, “antifa”, “maga”, and “liberals”
are counted, D and F have 23 and 244 hits each, while S has 5,611. Whether the low
overlap on these terms is due to changes in the political landscape, Twitter usage, or
data collection methodologies is uncertain, but nevertheless, there is a difference between
the datasets. The terms “ni**a”, “ni**er”, “dyke”, and “jihadi” are used much more
in D than in the two other datasets, indicating that topics related to these terms are
more prevalent in D. This is in line with that the worst cross-domain experiments are on
Dtest, where one would expect to find many words not used in the other datasets. This
is also in line with Nobata et al. (2016)’s findings, that recent tweets have to be used in
training to reliably predict on other recent tweets.

The lack of words in datasets is not an irreconcilable property, and one would expect
the total performance to stay stable when combining the datasets. The experiments on
dataset C show that this is the case, where the results are comparable to experiments
done on the single dataset experiments. The largest performance drop is found when
testing modelC on Stest, purely due to a performance drop on the ‘Hateful’ label. This is
natural, since the performance on ‘Hateful’ was much larger for S than the two other
datasets on in-domain experiments.
A possibility of how the combined dataset performs so closely to the in-domain

experiments is by learning the format of the inputs. Even with preprocessing and data
cleaning, practical differences in formatting can still be present in the datasets, such
as the number of user mentions, hashtags, and general cleanliness of tweets. This can
make the network learn which tweet belongs to which dataset and make prediction based
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on this. It would not directly make the datasets incompatible, but would be a form of
overfitting. After all, the goal is not to make the model make decisions based on what
dataset the data comes from. With this in mind, the larger loss of performance on S
might be a good thing. Contrary to D and F, in S all users are anonymous. This is
done by replacing user mentions with @USER. This tag appears on a majority of tweets,
and would therefore be a strong marker for dataset S. If the model was always able to
recognise the dataset based on the user mention, one would not expect the performance
of S to drop from the in-domain experiments to the combined-domain experiments. The
model could still be exploiting this feature, but it is clear that it does not do it in all
cases. The experiments on C show that a model does not lose much performance by
combining datasets, which at least means that the models are able to efficiently utilise
all datasets.
The definitions used for annotation, and the possible errors these can introduce are

thoroughly discussed in section 8.1.2. The discussion brings forth great uncertainties. The
experiments done on C indicate that a model can learn to perform well on all datasets,
as long as all training is done with shuffled datasets, and thus avoids the problem of
catastrophic forgetting (Mosbach et al., 2020). The term catastrophic forgetting describes
the phenomenon where a model trained on a task A forgets this task once it is trained
on task B, because the weights of the model are changed to favor task B. In a sense,
this formulates the different datasets as being different tasks. For compatibility between
datasets, one could explain catastrophic forgetting by the model disregarding certain
topics. For incompatibility between datasets, catastrophic forgetting could be explained
with i.e. identification of a dataset becoming unimportant and thus forgotten, leading
to loss in performance on the forgotten task. The features with high predictive power
on in-domain training seem to be generalizable. This does not mean that generalizable
features do not exist, so the question that remains is whether combining the datasets
yields good results because of predicting dataset formatting or because of well generalized
hate speech features being learned.

Research question 2 Which models can best capture the continued training of several
offensive language datasets?

The experimental results show that ERNIE consistently outperforms the ALBERT
based models on in-domain and cross-domain experiments. A closer statistical analysis
reveals that ERNIE Base only significantly outperforms ALBERT Large on in-domain
experiments, while ERNIE Base outperforms all ALBERT models on cross-domain
experiments, and ERNIE Large outperforms ALBERT Base and Large. This indicates
that ERNIE is better at generalizing between datasets than ALBERT, but it could be
due to the model just being better at hate speech detection in general. The reason the
significant differences can only be seen on the cross-domain experiments might be that
model differences become enlarged because cross-domain prediction is harder and requires
more generalization.
The continued training of several offensive language datasets seems to suffer from

catastrophic forgetting, which is why Sun et al. (2020) used continual multi-task training
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to avoid this when pre-training ERNIE. The combined training of several datasets is
therefore a more strategic approach that helps the models to learn. While this might
introduce forms of overfitting to cope with the different datasets, it also enables the
models to learn representations for all data simultaneously. ERNIE Base and Large have
significantly better results than the ALBERT models on dataset C, showing that ERNIE
deals with the combined data better than ALBERT. Karan and Šnajder (2018) used the
FEDA (Daumé III, 2007) framework to combine several datasets with good results, but
this framework enables a model to learn features from several domains at the same time
by duplicating features. This would not be applicable in the experiments, because having
data-specific features would clearly enable the model to overfit on the different datasets
instead of learning a shared representation of hate speech.

When exploring the effects of cross-dataset evaluation, previous work has mostly looked
at the data, not the model in use. Swamy et al. (2019) compared several models on
in-domain experiments, but only BERT was used in cross-domain experiments. The same
applies for Nejadgholi and Kiritchenko (2020), who also used BERT as their only model
during cross-domain experiments. It is understandable that only one model is utilised, as
Gröndahl et al. (2018) argued that data is more important than model. The experiments
of this thesis therefore stand somewhat alone, and show that ERNIE performs similar to
or better than ALBERT.

Clearly stating what parameters work best for these models is hard. The experimental
phase showed that ALBERT was very sensitive to random re-initialisation, similarly to
experiments done by Mosbach et al. (2020) on BERT. Good parameters could therefore be
discarded during the extended hyperparameter optimization, due to vanishing gradients.
Larger batch sizes should probably be used when using the LAMB optimizer, but as
long as the batch size is 32 or above, the results are reasonable. Any lower than this
will probably result in unstable training. A learning rate of around 1× 10−5 seems to
be working well, and AdamW or LAMB seems to work better than Adam. The optimal
hyperparameters remain very task dependent, and a hyperparameter optimization is
therefore necessary. A more rigid hyperparameter optimization could be conducted by
i.e. averaging over several runs with the same parameters.

Research question 3 Can the use of knowledge training objectives during pre-training
of a transformer improve performance on hate speech and offensive language identi-
fication?

This research question is directly linked with the performance of ERNIE versus ALBERT.
The discussion and evaluation in previous sections have mostly argued ERNIE to be better
than ALBERT, with certain caveats. The question that remains is whether ERNIE’s
good performance can be attributed to inclusion of knowledge-incorporating learning
goals in the pre-training stages. Deep learning models are know as black box models,
and it is therefore hard to infer what information the models use to predict. Explaining
the black box of ERNIE through a comparison with ALBERT in order to answer the
current research question is partly flawed, due to their many differences. ALBERT has
been scaled down from BERT, and while ALBERT has done well on benchmarks like
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GLUE, this does not necessarily extend to separating hate speech and offensive language.
Wang et al. (2020a) got the best performance on task B and C in OffensEval 2020, using
ERNIE. They also used ALBERT XXLarge during validation, and even though ERNIE
was better than ALBERT here, it was only by a small margin. The experiments of this
thesis show a quite large difference between ALBERT and ERNIE. A reason for this
might be that the smaller configurations of ALBERT do not perform as well as the larger
models (Lan et al., 2020), which is in line with the experiments showing that ALBERT
XLarge is significantly better than ALBERT Large in cross-dataset experiments.

When comparing results with previous work in section 8.1.6 and tables 8.11 and 8.12,
BERT and ERNIE score very similarly. This indicates that the performance gap between
ERNIE and ALBERT in the experiments is a result of ALBERT being worse than
BERT, not ERNIE being better. Sun et al. (2020) showed that ERNIE performed better
than BERT on several GLUE benchmarks, but has later been surpassed by ALBERT
and BERT based ensembles.1. The small margins, low interpretability of deep models,
instability of BERT based models, and lack of proper hypothesis tests with larger sample
sizes between ERNIE and BERT leaves this research question unanswered.
While the experiments of this thesis fail to clearly show the effects of language

integration, a possibility of improvement could come from further language modelling on
Twitter hate speech data. Isaksen and Gambäck (2020) tried extended pre-training of
BERT on in-domain data, but found that this performed worse than normal fine-tuning.
ERNIE still might benefit from further in-domain pre-training, enabling the model to
retain knowledge on in-domain topics such as i.e. politics and racism. ERNIE is already
trained on data from Wikipedia, BookCorpus, Reddit, CommonCrawl2 in English. It is
also trained on news and other data in the Chinese corpus. Due to the type and large
amount of data ERNIE has been trained on, one could expect that just a small amount
of it is related to the domain of hate speech detection. The knowledge related to hate
speech and offensive language would therefore also be small. For knowledge-integration
to help improve performance, it might be necessary to continue pre-training with the
framework proposed by Sun et al. (2020). This could be interesting to explore in future
work.

1https://gluebenchmark.com/leaderboard
2http://commoncrawl.org/
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This chapter will present a conclusion to the thesis, how the thesis contributes to the
field, and suggestions for future work. The conclusion will include central findings of
experiments and insights from discussions and the literature review. Several interesting
ways to explore the exciting field of hate speech detection were encountered during the
work on this thesis, and these will be presented in the final section. Some further paths
are divagations, while some are based on the need for further exploration and validation
of results presented earlier.

9.1. Conclusion
The field of automatic hate speech detection on social media is continuously growing.
Moderating incoming tweets manually using people is intractable, and automatic systems
that can discover unwanted content is therefore important. Research is focused both on
improving models and creating new datasets, the first being driven by a general need
for better models in NLP for a series of tasks. Recent work have been focused on the
successful use of transfer learning in the form of language models, especially through the
use of large Transformer based architectures. The work done in this thesis focused on
how reduction of parameters and inclusion of factual knowledge impact separation of
hateful, offensive, and normal language.

A literature review of existing work was presented in chapter 4, where existing solutions
in hate speech detection, generalizability, and transfer learning in NLP were surveyed.
The review found that word embeddings like GloVe and word2vec are still popular as
future extractors for both recurrent and classical machine learning methods, but large
pre-trained language models often perform better. Word and character n-grams are
both used in the literature, where character n-grams seem to perform better. This is
probably due to the large number of ways words are spelled and misspelled online. A
character n-gram approach is more immune to this and can navigate around similar
looking words. WordPiece and SentencePiece, mostly used in transformer based language
models, capture the best aspects of both approaches.
Kshirsagar et al. (2018) is an example of how word embeddings can still be used to

perform on the same level as transformer based models on hate speech detection. The
use of a knowledge integrating language model was first introduced in ERNIE, and has
therefore seen very little use in hate speech detection. When being used in OffensEval
2020, it outperformed all other models on the hardest tasks and therefore shows great
promise.
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Because of the novelty of ERNIE 2.0 and transfer learning, few experiments have been
conducted using knowledge integrating networks for hate speech classification. Experi-
ments were therefore conducted to gain insights on ERNIE’s ability to separate hateful,
offensive, and normal language. Also memory saving techniques using transformers have
been sparsely applied in hate speech detection, and five systems based on ALBERT and
ERNIE were therefore implemented. The lack of any baseline transformer model like
BERT or RoBERTa makes it difficult to clearly assess how much the results are due to
knowledge integration or parameter reduction. ERNIE scored consistently better than
ALBERT on macro averaged F1, but only a small or no improvement was observed
compared with other state-of-the-art systems with the same number of available tweets.
While ERNIE Base scored better than all ALBERT models on all datasets, the scores
were only significantly different between ERNIE Base and ALBERT Large, and between
the averaged results of the ERNIE and ALBERT models. The sample size of the sig-
nificance tests were only three in order to not break the assumption of independence
between experiments. Such a small sample size yields very low statistical power, and the
probability of type II error is therefore large, meaning there is a large probability that
ERNIE is still significantly better than all ALBERT models, but experiments with larger
sample sizes from i.e. cross-validation is needed to answer this.

A model’s usability is limited to how good the dataset is. Annotating coherent datasets
is difficult, and keeping annotations synchronized between datasets has proven challenging.
Nobata et al. (2016) argue that timely relevant data is important for performance, which
showcases the difficulty of generalizing when a limited scope of data is included during
training. Therefore, the work in this thesis also focused on the possibility of combining
several datasets and the effect this had on generalization. This was done with experiments,
and an extensive discussion was carried out in chapter 8 regarding the use of several
datasets in conjunction. In order to have systems that are able to work well in practice,
training models iteratively over time and combining datasets with different domains
is important to handle the changing nature of online content. Most previous work on
cross-dataset performance have been conducted on binary labels, and experiments were
therefore conducted to gain insights on the compatibility of three datasets converted
to a common, three class annotation scheme. While this was done with the aim of
testing generalizability, it also raised questions about the compatibility of the different
label schemes. A thorough analysis of how wrong assumptions in label mappings can
impact results was therefore conducted. It showed that wrong assumptions on the
relationship between insult target and hateful language would most probably punish the
model. Results of the cross-domain experiments showed that ERNIE was able to capture
structures of all three datasets on a level comparable with training on the datasets
separately, while ALBERT lost more performance when datasets were combined. This
suggests that the datasets are compatible, but ERNIE could also have used markers to
identify the dataset of a tweet and leveraged this to apply different definitions of hate
speech when predicting. Further research is needed to answer this. The same significance
tests as for in-domain experiments were conducted, and ERNIE scored significantly better
than ALBERT between several model configurations. This could probably be attributed
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to cross-domain experiments being more difficult which increase the performance gap
between the models.

9.2. Contributions

This thesis contributes to the field of hate speech detection by introducing cross dataset
experiments on separating hateful and offensive language. This has been not been
addressed earlier because of possible incompatibilities between the labels, but this
thesis intends to encourage further exploration of the actual incompatibilities, so that
inconsistencies can be identified.
Zampieri et al. (2019b) argued that their hierarchical label structure can be used to

match class definitions commonly used in offensive language detection. This thesis puts
this into practice. Section 8.1.2 presents an analysis on how wrong assumptions when
trying to match the hierarchical structure of OLID most probably will affect the macro F1
score. This is valuable to identify the usefulness of combining datasets. The thesis also
contributes with a discussion of the relationship between definitions of hateful, abusive,
and offensive language used in Zampieri et al. (2019b), Rosenthal et al. (2020), Davidson
et al. (2017), and Founta et al. (2018), as well as a discussion on the quality of some
datasets in chapter 3.
Even though the results of ERNIE were similar to previous work, the easily achieved

good performance suggests that the model may have room for improvement. The
identification of unstable training of ALBERT, especially on unbalanced data, might
encourage the use of averaging results in future work, or even better, the use of cross-
validation. This might lead to more stable and interpretable results.

9.3. Future Work

The experiments gave insights on how some of the experiments can be improved, and
what further research is needed to remove sources of error. Several ideas also came up
during the work on how to extend the research. This section will propose some further
paths that might answer the questions that arose, and it will also propose improvements
on the work done in this thesis, in order to find insights that this work might have missed.

9.3.1. Stripped Down Comparison

When discussing the results on cross-dataset performance and trying to deduce if the
annotations were compatible or not, a possible loophole for the models became apparent.
A model could “cheat” when predicting on a combined dataset by identifying what
dataset the tweet came from. For the OLID dataset, this could be done by noticing the
“@USER” tag often present in OLID. A suggestion for future work is to try to remove as
much syntactical identification from the datasets as possible, making it harder for the
models to discover what dataset a tweet belongs to. A model could still identify what
dataset a tweet belongs to through identification of topic. As an example, a token in
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OLID that would have a lot of predictive power is the word “liberals”. The word appears
1,445 times in the converted training set of OLID used in this thesis, 35 times in the
full dataset from Founta et al. (2018), and 10 times in Davidson et al. (2017). Note
however, that exploiting topics in order to predict better is not overfitting, and it could
be regarded as a good thing that the model has knowledge about the topic. Nevertheless,
it is valuable to have a sense of the degree to which this happens. In order to test how
easily a model can identify a dataset, an experiment could be conducted with a combined
dataset, where the labels represent the original dataset of a tweet. The metrics would
then represent how separable the datasets are with the respective model.

9.3.2. Thorough Model Comparison

Even though doing experiments with ALBERT and ERNIE gave valuable insights, a more
systematic approach exists for answering whether knowledge-integration in pre-training
yields benefits. Firstly, comparing ERNIE to a more similar model is a better approach
to identify the benefits of knowledge-inducing pre-training. While the work in this thesis
compared with previous works using BERT, a direct comparison where one can be sure
that all parameters are the same is probably beneficial. RoBERTa may be a better baseline
model than BERT, since Liu et al. (2019b) discovered that BERT was sub-optimally
pre-trained. This would reduce the chance of finding a difference between the models due
to sub-optimal training, which would increase the probability of the effects coming from
the knowledge-integration. Since the structures are completely similar, models could also
be compared with the exact same hyperparameters and optimizers, instead of the strategy
of the work in this thesis which was to use an extensive hyperparameter optimization
for ALBERT and a very limited for ERNIE. The work in this thesis observed unstable
training of ALBERT, which was also observed by Mosbach et al. (2020). Cross-validation
is not always used, but the observations suggest that this is crucial to get a credible
result. The lack of significant differences in the models used in this thesis might be due
to the high variance in the results of ALBERT. If cross-validation is not used, at least
random restarts as was done by Devlin et al. (2019) are suggested.

9.3.3. Further Knowledge-Integration by Pre-Training on Relevant
Data

ERNIE is trained on Chinese encyclopedic, news, and dialogue data on the token level
and on English Wikipedia, BookCorpus, and Reddit. This suggests that ERNIE has
some relevant English knowledge, but there is a potential for gaining more relevant data
through Twitter or English news. OLID has a lot of political data, and retaining relevant
knowledge from i.e. recent American news articles may prove helpful for the model.
Isaksen and Gambäck (2020) tried continued pre-training on other offensive datasets, but
this performed worse than the original models. The use of ERNIE’s continual multi-task
learning framework might yield better results by avoiding previously learned tasks to be
forgotten.
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9.3.4. Avoiding Catastrophic Forgetting

Merging and shuffling datasets yielded considerably better results than training with
each dataset iteratively. This is not an issue when only using three datasets and the
project utilizing them only spans a short time period, but it becomes problematic if a
real live system is supposed to keep up to date with the vast amounts of data and expand
while new data becomes available. It is therefore important to use strategies that do not
result in useful parameter structures being overwritten in order to optimize for new data.
Kirkpatrick et al. (2017) proposed Elastic Weight Consolidation (EWC), which mimics
synaptic consolidation in the brain. The method penalises a model for moving important
parameters further away from previously learned tasks. By using this, one could train on
newer data iteratively and choose how much to weigh individual datasets.

9.3.5. Using Other Dataset Resources

Caselli et al. (2020) did a thorough review of the OLID dataset and expanded it with
‘explicit’ and ‘implicit’ annotations in the AbuseEval v1.0 dataset. This could be utilized,
in conjunction with other techniques and strategies, to analyze how explicitness relates
to model performance on cross-dataset experiments. The other datasets could also be
analyzed in terms of explicitness by being tested with a model trained on AbuseEval
v1.0, similarly to the way Swamy et al. (2019) categorized tweets into targeted offense
or untargeted offense, and targeting groups, individuals, or other by training on the
different levels of OLID hierarchy. There are also several other annotation schemes and
datasets that can be explored. Price et al. (2020) published a dataset categorizing healthy
and unhealthy content, as well as using binary labels for six attributes of unhealthy
conversations. Resources like this could be utilized for further insight into what attributes
are present across different hateful language categories.
Many multilingual datasets are readily available1 and participation on multilingual

tasks was high in OffensEval 2020, where five languages were included. Several models
are now pre-trained on large multi-lingual corpora, and it could be interesting to expand
the experiments of this thesis to the multilingual domain. Use of multilingual corpora
increases the number of available datasets considerably and challenges the models further.
The experiments could also include other English datasets.

1https://hatespeechdata.com/
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A. Appendices
A.1. Macro Average F1 Given as Conditional Probabilities

This section presents how the F1 macro average score was calculated in section 8.1.2.
The scenario consists of a model being trained on an original dataset D, with “Hateful”
and “Offensive” as original labels. The model is then tested on a dataset with original
labels found in the label-space of OLID, and then mapped to the label space of D. Grp
and Ind means that a tweet is targeted towards a group or an individual. Hate and
Off means that the tweet is hateful or offensive in the original dataset D. It does not
mean that the tweet was labeled “Hateful” or “Offensive” in the dataset mapped from
the OLID hierarchy of section 7.1. Correct and Wrong means that the model trained
on dataset D was correct or wrong in its prediction on the mapped dataset. The macro
averaged F1 score when testing on the mapped dataset is given as:

MacroF1 = PrecHate×RecHate
PrecHate+RecHate

+ PrecOff ×RecOff
PrecOff +RecOff

Here the precision and recall for hateful and offensive are given as:

PrecHate = TP

TP + FP

RecHate = TP

TP + FN

PrecOff = TN

TN + FN

RecOff = TN

TN + FP

TP, FP, TN, and FN can be given as the combination between a tweet being targeted
against a group or individual, really being hateful or offensive, and if the model was
correct in its prediction. The probabilities of TP, FP, TN, and FN are thus:

P (TP ) = P (Grp ∩Hate ∩ Correct) + P (Grp ∩Off ∩Wrong)

P (FP ) = P (Ind ∩Hate ∩ Correct) + P (Ind ∩Off ∩Wrong)

P (TN) = P (Ind ∩Off ∩ Correct) + P (Ind ∩Hate ∩Wrong)

P (FN) = P (Grp ∩Off ∩ Correct) + P (Grp ∩Hate ∩Wrong)
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All these intersections can be given as the products of conditional probabilities:

P (Grp ∩Hate ∩ Correct) = P (Grp)P (Hate|Grp)P (Correct|Hate ∩Grp)

By assuming that that the model’s ability to be correct is independent of the target of
the tweet, this reduces to:

P (Grp ∩Hate ∩ Correct) = P (Grp)P (Hate|Grp)P (Correct|Hate)

By the law of total probability:

P (Ind) = 1− P (Grp)
P (Off |Grp) = 1− P (Hate|Grp)
P (Off |Ind) = 1− P (Hate|Ind)

P (Wrong|Hate) = 1− P (Correct|Hate)
P (Wrong|Off) = 1− P (Correct|Off)

These steps result in the macro averaged F1 score being given by 5 probabilities:

P (Grp)
P (Hate|Grp)
P (Hate|Ind)
P (Correct|Hate)
P (Correct|Off)

By calculating metrics from these probabilities, an intuition of how the probabilities
affect the metrics can be obtained. The widget used for exploring these probabilities can
be seen in figure A.1. When evaluating these probabilities, it can be noted that:

• P (Grp) can be approximated through analysis of development data.

• P (Hate|Grp) and P (Hate|Grp) are the assumptions made.

• P (Correct|Hate) and P (Correct|Off) can be approximated from previous experi-
ments.
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A.1. Macro Average F1 Given as Conditional Probabilities

Figure A.1.: The widget used for exploring the effects of violating the assumptions used
when mapping labels.
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A.2. Results on Cross-Dataset Evaluation

Ernie Albert
Base Large Base Large Xlarge

Hate
0.189 0.199 0.141 0.149 0.178
0.318 0.384 0.403 0.240 0.229
0.237 0.262 0.209 0.184 0.200

Off
0.928 0.923 0.957 0.931 0.922
0.799 0.791 0.694 0.733 0.753
0.859 0.852 0.805 0.820 0.829

Neither
0.578 0.570 0.467 0.454 0.456
0.833 0.789 0.801 0.823 0.811
0.682 0.662 0.590 0.585 0.584

Weighted
Average

0.832 0.827 0.834 0.811 0.807
0.780 0.770 0.697 0.722 0.736
0.797 0.790 0.738 0.748 0.756

Macro
Average

0.565 0.564 0.522 0.511 0.519
0.650 0.655 0.633 0.599 0.598
0.593 0.592 0.535 0.530 0.538

Accuracy 0.780 0.770 0.697 0.722 0.736

Table A.1.: Results on Dtest using F*train as training set.

112



A.2. Results on Cross-Dataset Evaluation

Ernie Albert
Base Large Base Large Xlarge

Hate
0.209 0.222 0.184 0.186 0.154
0.399 0.446 0.624 0.465 0.543
0.274 0.297 0.284 0.265 0.240

Off
0.945 0.938 0.969 0.961 0.961
0.817 0.807 0.717 0.743 0.672
0.876 0.868 0.824 0.838 0.791

Neither
0.665 0.633 0.576 0.556 0.532
0.901 0.849 0.852 0.890 0.867
0.765 0.725 0.687 0.684 0.659

Weighted
Average

0.860 0.850 0.863 0.854 0.848
0.809 0.795 0.734 0.753 0.698
0.827 0.814 0.773 0.783 0.741

Macro
Average

0.606 0.598 0.576 0.568 0.549
0.706 0.701 0.731 0.699 0.694
0.639 0.630 0.599 0.596 0.564

Accuracy 0.809 0.795 0.734 0.753 0.698

Table A.2.: Results on Dtest using DF*train as training set.

Ernie Albert
Base Large Base Large Xlarge

Hate
0.425 0.199 0.309 0.416 0.371
0.372 0.384 0.531 0.353 0.380
0.397 0.262 0.390 0.382 0.375

Off
0.948 0.923 0.963 0.951 0.950
0.955 0.791 0.902 0.947 0.939
0.952 0.852 0.931 0.949 0.945

Neither
0.899 0.570 0.859 0.864 0.872
0.905 0.789 0.922 0.918 0.915
0.902 0.662 0.889 0.890 0.893

Weighted
Average

0.913 0.827 0.911 0.908 0.907
0.916 0.770 0.886 0.912 0.906
0.915 0.790 0.896 0.910 0.907

Macro
Average

0.757 0.564 0.710 0.743 0.731
0.744 0.655 0.785 0.739 0.745
0.750 0.592 0.737 0.740 0.738

Accuracy 0.916 0.770 0.886 0.912 0.906

Table A.3.: Results on Dtest using F*Dtrain as training set.
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Ernie Albert
Base Large Base Large Xlarge

Hate
0.084 0.085 0.076 0.078 0.086
0.260 0.225 0.182 0.264 0.287
0.127 0.123 0.107 0.120 0.132

Off
0.891 0.887 0.906 0.901 0.897
0.701 0.755 0.675 0.630 0.638
0.785 0.816 0.773 0.742 0.746

Neither
0.563 0.613 0.450 0.475 0.474
0.761 0.723 0.796 0.793 0.773
0.647 0.663 0.575 0.594 0.588

Weighted
Average

0.795 0.800 0.787 0.788 0.785
0.688 0.722 0.669 0.638 0.642
0.728 0.755 0.706 0.685 0.688

Macro
Average

0.513 0.528 0.477 0.484 0.486
0.574 0.568 0.551 0.562 0.566
0.520 0.534 0.485 0.485 0.489

Accuracy 0.688 0.722 0.669 0.638 0.642

Table A.4.: Results on Dtest using Otrain as training set.

Ernie Albert
Base Large Base Large Xlarge

Hate
0.417 0.415 0.195 0.225 0.241
0.388 0.426 0.640 0.535 0.496
0.402 0.421 0.298 0.317 0.324

Off
0.943 0.946 0.971 0.961 0.948
0.956 0.952 0.814 0.859 0.872
0.950 0.949 0.886 0.907 0.909

Neither
0.921 0.910 0.809 0.834 0.824
0.880 0.876 0.846 0.891 0.861
0.900 0.892 0.827 0.862 0.842

Weighted
Average

0.912 0.913 0.904 0.902 0.891
0.914 0.912 0.810 0.847 0.851
0.913 0.912 0.846 0.869 0.867

Macro
Average

0.760 0.757 0.658 0.673 0.671
0.742 0.751 0.767 0.762 0.743
0.751 0.754 0.670 0.695 0.692

Accuracy 0.914 0.912 0.810 0.847 0.851

Table A.5.: Results on Dtest using Ctrain as training set.
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Ernie Albert
Base Large Base Large Xlarge

Hate
0.396 0.393 0.274 0.303 0.225
0.063 0.091 0.144 0.073 0.179
0.108 0.148 0.189 0.117 0.199

Off
0.824 0.820 0.774 0.785 0.829
0.885 0.879 0.857 0.881 0.801
0.853 0.849 0.813 0.830 0.815

Neither
0.937 0.936 0.933 0.934 0.936
0.970 0.966 0.932 0.947 0.961
0.953 0.951 0.933 0.940 0.949

Weighted
Average

0.882 0.881 0.862 0.866 0.874
0.904 0.900 0.874 0.887 0.883
0.886 0.886 0.866 0.872 0.878

Macro
Average

0.719 0.717 0.660 0.674 0.663
0.639 0.645 0.644 0.634 0.647
0.638 0.649 0.645 0.629 0.654

Accuracy 0.904 0.900 0.874 0.887 0.883

Table A.6.: Results on F*test using Dtrain as training set.

Ernie Albert
Base Large Base Large Xlarge

Hate
0.552 0.505 0.340 0.333 0.323
0.340 0.352 0.577 0.441 0.464
0.421 0.415 0.428 0.379 0.381

Off
0.868 0.867 0.897 0.881 0.887
0.917 0.916 0.856 0.871 0.856
0.892 0.891 0.876 0.876 0.871

Neither
0.960 0.961 0.969 0.960 0.963
0.969 0.964 0.935 0.941 0.944
0.964 0.962 0.951 0.951 0.953

Weighted
Average

0.917 0.915 0.919 0.909 0.912
0.924 0.921 0.898 0.899 0.899
0.919 0.917 0.907 0.904 0.905

Macro
Average

0.793 0.777 0.735 0.725 0.725
0.742 0.744 0.789 0.751 0.755
0.759 0.756 0.752 0.735 0.735

Accuracy 0.924 0.921 0.898 0.899 0.899

Table A.7.: Results on F*test using DF*train as training set.
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Ernie Albert
Base Large Base Large Xlarge

Hate
0.400 0.451 0.330 0.287 0.303
0.096 0.372 0.306 0.157 0.119
0.155 0.408 0.317 0.203 0.171

Off
0.818 0.858 0.861 0.814 0.812
0.918 0.910 0.815 0.852 0.883
0.865 0.883 0.837 0.833 0.846

Neither
0.953 0.962 0.943 0.942 0.945
0.967 0.955 0.965 0.958 0.959
0.960 0.959 0.954 0.949 0.952

Weighted
Average

0.893 0.911 0.892 0.878 0.880
0.910 0.914 0.896 0.892 0.898
0.896 0.912 0.894 0.884 0.887

Macro
Average

0.724 0.757 0.711 0.681 0.686
0.660 0.746 0.695 0.656 0.653
0.660 0.750 0.703 0.662 0.656

Accuracy 0.910 0.914 0.896 0.892 0.898

Table A.8.: Results on F*test using F*Dtrain as training set.

Ernie Albert
Base Large Base Large Xlarge

Hate
0.273 0.242 0.224 0.241 0.271
0.205 0.182 0.187 0.258 0.253
0.234 0.208 0.204 0.249 0.262

Off
0.749 0.732 0.762 0.750 0.741
0.844 0.825 0.826 0.819 0.849
0.794 0.776 0.792 0.783 0.791

Neither
0.958 0.954 0.953 0.964 0.968
0.935 0.931 0.938 0.930 0.926
0.946 0.942 0.946 0.947 0.946

Weighted
Average

0.873 0.865 0.870 0.876 0.878
0.876 0.867 0.873 0.869 0.873
0.874 0.865 0.871 0.872 0.875

Macro
Average

0.660 0.643 0.646 0.652 0.660
0.661 0.646 0.650 0.669 0.676
0.658 0.642 0.647 0.660 0.666

Accuracy 0.876 0.867 0.873 0.869 0.873

Table A.9.: Results on F*test using Otrain as training set.
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Ernie Albert
Base Large Base Large Xlarge

Hate
0.546 0.435 0.297 0.357 0.347
0.363 0.302 0.582 0.445 0.362
0.436 0.356 0.393 0.396 0.354

Off
0.811 0.805 0.892 0.865 0.819
0.943 0.930 0.838 0.879 0.904
0.872 0.863 0.864 0.872 0.859

Neither
0.982 0.979 0.969 0.964 0.969
0.936 0.933 0.921 0.941 0.932
0.959 0.956 0.945 0.952 0.950

Weighted
Average

0.915 0.906 0.916 0.909 0.901
0.913 0.905 0.884 0.901 0.896
0.912 0.903 0.897 0.905 0.898

Macro
Average

0.780 0.740 0.719 0.728 0.711
0.747 0.722 0.781 0.755 0.733
0.756 0.725 0.734 0.740 0.721

Accuracy 0.913 0.905 0.884 0.901 0.896

Table A.10.: Results on F*test using Ctrain as training set.

Ernie Albert
Base Large Base Large Xlarge

Hate
0.194 0.188 0.134 0.171 0.175
0.101 0.084 0.140 0.112 0.196
0.132 0.116 0.137 0.135 0.185

Off
0.831 0.823 0.717 0.765 0.832
0.815 0.822 0.811 0.819 0.765
0.823 0.822 0.761 0.791 0.797

Neither
0.936 0.936 0.945 0.938 0.931
0.973 0.969 0.890 0.930 0.956
0.954 0.952 0.917 0.934 0.944

Weighted
Average

0.874 0.872 0.845 0.855 0.870
0.890 0.889 0.835 0.863 0.869
0.881 0.879 0.839 0.859 0.869

Macro
Average

0.654 0.649 0.599 0.625 0.646
0.629 0.625 0.614 0.620 0.639
0.636 0.630 0.605 0.620 0.642

Accuracy 0.890 0.889 0.835 0.863 0.869

Table A.11.: Results on Stest using Dtrain as training set.
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Ernie Albert
Base Large Base Large Xlarge

Hate
0.318 0.280 0.201 0.230 0.223
0.436 0.374 0.559 0.425 0.536
0.368 0.321 0.296 0.298 0.315

Off
0.847 0.847 0.890 0.838 0.871
0.851 0.850 0.783 0.806 0.785
0.849 0.849 0.833 0.821 0.826

Neither
0.972 0.973 0.984 0.968 0.971
0.948 0.951 0.922 0.931 0.925
0.960 0.962 0.952 0.949 0.948

Weighted
Average

0.909 0.908 0.924 0.899 0.911
0.898 0.897 0.867 0.873 0.868
0.903 0.902 0.890 0.885 0.886

Macro
Average

0.713 0.700 0.692 0.678 0.689
0.745 0.725 0.755 0.720 0.749
0.726 0.710 0.694 0.689 0.696

Accuracy 0.898 0.897 0.867 0.873 0.868

Table A.12.: Results on Stest using DF*train as training set.

Ernie Albert
Base Large Base Large Xlarge

Hate
0.277 0.254 0.217 0.242 0.305
0.374 0.408 0.492 0.318 0.285
0.318 0.313 0.301 0.275 0.295

Off
0.831 0.829 0.838 0.799 0.783
0.846 0.835 0.803 0.788 0.844
0.838 0.832 0.820 0.794 0.812

Neither
0.971 0.974 0.979 0.943 0.955
0.942 0.933 0.917 0.929 0.928
0.956 0.953 0.947 0.936 0.941

Weighted
Average

0.901 0.902 0.906 0.872 0.878
0.890 0.883 0.866 0.863 0.876
0.895 0.891 0.883 0.867 0.877

Macro
Average

0.693 0.686 0.678 0.661 0.681
0.721 0.725 0.737 0.679 0.686
0.704 0.699 0.689 0.668 0.683

Accuracy 0.890 0.883 0.866 0.863 0.876

Table A.13.: Results on Stest using F*train as training set.
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Ernie Albert
Base Large Base Large Xlarge

Hate
0.229 0.254 0.242 0.234 0.144
0.134 0.408 0.341 0.190 0.089
0.169 0.313 0.283 0.210 0.110

Off
0.823 0.829 0.847 0.824 0.813
0.840 0.835 0.766 0.802 0.837
0.831 0.832 0.804 0.813 0.825

Neither
0.949 0.974 0.944 0.934 0.939
0.965 0.933 0.957 0.956 0.950
0.957 0.953 0.951 0.945 0.944

Weighted
Average

0.882 0.902 0.886 0.873 0.869
0.894 0.883 0.876 0.879 0.881
0.887 0.891 0.880 0.876 0.874

Macro
Average

0.667 0.686 0.678 0.664 0.632
0.646 0.725 0.688 0.649 0.625
0.652 0.699 0.679 0.656 0.626

Accuracy 0.894 0.883 0.876 0.879 0.881

Table A.14.: Results on Stest using F*Dtrain as training set.

Ernie Albert
Base Large Base Large Xlarge

Hate
0.515 0.472 0.209 0.240 0.263
0.293 0.336 0.598 0.486 0.374
0.373 0.392 0.310 0.322 0.309

Off
0.851 0.852 0.868 0.850 0.792
0.915 0.905 0.762 0.821 0.864
0.882 0.878 0.811 0.835 0.827

Neither
0.959 0.959 0.984 0.979 0.982
0.965 0.959 0.918 0.929 0.917
0.962 0.959 0.950 0.953 0.949

Weighted
Average

0.911 0.909 0.917 0.910 0.897
0.919 0.914 0.860 0.879 0.879
0.913 0.911 0.883 0.893 0.886

Macro
Average

0.775 0.761 0.687 0.690 0.679
0.724 0.733 0.759 0.745 0.719
0.739 0.743 0.690 0.703 0.695

Accuracy 0.919 0.914 0.860 0.879 0.879

Table A.15.: Results on Stest using Ctrain as training set.
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